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Abstract

Discrete sequential data is the collection of an ordered series of discrete events or

abstractions from a set of data points collected at different time periods. These

processes are one of the most common and important process types encountered

in various domains. It is customary to discover similarities and to detect the

indicators of anomalies in multivariate form in a supervised setting. In this

paper, we first use an effective data transformation technique that transforms

multivariate time series into multivariate sequences and use a tree-based method

to mine frequent patterns from multivariate time series. However, this problem

is costly in terms of solution time and memory consumption. Specifically, this

study aims to improve computational efficiency for memory with reasonable

solution time. We demonstrate the efficiency of this algorithm on standard

datasets and then apply the method to a real healthcare problem.
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1. Introduction

Accelerated improvements in computing and storage technologies facilitated

data-driven approaches for pattern and feature extraction from massive datasets

for systems analysis and predictions. In the literature, analytical approaches

have been applied to many areas of healthcare, including accurate diagnosis,

prediction of diseases, and drug development (Koh et al., 2011; Raghupathi

& Raghupathi, 2014; Bates et al., 2014). Nevertheless, there are still many

healthcare questions waiting to be answered with better solutions. A few of

these common questions include, what is the likelihood of postoperative com-

plications?; how do postoperative complications develop?; and are there any

observable signs (or factors) prior to an operation that serve as predictors of

the operation outcome? In this context, a rich amount of studies examine how

age, comorbidities, physical examination findings, and serum laboratory values

affect postoperative complications in order to improve risk stratification prior to

surgery and to allow timely use of preventive therapies during surgery and anes-

thesia (Merath et al., 2020). However, there is a lack of research regarding the

role of preoperative quality of life (Saxton & Velanovich, 2011). Moreover, cur-

rent preoperative risk stratification is limited to a physician’s subjective risk as-

sessment (Thottakkara et al., 2016). An example of preoperative risk algorithms

is MySurgeryRisk (Bihorac et al., 2019), which was developed by a diverse re-

search group called PRISMAp at the University of Florida. This algorithm uses

existing clinical data in electronic health records to forecast patient-level proba-

bilistic risk scores for eight major postoperative complications, including Acute

Kidney Injury (AKI) and sepsis. MySurgeryRisk algorithm provides analyti-

cal guidance to surgeons in risk assessment before surgery. This study aims

to discover common preoperative behaviors seen in electronic medical/health

records of the patients who developed AKI. These records in the database are

the collection of data points during the inpatient time. Each record consists of

a value of a variable at discrete time points for a patient. To set an example,

the dataset in this study consists of patient IDs and patients’ health records
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such as heart rate and blood pressure during their preoperative inpatient term

in the hospital. In terms of the data structure, existing records for a patient are

in the form of multivariable time series, and the entire study dataset consists of

30 million rows (approximately 44,000 patients). Data points are recorded at

irregular but frequent time intervals.

In this study, we develop an efficient (in terms of computational and space com-

plexity) algorithm that extracts all possible common patterns among patients

who developed postoperative AKI. In the literature, this problem falls into the

category of Temporal Pattern Mining (TPM), which finds statistically relevant

patterns in temporal data for which the instances are represented as sequences

of events (Batal & San Ramon, 2015). Data mining and machine learning tech-

niques are the most popular approaches in recent studies that consider postop-

erative AKI prediction. In the literature, we observe different approaches used

in disease prediction such as machine learning techniques, time series analysis,

or pattern mining algorithms (Karabatak & Ince, 2009; Herland et al., 2014;

Siuly & Zhang, 2016; Bakator & Radosav, 2018). However, they are designed to

predict an outcome and cannot extract exact patterns from a dataset. Pattern

extraction approaches have not received attention in these studies mainly due

to the high computational and space complexity of these approaches and the

massive size and complexity of the medical datasets. (Batal & San Ramon,

2015).

Another factor that makes this problem challenging besides the dataset size

is the multivariable setting of the dataset. Current methodologies achieve the

benefit of dimension reduction by converting time series to time intervals with

abstraction. In recent studies, frequent temporal pattern mining (FTPM) is a

valuable approach for multivariate time series mining in terms of discovering a

pattern of a subgroup (Zhu et al., 2011). Searching a pattern that appears in

every dateset may cause other essential criteria to be overlooked. Hence, search-

ing a pattern with a supported probability may lead to more accurate findings,

especially in healthcare, which is vulnerable to exceptions and uncertainties.

Although the FTPM field has gained attention over the past 10 years due to
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increased data storage and improvements in computer performance (Anastasiu

et al., 2014), mining patterns from multivariate time series data sets has only

been around for a few years. FTPM is a broad topic in data mining literature;

however, there are few studies for multi-variate time series datasets, and those

are dated in 2010s (Chee et al., 2019).

FTPM from multivariate time series datasets, also known as knowledge discov-

ery for multivariate time series, is extremely costly in terms of memory and

time due to complex relations among variable levels in different time intervals.

Creating a chronological order for multivariate time intervals is not possible,

so a wise approach to the problem is to create temporal abstractions after the

reduction in dimensionality. In data mining, temporal abstractions are used to

extract frequent patterns. In order to represent patterns consisting of time in-

tervals, Allen’s thirteen temporal relations (Allen, 1990) are often used. One of

the first attempts to solve this problem came from Papapetrou et al. (2005). The

solution strategy used in the study considers data transformation by reducing

the dimensionality where the values are converted to abstractions. The abstrac-

tions are used to describe the level of the variables as a label. Papapetrou et al.

(2005) applies vertical list representation and generates possible candidates to

check whether the database includes them as frequently as required. Recently

published methodologies similar to Papapetrou et al. (2005) such as Batal et al.

(2016) and Kocheturov et al. (2019) propose Apriori based algorithms. Apriori

based algorithms use a candidate generation-and-test approach to reduce the

number of candidates to examine. Unlike Papapetrou et al. (2005), they ap-

ply pruning rules to avoid redundant candidate generation. However, scanning

the database multiple times to search the candidate pattern increases memory

usage. Moskovitch & Shahar (2009) also uses candidate generation and test

strategy with an algorithm named KarmaLego.

One of the main contributions of this paper is showing that multivariate time

series can be transformed to sequential datasets where frequent sequential pat-

tern mining techniques can be applied. This transformation also provides an

opportunity to mine multivariate time series in reasonable time and with less
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memory. This paper proposes a tree-based algorithm to mine frequently ap-

pearing items in a big database after transforming multivariate time sequences

into sequences.

One of the most efficient sequential pattern mining algorithms, PrefixSpan was

developed by Han et al. (2001) and is used in many areas both commercially

and academically (Chen et al., 2003; Han et al., 2007; Yu & Zhou, 2010). It

uses pattern growth approach by using suffix trees as opposed to Apriori based

algorithms. The Apriori approach may not be efficient in mining large sequence

databases having numerous patterns and/or long patterns (Han et al., 2007).

