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Structural equation modeling (SEM) is a collection of sta-
tistical techniques that allow a set of relationships between
one or more independent variables (IVs), either contin-
uous or discrete, and one or more dependent variables
(DVs), either continuous or discrete, to be examined. Both
IVs and DVs can be either factors or measured variables.
Structural equation modeling is also referred to as causal
modeling, causal analysis, simultaneous equation model-
ing, analysis of covariance structures, path analysis, or
confirmatory factor analysis. The latter two are actually
special types of SEM.

SEM allows questions to be answered that involve
multiple regression analyses of factors. At the simplest
level, a researcher posits a relationship between a single
measured variable (perhaps, acceptance of risky behavior)
and other measured variables (perhaps, gender, academic
achievement, and institutional bonds). This simple model
is a multiple regression presented in diagram form in
Figure 23.1. All four of the measured variables appear
in boxes connected by lines with arrows indicating that
gender, academic achievement, and institutional bonds
(the IVs) predict acceptance of risky behavior (the DV) in
adolescents. Lines with two arrows indicate a covariance
among the IVs. The presence of a residual indicates
imperfect prediction.

A more complicated model of acceptance of risky
behavior appears in Figure 23.2. In this model, Accep-
tance of Risky Behavior is a latent variable (a factor)
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that is not directly measured but rather assessed indirectly
using two measured variables (okay to drink and okay
to smoke). Acceptance of Risky Behavior is, in turn, pre-
dicted by gender (a measured variable) and by Weak Insti-
tutional Bonds, a second factor that is assessed through
two measured variables (bonds to family and bonds to
teachers). For clarity in the text, initial capitals are used
for names of factors and lowercase letters for names of
measured variables.

Figures 23.1 and 23.2 are examples of path diagrams.
These diagrams are fundamental to SEM because they
allow the researcher to diagram the hypothesized set
of relationships in the model. The diagrams are helpful
in clarifying a researcher’s ideas about the relationships
among variables and they can be directly translated into
the equations needed for the analysis.

Several conventions are used in developing SEM dia-
grams. Measured variables, also called observed vari-
ables, indicators, or manifest variables, are represented
by squares or rectangles. Factors have two or more indi-
cators and are also called latent variables, constructs, or
unobserved variables. Factors are represented by circles
or ovals in path diagrams. Relationships between variables
are indicated by lines; lack of a line connecting variables
implies that no direct relationship has been hypothesized.
Lines have either one or two arrows. A line with one arrow
represents a hypothesized direct relationship between two
variables, and the variable with the arrow pointing to it
is the DV. A line with a two-headed arrow indicates an
unanalyzed relationship, simply a covariance between the
two variables with no implied direction of effect.
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Figure 23.1 Path diagram of a multiple regression model
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Figure 23.2 Example of a structural equation model

In the model of Figure 23.2, Acceptance of Risky
Behavior is a latent variable (factor) that is predicted
by gender (a measured variable), and Weak Institutional
Bonds (a factor). Notice the line with the arrow at either
end connecting Weak Institutional Bonds and gender (no
line in the figure, that is, no covariance depicted). This line
with an arrow at either end implies that there is a rela-
tionship between the variables but makes no prediction
regarding the direction of effect. Also notice the direc-
tion of the arrows connecting the Acceptance of Risky
Behavior construct (factor) to its indicators: The construct
predicts the measured variables. The implication is that
Acceptance of Risky Behavior drives, or creates, “okay to
drink” and “okay to smoke.” It is impossible to measure
this construct directly, so we do the next best thing and
measure several indicators of risky behavior. We hope that
we are able to tap into adolescents’ Acceptance of Risky
Behavior by measuring several observable indicators, in
this example, two.

In Figure 23.2, bonds to family, bonds to teachers,
okay to drink, and okay to smoke, and the latent variable,
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Acceptance of Risky Behavior, all have one-way arrows
pointing to them. These variables are dependent variables
in the model. Gender and Weak Institutional Bonds are
IVs in the model; as such they have no one-way arrows
pointing to them. Notice that all the DVs, both observed
and unobserved, have arrows labeled E or D pointing
toward them. Es (errors) point to measured variables; Ds
(disturbances) point to latent variables (factors). As in
multiple regression, nothing is predicted perfectly; there
is always residual error. In SEM, the residual variance
(the variance unexplained by the IV[s]) is included in the
diagram with these paths.

The part of the model that relates the measured vari-
ables to the factors is sometimes called the measurement
model. In this example, the two constructs Weak Insti-
tutional Bonds and Acceptance of Risky Behavior and
the indicators of these constructs form the measurement
model. The hypothesized relationships among the con-
structs, in this example, the one path between Weak
Institutional Bonds and Acceptance of Risky Behavior,
is called the structural model.
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Note, both models presented so far include hypotheses
about relationships among variables (covariances) but
not about means or mean differences. Mean differences
associated with group membership can also be tested
within the SEM framework.

The first step in a SEM analysis is specification of a
model, so this is a confirmatory rather than an exploratory
technique. The model is estimated, evaluated, and perhaps
modified. The goal of the analysis might be to test a model,
to test specific hypotheses about a model, to modify an
existing model, or to test a set of related models.

There are a number of advantages to use of SEM. When
relationships among factors are examined, the relation-
ships are free of measurement error because the error has
been estimated and removed, leaving only common vari-
ance. Reliability of measurement can be accounted for
explicitly within the analysis by estimating and remov-
ing the measurement error. Additionally, as was seen
in Figure 23.2, complex relationships can be examined.
When the phenomena of interest are complex and multidi-
mensional, SEM is the only analysis that allows complete
and simultaneous tests of all the relationships. In the social
sciences we often pose hypotheses at the level of the
construct. With other statistical methods these construct-
level hypotheses are tested at the level of a measured
variable (an observed variable with measurement error).
When the level of the hypothesis and the level of data
are mismatched faulty conclusions may occur. This mis-
match problem is often overlooked. A distinct advantage
of SEM is the ability to test construct-level hypotheses at
a construct level.

