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Abstract: Human civilization is experiencing a critical situation that presents itself for a new
coronavirus disease 2019 (COVID-19). This virus emerged in late December 2019 in Wuhan city,
Hubei, China. The grim fact of COVID-19 is, it is highly contagious in nature, therefore, spreads
rapidly all over the world and causes severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Responding to the severity of COVID-19 research community directs the attention to the analysis
of COVID-19, to diminish its antagonistic impact towards society. Numerous studies claim that
the subcontinent, i.e., Bangladesh, India, and Pakistan, could remain in the worst affected region
by the COVID-19. In order to prevent the spread of COVID-19, it is important to predict the trend
of COVID-19 beforehand the planning of effective control strategies. Fundamentally, the idea is to
dependably estimate the reproduction number to judge the spread rate of COVID-19 in a particular
region. Consequently, this paper uses publicly available epidemiological data of Bangladesh, India,
and Pakistan to estimate the reproduction numbers. More specifically, we use various models
(for example, susceptible infection recovery (SIR), exponential growth (EG), sequential Bayesian
(SB), maximum likelihood (ML) and time dependent (TD)) to estimate the reproduction numbers
and observe the model fitness in the corresponding data set. Experimental results show that the
reproduction numbers produced by these models are greater than 1.2 (approximately) indicates that
COVID-19 is gradually spreading in the subcontinent.

Keywords: COVID-19 pandemic; SARS-COV-2; coronavirus; reproduction number; modelling
infectious disease

1. Introduction

The coronavirus disease 2019 (COVID-19) pandemic has spread so rapidly around the
globe that the modern world could not have imagined its severity at the beginning of the
outbreak that started in Wuhan, China in late December 2019. On 5 January 2020, the world
health organization (WHO) first released information on the disease outbreak that a cluster
of cases of pneumonia caused by an unknown reason was detected in Wuhan city [1]. After
that, the Chinese authorities identified the disease caused by a novel coronavirus [2] on
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7 January 2020. WHO temporarily termed it as 2019-nCoV [3] on 12 January 2020; was later
officially named as “severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)” by
the international committee on taxonomy of viruses (ICTV) based on genetic analysis [4,5].

Initially, WHO declared the outbreak as a public health emergency of international
concern (PHEIC) [6] on 30 January 2020. Eventually by evaluating the severity and alarming
levels of the transmission of its high contagiousness, WHO characterized the COVID-19
as a pandemic [7] on 11 March 2020. With this declaration COVID-19 becomes the fifth
recorded pandemic after the 1918 Spanish flu pandemic [8].

As of 30 June 2020, COVID-19 is still in a pandemic with 10,434,890 confirmed cases
and 508,843 deaths worldwide [9], and continues to climb globally. Unlike all other
pandemics recorded in history, large amounts of data and news about COVID-19 are
rapidly spreading and widely reported, and scholars in various fields have been mobilized
to concentrate on analyzing these data and proposing solutions. Since the governments of
different countries have responded to the COVID-19 pandemic seriously, it is important
that the researchers estimate: (i) the pandemic regionally based on the basic reproduction
number, (ii) the arrival of the peak time, and forecast the time course of the epidemic by
analyzing the data on the total number of infected cases, (iii) the total number of confirmed
cases, (iv) the total number of deaths, and (v) the total number of cases recovered, etc. Many
researchers around the globe have estimated the prediction of the COVID-19 spreading and
the end of the epidemic in different countries [10–18]. Some of these methods are based on
statistical models [17,19–23] and some other methods use deterministic epidemic models
known as susceptible infectious recovery (SIR) with different forms [10,24–28].

Recently, some countries in South Asia, especially in Bangladesh, India and Pakistan,
cases of COVID-19 are increasing rapidly. In particular, the COVID-19 cases became a new
hot spot after countries began to relax locking restrictions. In this study, we use SIR, EG,
SB, ML and TD models to analyze data to determine the reproduction number and predict
the epidemic trend of COVID-19 in Bangladesh, India and Pakistan. More particularly, this
article investigates the basic reproduction number R0 and effective reproduction number
R(t) using these models. Previous studies show that R0 is applicable when an exponentially
increasing epidemic starts in the case of a completely susceptible population [29].