In PrefixSpan, a sequence database is recursively projected into a set of smaller

databases, and sequential patterns are grown in each projected database by ex-

ploring only locally frequent fragments. Hence, it is a useful algorithm in large

sequence databases. In most cases, PrefixSpan outperforms the Apriori based

algorithms (Pei et al., 2004). Modifications also have been applied to a variety

of data mining problems (Fournier-Viger et al., 2017).

The Apriori based algorithms (Batal et al., 2016; Kocheturov et al., 2019) fall

short in terms of memory usage and cannot provide a solution when minimum

support is lowered for a dataset with large number of records. However, a

pattern growth approach fits our problem best since the data has many data

points for a patient considering recorded vitals at every minute. Hence, we

present our algorithm, Multivariate Time Series Frequent Pattern Miner (MTS-

FPM), which is a PrefixSpan based algorithm. Although multivariate time series

structure is not suitable for the suffix tree-based algorithms we transform the

healthcare records to a sequential database with some modifications and show

that it is possible to mine multivariate time series with a sequential pattern

mining approach.

Studies closely related to ours include (Mörchen & Ultsch, 2007; Chen et al.,

2010, 2015b), and in terms of incision strategy and the coincidence representa-

tion they use in the preprocessing step. While Mörchen & Ultsch (2007) use

CHARM by Zaki & Hsiao (2002), which is an efficient algorithm for closed

itemset mining, after the preprocessing step, Chen et al. (2010) and Chen et al.
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(2015b) apply a sequential pattern mining algorithm to time interval-based event

data (e.g., electricity usage of household appliances) and create algorithms, as a

modification of PrefixSpan. Results also prove that PrefixSpan based approaches

outperform Apriori based algorithms. Different from our study, these studies do

not address multivariability in full measure. In the studies above, abstractions

are created assuming that there are only two levels to consider. However, our

study considers different levels of a variable rather than 0-1 (on-off) levels. Also,

after the modification, the studies (Mörchen & Ultsch, 2007; Chen et al., 2010,

2015b) still face the redundant candidate generation case. This paper shows

that this can be avoided using a small modification in the pattern counting

step.

In the rest of this paper, we discuss the background in Section 2. We then

present our methodology, Multivariate Time Series - Frequent Pattern Mining

(MTS-FPM), in Section 3 and show computational results in Section 4. Fi-

nally, in Chapter 5, we conclude the paper. The Appendix section covers the

pseudo-codes of the algorithms mentioned throughout the paper.

2. Related Background

In this paper, we study the frequent temporal pattern mining problem for

multivariate time series database and propose a modified algorithm, MTS-FPM,

based on the PrefixSpan algorithm. In this section, we provide the necessary

background for our methodology. First, Section 2.1 demonstrates how to gener-

ate abstractions from a time series and a multivariate state sequence, including

abstractions that belong to different variables. Also, we explain the PrefixSpan

algorithm in Section 2.2 since we build our methodology on the same concept.

2.1. Dimension Reduction for Multivariate Time Series

Multivariate time series include multiple variables whose values change through-

out the given time horizon. Relevantly, a multivariate time series database con-

sists of records with multivariate time series. In the AKI dataset, a data point is
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(a) (b)

Figure 1: (a) Time series for blood pressure. (b) Multivariate time series for blood pres-

sure and heart rate. The figures shows blood pressure and heart rate values for a patient.

The abstractions and the corresponding ranges defined for blood pressure variable are“Low”

:[0,90], “Normal”:(90,140], and “High”:(140,200]; for heart rate variable are “Low” :[0,90],

“Normal”:(60,100], and “High”:(100,200].

composed of a tuple that includes a variable, a time point, and the value of this

variable at the time point. A single time series is the collection of these data

points for one variable (e.g., blood pressure in Figure 1(a)). In this manner,

a record is the collection of multiple time series that belong to a patient (e.g.,

blood pressure and heart rate in Figure 1(b)).

To represent this setting with mathematical notations, we define a database

D of n records di (i = 1, ..., n), where each record is composed of m time series

Xi
j (j ∈ L, L = {l1, ..., lm}), where L is the set of variables. Mining patterns

considering all of the data points in a time series is computationally costly.

Therefore, first we convert continuous values in each data points to categor-

ical values. Moreover, we also construct abstractions merging collateral data

points if they belong to same level. This process yields an ordered sequence of

labeled levels and the resulting reduction in each time series also depends on

the smoothness level of the time series. While a massive amount of reduction

can be observed in a flat time series, the reduction is not as large for highly

fluctuating time series.

To mine frequent patterns in database D that contains multivariate time

series, we define time-interval abstractions such as value or trend abstractions
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(Shahar, 1997). For example, a value abstraction, in this setting, is a level es-

timated by given ranges of a variable in a time period while trend abstractions

are estimated based on increments and decrements of a variable throughout a

given time period. Let us consider a patient whose heart rate is recorded regu-

larly each minute for 5 minutes and a normal heart rate falls in the interval of

[60, 100). Also, assume that the values measured for each minute are 80, 85, 90,

100, and 110. The abstractions for this patient are ‘normal’ heart rate during

the first 3 minutes and a ‘high’ heart rate for the last 2 minutes. This is an

abstraction that is adjusted to the values so it can be called a value abstraction.

In Figure 1 (a), value abstractions of the blood pressure variable over time is

given by the set ΣBP= {“Low”, “Normal”, “High” }. In Figure 1 (b), an exam-

ple of multivariate value abstraction is given where the set of value abstractions

is ΣHR = ΣBP= {“Low”, “Normal”, “High”}. Next, to represent this idea

symbolically, we represent required terminology and their definitions.

Definitions:

1. E = (F,V, s, e) is a state interval where (F, V ) is a state and s and e

are the start and end times of the state interval.

2. F is the variable label of state interval E where F ∈ L.

3. Σlj is the set of possible abstractions of variable lj .

4. V is the value abstraction of state interval E where V ∈ ΣF .

5. Z, Multivariate State Sequence (MSS), is the sequence of state inter-

vals where the state intervals are ordered by their starting times s, Z =

〈E1, E2, ..., Ek〉 where Et = (Ft, Vt, st, et), st−1 ≤ st ≤ st+1, 1 ≤ t ≤ k.

The first step is to convert each record di ∈ D into a set of temporal abstrac-

tions of the form of 〈(F1, V1, s1, e1), ..., (Ft, Vt, st, et)〉 where Ft = lj (lj ∈ L) and

Vt ∈ Σlj is an abstraction from start time st up to end time et. For example,

the state interval (HR,“ Low”, 5, 12) means that the heart rate was low from
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time 5 until time 12.