Three General Types of Research Questions That
Can Be Addressed With SEM

The fundamental question that is addressed through the
use of SEM techniques involves a comparison between a
dataset, an empirical covariance matrix, and an estimated
population covariance matrix that is produced as a func-
tion of the model parameter estimates. The major question
asked by SEM is, “Does the model produce an estimated
population covariance matrix that is consistent with the
sample (observed) covariance matrix?” If the model is
reasonable, the parameter estimates will produce an esti-
mated matrix that is close to the sample covariance matrix.
“Closeness” is evaluated primarily with the chi-square test
statistics and fit indices. After establishing that the model
is adequate we can test hypotheses within the model by
evaluating the model parameter estimates. We can also test
hypotheses involving statistical comparisons of different
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models, models that are subsets of one another (nested
models).

If the estimated population covariance matrix and the
empirical covariance matrix are very close, the model
parameters (path coefficients, variances, and covariances)
used to estimate the population covariance matrix could
be evaluated. Using the example illustrated in Figure 23.2
we could test the hypothesis that increased (weaker)
Institutional Bonds predicts greater Acceptance of Risky
Behavior. This would be a test of the path coefficient
between the two latent variables, Weak Institutional Bonds
and Acceptance of Risky Behavior (the null hypothesis
for this test would be Hy: y = 0, where vy is the symbol
for the path coefficient between an independent variable
and a dependent variable). This parameter estimate is then
evaluated with a z test.

Not only is it possible to test hypotheses about specific
parameters within a model, it is also possible to statisti-
cally compare nested models to one another. Each model
might represent a different theory; SEM provides a strong
test for competing theories (models).

A FOUR-STAGE GENERAL PROCESS OF
MODELING

The process of modeling could be thought of as a
four-stage process: model specification, model estimation,
model evaluation, and model modification. In this section
each of these stages is discussed and illustrated with a
small example based on simulated data.

Model Specification/Hypotheses

The first stage in the modeling process is specifying the
model, that is, the specific set of hypotheses to be tested.
This is done most frequently through a diagram. This
examples has five measured variables: (1) FAMILY_S,
a Likert-scale measure of strength of bonds to family;
(2) TEACH_SC, a Likert-scale measure of strength of
bonds to teachers; (3) OKDRINKI1, a Likert-scale measure
of endorsement of drinking alcohol; (4) OKSMOKE?2, a
Likert-scale measure of endorsement of smoking tobacco;
and (5) Gender.

The hypothesized model for these data is diagrammed in
Figure 23.2. Latent variables are represented with circles
and measured variables are represented with squares. A
line with an arrow indicates a hypothesized direct rela-
tionship between the variables. Absence of a line implies
no hypothesized direct relationship. The asterisks indicate
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parameters to be estimated. The variances of IVs are
parameters of the model and are estimated or fixed to a
particular value. The number 1 indicates that a parameter,
either a path coefficient or a variance, has been set (fixed)
to the value of 1. (The rationale behind “fixing” paths is
discussed in the section about identification.)

This example contains two hypothesized latent vari-
ables (factors): Weak Institutional Bonds (WK_BONDS),
and Acceptance of Risky Behavior (ACCEPT_RISK). The
weak institutional bonds (WK_BONDS) factor is hypothe-
sized to have two indicators, bonds to family (FAMILY_S)
and bonds to teachers (TEACH_SC). Higher numbers on
these measured variables indicate weaker bonds. Weak
Institutional Bonds predict both weak family and teacher
bonds. Note that the direction of the prediction matches the
direction of the arrows. The Acceptance of Risky Behav-
ior factor also has two indicators endorsing acceptance
of smoking and drinking (OKSMOKE2, OKDRINK?2).
Acceptance of Risky Behavior predicts higher scores
on both of these behavioral indicators. This model also
hypothesizes that both Weak Institutional Bonds and gen-
der predict level of Acceptance of Risky Behavior; weaker
Institutional Bonds and being male (higher code for gen-
der) predict higher levels of Acceptance of Risky Behavior.
Also notice that no arrow directly connects Institutional
Bonds with gender. There is no hypothesized relationship,
either predictive or correlational, between these variables.
However, we can, and we will, test the hypothesis that
there is a correlation between Weak Institutional Bonds
and gender.

These relationships are directly translated into equations
and the model then estimated. The analysis proceeds by
specifying a model as in the diagram and then trans-
lating the model into a series of equations or matrices.
One method of model specification is the Bentler-Weeks
method (Bentler & Weeks, 1980). In this method every
variable in the model, latent or measured, is either an IV
or a DV. The parameters to be estimated are (a) the regres-
sion coefficients, and (b) the variances and the covariances
of the independent variables in the model (Bentler, 1989).
In Figure 23.2 the regression coefficients and covariances
to be estimated are indicated with an asterisk (*).

In the example, FAMILY_S, TEACH_SC, OKDRI
NK2, OKSMOKE2 are all DVs because they all have at
least one line with a single-headed arrow pointing to them.
Notice that ACCEPT _RISK is a latent variable and also a
dependent variable. Whether or not a variable is observed
makes no difference as to its status as a DV or IV. Although
ACCEPT_RISK is a factor, it is also a DV because it has
arrows from both WK_BONDS and Gender. The seven

IVs in this example are gender, WK_BONDS, and the
residuals variances (D2, E1, E2, E4, ES).

Residual variables (errors) of measured variables are
labeled E and errors of latent variables (called distur-
bances) are labeled D. It may seem odd that a residual
variable is considered an IV but remember the familiar
regression equation:

where Y is the DV and X and e are both IVs.
In fact the Bentler-Weeks model is a regression model,
expressed in matrix algebra:

n=pn+vE 2

where, if ¢ is the number of DVs and r is the number of
IVs, then n (eta) is a ¢ x 1 vector of DVs, p (beta) is
a g x g matrix of regression coefficients between DVs,
y (gamma) is a ¢ X r matrix of regression coefficients
between DVs and Vs, and € (xi) is an » x 1 vector of I'Vs.

What makes this model different from ordinary regres-
sion is the possibility of having latent variables as DVs
and predictors, as well as the possibility of DVs predicting
other DVs.