Therefore, the contribution of this article is twofold: (i) estimating of R0 for Bangladesh,
India and Pakistan, (ii) estimating R(t) which quantifies the transmission potential over
time. As the epidemic progresses, this parameter will track the average number of sec-
ondary cases per case over time periods. After calculating the R0 and R(t)s, we compare
the spread of COVID-19 in the region of concern. Experimental results show that the R0
and R(t)s in all these countries are higher than about 1.2.

The rest of the paper is organized as follows. Section 2 discusses related work, while
Section 3 illustrates the overall architecture of this work. Section 4 outlines the concept of
reproduction numbers. Section 5 describes several models that can be used to generate
reproduction numbers, whereas Section 6 explains information about the data source.
Section 7 explains the experimental results. Finally, Section 8 summarizes the paper.

2. Related Work

A number of models have been proposed and applied to the area of infectious COVID-
19. The majority of the mathematical models fall into the categories: (i) standard statistical
models applied to the COVID-19 dataset, (ii) deterministic epidemic models such as SIR,
SEIR etc. (iii) modified variants of the well-known models attempting to incorporate
specific criteria such as incorporating social distancing into SEIR, and (iv) effectiveness of
the contact tracing and isolation.

In [30], authors choose auto regressive integrated moving average (ARIMA) to predict
the spread of COVID-19 based on Johns Hopkins University dataset [31]. Authors intend
to avoid potential biases of the evaluating model and select a simple and economical model
therefore chosen ARIMA. The ARIMA model consists of an autoregressive (AR) model,
moving average (MA) model, and seasonal autoregressive integrated moving average
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(SARIMA) model [32]. Results demonstrate the autocorrelation function (ACF), and the
partial autocorrelation function (PACF) prevalence and incidence of COVID-19 are not
influenced by the seasonality. However the claim is arguable as the COVID-19 may have
seasonality influences; it is just too early to claim.

Calafiore et al. [33] presents a modified susceptible-infected-recovered (SIR) model for
the contagion analysis of COVID-19 in Italy. Besides the regular SIR parameters the authors
incorporate the initial number of susceptible individuals. Most interestingly authors
consider a proportionality factor i.e., the ratio of the detected number of COVID positives
to the actual number of infected individuals. Two distinct algorithms (i) tuning of the
model parameters and (ii) predicting the number of infected, recovered and deaths are
presented in this article.

Kucharski et al. [34] reported how transmission in Wuhan varied over a time period
(January–February 2020). The article also attempts to put foresight on how human-to-
human transmissions may occur outside Wuhan by travellers. The article reported the
median day-to-day reproduction number over the time in Wuhan. The susceptible exposed
infected and removed (SEIR) model is used for the evaluations. Besides, the study attempts
to incorporate the uncertainty of the detection and observation utilizing Poisson process
and binomial observation process on infection prevalence on flights.

Peng et al. [35] attempted to modify the generalized SEIR model by incorporating
quarantine into account and studied the COVID-19 pandemic in 24 provinces in Mainland
and 16 counties in Hubei province in China. The authors estimate the latent time, the
quarantine time, the reproduction number, the possible ending time and the final total
infected cases.

Wangping et al. [36] proposed an extended susceptible infected removed (eSIR) model
essentially an extension to the SIR model attempting to address the effects of different
intervention measures in dissimilar periods. The eSIR is applied to model the pandemic
COVID-19 analysis in Italy. The markov chain monte carlo (MCMC) algorithm is utilized
to obtain the posterior estimation of the unknown parameters in the SIR model.

Chatterjee et al. [37] modeled a variant of SEIR for COVID-19 epidemic in India. In
this stochastic modeling approach Monte Carlo simulation is used to model the concept
with a 1000 run. The article shed into the hospitalization and intensive care unit (ICU)
requirements along with deaths. Article also presents the impact of the lockdown and
social distancing.

Liang el al. [38] presents infection kinetic analysis of SARS, MARS and COVID-19.
Author attempts to acquire a propagation growth model by utilizing the growth rate, and
inhibition constant of the aforementioned diseases. The inhibition constant depends on the
prevention and control measures adopted for the population. The article assumes during
the inception of the disease cycle no effective measure is in place. It figures out the growth
rate, the multiplication cycle and infection inhibition constant.