To represent time-interval datasets accurately, we benefit from Allen’s logic

(Allen, 1984) for maintaining the relationships between different abstractions.

For this purpose, we use two different relations, “before” and “co-occur”.

For two state intervals Et and Et′ , t < t′, we say that Et finishes before Et′ if

et ≤ st′ . Otherwise, we say that Et co-occurs with Et′ .

Table 1 Notations

Parameters

n Number of records (Number of patients)

m Number of time series for each record

L Set of variables

(Number of variables per patient)

Xi
j Time series j for patient i

ΣFt
Set of possible abstractions for Ft

Z Multivariate state sequence

Et tth state interval in a MSS

Ft Variable of tth state interval in a MSS

Vt Value of the variable in tth state interval in a MSS

st Starting time of tth state interval in a MSS

et Ending time of tth state interval in a MSS

In this study each record di is transformed into a MSS where start and end

times are removed. This approach is different from other mutivariate time series

frequent pattern mining methods (Kocheturov et al., 2019; Batal et al., 2016).

After defining the relationship between any two abstractions, the abstractions

are sequentially represented instead of using an upper triangular matrix to define

the relationship between each state interval. In this study, each Et is demon-

strated by (Ft, Vt). With this representation, the state intervals with the same

variable and a value abstraction are considered as the same state interval occur-
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ring multiple times in different time periods. In this sequential representation

structure, while state intervals are sorted based on their starting times, the ones

that co-occur are shown in a parenthesis. However, this representation is not

enough to apply a tree-based algorithm. For this purpose, we need some mod-

ifications to the MSS. Next, we show how to convert a MSS into a sequence

without any loss of relations.

2.2. PrefixSpan Algorithm

PrefixSpan by Han et al. (2001) is prefix-projected sequential pattern mining

approach that is used to extract frequently appearing patterns in a sequential

database. Let I = {i1, i2, ..., iN} be a set of all items. An itemset is defined

as a subset of items; it may have a single item or multiple items as a subset

of I. An itemset sj is denoted as {x1, x2, ..., xK}, where xK is an item. Also,

a sequence is defined as an ordered list of those itemsets. A sequence s is

denoted by 〈s1s2...sp〉. Moreover, an item can occur at most once in an itemset

of a sequence, but can occur multiple times in different itemsets of a sequence.

Definitions:

6. A sequence α = 〈s1s2...sp〉 is called a subsequence of another sequence

β = 〈s′1s′2...s′q〉 and β is a supersequence of α denoted as α v β if

there exist integers 1 ≤ j1 < j2 < ... < jp ≤ q such that s1 ⊆ s′j1 , s2 ⊆
s′j2 , ..., sp ⊆ s′jp .

7. The support of subsequence α in a sequence database S is the number

of sequences in the database containing α. In this paper, the support of

sequence α will be denoted as supportα.

8. A subsequence α is a frequent pattern if supportα ≥ min support where

min support is a user defined threshold to demonstrate the least frequency

of a sequence.

PrefixSpan uses a pattern growth approach. First, the database is scanned once

in a counting process to find length-1 patterns. Then, the non-frequent items
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are dropped from the database and the database becomes smaller. Later, the

search space is divided by creating projected databases consisting of suffixes of

length-1 patterns. Next, mining each projected database, the algorithm detects

frequent items in those databases separately and appends them to the prefixes

found in the first step. The process repeats itself by dividing the search space

based on suffixes of length-k patterns until there are no frequent items found in

all projected databases. The set of sequential patterns is the collection of pat-

terns found in the above recursive mining process. Pseudocode for PrefixSpan

can be found in appendix as Algorithm 1. Next, we introduce our methodol-

ogy, Multivariate Time Series Frequent Pattern Miner (MTS-FPM), which is a

PrefixSpan based algorithm.

3. Methodology

In this section, we introduce our representation technique and demonstrate

the transformation procedure from a MSS to a sequential database. We also

present our solution algorithm, Multivariate Time Series Frequent Pattern Miner

(MTS-FPM), which can be used after the data transformation.

3.1. Transforming a MSS to a Sequence

In this study, a sequence is referred to as a list of chronologically ordered

items. For instance, a list of transactions made by a customer can be considered

as a list of ordered items. Each transaction includes at least one item. If a, b, c

are store items and a(bc) is a sequence of transactions made by a customer, then

we interpret this as follows: item a occurs in the first transaction, and item b

and c co-occur in the second transaction.

After dimension reduction, the MSS can also be represented as a sequence. This

procedure can simply be done if one state interval is not co-occuring with more

than one state interval as in synchronous multivariate time series. However, for

asynchronous ones where one state interval can co-occur with more than one
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state intervals in different time periods, we need a smarter way to represent

a multivariate time series as a sequence. First, we assign an index to each

unique value abstraction showing their order among themselves (e.g., Figure 2).

Thus, a state interval becomes Et = (Ft, Vt, k, st, et) where k is the order of the

abstraction among each unique (Ft, Vt) pair. Then, beginning with the earliest

starting time, we compare each state interval with other state intervals that

begin between the starting and ending times of this state interval. If there is

a co-occurrence, we represent this by placing the state intervals in parenthesis

(itemset). We append this itemset as an element to the sequence. Otherwise,

one occurs after another and we simply append the state interval to the sequence

as an element. We continue to apply the same procedure until no abstraction

is left in this sequence. However, for the next iterations, we do insert elements

after checking if this element is a sub-sequence of any element in the sequence

or vice versa. In the case of a ’yes’ answer, we keep/insert the element with high

cardinality into the sequence and do not insert/remove the smaller size element.

Finally, starting and end times are removed from each state interval, and the

remaining tuple Ft, Vt, k is demonstrated with FVt
tk

for the rest of the paper.

Example 3.1 demonstrates how Et = (Ft, Vt, st, ei) is transformed to (Ft, Vt, k).

———————————————————————————————————

Example 3.1. We would like to represent MSS Z in Figure 2 as a multivariate

sequence Z∗.

