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Abstract Microorganisms are found throughout every corner of nature, and vast num-

ber of microorganisms is difficult to cultivate by classical microbiological techniques.

The advent of metagenomics has revolutionized the field of microbial biotechnology.

Metagenomics allow the recovery of genetic material directly from environmental

niches without any cultivation techniques. Currently, metagenomic tools are widely

employed as powerful tools to isolate and identify enzymes with novel biocatalytic

activities from the uncultivable component of microbial communities. The employment

of next-generation sequencing techniques for metagenomics resulted in the generation

of large sequence data sets derived from various environments, such as soil, the human

body and ocean water. This review article describes the state-of-the-art techniques and

tools in metagenomics and discusses the potential of metagenomic approaches for the

bioprospecting of industrial enzymes from various environmental samples. We also

describe the unusual novel enzymes discovered via metagenomic approaches and

discuss the future prospects for metagenome technologies.
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Introduction

Enzymes are potent biocatalysts and enhance the rates of a large number of biological and

chemical reactions. Currently, there is a high demand for the potent biocatalysts, which are
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considered as greener alternatives for high-value chemical synthesis. Majority of chemical

synthesis now uses environmentally hazardous organic solvents and high energy [1, 2] as

microbial enzymes do not possess any environmentally hazardous nature and thus provide

Bcleaner^ solutions for the synthesis of bulk chemicals and compounds [3].

The exploitation of unexplored microbial communities for the identification and isolation of

potent enzymes is an active area of research worldwide. Being the oldest type of life in earth,

prokaryotic microorganisms possess remarkable physiological, metabolic and functional di-

versity and richest source of genetic diversity. Classic method to prospect this diverse gene

information is by cultivating the microorganism and subsequent screening for the desired

phenotype. However, about 99.9% of microorganisms in environmental niches cannot be

cultivated by standard laboratory techniques [4].

Metagenomics is a technology to bypasses the requirement for the isolation or cultivation of

microorganisms. Metagenomic technologies are based on the direct isolation of genomic DNA

from environmental samples and found to be powerful tools for tapping the genetic and

metabolic diversity of complex ecosystems [5]. The advent of this technology led to metabolic

profiling of complex environmental samples [6–8] and identification of novel bioactive

molecules and enzymes by the use of libraries constructed from isolated nucleic acids [9, 10].

Metagenomic technique involves two basic approaches for screening biomolecules from

environmental samples: function-based and sequence-based screening of metagenomic librar-

ies [11, 12]. In both cases, the metagenomic libraries are constructed by the cloning of

fragmented genomic DNA in appropriate expression vectors such as plasmid, cosmid, lambda

phage or fosmids that allow the expression of the desired genes. Depending on the desired

target gene size, metagenomic libraries have been created using plasmids (15 kb), fosmids,

cosmids (40 kb) or bacterial artificial chromosomes (40 kb) as expression vectors (Fig. 1).

Metagenomic gene libraries can be used for the identification of novel enzymes encoded by a

single gene or a small-sized operon, whereas large-sized insert libraries are required for the

isolation of large biosynthetic gene clusters, which encode for complex pathways containing

several genes [11]. After library construction, the resulting metagenomic clones are used to

transform a heterologous host, which is in most cases Escherichia coli.

Excellent reviews are available in the literature on every aspect of metagenomics, including

functional metagenomics [12], sequencing strategies [13] and applications in biotechnology

Fig. 1 a General strategies in metagenome mining of enzymes. b Function-based metagenomic screening
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industry [14]. In this review article, an overview of metagenomic approaches is discussed as an

emerging molecular technique with special reference to industrial enzyme prospecting and

applications in industry.

Function-Based Metagenomic Screening

The common function-based strategies used in metagenomics include enzyme activity-based

screens performed in culture plates, for example, starch-iodine test for amylase and cellulose

screening assay for cellulase. The different function-based screening strategies are phenotypic

detection, heterologous complementation of host strains and induced gene expression. In most

of the cases, the phenotypic chromogenic screening strategies employ dyes and substrates of

target enzymes incorporated in to the culture plate, where they detect the presence of specific

biocatalyst. As gene sequence information is not required, functional screening is best for the

identification of novel genes encoding novel enzymes [15, 16].

The heterologous complementation of host strains involves the use of complemented host

strains which require the presence of target gene for growth under selective condition. For

example, recently, screening of 446,000 clones of soil metagenomic library for genes that

confer resistance to β-lactam and aminoglycoside antibiotic resulted in the identification of

10–13 restriction clones with novel resistance genes [17].