Ndairou et al. [39] provides a mathematical model i.e., essentially an extension to
the SIR model of COVID-19 taking eight epidemiological classes into consideration. They
are (i) susceptible, (ii) exposed, (iii) symptomatic and infectious, (iv) super spreaders,
(v) infectious but asymptomatic, (vi) hospitalized, (vii) recovery, and fatality class. Wuhan
number of cases and deaths are compared with the model.

Roda et al. [40] argued that these model predictions have shown a wide range of
variations. And the variation of the performances of the models is due to the non-identify
ability in model calibrations. The qualities of the statistical models are studied utilizing
the Akaike information criterion (AIC). Authors’ finding the performance of SIR over
SEIR is explained as the failure of the even more sophisticated model is due to the more
challenging realization of a comparatively more complex model.

Contrary to the other school of analytical models where the models used to predict the
number of cases and deaths. Hellewell et al. [40] attempts to quantify the effectiveness of
the contact tracing and isolation to control the COVID-19. The study considers a number of
scenarios containing (i) initial cases, (ii) R0, (iii) delay in-between symptom and isolation,
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(iv) probability of traced contacts, (v) proportion of transmission before symptom, and (vi)
proportion of sub-clinical infections.

Contrarily this study attempts to find the transmission potential in the subcontinent.
Instead of relying on just one specific model this exploration employs SIR, EG, SB, ML
and TD that realize definitive regional R0 and R(t) that get a conclusive outcome of the
containment measure in place.

3. Overall Architecture

Figure 1 shows the architecture we followed to estimate the reproduction number
(R0/R(t)) for the COVID-19 pandemic. In particular, various epidemic methods are being
used to predict the reproduction number R0/R(t) over time scale. To do this, we use
a real dataset of COVID-19 cases spanning approximately 4 months, and the epidemic
model utilizes this dataset to predict future R0/R(t). To this end, each model uses different
parameters that can be computed from the dataset (see Section 5 for details). In particular,
we calculated the predicted value of R(t) based on time, so if R(t) increases, we can
easily take preventive measures such as lockdown, social distancing, etc. Eventually, it is
important to note that in order to control infected cases, we have to control the reproduction
number in affected areas. However, it is true that some predicted models may have good
prediction results, and others may not. With this in mind, we compare several models (e.g.,
SIR, EG, ML, TD, SB) to see which one give the best results in sub-continent countries. The
predicted results and comparative analysis among the models are described in detail in
Section 7.

Figure 1. Overall architecture to estimate reproduction number (R0/R(t)) of COVID-19 pandemic.

4. The Reproduction Number

Infectious diseases can be analyzed with a so-called reproductive number (R) that
quantify the invasion or extinction of diseases in a population [41]. More precisely, the R is
mainly used to determine the infectivity of a contagious disease. Alternatively, we can say
that R represents the speed with which a disease spreads in a population. So, the primary
task is to impose policies to control the R in order to control the contagious disease. This
can be achieved by zonal shut down, social distancing and other factors that lead to control
the outbreak of the disease in a particular geographic region. Fundamentally there are two
types of Rs: (i) basic reproduction number R0 and (ii) effective reproduction number R(t).
The R0 refers to a measurement of the average number of cases that an infected person can
spread over the person’s infection period in a population [42]. Let, the R0 of COVID-19 in
a region x is y. Then, each infection may lead to y number of new secondary cases in the
region x i.e., each infected person may infect y new individuals in the x zone. However,
R0 refers to a value that can indicate that the rate of the infected population has fallen or
increased or remains constant.

Mathematically, R0 < 1 indicates that the epidemic is in decline and it can be con-
sidered as under control. Contrarily, R0 > 1 implies that the epidemic is on the rise and
therefore cannot be considered as under control. And finally R0 = 1 demonstrates that the
infection rate remains constant.
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Contrarily, the R(t) is used to measure the infected cases when there is a certain
immunity or certain interventions are taken place. In other words, R(t) is the number
of infected cases calculated in a certain population over the period of time t, taking into
account that infected people are immune to infectious diseases at any given time. Therefore,
we use the actual reproduction number R(t) in order to measure the number of newly
infected individuals, on average, infected by a single person at time t in a population. In
effect, R(t) represents the time variant R of the susceptible population where the change
may be in decline or on the rise or remains constant. These three aforementioned conditions
can be expressed as R(t) ≥ 0. Likewise R0, R(t) < 1, suggests the epidemic is on the
decline and can be considered under control at time t. At R(t) > 1 the epidemic is on the
rise and not in control at t. Finally, R(t) = 1 implies the infection rate remains constant.
Interestingly, R(t) and R0 can be related to utilizing a simple relationship as R(t) can be
measured with R0 ∗ S where S represents the number of infected people in a particular
population. In case the immunity to the disease of a particular population is high then
S becomes low. Consequently, R(t) becomes below 1. The implication is that as herd
immunity is achieved, the number of new cases in the population will decrease to zero
over time [43].