Z = 〈E1 = (HR,−, 0, 5), E2 = (BP,++, 1, 2), E3 = (BP,−, 2, 5),

E4 = (HR,∼, 5, 6), E5 = (BP,∼, 5, 6), E6 = (HR,−, 6, 7), E7 = (BP,+, 7, 9)

E8 = (HR,∼, 7, 8), E9 = (HR,−, 8, 19), E10 = (BP,++, 9, 10), E11 = (BP,+, 10, 11),

E12 = (BP,++, 11, 12), E13 = (BP,+, 12, 14), E14 = (BP,∼, 14, 15),

E15 = (BP,++, 15, 16), E16 = (BP,+, 16, 18), E17 = (BP,∼, 18, 19)〉
where ΣBP = {“Low”, “Normal”, “High”, “Very High”} = { −, ∼, +, ++}
and ΣHR = {“Low”, “Normal”, “High” } = { −, ∼, +}.
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E1 is the first state interval in Z and we compare it with E2 and E3 since

Figure 2: Enumeration of abstractions

s1 ≤ s2 ≤ s3 ≤ e1. E1 and E2 co-occurs because s1 ≤ s2 and e1 ≥ e2. We add

this co-occurrence to Z∗ in the form of an itemset, Z∗ = 〈(E1E2)〉. Next, we

compare E1 and E3 and find another co-occurrence. Also, (E1E3) 6v (E1E2) or

(E1E2) 6v (E1E3), hence we can add the itemset (E1E3) to Z∗ as another ele-

ment. Now Z∗ = 〈(E1, E2) (E1E3)〉. In the next iteration, we will apply same

procedure for E2. Since there is not any state interval starting between s2 and

e2, there is not any more co-occurrence and we will check if the sub-sequence

condition holds. Since, E2 v (E1E2) we keep (E1E2) in Z∗ and do not append

E2. We continue to apply the same procedure until no state interval is left in Z

and reach the following representation. Note that the MMS to sequence trans-

formation algorithm can be found in Appendices as Algorithm 2.

Z∗ = 〈(E1E2) (E1E3) (E4E5) (E6E7) (E7E8) (E7E9) (E9E10) (E9E11)

(E9E12) (E9E13) (E9E14) (E9E15) (E9E16) (E9E17)〉
After deleting time information and demonstrating every state interval with vari-

able name and the value abstraction the multivariate sequence Z∗ becomes:

Z∗ = 〈(HR−1 BP++
1 ) (HR−1 BP

−
1 ) (HR∼1 BP

∼
1 ) (HR−2 BP

−
2 ) (HR∼2 BP

+
1 )

(HR−3 BP
+
1 ) (HR−3 BP

++
2 ) (HR−3 BP

+
2 ) (HR−3 BP

++
3 ) (HR−3 BP

+
3 )

(HR−3 BP
∼
2 ) (HR−3 BP

++
4 ) (HR−3 BP

+
4 ) (HR−3 BP

∼
3 )〉.

End Example 3.1.
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———————————————————————————————————

For a database with more than two variables, the same steps can be ap-

plied with one difference: Whenever a state interval is found co-occurring with

another state interval, as an extra step, we also check if there are more state

intervals that co-occur with those. We only check the state intervals whose

starting time is between the start and end time of the first state interval.

———————————————————————————————————

Example 3.2. Consider the MSS Z = E1 = (A,++, 0, 10), E2 = (C,+, 1, 8), E3 =

(B,−, 3, 6)E4 = (D,−, 7, 8), E5 = (B,∼, 6, 12), E6 = (B,−, 12, 13). Figure 3

demonstrates the example to this transformation process and Table 2 explains

the progress in the sequence in each iteration.

The final representation of this 4-variable time series as a sequential list is

Figure 3: Example 3.2: An example of converting multivariate time series to sequential data

sets
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Table 2 Example 3.2: Step-by-step conversion of multivariate time series to

sequential datasets where t is the index of state intervals Et ∈ Z
i = 1 Step 1 (A++

1 C+
1 ) found

Step 2 (A++
1 C+

1 B−1 ) found

Z∗ = 〈(A++
1 C+

1 B−1 )〉
Step 3 (A++

1 C+
1 B∼1 ) found

Step 4 (A++
1 C+

1 B∼1 D
−
1 ) found

Z∗ = 〈(A++
1 C+

1 B−1 ) (A++
1 C+

1 B∼1 D
−
1 )〉

i = 2 Step 1 (C+
1 B−1 ) found but (C+

1 B−1 ) v (A++
1 C+

1 B−1 )

Step 2 (C+
1 D−1 ) found but (C+

1 D−1 ) v (A++
1 C+

1 B∼1 D
−
1 )

Z∗ = 〈(A++
1 C+

1 B−1 ) (A++
1 C+

1 B∼1 D
−
1 )〉

i = 3 Step 1 no co-occurrence found and B−1 v (A++
1 C+

1 B−1 )

Z∗ = 〈(A++
1 C+

1 B−1 ) (A++
1 C+

1 B∼1 D
−
1 )〉

i = 4 Step 1 (B∼1 D
−
1 ) found but (B∼1 D

−
1 ) v (A++

1 C+
1 B∼1 D

−
1 )

Z∗ = 〈(A++
1 C+

1 B−1 ) (A++
1 C+

1 B∼1 D
−
1 )〉

i = 5 Step 1 no co-occurrence found and D−1 v (A++
1 C+

1 B∼1 D
−
1 )

Z∗ = 〈(A++
1 C+

1 B−1 ) (A++
1 C+

1 B∼1 D
−
1 )〉

i = 6 Step 1 no co-occurrence found and B−2 can be added to Z∗

Z∗ = 〈(A++
1 C+

1 B−1 ) (A++
1 C+

1 B∼1 D
−
1 )B−2 〉

Z∗ = 〈(A++
1 C+

1 B−1 ) (A++
1 C+

1 B∼1 D
−
1 )B−2 〉.

End Example 3.2.

———————————————————————————————————

This representation enables us to use a sequential frequent pattern mining tech-

nique. For this purpose, we use a PrefixSpan based algorithm since PrefixSpan

is one of the efficient sequential frequent pattern mining algorithms (Han et al.,

2001; Maylawati et al., 2017). So, next we revisit the PrefixSpan algorithm and
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provide brief background information.

3.2. Multivariate Time Series Frequent Pattern Miner (MTS-FPM)

As we discussed earlier, PrefixSpan is a useful approach to determine sequen-

tial frequent patterns. While Apriori approaches create candidates and search

the database for these candidates, it counts the existing patterns and eliminates

redundant pattern search. However, it does not have any adjustments for multi-

variate sequences yet. We show that with only a few modifications in the format

of pruning rules, it becomes eligible to mine multivariate sequences. We need

the following definitions to explain MTS-FPM and the pruning rules.

Definitions:

9. The α projected database, denoted as S|α, is the database consisting

of suffixes of α in each sequence of S and demonstrated with S|α.

10. The αi projected multivariate sequence, denoted as Z∗
i |αi , is the

suffix of αi in sequence i where αi is the sequence of elements in sequence

i that forms current pattern α. The order of state interval k in αi does

not necessarily hold the same order in α. Therefore, we need to keep a

record of the prefix sequence in each sequence as αi.