The main advantage of direct screening of metagenomic library is that prior knowledge of

sequence is not required, and we may get novel gene sequence without any similarity to

previously existing sequences. The main disadvantage of this screening is the chances for

failure in gene expression mainly due to difficulties in promoter recognition, translational

inefficiency, misfolding of proteins, defective post-translational modification of desired pro-

teins, etc. This can be resolved by using vectors capable of accommodating large insert size,

using vectors with broad host range which allow expression in multiple hosts and using

rossetta E. coli strains which contain tRNA for rare amino acid codons [18, 19].

The third type of functional screening is substrate-induced gene expression screening which

is a high-throughput screening which contains GFP as a reporter gene. The system is based on

the fact that the GFP expression is induced by the presence of a specific metabolite produced

by the clones. The GFP is under the control of tightly regulated promoter. Researchers were

successful in isolating hydrocarbon-induced gene sequences from metagenomic library de-

rived from ground water [19].

Function-based metagenomic screening has been used in the screening of several active

biocatalysts. Here, we describe several published results of function-based screening of

metagenomic clones. For the identification of novel glycosyl hydrolases, metagenomic fosmid

libraries were screened from the cellulose-depleting microbial communities. The screening

was based on the biocatalytic capability to hydrolyse p-nitrophenyl-β-D glucopyranoside and

p-nitrophenyl-α-L-arabinopyranoside. This resulted in the recovery of two novel glycosyl

hydrolases with high activity and had no similarity to any other reported glycosyl hydrolases

[20]. Amylases are very important biocatalysts with several industrial applications. Function-

based screening strategies have been used for the screening of several reported amylases.

Another example for activity-driven metagenomic screening is the identification of a novel β-

glucopyranoside from human microbiome, which is essential for human health [21, 22].

Functional screening of metagenome from extreme environment discovered salinity and alkali

active novel cellulases and esterases [23, 24].
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Substrate-induced gene expression (SIGEX) is an efficient tool for function-based screen-

ing of metagenomic clones. Uchiyama and Miyazaki [19] modified the SIGEX protocol and

developed a reporter-based assay system called product-induced gene expression (PIGEX).

The modified system includes a transcriptional activator, which is highly sensitive to the

product of the desired enzyme. The downstream of the promoter region contains the reporter

gene GFP. Another type of screening system has been developed and designated as metabolite-

regulated expression (METREX) discovered by Williamson et al. [25]. This is a technology to

screen metagenomic clones producing small active molecules, and the system contains a

biosensor that detects the small diffusible signal molecules that activates the quorum sensing,

which is also placed in the same cell as the vector bearing a metagenomic DNA fragment.

The potential of functional metagenomics is the identification of biological activity in a

manner independent of sequence data; the main drawback of this technique is its dependence

on the ability of the heterologous host to express the metagenomic gene efficiently, translation

of messenger RNA (mRNA) in to functional protein and correct folding of the protein. E. coli

is proved to express 40% of environmental DNA, but not suitable for actinomycete genes with

high GC content [26]. In this context, the use of alternative hosts proved to be successful. For

example, E. coli, Streptomyces lividans and Pseudomonas putida containing various antibiotic

biosynthetic gene clusters produced variable levels of antibiotics [27], and six species of

Proteobacteria differed in expression of metagenomic genes of interest [28].

Sequence-Based Metagenomic Screening

Another widely used strategy for screening metagenomic clones is the sequence-based

approach. In this technique, metagenomic clones are screened using an oligonucleotide primer

or probes for the target gene using the colony hybridization technique to shortlist the clones.

The desired gene may also be amplified by PCR with specific or degenerate primers and

cloned in appropriate expression vectors. This technique leads to discovery of novel se-

quences. However, these sequences may share similarity to pre-existing sequence. This

technique opens the possibility of finding enzymes with high activity and efficiency [29].

This strategy has led to the identification of several novel enzymes like chitinase [30],

hydrogenase [31], phosphatase [32], glycerol dehydratase [33], hydrazine oxidoreductase [34],

etc. The sequencing strategy depends on the complexity of metagenomic community. If the

complexity of the microbial community is high, new sequencing strategy has to be used. The

advent of new sequencing technologies like 454-pyrosequencing has changed the scenario,

and more representation of species in the metagenomic community is possible now. New

computational tools are also required for analysing the bulk metagenomic sequence informa-

tion [35].