In this paper, we are going to estimate R, i.e., R0 and R(t) through a variety of methods
using the dataset of the selected countries such as Bangladesh, India and Pakistan. In
the next section, we have explained the five most popular methods for estimating of R0
and R(t).

5. Epidemic Forecasting Models

There are numerous models that have been proposed and applied to the area of
infectious COVID-19. In order to find the transmission potential in the subcontinent, we
used five models, namely, SIR model, Exponential growth, Sequential Bayesian method,
Maximum likelihood estimation, and Time-dependent estimation, briefly described in
what follows.

5.1. SIR Model

The SIR model is a basic mathematical model for describing the dynamics of infectious
diseases. It is also called the compartmental model because the model divides the population
into different compartments. More particularly, the population of size N is divided into
three compartments [33]: Susceptible, Infectious, and Recovered, which will be detailed in
what follows.

Susceptible: is the number of people who are vulnerable to exposure with infectious
people around at time t, denoted by S(t).

Infectious: is a group of people who are infected with the disease. Moreover, they can
spread the disease to susceptible people and can be recovered from it, in a specific time t,
denoted by I(t).

Recovered: is a number of people who get immunity in a time t, denoted by R′(t).
Therefore, they are not susceptible to the same disease anymore.

However, we can write the SIR model as a differential equation of each compart-
ment [33]:

∂s
∂t

= −β ∗ s(t) ∗ i(t) (1)

∂i
∂t

= β ∗ s(t) ∗ i(t)− γ ∗ i(t) (2)

∂r
∂t

= γ ∗ i(t) (3)

where t defines the time, s(t) = S(t)
N , i(t) = I(t)

N , r(t) = R′(t)
N , and N = (S(t) + I(t) + R′(t)).

Likewise, β is a controlling parameter that defines the number of people infected by
exposure in a specific time t, and γ defines the ratio of the infected individuals who can
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recover in a time t. Using these two parameters (i.e., β, γ) we can estimate the (R0),
mathematically, R0 = β

γ , which defines the average number of people infected from single
disease exposure. Hence, if the R0 value is higher, the probability of the pandemic is
also higher.

5.2. Exponential Growth (EG)

The exponential growth (EG) rate is an important measure to see the speed of the
spread of an infectious disease. As introduced in Section 5.1, the exponential growth rate
can be written as r = β− γ, where, β defines the number of people infected by exposure
in a specific time t, and γ defines the ratio of the infected individuals who may recover in
time t. However, r is a disease threshold value when r is at zero (i.e., r = 0). If r is positive
(i.e., r > 0), the disease can invade a population, whereas it cannot invade a population, if
r is negative (i.e., r < 0) [44]. The relationship between R0 and growth rate r is not simple.
For a specific distribution over generation time (e.g. gamma distribution), it can sometimes
be simplified. Assuming that the generation time is completely constant, such as T, the R
can be written as [45], R0 = e(r∗T).

5.3. Sequential Bayesian Method (SB)

The sequential bayesian approach can be used to estimate the initial reproduction
number (R0). Technically, the Bayesian method works in the context of probabilistic
modeling. Therefore, the probability model of R0 can be written as follows [46].

P[R0] =
P[R0|∇T(t + τ)← ∇T(t)] ∗ P[∇T(t + τ)← ∇T(t)]

P[∇T(t + τ)← ∇T(t)|R0]

where, T(t) is the total number of cases up to time t, and the occurrence of new infected
cases over the period τ, and ∇T(t + τ) = T(t + τ)− T(t). The probability distribution
P[∇T(t + τ) ← ∇T(t)] and P[∇T(t + τ) ← ∇T(t)|R0] are independent and dependent
on R0, respectively. Hence, the sequential bayesian estimation of R0 can be made using the
posterior distribution for R0, at time t as the prior in the next estimation step at time t + τ.