Pruning Rules:

The MTS-FPM pruning rules are used to support the counting process (the first

step of PrefixSpan algorithm). Frequent patterns are found based on number of

sequences that include them. Recall that a subsequence is a frequent pattern if

the number of sequences that includes it is equal to or larger than the minimum

support. We apply these rules at the first step of MTS-FPM which can be

found in the Appendix as Algorithm 3. To explain these rules, we define some

variables. Let us assume that we have a current growing pattern α = 〈s1s2...sp〉
and we are counting state interval b in S|α for “α is before b” and “α co-

occurs with b”, separately. Also, assume that sp and sip are the last element

of α and αi, respectively. Moreover, unlike PrefixSpan, we consider that an item

is in the format of FVk (e.g. BP++
1 ). These rules are also valid for multivariable
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setting with any number of variables. For the sake of simplicity and a better

understanding, we give the representations and examples for a 2-variable case.

MTS-FPM Pruning Rules:

Rule 1: If b and any c ∈ sp have the same variable label then counting for co-

occurrence is skipped.

Rule 2: If (bc) is found in S|αi and c ∈ sp then sequence i cannot be counted in

support of αb (i.e. “α comes before b”).

Rule 3: If b ∈ sp, sequence i cannot be counted in support of any relationship.

Rule 4: Assume that all frequent patterns that start with item b is found. If there

is a subsequence of α, αS (αS v α) and starts with b, we can check if αSc

is a frequent pattern found earlier. If there is no such pattern found, then

it cannot also be found in the α projected database. Therefore, under

these circumstances we can skip counting αc.

These MTS-FPM pruning rules enable the algorithm to disregard redundant

pattern searching. The rules can be applied in a counting process which is the

first line of the PrefixSpan algorithm. For example, we already know that the

pattern (HR++
1 HR+

1 ) does not exist because heart rate cannot be ‘Very High’

and ‘High’ at the same time. So, we do not attempt to count how many times

HR++ and HR+ co-occur because we already know that the answer is zero.

Thus, we adapt a pruning rule (rule 1) such as eliminating the search for co-

occurrence of state intervals which belong to the same variable. Another rule

(rule 2) is also required if two state intervals are co-occuring but one of them is

written more than once because two other state intervals are co-occuring with

this state interval. As an example, considerHR−1 in (HR−1 BP
++
1 ) (HR−1 BP

−
1 ).

As a subsequent pattern, we cannot accept HR−1 is before BP−1 because HR−1

and BP−1 are co-occurring. The second rule also states that repetition of the

same state interval is allowed if and only if this state interval is co-occuring in

both representations, such as (HR−1 BP
++
1 ) (HR−1 BP

−
1 ). This reads as very
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high and low blood pressure occur sequentially while heart rate is low. The

third rule is very similar to the second rule. With a given representation, Pre-

fixSpan may give a result such as HR−1 HR
−
1 i.e., HR−1 is before HR−1 , or

(HR−1 BP
++
1 )HR−1 , i.e., HR−1 BP

++
1 is before HR−1 . Recall that in this study,

we only define two relations (‘before’ and ‘co-occur’), therefore, these exam-

ples are redundant because HR−1 and HR−1 are equivalent and (HR−1 BP
++
1 )

already explains (HR−1 BP
++
1 )HR−1 . On the other hand, HR−1 HR

−
2 and

(HR−1 BP
++
1 )HR−2 are valid frequent patterns because state intervals HR−1

and HR−2 belong to different time periods.

The fourth rule is developed to make MTS-FPM computationally faster than

PrefixSpan as an independent rule from the multivariable format of the problem.

MTS-FPM, like PrefixSpan, is a tree-based method and adapts a depth-first ap-

proach; thus, it is not fully convenient to apply the Apriori rule. While this

saves us from extreme memory usage, it blocks one way to gain speed. How-

ever, we have a chance to utilize the revealed information in subtrees of previous

branches. The fourth rule gives efficiency in computational time when the num-

ber of patterns to be obtained is less than the number of sequences in the

database. For example, once we found all frequent patterns starting with A+
1 ,

we start searching for frequent patterns in the next length-1 pattern’s (B+
1 )

projected database. Assume that we have found a length-2 frequent pattern

B+
1 A

+
1 and now need to look for the next frequent state interval that will come

after this pattern. Since patterns that start with A+
1 are already revealed, we

do not have to count the support for the state intervals that do not appear after

A+
1 . Assume that we previously did not obtain a pattern such as A+

1 A
+
2 , then

we can simply skip counting A+s in the B+
1 A

+
1 database.

MTS-FPM (Algorithm 3 in Appendices) uses current pattern (α), current pat-

tern length (p), projected pattern database, (S|α), and set of multivariate se-

quences {αi, i = 1, ..., supportα}. As a first step, the database is scanned and

frequent items are found taking pruning rules into consideration (line 1). These

items form the length-1 frequent patterns and they acquire an index k = 1 (line

3). First length-1 patterns are appended to α (line 7) and for each, a projected
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database is created (line 8). Additionally, we keep track of the frequent items

with their orders in the sequence inserting the items to αi for each sequence

i ∈ {1, ..., supportα} (line 10). MTS-FPM is called again for the α projected

database which is the projected database generated for this length-1 frequent

pattern (line 11). In the second iteration, the same search procedure is followed

by applying pruning rules and α is updated appending the newly found length-

1 frequent patterns to it one by one. The new length-2 patterns create child

nodes on the tree. If a length-1 pattern is found as a co-occurrence with the

last element in α, then it is added in a paranthesis with the last element in α;

if a length-1 pattern is found in a sequential order with the last element of α,

then it is added after the last element of α (line 7). Unlike PrefixSpan, while

appending these new length-1 patterns to α, an index k is given depending on

the label, abstraction value, their sequential order, and maximum index of this

state interval in α (line 7). MTS-FPM is recursively called starting from the

first child node until no frequent item is found. The same procedure is now

applied to the next node on the tree. When all frequent patterns in all nodes

are found, the algorithm terminates.

To fully understand the algorithm given above and how pruning rules can be

applied, let us look at a different example where we have two sequences derived

from two different multivariate time series.

——————————————————————————————————

Example 3.3. Let Z∗1 and Z∗2 be two multivariate sequences where Z∗1 = 〈(A+
1 B

−
1 )

(A+
1 B

+
1 )〉 and Z∗2 = 〈A+

1 B
−
1 A

+
2 B

+
1 〉. When we look at length-1 frequent pat-

terns with min support = 2, i.e., the length-1 subsequences that can be found

in both sequences, we see A+, B−, and B+ regardless of their orders. We start

building α with A+ by adding an order 1, A+
1 , as a representation of order of this

element in α. It means this is the first A+ in α. For each length-1 frequent pat-

tern we create a projected database. These are S|A+
1

, S|B−1 , and S|B+
1

for A+
1 ,

B−1 , and B+
1 , respectively, where S|A+

1
: Z∗1 |A+

1
= 〈 B−1 ) (A+

1 B
+
1 )〉, Z∗2 |A+

1
=

〈B−1 A+
2 B

+
1 〉, S|B−1 : Z∗1 |B−1 = 〈(A+

1 B
+
1 )〉, Z∗2 |B−1 = 〈A+

2 B
+
1 〉, and S|B+ : Z∗1 |B+

1
=
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Figure 4: Suffix tree representation to frequent patterns in Example 3. The frequent pat-

terns found in the database with min support=2 : length-1 → A+
1 , B−

1 , B+
1 , length-2

→ A+
1 B+

1 , B−
1 B+

1 .