The syntax for this model estimated in EQS (a popu-
lar SEM computer package) is presented in Table 23.1.
As seen in Table 23.1, the model is specified in EQS
using a series of regression equations. In the /EQUATIONS
section, as in ordinary regression, the DV appears on the
left side of the equation, and its predictors are on the right-
hand side. But unlike regression, the predictors may be IVs
or other DVs. Measured variables are referred to by the let-
ter V and the number corresponding to the variable given
in the /[LABELS section. Errors associated with measured
variables are indicated by the letter E and the number of the
variable. Factors are referred to with the letter F and a num-
ber given in the /[LABELS section. The errors, or distur-
bances, associated with factors are referred to by the letter
D and the number corresponding to the factor. An asterisk
indicates a parameter to be estimated. Variables included
in the equation without asterisks are considered parame-
ters fixed to the value 1. In this example start values are
not specified and are estimated automatically by the pro-
gram through simply including an asterisk. If specific start
values were required, a numerical starting value would be
included in front of the asterisk. The variances of IVs are
parameters of the model and are indicated in the /VAR
paragraph. In the /PRINT paragraph, FIT = ALL requests
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TABLE 23.1 EQS 6.1 Syntax for SEM Model of Predictors of
Acceptance of Risky Behavior Presented in Figure 23.2

/TITLE

Acceptance of Risky Behavior
/SPECIFICATIONS
DATA="c:\data.ess’;
VARIABLES=5; CASES=4578;

METHOD=ML, ROBUST; ANALYSIS=COVARIANCE;
MATRIX=RAW;

/LABELS

VI1=0KDRINK2; V2=0KSMOKE?2; V3=GENDER?2;
V4=TEACH_SC; V5=FAMILY_S;

FI1=WK_BONDS; F2=ACCEPT_RISK;
/EQUATIONS

V1 = 1F2 + El;

V2 = *F2 4 E2;

V4 = *F1 4 E4;

V5 = *F1 + ES5;

F2 = *F1 + *V3 + D2;
/VARIANCES

V3 =%

Fl =1;

El, E2 = *;

E4, ES, = *;

D2 =%
/COVARIANCES
/PRINT

FIT=ALL;
TABLE=EQUATION;
/LMTEST

/WTEST

/END

all goodness-of-fit indices available. Take a moment to
confirm that the diagram relationships exactly match the
regression equations given in the syntax file.
Identification. In SEM a model is specified, parameters
for the model are estimated using sample data, and the
parameters are used to produce the estimated population
covariance matrix. But only models that are identified can
be estimated. A model is said to be identified if there is
a unique numerical solution for each of the parameters
in the model. For example, say that the variance of y =
10 and that the variance of y = o + f. Any two values
can be substituted for o and § as long as they sum to 10.
There is no unique numerical solution for either o or f;
that is, there are an infinite number of combinations of
two numbers that would sum to 10. Therefore this single
equation model is not identified. However, if we fix a to 0,
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then there is a unique solution for f, 10, and the equation
is identified. It is possible to use covariance algebra to
calculate equations and assess identification in very simple
models; however, in large models this procedure quickly
becomes unwieldy. For a detailed, technical discussion of
identification, see Bollen (1989). The following guidelines
are rough, but may suffice for many models.

The first step is to count the numbers of data points
and the number of parameters that are to be estimated.
The data in SEM are the variances and covariances in
the sample covariance matrix. The number of data points
is the number of nonredundant sample variances and
covariances,

pp+1)

5 3

Number of data points =

where p equals the number of measured variables.

The number of parameters is found by adding together
the number of regression coefficients, variances, and
covariances that are to be estimated (i.e., the number of
asterisks in a diagram).

If there are more data points than parameters to be
estimated, the model is said to be overidentified, a neces-
sary condition for proceeding with the analysis. If there
are the same numbers of data points as parameters to
be estimated, the model is said to be just-identified. In
this case, the estimated parameters perfectly reproduce the
sample covariance matrix, chi-square and degrees of free-
dom are equal to zero, and the analysis is uninteresting
because hypotheses about adequacy of the model cannot
be tested. However, hypotheses about specific paths in the
model can be tested. If there are fewer data points than
parameters to be estimated, the model is said to be under-
identified and parameters cannot be estimated. The num-
ber of parameters needs to be reduced by fixing, constrain-
ing, or deleting some of them. A parameter may be fixed
by setting it to a specific value or constrained by setting
the parameter equal to another parameter.

In the acceptance of risky behavior example of
Figure 23.2, there are five measured variables, so there
are 15 data points: 5(5 + 1)/2 = 15 (5 variances and 10
covariances). There are 11 parameters to be estimated
in the hypothesized model: five regression coefficients
and six variances. The hypothesized model has four
fewer parameters than data points, so the model may be
identified.

The second step in determining model identifiability
is to examine the measurement portion of the model. The
measurement part of the model deals with the relationship
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between the measured indicators and the factors. It is
necessary both to establish the scale of each factor and
to assess the identifiability of this portion of the model.

To establish the scale of a factor, either the variance of
the factor is set to 1, or one of the regression coefficients
from the factor to a measured variable is fixed to 1. Fixing
the regression coefficient to 1 gives the factor the same
variance as the measured variable. If the factor is an IV,
either alternative is acceptable. If the factor is a DV,
most researchers fix the regression coefficient to 1. In the
example, the variance of the Weak Institutional Bonds
factor was set to 1 (normalized) while the scale of the
Acceptance of Risky Behavior factor was set equal to the
scale of okay to drink.

To establish the identifiability of the measurement
portion of the model look at the number of factors and
the number of measured variables (indicators) loading on
each factor. If there is only one factor, the model may
be identified if the factor has at least three indicators with
nonzero loading and the errors (residuals) are uncorrelated
with one another. If there are two or more factors, again
consider the number of indicators for each factor. If each
factor has three or more indicators, the model may be
identified if errors associated with the indicators are not
correlated, each indicator loads on only one factor, and
the factors are allowed to covary. If there are only two
indicators for a factor, the model may be identified if there
are no correlated errors, each indicator loads on only one
factor, and none of the covariances among factors is equal
to zero.