5.4. Maximum Likelihood Estimation (ML)

The maximum likelihood-based estimation relies on two considerations: (i) the num-
ber of secondary cases produced by an infected individual follows a Poisson distribution,
and (ii) the expected value R0. Suppose the data is a periodic incidence e.g., {N0, N1,... Nt},
where, t is a time unit, and Nt defines the number of new cases at time t. Therefore, the

maximum likelihood can be estimated as follows [47]: ML(R0) =
T

∏
t=1

exp−µt µNt
t

Nt!
, where,

µt = R0

min(k,t)

∑
j=1

Nt−j ∗ wj, where k is the constraint and wj is the time distribution. Here,

k < T. Note that the maximum likelihood-based method is used for the estimation of the
basic reproductive number (R0).

5.5. Time Dependent Estimation (TD)

Typically, the time-dependent R estimation is not straightforward, because we can only
see the epidemic curve. There is no information about who infected whom. However, using
likelihood-based estimates of R, the time dependant R can be written as [48]: Rt =

1
Nt ∑

tj=t
Rj,

where Nt specifies the number of new cases at time t, and Rj is the R(t) for case j, that
is the sum over all cases i, mathematically, Rj = ∑

i
pij, where pij defines the relative

likelihood. More precisely, the relative likelihood that case i has been infected by case j,
normalized by the likelihood that case i has been infected by any other case k, which can
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be written as follows [49]: pij =
w(ti−tj)

∑i 6=k w(ti−tk)
, where, w(ti − tj) defines the time interval of

the infectious diseases.

6. Data Source

We use a publicly available COVID-19 dataset (https://github.com/RamiKrispin/
coronavirus) extracted from the coronavirus repository of the Johns Hopkins University
Center for Systems Science and Engineering (JHU CCSE). This dataset contains daily
observations on COVID-19 confirmed, recovered and death cases for most countries over
the world. More precisely, the incidence data are provided on a daily basis. For this
analysis, we consider data from South Asian countries such as Bangladesh, India, Pakistan,
Nepal, Bhutan, Maldives and Sri Lanka. Nonetheless, the top three populated countries
(Bangladesh, India, and Pakistan) finally have been selected for this particular article.
Data dated upto 19 June 2020 is utilized. The entire dataset of COVID-19 cases of these
selected countries is observed for each day, as shown in Figure 2. In addition, the Table 1
sequentially displays the date of the first confirmed case, the total number of confirmed
incidences, the total number of deaths, the total number of recovery cases, population and
COVID-19 tested per million people in each country.

Table 1. COVID-19 Dataset.

Country Date of the
First Case End Date

Total
Confirmed

Cases

Total Death
Cases

Total
Recovered

Cases
Population

Tested per
Million
People

Bangladesh 2020-03-08 2020-06-19 105,535 1388 42,945 161,376,708 4892
India 2020-01-30 2020-06-19 395,048 12,948 213,831 1,380,004,385 9995
Pakistan 2020-02-25 2020-06-19 171,666 3382 63,504 22,0695,321 6117

The surprising fact is that these countries have conducted very few COVID-19 tests in
susceptible populations. Therefore, it is very likely that this data set may not cover the real
scenario of the COVID-19 situation. However, we can use this data set to mainly calculate
the reproduction numbers, so as to observe the spread of COVID-19.

https://github.com/RamiKrispin/coronavirus
https://github.com/RamiKrispin/coronavirus
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Figure 2. COVID-19 daily cases in Bangladesh, India and Pakistan: (A) Confirmed cases (B) Recov-
ered cases (C) Death cases.
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7. Experimental Results

We conduct several experiments to analyze the trend of COVID-19 in the concerned
countries. The first experiment focuses on COVID-19 cases as confirmed, deceased and
recovered to compare the COVID-19 situation in these countries. The motivation is to
understand the deteriorated conditions for the COVID-19 pandemic in this region. Next,
we conduct experiments through SIR, EG, SB, ML and TD models to estimate Rs for these
countries and predict the COVID-19 pandemic. The result is analyzed to observe the
model performances on the COVID-19 dataset. For this, we use the R0 package provided
by R programming language to impletement the code for the above methods [48]. More
particularly, we employ estimate.R function of R0 package to apply the above methods to a
given epidemic curve. The result is analyzed to observe the model performances on the
COVID-19 dataset.