Several publications reported the use of sequence-based approach for the screening of novel

enzymes. Warnecke et al. [36] created metagenomic sequencing data from wood feeding

termites. They generated about 71 million base pairs of sequence information. They could

identify 700 domains of different glycosyl hydrolases, 45 different carbohydrate active

enzymes, etc. Another example for large-scale analysis of metagenome data is the microbial

population analysis of Sargasso Sea which generated 1.2 million previously unidentified genes

and led to identification of rhodopsin-like photoreceptor in bacteria [37]. Hess et al. [38] deep

sequenced the metagenomic library from cow rumen and analysed 268 gigabase of

metagenomic DNA, and they could find several carbohydrate active enzymes.
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High-Throughput Metagenomic Sequencing and Screening Strategies

The recent revolution in the field of DNA sequencing technologies has resulted in the

significant decrease in the cost of sequencing and dramatic increase in the metagenome

database. Improvements in sequencing technology have led to the introduction of next

generation or cyclic array technologies which resolved the issues related to massive parallel

sequencing. The array-based sequencing strategy can generate hundreds of millions of se-

quencing reads. The main next-generation sequencing platforms in the market are 454 genome

sequencer from Roche Applied Science, SOLiD platform from Applied Biosystems, the

Illumina Genome Analyser from Illumina and Ion Torrent/Ion Proton platform [39–41]. The

shot metagenomic sequencing approach gave community-level sequence information in a

highly complex environment with millions of different bacterial or eukaryotic species in soil,

ocean, cow rumen, groundwater, etc. [42, 43].

Currently, microbial metagenomic platform uses targeted gene sequencing or shotgun

metagenome sequencing [6, 39]. In the case of targeting the genomics, DNA is isolated from

environmental samples using highly efficient DNA extraction and purification methods. The

target genes are amplified using designed primers with oligonucleotide tags and also with

sequencing adaptors which sequence the pooled multiple samples [41]. In shotgun sequencing

approach, the genomic DNA is fragmented, end repaired and ligated with adaptors which

allow amplification of template and subsequent sequencing generates large number of short

reads, which can be further assembled and annotated with various computational tools and

techniques [44].

The number of computational tools also has been evolved in the past decades to analyse the

sequences originated from different sequencing platforms [45] (Table 1). The obtained protein-

coding genes can be analysed with the help of protein data bank (NCBI, NR, Uniport) or

domain database or Pfam [57]. Several enzyme databases are also available for searching

Cazyme [58], esterase, laccase [59], metallo-β-lactamase [60], etc.

The experimental link from genome sequence to protein function is important and usually

gives an overall idea about functional properties. Sometimes, metagenome annotations prove

to be incorrect when validated experimentally. So, further high-throughput functional screen-

ing is required instead of time-consuming conventional screening methods. Conventional

high-throughput screens use microtitre plates to screen large number of metagenomic clones.

The advent of microarray-based technologies coupled with other advanced technologies like

Table 1 List of computational tools in metagenome analysis

Tool Application Reference

Mothur Analyse the quality of sequencing reads and taxonomic classification [46]

Printseq Sequence trimming tool for quality control in the case where dinucleotide occurs [47]

MEGAN For taxonomic analysis and functional analysis. This tool is suitable for

comparative metagenome

[48]

Metagenomeseq Analyse the occurrence of 16S rRNA in metaprofiling [49]

Metapath Identification of biosynthetic pathway from metagenome data [50]

BlastX Analysis of translated sequence [51]

PhyloSeq Diversity and phylogenetic analysis [52]

MG-RAST Comparative metagenomics [53]

Parallel-META Taxonomic annotation of ribosome gene markers [54]

CARMA Phylogenetic analysis [55]

antiSMASH Identification of biosynthetic pathways [56]
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flow cytometry, cell compartmentalization and microfluidic devices resulted in the reduction of

time in screening millions of clones [61–64]. Colin et al. [64] recently demonstrated the

functional screening of a million-membered metagenomic library in microfluidic picolitre

droplet compartments.

Omic Technologies Integrated with Metagenome Research

Metatranscriptomics

Metatranscriptomics is the RNA-based sequence information of microbial communities in a

complex ecosystem [65]. The challenges associated with metatranscriptomics are the recovery

of high-quality mRNA from environment samples and separation of mRNA from other RNA

samples. The metatranscriptomic approaches in seawater community proved that this is an

efficient method to elucidate the gene expression pattern and led to the discovery of novel

genes [66]. Direct quantitation of mRNA transcript is feasible through metatranscriptomics

[67]. The importance of ammonia-oxidizing archeae in soil ecosystem has been unravelled by

Leininger et al. [68] through metatranscriptomics. Other successful metatranscriptomic ap-

proaches are the elucidation of novel pathway in archeae for methane oxidation and analysis of

ocean surface water from the North Pacific Subtropical phytoplankton bloom in English

Channel. Recently, Shi et al. [69] described the importance of small RNAs in environmental

samples.