In the example, there are two indicators for each factor.
The errors are uncorrelated and each indicator loads on
only one factor. Additionally, the covariance between the
factors is not zero. Therefore, this part of the model may
be identified. Please note that identification may still be
possible if errors are correlated or variables load on more
than one factor, but it is more complicated.

The third step in establishing model identifiability is to
examine the structural portion of the model, looking only
at the relationships among the latent variables (factors).
Ignore the measured variables for a moment; consider
only the structural portion of the model that deals with
the regression coefficients relating latent variables to one
another. If none of the latent DVs predict each other (the
beta matrix is all zeros), the structural part of the model
may be identified. This example has only one latent DV,
so that part of the model may be identified. If the latent
DVs do predict one another, look at the latent DVs in the
model and ask if they are recursive or nonrecursive. If
the latent DVs are recursive, there are no feedback loops

among them, and there are no correlated disturbances
(errors) among them. (In a feedback loop, DV1 predicts
DV2 and DV2 predicts DV1. That is, there are two lines
linking the factors, one with an arrow in one direction
and the other line with an arrow in the other direction.
Correlated disturbances are linked by single curved lines
with double-headed arrows.) If the structural part of the
model is recursive, it may be identifiable. These rules
also apply to path analysis models with only measured
variables. The acceptance of risky behavior example is a
recursive model and therefore may be identified.

If a model is nonrecursive, either there are feedback
loops among the DVs or there are correlated disturbances
among the DVs, or both. Two additional conditions are
necessary for identification of nonrecursive models, each
applying to each equation in the model separately. Look at
each equation separately; for identification it is necessary
that each equation not contain all of the latent DVs. One
latent DV must be excluded from each equation. The
second condition is that the information matrix (a matrix
necessary for calculating standard errors) is full rank and
can be inverted. The inverted information matrix can be
examined in the output from most SEM programs. If,
after examining the model, the number of data points
exceeds the number of parameters estimated and both
the measurement and structural parts of the model are
identified, there is good evidence that the whole model is
identified.

Sample size. Covariances are less stable when estimated
from small samples. SEM is based on covariances. Param-
eter estimates and chi-square tests of fit are also sensitive
to sample size. Therefore SEM is a large sample tech-
nique. Velicer and Fava (1998) and MacCallum, Widaman,
Preacher, and Hong (1999) found, in exploratory factor
analysis models, that the size of the factor loadings, the
number of variables, and the size of the sample were
important elements in obtaining a good factor model. This
can reasonably be generalized to SEM models. Models
with strong expected parameter estimates, reliable mea-
sured variables, and well-defined constructs may require
less data (Ullman, 2007). Interestingly, although SEM is
a large data technique new test statistics have been devel-
oped that allow for estimation of small models with as few
as 60 respondents (Yuan & Bentler, 1999).

Power. Two general approaches are available for
power estimation in SEM. The MacCallum, Browne, and
Sugawara (1996) approach estimates power relative to an
alternative hypothesis specified in terms of lack of fit. In
the MacCallum et al. approach power is estimated based
on the degrees of freedom (dfs) of the model and the
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root mean square error of approximation (RMSEA). This
approach allows power estimation for the fit (or lack of
fit for the model). The Satorra—Saris (1985) approach to
power estimates the power to reject specific hypotheses
about parameters of the models and employs comparisons
of nested models (models that are subsets of one another).

Missing data. Problems of missing data are often mag-
nified in SEM due to the large number of measured vari-
ables employed (Allison, 2003; Enders, 2010, Little &
Rubin, 2002; Schafer & Graham, 2002). The researcher
who relies on using complete cases only is often left with
an inadequate number of complete cases to estimate a
model and potentially biased estimated parameters. There-
fore missing data imputation is particularly important in
SEM models. When there is evidence that the data are
missing at random (MAR, missingness may depend on
observed data) or missing completely at random (MCAR,
missingness is unrelated to observed data or the missing
data mechanism), a preferred method of imputing miss-
ing data, the EM algorithm to obtain maximum likelihood
(ML) estimates, is appropriate (Little & Rubin). A full
discussion of the EM algorithm is outside the scope of
this chapter but the general idea behind the EM approach
is that, with respect to the likelihood function, missing
values are replaced with expectations given the likeli-
hood function and parameters are estimated iteratively.
Using this iterative process yields missing data estimates
that have a statistically unbiased mean and variance. Soft-
ware packages routinely include procedures for estimating
missing data. EQS 6.1 (Bentler, 2008) produces the EM-
based maximum likelihood solution automatically based
on the Jamshidian-Bentler (1999) computations. It should
be noted that, if the data are not normally distributed, max-
imum likelihood test statistics—including those based on
the EM algorithm—may be quite inaccurate.

Additionally, a missing data mechanism can be explic-
itly modeled within the SEM framework. Treatment of
missing data patterns through SEM is not demonstrated
in this chapter but the interested reader is referred to
Allison (1987) and Muthén, Kaplan, and Hollis (1987).
Multiple imputation (MI) is also a viable solution when
the data meet normality assumptions. However, when the
data violate normality the parameter estimates from the
MI approach have more bias than those from the ML
approach (Yuan, Wallentin, & Bentler, 2011).

Normality is a restrictive assumption in practice. The
more general case on how to deal with missing data
when the parent distribution is possibly non-normal is dis-
cussed in Yuan and Bentler (2000a). They provide a means
for accepting the EM-based estimates of parameters, but
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correcting standard errors and test statistics for non-
normality in an approach reminiscent of Satorra-Bentler
(1994). Their approach has been uniquely incorporated
into the EQS 6.1 program (Bentler, 2008).

Multivariate normality and outliers. Most of the esti-
mation techniques used in SEM assume multivariate nor-
mality. To determine the extent and shape of non-normally
distributed data, examine the data for evidence of outliers,
both univariate and multivariate, and evaluate the skew-
ness and kurtosis of the distributions for the measured
variables. If significant skewness is found, transforma-
tions can be attempted; however, often variables are still
highly skewed or highly kurtotic even after transforma-
tion. Some variables, such as drug-use variables, are not
expected to be normally distributed in the population. If
transformations do not restore normality, or a variable is
not expected to be normally distributed in the population,
an estimation method can be selected that addresses the
non-normality.