7.1. COVID-19 Cases

This subsection analyzes the COVID-19 data in order to observe confirmed, death
and recovered cases in Bangladesh, India and Pakistan. Figure 2 shows the number of
confirmed (Figure 2A), recovered (Figure 2B), and death (Figure 2C) cases in Bangladesh,
India and Pakistan respectively. The Figure depicts COVID-19 cases in all these countries
are increasing every day. In addition Figure 2, presents that the spread of COVID-19 in
India exceeds that of Bangladesh and Pakistan. The Figure also illustrates that Bangladesh
has less confirmed cases and deaths apparently more control over the spread of COVID-19
than India and Pakistan as it. Intuitively, the citizens of Bangladesh comparatively better
maintained medical care, lock-down and social distances, as a result COVID-19 spread
slower from person to person compared to the other two countries and vice versa.

However the aforementioned argument is inconclusive and rather unlikely as Bangladesh
conducted the least amount of tests per person compared to the other two. Figure 3 shows that
SARS-CoV-2 tests per million people performed in Bangladesh, Pakistan and India are 4892,
6117 and 9995 respectively. Clearly, more tests reveal more infected people. With unexpectedly
poor and nonuniform samples we rather not conclude as above and investigate further and
focus on how COVID-19 is spreading in the subcontinent. Intuitively, the subcontinent
case may reflect COVID-19 spreading in the developing countries, especially spreading in
South Asia.

Figure 3. COVID-19 cases tested per million people in Bangladesh, India and Pakistan.

Therefore, the further analysis focuses on the transmission speed of COVID-19 using
different methods.

7.2. Prediction with SIR Model

In this experiment, we use the SIR model to predict COVID-19 cases in Bangladesh,
India and Pakistan.
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Bangladesh. Figure 4A depicts the SIR model fitting to the number of observed
confirmed cases where Figure 4B presents the same observation in the logarithmic scale
in Bangladesh. We observe that the number of cases (black dotted line as shown in
Figure 4A,B) follows the number of confirmed cases expected (black line as shown in
Figure 4A,B) by SIR model. Note that, the observed data and predicted values overlapping
with each other indicates COVID-19 clearly is in an exponential phase in Bangladesh.
Figure 4B shows that the curve is flattening in between mid March (around) to 1st April.
This impliedly indicates that the spreading of COVID-19 is comparatively in control in
Bangladesh. Furthermore, the slope of the curve dropping down in between mid-March
and April 1st conforms to the aforesaid observation (spreading of COVID-19 is in control
in Bangladesh during this period). But then, the slope is going up at the steepest of all
times until the end of May, i.e. in this time COVID-19 is spreading rapidly. And then, the
slope remains constant with a comparatively lower value.

Furthermore, we carry out the experiment to adapt the SIR model to confirmed, death
and recovered cases, as shown in Figure 4C. With this experiment, we derive the estimated
values of various parameters as shown in Table 2. According to Table 2, we can see that
the R0 is around 1.23 indicating that COVID-19 is spreading in Bangladesh day by day.

Based on the R, we calculate the herd immunity threshold using the equation 1− 1
R0

[50],

i.e., 18.97%. With this trend, the epidemic will be at its peak in 2020-08-01. The SIR model
estimates that the maximum infected population in Bangladesh will be 3,109,321. Of these,
the serious cases will be 621,864 (assuming 20% of the infected population). It also shows
that around 186,560 (assuming 6% of the infected population) people need intensive care
and up to 108,826 deaths (assuming 3.5% mortality rate).

India. Figure 5A,B represents the cumulative COVID-19 infected cases in number and
in logarithmic forms respectively in India. It clearly depicts that the spread of COVID-19 is
in an exponential phase in this particular period.

In addition, Figure 5B shows that the slope of the curve (black dotted line) was not
steep in between February 1 and mid-March, indicating that the spread of COVID-19
in India was under control during this period. But then, it rose almost exponentially,
which means that this time COVID-19 is spreading rapidly. Furthermore, Figure 5C
depicts the experimental results of the SIR model for confirmed, death and recovered cases.
We put all the estimated values of all the different parameters calculated using the SIR
model in the Table 2. The R0 (derived from the SIR model is about 1.197) indicates that
COVID-19 accelerates over time, where the computed herd immunity is 16.97%. With
this R0 the epidemic will peak in 2020-08-20. Moreover, according to the SIR model, the
maximum infected population is 19,884,176, among them, the serious cases will be 3,976,835
(assuming 20% of the infected population). Furthermore, around 1,193,051 (assuming 6%
of the infected population) people need intensive care and up to 695,946 deaths (assuming
a mortality rate of 3.5%) (see Table 2).