〈〉, Z∗2 |B+
1

= 〈〉. Again length-1 frequent patterns with min support = 2 are dis-

covered in these projected databases and form a length-2 frequent pattern combin-

ing with the prefix. These are A+,B−, and B+ for A+-projected database, S|A+
1

.

According to PrefixSpan, now appending these new length-1 patterns found in

S|A+
1

to A+
1 we can form length-2 frequent patterns. However, according to

rule 2, since B−1 co-occurs with A+
1 in Z∗1 and B−1 comes after A+

1 in Z∗2 , i.e.,

support(A+B−) = 1 and supportA+B− = 1, none of them can be accepted as

length-2 frequent patterns. We cannot form length-2 frequent patterns by ap-

pending A+ next to the previously found A+
1 either because the A+

1 in Z∗1 |A+
1

has the same order 1 value, meaning that they belong to the same state interval.
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However, A+
2 in Z∗2 |A+

1
has order 2. In other words, there is only one occurrence

of A+ in Z∗1 while A+ occurs twice in different time intervals in Z∗2 . Finally,

We can only add B+ to α with order 1 since this is the first B+ in α and the

length-2 frequent pattern becomes α = A+
1 B

+
1 . The next step is to build the new

S|α which is S|A+
1 B

+
1

: Z∗1 |A+
1 B

+
1

= 〈〉, Z∗2 |A+
1 B

+
1

= 〈〉. Since there is no frequent

item left, α is set to 〈〉 and the same procedure is applied for other length-1 fre-

quent patterns until no frequent pattern is found. The complete process is given

in Figure 4. The frequent patterns found in the database with min support=2

are: length-1 → A+
1 , B

−
1 , B

+
1 , length-2 → A+

1 B
+
1 , B

−
1 B

+
1 . End Example 3.3.

———————————————————————————————————

4. Experimental Results

All computations were carried out on a virtual Linux server machine, called

HiperGator 2.0, with 70 GB of memory and 20 virtual cores with processor

speed equivalent to 2.2 GHz each. Only one core was utilized and C++11 was

used as a programming language. Solution time was limited to 24 hours.

4.1. UCR Time Series Classification Archive

MTS-FPM was also implemented on standard datasets from the University

of California Riverside (UCR) Time Series Classification Archive (Chen et al.,

2015a). Out of the 85 datasets available, only those that have two classes were

picked which resulted in 31 datasets. In this archive, each record has only one

time series which was converted into two series of time-interval states using

both trend and value abstractions. Percentiles [0.1, 0.25, 0.75, 0.9] for value

abstractions were used to mine patterns in the UCR datasets, where all values

falling between percentiles 0.1 and 0.25 were considered as low. For trend ab-

stractions, a segment was considered increasing if the slope was positive, and

non-increasing, otherwise. The minimum support and maximum size k varied in
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ranges [0.2: 0.8] and [5:∞], respectfully. Table 3 compares results of MTS-FPM,

FTPM by Batal et al. (2016), and FTPMwEVL by Kocheturov et al. (2019) on

the cases found in (Kocheturov et al., 2019) in terms of memory usage. The

settings presented in the table are adapted from (Kocheturov et al., 2019). We

show that these cases are solved by MTS-FPM in reasonable time by not ex-

hausting the memory.

Our results indicate that the memory MTS-FPM uses is significantly less than

Table 3 Computational time and memory comparison of FTPM, FTPMwEVL,

and MTS-FPM on UCR datasets. k:Largest pattern obtained. max k: Maxi-

mum pattern length allowed.

dataset min support
max FTPM FTPMwEVL MTS-FPM

k k sec MB k sec MB k sec MB

BeetleFly 0.8 8 8 15666 20547 8 6148 67666 8 80860 1761

BirdChicken** 0.7 Inf 18 7410 1936 18 2692 6031 18 12368 2683

Coffee 0.8 10 10 6378 15591 10 3228 49736 10 24301 1393

Computers** 0.8 14 NA >86400 NA NA >25776 >70000 14 >86400 154

DistalPhalanxOutlineCorrect** 0.7 Inf 16 1667 4093 16 1178 15350 16 6594 167

Earthquakes 0.8 7 7 14266 1525 7 3468 23675 7 9751 34

FordA** 0.8 5 5 2420 2173 5 1277 16445 5 21192 30

FordB 0.8 5 5 1459 1389 5 694 10076 5 8216 21

Ham 0.8 7 7 8189 10437 7 3244 46602 7 35451 201

HandOutlines 0.8 12 12 897 20098 12 >1386 >70000 12 >86400 948

Herring 0.8 10 10 2770 6438 10 1047 20675 10 5980 258

ItalyPowerDemand 0.2 Inf 14 80 1.25 14 93 229 14 117 27

Lighting2 0.8 8 8 >86400 >11965 8 >3594 >70000 8 >86400 382

MoteStrain 0.2 Inf 20 8561 4429 20 8095 9247 20 8478 11602

ProximalPhalanxOutlineCorrect 0.4 Inf 19 4974 9358 19 2601 33700 19 11108 325

the memory usage of other methodologies. The largest memory size MTS-FPM

uses is less than 11 GB while other techniques cannot solve the problem on given

datasets due to the memory limitation. When we take the datasets’ structure

into consideration, we see that MTS-FPM performs the best compared to oth-

ers in terms of memory usage for datasets where average sequence length (av-

erage number of state intervals per MSS) is larger. For datasets where average

sequence length is larger than 30 (datasets highlighed with light gray), MTS-

FPM spends more than 35 times less memory compared to FTPMwEVL. As

an example, the datasets ‘Computers’ and ‘Earthquakes’ have average sequence
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length 321 and 305. MTS-FPM’s memory usage on the these datasets is more

than 469 and 687 times less, respectively, compared to FTPMwEVL. Only for

‘BirdChicken’, where average sequence length is 38, the memory usage of MTS-

FPM is 2.4 times less than FTPMwEVL. Interestingly, MTS-FPM performs very

close to FTPMwEVL in terms of speed whenever the average sequence length

is shorter than 30 items. As an example, the datasets ‘ItalyPowerDemand’ and

‘MoteStrain’ have an average sequence length 18 and 27, respectively. MTS-

FPM performs almost the same on these datasets with speed-down coefficients

1.26 and 1.04, respectively. For those with an average sequence length less than

30, MTS-FPM spends at most 90 times less memory than FTPMwEVL.