Residuals. After model estimation, the residuals should
be small and centered around zero. The frequency distri-
bution of the residual covariances should be symmetric.
Residuals in the context of SEM are residual covariances,
not residual scores, differences between sample covari-
ances and those reproduced by the model. Nonsymmet-
rically distributed residuals in the frequency distribution
may signal a poorly fitting model; the model is estimating
some of the covariances well and others poorly. It some-
times happens that one or two residuals remain quite large,
although the model fits reasonably well and the resid-
uals appear to be symmetrically distributed and centered
around zero. Typically, more informative than the ordinary
residuals are the residuals obtained after standardizing the
sample covariance matrix to a correlation matrix and sim-
ilarly transforming the model matrix. In this metric, it is
correlations that are being reproduced, and it is easy to
see whether a residual is small and meaningless or too
large for comfort. For example, if a sample correlation
is .75 and the corresponding residual is .05, the correla-
tion is largely explained by the model. In fact, an average
of these standardized root mean square residuals (SRMS)
has been shown to provide one of the most informative
guides to model adequacy (Hu & Bentler, 1998, 1999).

MODEL ESTIMATION TECHNIQUES AND TEST
STATISTICS

After a model is specified, population parameters are esti-
mated with the goal of minimizing the difference between
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the observed and estimated population covariance matri-
ces. To accomplish this goal, a function, F, is minimized
where

F=(s—0(0)W(s—0(0), “)

s is the vector of data (the observed sample covariance
matrix stacked into a vector); o is the vector of the
estimated population covariance matrix (again, stacked
into a vector), and (®) indicates that ¢ is derived from
the parameters (the regression coefficients, variances, and
covariances) of the model. W is the matrix that weights
the squared differences between the sample and estimated
population covariance matrix.

In factor analysis the observed and reproduced cor-
relation matrices are compared. This idea is extended in
SEM to include a statistical test of the differences between
the observed covariance matrix and the covariance matrix
that is produced as a function of the model. If the weight
matrix, W, is chosen correctly, at the minimum with the
optimal O, F multiplied by (N — 1) yields a chi-square
test statistic.

The trick is to select W so that the sum of weighted
squared differences between observed and estimated pop-
ulation covariance matrices has a statistical interpretation.
In an ordinary chi-square, the weights are the set of
expected frequencies in the denominators of the cells. If
we use some other numbers instead of the expected fre-
quencies, the result might be some sort of test statistic, but
it would not be a x2 statistic; that is, the weight matrix
would be wrong.

In SEM, estimation techniques vary by the choice of
W. Unweighted least squares estimation (ULS) does not
standardly yield a x2 statistic or standard errors, though
these are provided in EQS. ULS estimation does not
usually provide the best estimates, in the sense of having
the smallest possible standard errors, and hence is not
discussed further (see Bollen, 1989, for further discussion
of ULS).

Maximum likelihood (ML) is usually the default
method in most programs because it yields the most
precise (smallest variance) estimates when the data are
normal. GLS (generalized least squares) has the same
optimal properties as ML under normality. When data
are symmetrically distributed but normal, an option is
EDT (elliptical distribution theory, Shapiro & Browne,
1987). The ADF (asymptotically distribution free) method
has no distributional assumptions and hence is most
general (Browne, 1984), but it is impractical with many
variables and inaccurate without large sample sizes.
Satorra and Bentler (1994, 2001) and Satorra (2000)

have also developed an adjustment for non-normality
that can be applied to the ML, GLS, or EDT chi-square
test statistics. Briefly, Satorra-Bentler Scaled y? is a
correction to the 2 test statistic.! EQS also corrects the
standard errors for parameter estimates to adjust for the
extent of non-normality (Bentler & Dijstra, 1985).

The performance of the %2 test statistic derived from
these different estimation procedures is affected by several
factors, among them (1) sample size, (2) non-normality of
the distribution of errors, of factors, and of errors and fac-
tors, and (3) violation of the assumption of independence
of factors and errors. The goal is to select an estimation
procedure that, in Monte Carlo studies, produces a test
statistic that neither rejects nor accepts the true model
too many times. Several studies provide guidelines for
selection of appropriate estimation method and test statis-
tics. The following sections summarize the performance
of estimation procedures examined in Monte Carlo studies
by Hu, Bentler, and Kano (1992) and Bentler and Yuan
(1999). Hu et al. varied sample size from 150 to 5,000 and
Bentler and Yuan examined samples sizes ranging from
60 to 120. Both studies examined the performance of test
statistics derived from several estimation methods when
the assumptions of normality and independence of factors
were violated.

Estimation methods/test statistics and sample size. Hu
and colleagues found that when the normality assumption
was reasonable, both the ML and the Scaled ML per-
formed well with sample sizes more than 500. When the
sample size was less than 500, GLS performed slightly
better. Interestingly the EDT test statistic performed a lit-
tle better than ML at small sample sizes. It should be noted
that the elliptical distribution theory estimator (EDT) con-
siders the kurtosis of the variables and assumes that all
variables have the same kurtosis, although the variables
need not be normally distributed. (If the distribution is
normal, there is no excess kurtosis.) Finally, the ADF
estimator was poor with sample sizes less than 2,500.

In small samples in the range of 60 to 120, when the
number of subjects was greater than the number (p*) of
nonredundant variances and covariances in the sample
covariance matrix (i.e., p* = [p(p + 1)]/2 where p is
the number of variables), Bentler and Yuan found that a

I'The test statistic is adjusted for by degrees of freedom in the
model/estimate of the sum of the nonzero eigenvalues of the
product residual weight matrix under the model and the weight
matrix used in the estimation and the asymptotic covariance
matrix of the differences between the sample covariance matrix
and the estimated population covariance matrix.
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test statistic based on an adjustment of the ADF estimator
and evaluated as an F statistic was best. This test statistic
(Yuan-Bentler, 1999) adjusts the chi-square test statistic
derived from the ADF estimator as,

T — [N —(p* - q)] Typr 5)
N -D -]

where N is the number of subjects, g is the number of
parameters to be estimated, and TADF is the test statistic
based on the ADF estimator.