Table 2. Prediction with SIR model.

The Predicted Values for the Following
Parameters Bangladesh India Pakistan

Infection Rate, β 0.5524 0.5449 0.550
Recovery rate, γ 0.4475 0.4550 0.449

R0 =
β

γ
1.234 1.197 1.22

Herd immunity threshold (1− 1
R0

)× 100% 18.97 % of population 16.49% of population 18.18% of population

Peak of Pandemic 2020-08-01 2020-08-20 2020-08-03
Maximum Infected 3,109,321 19,884,176 3,891,427
Severe cases (assume 20% of Infected cases) 621,864 3,976,835 778,285
Patients need intensive care (assume 6% of
Infected cases) 186,560 1,193,051 233,485

Deaths assumed for 3.5% fatality rate 108,826 695,946 136,200
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Figure 4. Prediction with SIR model for Bangladesh: (A) SIR model fitted on observed cumulative
infected cases (B) SIR model fitted on observed cumulative infected cases with semi log scale (C) SIR
model prediction with no human interaction.



J. Pers. Med. 2021, 11, 889 12 of 19

Figure 5. Prediction with SIR model for India: (A) SIR model fitted on observed cumulative infected
cases (B) SIR model fitted on observed cumulative infected cases with semi log scale (C) SIR model
prediction with no human interaction.
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Pakistan. Like Bangladesh and India, we have conducted experiments on Pakistan’s
COVID-19 data through the SIR model. Figure 6A,B depicts the observed cumulative
infected incidence in cases and in cases in logarithmic scale respectively. The figures
indicate that the COVID-19 is spreading exponentially. In addition, Figure 6B shows that
the slope of the curve (black dotted line) was not accentuated till mid-March, indicating
that the spread of COVID-19 in Pakistan. But then it almost shot up, i.e., the COVID-19 is
spreading rapidly during this time period. In order to observe deeper insights, we have
conducted SIR model experiments on confirmed, death, and recovered cases, as shown
in Figure 6C. The estimated values of all the various parameters of the SIR model are
shown in Table 2. It is worth noting that the estimated R0 of the SIR model is about 1.22,
indicating that COVID-19 accelerates over time. We find Pakistan’s herd immunity as
18.18%. The epidemic will be at its peak in 2020-08-03 with R0 remaining at this particular
rate. According to the SIR model the maximum number of infection cases is 3,891,427.
Among them, the serious cases are 778,285 (assuming 20% of the infected population),
the intensive care requirement is 233,485 approximately (assuming 6% of the infected
population) and estimated maximum deaths is 136,200 (assuming a mortality rate of 3.5%).

Comparison. Table 2 shows all the predicted values of various parameters of Bangladesh,
India and Pakistan estimated by the SIR model. It is worthy to mention that the R0 of
Bangladesh and Pakistan are very close, i.e., 1.22 and 1.23, respectively, while R0 of India is
about 1.19. It concludes that Bangladesh and Pakistan are experiencing an increasing number
of infected people compared to India. In other words, India has so far somewhat stronger
control over the spread of COVID-19 compared to Bangladesh and Pakistan.

Next, we will use the rest of the methods (i.e., EG, SB, ML and TD) to estimate the R
in order to verify what the SIR model foresees is consistent with other models.

7.3. COVID-19 Reproduction Number (R0 / R(t)) Estimation

In this experiment, we consider various methods to compute the value of the R0 and
R(t). This experiment investigates how the R has changed with the various methods of the
estimation process, the role of excessive dispersion in the distribution of secondary cases
and the aggregation of the epidemic curve at ever larger time intervals. In this experiment,
we assume that the sequence interval of COVID-19 for Bangladesh, India and Pakistan is
equal to the sequence interval of COVID-19 in Wuhan, China with a mean of 5.2 days and
a standard deviation of 2.8 days [51].