Metaproteomics

Metaproteomics is the study of total proteome expressed by the microorganisms within an

ecosystem at a particular period of time. This technique can be used to explore the various

microbial activities and complex metabolic pathways involved in soil ecosystem [70]. Ram

et al. [71] analysed the proteome of natural acid mine drainage using the mass spectrometric

technique. They could identify around 2000 proteins from the microbial community. Several

metaproteomics studies were reported in the microbial community of activated sludge,

phyllosphere, hindguts of termites, marine samples, etc. [72]. Tanca et al. [73] employed a

metaproteogenomic approach combined with 16S rRNA gene sequencing, shotgun

metagenomics and metaproteomics, to analyse the microbial communities of paired mouse

caecal contents and faeces, to identify the changes in taxon-specific functions. Another study

attempted to study the effect of a long-term metal exposure on sediment microbial communi-

ties using metaproteogenomics [74]. Various bioinformatics tools in this area have been

reviewed by Seifert et al. [75].

Applications of Metagenomics in Enzyme Bioprospecting

Prospecting for Lignocellulolytic Enzymes

In order to produce biofuels from lignocellulosic biomass, efficient biomass-degrading en-

zymes need to be developed. Metagenomics has been widely used for the identification of

hydrolytic enzymes like cellulase, xylanase, etc. Lignin-degrading enzymes are very important

for biomass hydrolysis since the cross-linking by lignin in plant biomass limits the entry of
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enzymes and affects the hydrolysis. Several lignin-degrading enzymes like manganese perox-

idase and laccases have been developed through metagenomic discovery [76–78]. The

hemicellulosic region of lignocellulosic biomass consists of xylan and mannan which, can

be hydrolysed into monosaccharides by the action of xylanase (endo-β-1,4-xylanase

(EC3.1.2.8) and mannase. With the help of functional metagenomic screening, several novel

xylanases have been obtained from metagenomic DNA libraries [79, 80]. Low-temperature

active xylanase was obtained from soil-derived metagenomic library [81]. Another highly

active alkaline xylanase with broad pH range was obtained from the metagenomic library of

microbiome extracted from termite’s gut [82].

Cellulose is the most abundant component of plant biomass and is the most abundant polymer

in the nature. Cellulose enzymes include endoglucanase, which randomly cleaves cellulose chain,

and cellobiohydrolase, which acts on reducing or non-reducing ends of cellulose molecules and

release glucose or cellobiose. β-Glucosidase cleaves cellobiose or cellodextrins to glucose.

Recently, several novel cellulases with improved characteristics were identified through

metagenomics [83]. By functional metagenomic screening, highly glucose-tolerantβ-glucosidase

was identified from marine metagenome and this offers industrial application due to less product

inhibition [84]. Another novel β-glucosidase with novel properties has been isolated from soil

metagenome library and exhibited low temperature tolerance and can withstand broad pH range

(5.5–10.5) [85]. Several other potent cellulases obtained from metagenomic library are listed in

Table 2. An endoglucanase was also identified with high tolerance to ionic liquids with high

stability. Many other cellulases were identified through metagenomic screening which includes

endoglucanases and β-glucosidases from different environmental DNA libraries, Cazy enzymes

from gut of earthworms, etc. [76]. Novel β-glucosidases with glucose or ethanol tolerances are

greatly required to make industrial bioprocesses more efficient. Gomes-Pepe et al. [94] reported

the in silico/in vitro characterization of Bg10, a metagenomically derived homodimeric β-

glucosidase that exhibited a Vmax of 10.81 ± 0.43 μM min−1, Kcat of 175.1 ± 6.91 min−1 and

Km of 0.49 ± 0.12 mM at a neutral pH and 37 °C. Another recent study by Pottkamper et al. [95]

described the metagenomic analysis of microbial consortia enriched from rice straw adapted

(RSA) compost. The study analysed the 16S pyrotag library and 5 Gbp of metagenomic sequence

and showed that the phylum Actinobacteriawas the predominant group among the bacteria in the

RSA consortia, followed by Proteobacteria, Firmicutes, Chloroflexi and Bacteroidetes. The

CAZyme profiling of the consortia revealed that CAZyme genes were also widely distributed

within these bacterial phyla.