Estimation Methods and Non-Normality

When the normality assumption was violated, Hu et al.
(1992) found that the ML and GLS estimators worked
well with sample sizes of 2,500 and greater. The GLS
estimator was a little better with smaller sample sizes but
led to acceptance of too many models. The EDT estimator
accepted far too many models. The ADF estimator was
poor with sample sizes less than 2,500. Finally, the scaled
ML performed about the same as the ML and GLS
estimators and better than the ADF estimator at all but
the largest sample sizes.> With small samples sizes the
Yuan-Bentler test statistic performed best.

Estimation Methods and Dependence

The assumption that errors are independent underlies
SEM and other multivariate techniques. Hu, Bentler, and
Kano (1992) also investigated estimation methods and test
statistic performance when the errors and factors were
dependent but uncorrelated.’ ML and GLS performed
poorly, always rejecting the true model. ADF was poor
unless the sample size was greater than 2,500. EDT was
better than ML, GLS, and ADF, but still rejected too many
true models. The Scaled ML was better than the ADF at
all but the largest sample sizes. The Scaled ML performed
best overall with medium to larger sample sizes; the Yuan-
Bentler performed best with small samples.

>This is interesting in that the ADF estimator has no distribu-
tional assumptions and, theoretically, should perform quite well
under conditions of non-normality.

3Factors were dependent but uncorrelated by creating a curvi-
linear relationship between the factors and the errors. Corre-
lation coefficients examine only linear relationships; therefore,
although the correlation is zero between factors and errors, they
are dependent.

Structural Equation Modeling 669

Some Recommendations for Choice of Estimation
Method/Test Statistic

Sample size and plausibility of the normality and indepen-
dence assumptions need to be considered in selection of
the appropriate estimation technique. ML, the Scaled ML,
or GLS estimators may be good choices with medium to
large samples and evidence of the plausibility of the nor-
mality assumptions. The independence assumption can-
not be routinely evaluated. ML estimation is currently
the most frequently used estimation method in SEM. In
medium to large samples the Scaled ML test statistic is
a good choice with non-normality or suspected depen-
dence among factors and errors. Because the scaled ML
is computer intensive and many model estimations may
be required, it is often reasonable to use ML during model
estimation and then the scaled ML for the final estimation.
In small samples the Yuan-Bentler test statistic seems best.
The test statistic based on the ADF estimator (without
adjustment) seems like a poor choice under all conditions
unless the sample size is very large (>2,500). Similar
conclusions were found in studies by Fouladi (2000),
Hoogland (1999), and Satorra (1992).

Computer procedure and interpretation. The data used
in this example are from a large evaluation of the D.A.R.E.
program in Colorado Springs (N = 4,578 students).
Details about these data can be found in Dukes, Stein,
and Ullman (1997). The model in Figure 23.2 is estimated
using ML estimation and evaluated with the Satorra-
Bentler scaled chi-square because there was evidence of
violation of multivariate normality (Mardia’s normalized
coefficient = 238.65, p < .001). This normalized coeffi-
cient is distributed as a z test; therefore, in large samples
normalized coefficients greater than 3.3 may indicate vio-
lations for normality. In Table 23.1 the estimation method
is indicated after ME =. Output for the Mardia’s coef-
ficient, model estimation, and chi-square test statistic is
given in Table 23.2.

The output first presents model information given nor-
mality. Scanning down the table the model information
appropriate for this model given the normality viola-
tion begins with GOODNESS OF FIT SUMMARY FOR
METHOD = ROBUST. Several chi-square test statistics
are given in this model estimation and evaluation section
presented in Table 23.2. The ROBUST INDEPENCENCE
MODEL CHI-SQUARE = 730.858, with 10 dfs, tests
the hypothesis that the measured variables are orthogo-
nal. Therefore, the probability associated with this chi-
square should be small, typically less than .05. The model
chi-square test statistic is labeled SATORRA-BENTLER
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TABLE 23.2 Selected Output From EQS 6.1 for Model Estimation of SEM Model of Acceptance of
Risky Behavior Presented in Figures 23.2 and 23.3

MULTIVARIATE KURTOSIS
MARDIA’S COEFFICIENT (G2,P) = 61.0270
NORMALIZED ESTIMATE = 238.6527

—— much output omitted — ——

GOODNESS OF FIT SUMMARY FOR METHOD = ML

INDEPENDENCE MODEL CHI-SQUARE = 1661.460 ON 10 DEGREES OF FREEDOM
INDEPENDENCE AIC = 1641.460 INDEPENDENCE CAIC = 1567.838

MODEL AIC = 23.078 MODEL CAIC = —6.371

CHI-SQUARE = 31.078 BASED ON 4 DEGREES OF FREEDOM

PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS 0.00000

THE NORMAL THEORY RLS CHI-SQUARE FOR THIS ML SOLUTION IS 31.364.
FIT INDICES

BENTLER-BONETT NORMED FIT INDEX = 0.981

BENTLER-BONETT NON-NORMED FIT INDEX = 0.959

COMPARATIVE FIT INDEX (CFI) = 0.984

BOLLEN’S (IFI) FIT INDEX = 0.984

MCDONALD’S (MFI) FIT INDEX = 0.997

JORESKOG-S6RBOM’S GFI FIT INDEX = 0.997

JORESKOG-S6RBOM’S AGFI FIT INDEX = 0.989

ROOT MEAN-SQUARE RESIDUAL (RMR) = 0.009

STANDARDIZED RMR = 0.021

ROOT MEAN-SQUARE ERROR OF APPROXIMATION (RMSEA) = 0.040

90% CONFIDENCE INTERVAL OF RMSEA ( 0.027, 0.053)

RELIABILITY COEFFICIENTS

CRONBACH’S ALPHA = 0.472

GOODNESS OF FIT SUMMARY FOR METHOD = ROBUST

ROBUST INDEPENDENCE MODEL CHI-SQUARE = 730.858 ON 10 DEGREES OF FREEDOM
INDEPENDENCE AIC = 710.858 INDEPENDENCE CAIC = 637.237
MODEL AIC = 13.644 MODEL CAIC = —15.805