(a) (b)

(c) (d)

Figure 5: Memory usage comparison of MTS-FPM with existing methods FTPM and FTPMw-

EVL on datasets.

Figures 5 and 6 provide a visual comparison of memory usage and com-

putational time for varying levels of minimum support for a select number of

datasets. The datasets selected for the comparison are ‘BirdChicken’, Distal-

PhalanxOutlineCorrect’, ‘Computers’, and ‘FordA’. While ‘BirdChicken’ and
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(a) (b)

(c) (d)

Figure 6: Computational time comparison of MTS-FPM with existing methods FTPM and

FTPMwEVL on datasets.

‘DistalPhalanxOutlineCorrect’ have short average sequence length as 38 and 29,

the sequences in ‘Computers’ and ‘FordA’ are longer with average lengths 321

and 166, repectively. Moreover, maximum pattern length allowed, maxk, for

the experimentation with these datasets are infinity for ‘BirdChicken’ and ‘Dis-

talPhalanxOutlineCorrect’ due to the short average sequence length. However,

maxk is selected as 10 and 5 for ‘Computers’ and ‘FordA’, respectively, since

finding frequent patterns in these datasets with infinite maxk bursts the mem-

ory with FTPMwEVL and FTPM, and comparison cannot be demonstrated.

Figure 5 shows that, as minimum support decreases, memory usage in other

methods is exponentially growing while there is a linear growth for MTS-FPM.

In the cases where max k is infinity, other methods fail to mine frequent patterns

because of excessive memory consumption, however, MTS-FPM’s memory usage

still follows a linear pattern. In these cases, memory usage exceeds the memory

limits and the cases where memory or time usage exceeds the given limit are

represented with big markers on the data points in the graphs (e.g., 5 (c),

24



FTPMwEVL with minimum support 0.6). For ‘Computers’ dataset, FTPM

cannot perform under the memory limits with a minimum support less than

90%, hence, results of FTPM is discarded.

In terms of computational speed, Figure 6 shows the weakness of MTS-FPM.

MTS-FPM is much slower compared to FTPM, and the disparity in computa-

tional time is magnified as minimum support decreases. For example, FTPM

is more than 8.5x times faster in the ‘FordA’ example when minimum support

is 0.8. Additionally, FTPMwEVL is 22.3x times faster than MTS-FPM in the

‘DistalPhalanxOutlineCorrect’ example when minimum support is 0.6. Thus,

we observe the well-known trade-off between memory usage and computational

speed. However, can better compare them via the speed-down coefficient and

the memory efficiency coefficient. The speed-down coefficient is the ratio of how

many times slower MTS-FPM is, and the memory efficiency coefficient repre-

sents how many times more efficient the memory usage is. In extreme cases the

memory efficiency coefficient is always higher than the speed-down coefficient.

Our computational study showed that the best memory efficiency by MTS-FPM

is more than 690 times efficient than FTPMwEVL on ‘Earthquake’ and the

worst speed-down obtained by MTS-FPM is 17 times slower than FTPMwEVL

on ‘FordA’. The frequent pattern mining problem does not necessarily require

a fast solution technique but one that can overcome the excessive size of data.

Considering the fact that even most of these datasets consist of 10-900 records,

we observe that FTPM and FTPMwEVL consume allocated memory quickly.

Therefore, they also fail to find frequent patterns in the AKI dataset, which has

more than 25,000 patients. In the next section, we present the frequent patterns

and computational metrics of MTS-FPM for the AKI dataset.

4.2. Acute Kidney Injury Dataset

This retrospective study was approved by the University of Florida (UF)

Institutional Review Board and Privacy Office as exempt study with waiver

for informed consent. Using the UF Health Integrated Data Repository (IDR)

as Honest Broker for data de-identification, we have created a data set that
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integrated multiple databases within the health system for patients admitted

between January 2011 and January 2019 in University of Florida Health Medi-

cal clinics. We identified all patients who developed AKI between January 2011

and January 2019.

We identified 44,073 patients between June 1st, 2014 and March 1st 2019.

Among these patients, 21.7% (9,545) were diagnosed with AKI and 78.3%

(34,528) were healthy after their surgery. We used training and test cohorts

given by the UF Nephrology Department. The training cohort includes pa-

tients accepted between June 1, 2014 and February 28, 2018 while the test

cohort includes the patients admitted starting March 1, 2018 to March 1, 2019.

A summary can be found in Table 4.

Table 4 Demographics of training and test cohorts

AKI healthy total

train 7,140 26,574 33,714

test 2,405 7,954 10,359

total 9,545 34,528 44,073

For this computational study, the training cohort was used. For the heart rate

variable, the range for low (HR−), normal (HR∼), and high (HR+) levels

are (0, 60), [60, 100), and [100,∞), respectively. For systolic blood pressure

variable, the range for low (BP−), normal (BP∼), and high (BP+) levels are

(0, 90), [90, 140), and [140,∞), respectively. As an example, patterns with 70%

min support among people diagnosed with AKI is given in Table 5. Table 6

summarizes the experimental results for AKI patients in the training cohort

with different min support ranging from 40% to 100% where the longest pat-

tern is estimated by the number of unique elements, F
Vj

k .

According to our results, the patterns seen in AKI and healthy patients’

datasets show a very small difference. Only three patterns seen in AKI patients

are different compared to the frequent patterns found in healthy patients and
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Table 5 Frequent Patterns seen in AKI Patients with min support 75% and

the Differences with Healthy Patients

Length Frequent patterns which exist in AKI patients’ dataset

length-1 HR∼1 , BP−1 , BP∼1 , BP+
1

length-2 HR∼1 HR
∼
2 , HR∼1 BP

∼
1 , (HR∼1 BP

∼
1 ) , (HR∼1 BP

+
1 ) , (BP−1 BP∼1 ) ,

BP∼1 HR∼1 , BP∼1 BP−1 , BP∼1 BP∼2 , BP∼1 BP+
1 , BP+

1 BP∼1 ,

length-3 HR∼1 (HR∼2 BP
∼
1 ) , BP−1 BP∼1 BP∼2 , BP∼1 (HR∼1 BP

∼
2 ),

BP∼1 BP−1 BP∼2 , BP∼1 BP∼2 BP∼3 , BP∼1 BP+
1 BP∼2 , BP+

1 BP∼1 BP∼2

length-4 BP∼1 BP−1 BP∼2 BP∼3 , BP∼1 BP∼2 BP∼3 BP∼4

Frequent patterns which exist in AKI but not in healthy patients’ dataset

length-3 BP−1 BP∼1 BP∼2 , BP+
1 BP∼1 BP∼2

length-4 BP∼1 BP−1 BP∼2 BP∼3

Frequent patterns which exist in healthy but not in AKI patients’ dataset

length-3 HR∼1 HR
∼
2 HR

∼
3 , (HR∼1 BP

∼
1 )HR∼2 , HR∼1 BP

∼
1 BP∼2 , (HR∼1 BP

∼
1 )BP∼2 ,

Table 6 MTS-FPM results on AKI dataset for min support varying 50% to

100%

min support
AKI Patients Healthy Patients

Number of Number of Longest Solution Memory Number of Number of Longest Solution Memory

patients Patterns Pattern Time (sec) Usage (MB) patients Patterns Pattern Time (sec) Usage (MB)