Table 2 List of some novel enzymes discovered through metagenomic approach

Enzyme Vector/host Environment Reference

Esterase Plasmid library/E. coli Soil from river valley [86]

Thermo-stable esterase Fosmid library/E. coli Mud sediment [87]

Glycosyl hydrolase Λ phage library/E. coli Cow rumen [88]

Halotolerant tannase Plasmid library/E. coli Soil (cotton field) [89]

Serine protease Plasmid and fosmid library Dessert valley soil [90]

Amylase Cosmid library/E. coli Soil from unplanted field [21]

Endo-1,4-endoglucanase YEP356/E. coli Seaweed [91]

Cellulase E. coli Anaerobic beer less [8]

Glucoside hydrolase E. coli Forest soil [92]

Laccase pIndigo BAC5/E. coli Seawater [93]
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Prospecting of Esterases

Lipases and esterase are hydrolytic enzymes which play an important role in food, biofuel and

pharma industries. They are involved in ester hydrolysis, synthesis, transesterification, synthesis

of fine chemicals, flavour compounds, etc. [25]. Many esterases with novel characteristics have

been identified through function-based or sequence-based screening strategies from environmen-

tal metagenomic libraries (Table 2). A novel lipase belonging to a new family has been reported

from intertidal flat metagenome, which is a cold-adapted lipase [96]. Peng et al. [97] constructed

metagenomic library of Chinese marine sediments and screened for novel alkaline stable lipase

with high specificity for buttermilk fat esters. Most of the metagenomically derived lipases

possess resistance to solvents, salt tolerance, etc. Novel esterase Est16 from metagenome of

diesel oil degradation region was recovered and possesses thermostability and active against wide

range of substrates [25]. A novel esterase gene was cloned from the metagenome of the sediment

of Soda Lake Dabusu. The 636-bp gene encodes a polypeptide of 211 amino acids and was

recombinantly overexpressed, and the enzyme was highly cold-adapted and retains 70% of the

activity at 0 °C, withstands broad pH range and is highly salt tolerant to 5 M NaCl [98].

Other Enzymes

Proteases which hydrolyse peptide bonds have numerous uses in food industry like tenderi-

zation of meat, in baking industry, etc. Metagenomic tools were successfully employed for the

prospecting of proteases. Biver et al. [99] isolated alkaline stable serine proteases from forest

soil metagenome library. Pushpam et al. [100] discovered a metagenome-derived protease

from goat skin. β-Galactosidases are also used widely in food industry for the hydrolysis of

lactose to glucose and galactose. A cold-active β-galactosidase was discovered from the

metagenomic library of ikaite columns of SW Greenland, and Wang et al. [101] also isolated

cold-adapted β-galactosidase from metagenome library (Table 2).

Marine Metagenome

Awide range of enzymatic activities have been identified from cultured marine microbes which

show the potential for the discovery of novel enzymes from marine microbes, which spread over

different parts of the globe. Recently identified non-specific nuclease, isolated from a bacterio-

phage which predates on the marine thermophile Geobacillus sp. 6K51, having an optimum

temperature of 60 °C has been shown to have no known homology to any previously isolated

nucleases [102]. On the other hand, the cold-adapted enzymes such as the lipases have been

isolated from the γ-proteobacterium, Pseudoalteromonas haloplanktis [103]. Other recently

reported enzymes include phospholipases [104], amylolytic enzymes [105] and agarases [106].

These enzymes are extensively being used in many biotechnological applications providing

economic and energy benefits. The costs of enzyme preparation have been reduced as we have

different options of enzymes according to our needs with optimum temperature at low and high

temperatures and minimize undesirable chemical reactions especially at high temperatures [107].

These properties are significant for the food and feed industry to reduce spoilage and change in

nutritional value and flavour of the original heat-sensitive substrates and products [108]. Com-

parative genome analyses suggested that marine psychrophilic enzymes have a flexible config-

uration, most probably due to a combination of changes in the overall amino acid composition,
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which lose their rigidity and gain increased structural flexibility enhancing catalytic function at

low temperatures [109]. Lipase and esterase are widely used in the food, laundry, textile, pulp and

paper industries; production of biodiesel; and synthesis of fine chemicals. Furthermore, they are

very easy to detect from a functional agar screening by using synthetic substrates [110].