SATORRA-BENTLER SCALED CHI-SQUARE = 21.6436 ON 4 DEGREES OF FREEDOM
PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS 0.00024
MEAN- AND VARIANCE-ADJUSTED CHI-SQUARE = 19.035 ON 4 D.F.
PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS 0.00077
RESIDUAL-BASED TEST STATISTIC = 27.386

PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS 0.00002
YUAN-BENTLER RESIDUAL-BASED TEST STATISTIC = 27.212
PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS 0.00002
YUAN-BENTLER RESIDUAL-BASED F-STATISTIC = 6.842

DEGREES OF FREEDOM = 4, 4278

PROBABILITY VALUE FOR THE F-STATISTIC IS 0.00002

FIT INDICES

BENTLER-BONETT NORMED FIT INDEX = 0.970

BENTLER-BONETT NON-NORMED FIT INDEX = 0.939
COMPARATIVE FIT INDEX (CFI) = 0.976

BOLLEN’S (IFI) FIT INDEX = 0.976

MCDONALD’S (MFI) FIT INDEX = 0.998

ROOT MEAN-SQUARE ERROR OF APPROXIMATION (RMSEA) = 0.032
90% CONFIDENCE INTERVAL OF RMSEA ( 0.020, 0.046)
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CHI-SQUARE = 19.035 BASED ON 4 DEGREES OF
FREEDOM. This information tests the hypothesis that the
difference between the estimated population covariance
matrix and the sample covariance matrix is not significant.
Ideally the probability associated with this chi-square
should be large, greater than .05. In Table 23.2 the
probability associated with the model chi-square is .00077.
This significance indicates that the model does not fit the
data. However this is a large sample and small, trivial
differences often create significant chi-squares. Recall
that the model chi-square is calculated as N* fmin. For
this reason model evaluation relies heavily on other fit
indices.

MODEL EVALUATION

Two general aspects of a model are evaluated: (1) the
overall fit of the model, and (2) significance of particu-
lar parameters of the model (regression coefficients and
variances and covariances of independent variables).

Evaluating the overall fit of the model. The model chi-
square is highly dependent on sample size; that is, the
model chi-square is (N — 1)Fmin where N is the sam-
ple size and Fmin is the value of Fmin, Equation 4,
at the function minimum. Therefore, the fit of models
estimated with large samples is often difficult to assess.
Fit indices have been developed to address this problem.
There are five general classes of fit indices: comparative
fit, absolute fit, proportion of variance accounted for, par-
simony adjusted proportion of variance accounted for, and
residual-based fit indices. A complete discussion of model
fit is outside the scope of this chapter; therefore we focus
on two of the most popular fit indices: the Comparative
Fit Index (Bentler, 1990) and a residual-based fit index,
the root mean square error of approximation (RMSEA,;
Browne & Cudeck, 1993). Ullman (2007), Bentler and
Raykov (2000), and Hu and Bentler (1999) offer more
detailed discussions of fit indices.

Nested models are models that are subsets of one
another. At one end of the continuum is the uncorre-
lated variables or independence model: the model that
corresponds to completely unrelated variables. This model
would have degrees of freedom equal to the number of
data points minus the variances that are estimated. At the
other end of the continuum is the saturated (full or per-
fect) model with zero degrees of freedom. Fit indices that
employ a comparative fit approach place the estimated
model somewhere along this continuum, with 0.00 indi-
cating awful fit and 1.00 indicating perfect fit.
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The comparative fit index (CFI; Bentler, 1990) also
assesses fit relative to other models as the name implies,
but uses a different approach. The CFI employs the non-
central x2 distribution with noncentrality parameters, T;.
If the estimated model is perfect, T; = 0, therefore, the
larger the value of t;, the greater the model misspecifica-
tion.

CFl=1— test. model (6)
Tindep. model

So, clearly, the smaller the noncentrality parameter, t;,
for the estimated model relative to the t;, for the inde-
pendence model, the larger the CFI and the better the fit.
The t value for a model can be estimated by

A

y2
Tindep. model — xindcp. model df

indep. model

A

Y2
Test. model = Xest. model — dfest. model* (7)

where T, nodel 1S S€t to zero if negative.
For the example,

Tindep, model = 730.858 — 10 = 720.858 and

Tout model = 21.6436 — 4 = 17.6436 so that
17.6436
CFl=1-— = .976.
720.858

CFI values greater than .95 are often indicative of good
fitting models (Hu & Bentler, 1999). The CFI is normed to
the 0 — 1 range, and does a good job of estimating model
fit even in small samples (Hu & Bentler, 1998, 1999).

The root mean square error of approximation (RMSEA,;
Browne & Cudeck, 1993; Steiger, 2000) estimates the
lack of fit in a model compared to a perfect or saturated
model by

A

T

estimated RMSEA =
N df model

®)

where T = T, 040 @S defined in Equation 7. As noted
above, when the model is perfect, T = 0, and the greater
the model misspecification, the larger 7. Hence RMSEA
is a measure of noncentrality relative to sample size and
degrees of freedom. For a given noncentrality, large N
and df imply a better fitting model, that is, a smaller
RMSEA. Values of .06 or less indicate a close-fitting
model (Hu & Bentler, 1999). Values larger than .10 are
indicative of poor-fitting models (Browne & Cudeck,
1993). Hu and Bentler (1999) found that in small samples
the RMSEA overrejected the true model; that is, its value

5UB01 7 SUOWILIOD SIS0 3]etdde 8} Aq peLLeA0B 812 SB[ 11 O ‘95N 4O SaJNI 10} Afeiq178UIIUO AB]IM IO (SUORPU0D-PUE-SWLBY W00 A8 In AReJq 1 [Bu1|U0//SARY) SUORIPLOD pue S | 84} aes *[5202/£0/80] Lo AreidiT8UIIUO 4311 ‘E20202d0U 08BEETBTTT8.6/Z00T OT/I0p/W00" A8 |In ARG BU1U0//SAY WO14 Ppeojumoq ‘€20202d0y 088EETSTTTS6/200T 0T



672 Data Analysis Issues

was too large. Because of this problem, this index may
be less preferable with small samples. As with the CFI,
the choice of estimation method affects the size of the
RMSEA.