100% 7140 0 0 4 1.08 26574 1 1 25 1.08

95% 6783 2 1 12 1.08 25246 3 2 35 1.08

90% 6426 4 2 12 1.08 23917 4 2 38 1.08

85% 6069 6 3 16 1.08 22588 7 3 65 79.68

80% 5712 16 4 38 1.50 21260 11 3 93 121.01

75% 5355 23 4 51 1.50 19931 24 4 147 131.46

70% 4998 41 5 85 45.22 18602 32 4 198 136.88

65% 4641 74 6 143 63.08 17274 53 5 336 160.68

60% 4284 139 6 252 65.05 15945 92 5 468 173.06

55% 3927 265 7 456 70.04 14616 160 6 742 183.88

50% 3570 524 8 865 77.82 13287 282 6 1190 191.32

those include abstractions with low and high blood pressure. Whereas, frequent

patterns such as repeatedly healthy rate (HR∼1 HR
∼
2 HR

∼
3 ) cannot be seen in

75% of AKI patients. For a better estimation, a comprehensive experimental

study including laboratory/test results and more than two vitals should be con-

ducted. For the purpose of this paper, we only demonstrate the results in terms

of computational metrics by using only two variables.
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5. Conclusions

The focus of this paper is mining frequent patterns from big time series

databases. While existing methodologies improved the speed factor, the mem-

ory consumption factor was neglected. Mining frequent patterns requires usage

of a significant amount of memory. In this paper, we showed that it is possible

to mine frequent patterns from a big time series database by using a smaller

amount of memory in an acceptable amount of time. By experimenting on

databases with varying sequence lengths, we revealed that, for short sequence

databases (shorter than 30 items as an average approximately), a tree-based

method can mine frequent patterns in a shorter time than Apriori based meth-

ods. Moreover, a tree-based algorithm always uses the least amount of memory

regardless of the length of sequences.

Frequent pattern mining has broad applications such as clustering and classifi-

cations. Frequent patterns are tools to provide pattern-centered insights for a

variety of problems. In this study, we considered a healthcare case for classifica-

tion purpose and extracted frequently appearing patterns considering the vital

records of the postoperational AKI patients. In this case, frequent patterns also

can be used to detect an indicator that notifies of a coming unwanted outcome

earlier and helps classify patients with a predicted outcome.

This study picked two relations from Allen’s temporal relations to conduct a

comparison analysis with existing methodologies. This research can be extended

considering more than two relations which requires more memory consumption

than the two relation case. In this manner, MTS-FPM will perform better while

other methods struggle with high memory consumption rates. We believe that

MTS-FPM builds a solid foundation for future studies where more complex re-

lations are discussed.
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Appendices

Algorithm 1 - PrefixSpan

Input: A sequence database S, and the minimum support threshold

min support.

Output: The complete set of sequential patterns.

Method: Call PrefixSpan(〈〉, 0, S)

Subroutine: PrefixSpan(α, p, S|α)

Parameters: 1) α is a sequential pattern; 2) p is the length of α; and 3) S|α is

the α-projected database if α 6= 〈〉, otherwise, it is the sequence

database S.

Method:

1 Counting Process: Scan S|α once, find each frequent item, b, such that b can be

assembled to the last element of α to form a sequential pattern; or (b) can be

appended to α to form a sequential pattern.

2 For each frequent item b, append it to α to form a sequential pattern α′, and

output α′.

3 For each α′, construct α′-projected database S|α′ , call PrefixSpan(α′, p +

1, S|α′).
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Algorithm 2 - Transforming a MSS to a sequence

Input: MSS Z and size of the MSS, I = |Z|.
Output: Multivariate sequence

Method: Call f(1, 〈〉)
Subroutine: f(i, Z∗)

Parameters: 1) i is the index of state intervals in Z; 2) Z∗ is multivariate

sequence.

Method:

1 k ← i, Ê ← {Ei}
2 while sk ≤ sk+1 < ek:

3 Ê ← Ê ∪ Ek+1, k ← k + 1

4 if k = i:

5 Z∗ ← Z∗ t Ê
6 else:

7 if Ê v z or Ê w z, ∃ z ∈ Z∗ is False:

8 Z∗ ← Z∗ t (Ê)

9 else:

10 if |Ê| > |z|:
11 Z∗ ← (Z∗ \ z) t (Ê)

12 i← i+ 1

13 if i < I:

14 Call f(i, Z∗)

15 else:

16 Terminate
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Algorithm 3 - MTS-FPM
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Input: A sequence database S, the minimum support threshold min support,

and the number of records n.

Parameters: 1) α is a sequential pattern; 2) p is the length of α; 3) S|α is

the α projected database if α 6= 〈〉, otherwise, it is the sequence

database S 4) αi elements of α with their indices in sequence i

Other Variables: 1) K is the largest indice of F
Vj

k in α where

F = lj ∈ L, Vj ∈ Σlj ;

Method: Call MTS-FPM(〈〉, 0, S, {})
Subroutine: MTS-FPM(α, p, S|α, {αi, i = 1, .., supportα})
Method:

1 Counting Process: Scan S|α once, find each frequent item FVj by applying

pruning rules (see Part I Section 2.4).

2 for each FVj :

3 if FVj is not in α :

4 K = 0

5 else:

6 K = k, where k for FVj (F
Vj

k ) is largest in α.

7 FVj can be assembled to the last element of α in the form of F
Vj

K+1 to form a

sequential pattern α′; or (F
Vj

K+1) can be appended to α to form a sequential

pattern α′.

8 For each α′, construct α′-projected database S|α′ .
9 for i ∈ {1, ..., supportα′}:

10 Update αi appending FVj found in ith sequence, output α′i .

11 Call MTS-FPM(α′, p+ 1, S|α′ , {α′i, i = 1, .., supportα′}).
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Highlights

 Mining frequent patterns from multivariate time series requires high memory usage

 Multivariate time series can be converted to sequences reducing the dimensionality

 Thus, sequential methods can be performed on transformed multivariate time series

 The modified PrefixSpan method always outperforms Apriori based methods
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