Even environments such as the deep-sea floor, where only restricted numbers of cultivable

bacteria have been identified, now emerge to be reservoirs for microbes with enzymatic activities

with prospective biotechnological applications. For instance, a number of cultivable aerobic

microbes producing a variety of enzymes including protease, amylase, lipase, chitinase, deoxy-

ribonuclease and phosphatase have recently been isolated from the deep-subsea floor sediments

from offshore the Shimokita Peninsula in Japan at a water depth of 1180 m [111]. The entire

potential of these environments is still to be exploredmore as we know that this cultivable fraction

represents only a little proportion of the total bacteria present in these environments. Hence, it is

obvious that use of metagenomic or other culture-independent approaches together with robust

heterologous expression systems is required to smoothen the progress of such an approach. A

novel cold-active esterase called Est97 has been isolated by the metagenomic library screening of

an Arctic intertidal zone [112], which retains 60% of relative activity at 20 °C, suggesting its

utilization in cold biotransformation.MPlaG, a phospholipase Awith lipase activity, was obtained

from a metagenomic library from tidal flat sediments on the Korean west coast with maximum

activity at 25 °C. It also has specific catalytic properties against olive oil and phosphatidylcholine,

suggesting that MPlaG is a lipid-preferred phospholipase [113]. A fosmid library containing 7200

metagenomic clones was constructed from a deep-sea sediment sample from the South China Sea.

A gene (H8) coding for an active esterase was identified from this library and expressed in E. coli.

This esterase was found to be very suitable for industrial applications with optimal temperature

and pH of 35 °C and 10.0, respectively, and tolerant to salinity [114]. A list of marine-derived

metagenomic enzymes is presented in Table 3.

Metagenomics and Industrial Future

Recent reports suggested that the prospecting of industrial enzymes through metagenomics has

surprisingly been increased. Metagenomic discovery also offers direct access to the diversity of

microbial world and led to significant developments in industry-oriented research. The functional

screening of metagenome library followed by pyrosequencing of the insert genes allows several-

fold increase in the identification of novel genes with novel catalytic properties. Currently, several

Table 3 Novel enzymes discovered through marine metagenomic approach

Enzyme Source Reference

Esterase Marine mud [115]

α-Amylase Marine sediment [116]

β-Glucosidase Hydrothermal spring [117]

Laccase Marine water [118]

Proteases Sub-Antarctic sediment [119]

Xylanase Antarctic seawater [120]

Chitinase Marine hot springs [121]

Glycoside hydrolase Deep sea [122]

Feruloyl esterase Antartic seawater [123]

Aminopeptidase Marine sediment [124]
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metagenomic-based biocatalysts have been patented and available in the market, for example,

laccases, esterases and nitrile hydratase. The commercialization of metagenomically derived

enzymes takes several years because of the complex steps involved in the screening and

development [125]. In addition to that, the enzymes discovered through metagenomics should

possess several characteristics for industrial production. They should withstand harsh reactions in

industrial scale, broad pH range, temperature, salinity, varying solvent concentration, stereo-

selectivity, high turnover rate, etc. [126]. Metagenome-derived industrially important enzymes

can be improved through various tools and techniques. One can correlate the gene expression of

desired gene and turnover rate of substrate conversion. This will lead to standardization of

enrichment technique for the further improvement of the enzyme. In addition, the use of

metatranscriptomic and metaproteomics approach efficiently screens highly active enzymes.

Further, high-throughput enzyme screening strategies may further enhance the enzyme discovery

through metagenomics. This will reduce the time for identification of suitable enzyme and

subsequent establishment of an industrial process.

Conclusion

Metagenomics offers access to the genetic and metabolic diversity of the microbial communities

and has led to significant developments in the area of enzyme and bioactive molecule prospecting

and has revolutionized industrial production systemwith respect to the identification and isolation

of novel biocatalysts. With the advent of next-generation sequencing technologies, millions of

complex metagenomic sequence data were generated, which in turn led to the formulation of

various computational tools for the efficient analysis and comparison of these data sets with

respect to phylogenetic and metabolic diversity. This may aid in further improvements in the

identification of novel biocatalysts and bioactive molecules. Currently, large-scale gene expres-

sion studies and proteome studies of microbial communities emerged to link the genetic diversity

and metabolic activities of uncultivable microbes. Metatranscriptomics and metaproteomics in

combination with metagenomics offer significant promise to elucidate the functional dynamics,

activities and production capabilities of microbial consortia. Thus, metagenomic-assisted enzyme

bioprospecting presents an opportunity to identify, isolate and develop novel biocatalysts that are

highly significant to industrial bioprocess.
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