Figure 7 depicts an estimation of R0 and R(t) for Bangladesh (see Figure 7a) in the
period from March 08 to June 19 (for 104 days), for India (see Figure 7b) in the period
from January 30 to June 19 (for 142 days), and for Pakistan (see Figure 7c) in the period
from February 25 to June 19 (for 116 days), respectively. Moreover, Table 3 reports the
computed R0 and R(t) for Bangladesh, India and Pakistan which we have estimated with
various methods.

According to the Table 3, the R0 for Bangladesh generated with the methods of
exponential growth (EG), maximum likelihood (ML) are 1.3809 [1.3803, 1.3815] and 1.2884
[1.2860 1.2908] respectively which is higher than that of India i.e., 1.3446 [1.3443, 1.34448]
with EG and 1.2591 [1.2579, 1.2602] with ML and Pakistan 1.3192 [1.3189, 1.3196] with EG
and 1.2645 [1.2626, 1.2662] with ML. Moreover, Table 3 also shows the estimated values
of R(t) for Bangladesh, India and Pakistan using the methods of sequential Bayesian and
time-dependent. The results show that R(t) value for Pakistan is higher than India and
Bangladesh. According to the obtained results depicted in Table 3, we have observed
that for different methods the R does not follow the same trend of values. Therefore, we
proceed to observe the curve fitting using these Rs on the COVID-19 data. Figure 8 shows
that the R generated by maximum likelihood (ML) and time-dependent methods fit well
to the data compared to the other methods for all countries. Moreover, Figure 8 shows
that SB method fits very poorly to the data for Bangladesh, India and Pakistan. The results
show that Bangladesh and Pakistan have comparatively worse control over the spread of
COVID-19, meaning R(t) is getting higher than that of India. However, it is worth noting
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that the R0 and R(t) in each country are greater than 1, i.e., COVID-19 is still spreading in
all of these countries.

Figure 6. Prediction with SIR model for Pakistan: (A) SIR model fitted on observed cumulative
infected cases (B) SIR model fitted on observed cumulative infected cases with semi log scale (C) SIR
model prediction with no human interaction.
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Table 3. R0/R(t) estimation by different methods.

Methods SIR EG ML TD SB

Reproduction number R0 R0 [CI.lower, CI.upper] R0 [CI.lower, CI.upper] Rmean(t) [Rlow(t), Rhigh(t)] Rmean(t)[Rlow(t), Rhigh(t)]
Bangladesh 1.234 1.380 [1.380, 1.381] 1.288 [1.286, 1.290] 1.746 [1.209, 3.715] 1.555 [1.000, 2.16]
India 1.197 1.344 [1.344, 1.344] 1.259 [1.257, 1.260] 1.668 [1.007, 4.928] 1.507 [1.00, 2.75]
Pakistan 1.220 1.319 [1.318, 1.319] 1.264 [1.262, 1.266] 1.774 [1.202, 5.381] 1.560 [1.00, 3.61]

(a) Bangladesh

(b) India (c) Pakistan

Figure 7. Estimate of the reproduction number R0 − R(t) in Bangladesh, India and Pakistan.
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(a) Bangladesh

(b) India (c) Pakistan

Figure 8. Models (EG, ML, SB, TD) fitting on COVID-19 confirmed cases.

8. Conclusions

In this article, we provide an assessment of COVID-19 outbreak and measure the
spread rate among Bangladesh, India and Pakistan. We utilize the SIR model to predict
important parameters such as infection rate, recovery rate, herd immunity threshold, peak
of the pandemic, maximum infected, severe cases, patients needing intensive care, deaths of
COVID-19 pandemics. We utilize EG, SB, ML and TD models to validate the effectiveness
of the estimated parameters of the SIR model. For doing so, we find the basic reproduction
number R0 and effective reproduction number R(t).

Experiments show that in all the considering countries, the estimated effective re-
production number R(t) is much larger than the basic reproduction number R0, which
means that the containment measures implemented by Bangladesh, India and Pakistan
are ineffective and inefficient. Besides that, according to different models the reproduction
numbers of Bangladesh, India and Pakistan are all higher than about 1.2, indicating that
the outbreak of COVID-19 is spreading rapidly.

Result directed recommendations are (i) to adopt stricter prevention and control
measures, (ii) to improve the country’s quarantine measures, define outcomes slowing
down the spread of COVID-19. Failure in doing so the pandemic situation of the region
may decline rapidly.
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