For the example, T = 17.6436, therefore

[17.6436
RMSEA = /| ——— = .032.
17140

Both the CFI and RMSEA exceed cut-off values of .95
and .06, respectively, and we may conclude that despite
the significant chi-square the model fits.

Interpreting Parameter Estimates— Direct Effects

Given the fit indices there is clear evidence that the model
fits well, but what does it mean? The hypothesis that the
observed covariances among the measured variables arose
because of the linkages between variables specified in
the model is supported by fit indices. Note that the chi-
square is significant, so in absence of fit indices we would
conclude that we should reject our hypothesized model.
However, the chi-square test, especially with a large
sample such as this, is a notoriously bad measure of fit.
The model chi-square is calculated as (N — 1)*minimum
of the function. Therefore, trivial differences between the
sample covariance matrix and the estimated population
covariance matrix can force the chi-square to exceed
the threshold for significance. Although chi-square test
statistics are still routinely reported, more emphasis is
placed on fit indices particularly with large samples.
Next, researchers usually examine the statistically sig-
nificant relationships within the model. Table 23.3 con-
tains edited EQS output for evaluation of the regression
coefficients for the example. If the unstandardized param-
eter estimates are divided by their respective standard
errors, a z score is obtained for each estimated parameter

that is evaluated in the usual manner,*

parameter estimate
7= &)

std error for estimate

Because of differences in scales, it is sometimes difficult
to interpret unstandardized regression coefficients. There-
fore, researchers often examine standardized coefficients.
Both the standardized and unstandardized regression

4The standard errors are derived from the inverse of the infor-
mation matrix.

TABLE 23.3 Parameter Estimates, Standard Errors, and Test
Statistics for Hypothetical Example

MEASUREMENT EQUATIONS WITH STANDARD ERRORS
AND TEST STATISTICS

STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED
WITH @.

(ROBUST STATISTICS IN PARENTHESES)

OKDRINK2=V1 = 1.000 F2 + 1.000 E1

OKSMOKE2=V2 = 1.563*F2 + 1.000 E2
108

14.535@

(.157)

(9.945@

TEACH_SC=V4 = 482*F1 + 1.000 E4

021

22.676@

(.027)

(18.069@

FAMILY_S=V5 = 412*F1 + 1.000 E5

019

22.072@

(.024)

(17.446@

CONSTRUCT EQUATIONS WITH STANDARD ERRORS AND
TEST STATISTICS

STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED
WITH @.

(ROBUST STATISTICS IN PARENTHESES)

ACCEPT_R=F2 = —.020*V3 + .185*F1 + 1.000 D2
011.013

—1.775 14.016@

(.013) (.018)

(-1.544) ( 10.189@

coefficients for the final model are in Table 23.3 and
Figure 23.3. In Figure 23.3 the standardized coefficients
are in parentheses. Looking at Table 23.3 in the section
labeled MEASUREMENT EQUATIONS WITH STAN-
DARD ERRORS AND TEST STATISTICS, for each
dependent variable there are four pieces of information:
The unstandardized coefficient is given on the first line,
the standard error of the coefficient given normality
is given on the second line, the standard error of the
coefficient adjusted to the degree of the non-normality is
given on the third line, and the test statistic (z score) for
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02
Okay to
Drink El
(54) OKDRINK2
Acceptance of ' Vi
Risky Behavior
ACCEPT_RISK F2
Okay to
Smoke l— E2
OKSMOKE2
V2
Gender
V3*

Figure 23.3 Example with unstandardized and standardized coefficients (standardized coefficients in parentheses)

the coefficient is given on the last line. For example, for
FAMILY_S predicted from WK_BONDS,

41
S = 1745, p < .05.
024

It could be concluded that bonds to family (FAM-
ILY_S) is a significant indicator of Weak Institutional
Bonds (WK_BONDS); the weaker the Institutional Bonds
the weaker the bonds to family. Bonds to teachers
(TEACH_SC) is also a significant indicator of Weak Insti-
tutional Bonds. Endorsement of smoking (OKSMOKE?2)
is a significant indicator of Acceptance of Risky Behavior
(ACCEPT_RISK); greater acceptance of risky behavior
predicts stronger endorsement of smoking (unstandard-
ized coefficient = 1.56, z = 9.45, p < .05). Because the
path from ACCEPT_RISK to OKDRINK is fixed to 1 for
identification, a standard error is not calculated.

As seen in Table 23.3, the relationships between the
constructs appear in the EQS section labeled, CON-
STRUCT EQUATIONS WITH STANDARD ERRORS
AND TEST STATISTICS. Weak Institutional Bonds
(WK_BONDS) significantly predicts greater Acceptance
of Risky Behavior (unstandardized coefficient = .185,

Type of Teaching

standard error = .018, z = 10.19, p < .05). Gender does
not significantly predict Acceptance of Risky Behavior.
Indirect effects. A particularly strong feature of SEM is
the ability to test not only direct effects between variables
but also indirect effects. Mediational hypotheses are not
illustrated in this example, but a simple example is shown
in Figure 23.4. Imagine that students are assigned to one
of two teaching methods for a statistics class (coded 0
and 1). Final exam scores are recorded at the end of the
quarter. The direct effect of teaching method on exam
score is path a. But is it reasonable to suggest that mere
assignment to a teaching method creates the change? Per-
haps not. Maybe, instead, the teaching method increases
a student’s motivational level and higher motivation leads
to a higher grade. The relationship between the treatment
and the exam score is mediated by motivation level. That
is to say that type of teaching method indirectly affects
final exam score through level of motivation. Or, level
of motivation serves as an intervening variable between
teaching method and final exam score. Note that this is a
different question than is posed with a direct effect: “Is
there a difference between the treatment and control group
on exam score?” The indirect effect can be tested by test-
ing the product of paths b and c. This example uses only

Method

v

Final Exam Score |¢—— ¢

Level of Motivation

AN

Figure 23.4 Path analysis model with indirect effect

S
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measured variables and is called path analysis; however,
mediational hypotheses can be tested using both latent and
observed variables. A more detailed discussion of indirect
effects can be found in MacKinnon, Lockwood, Hoffman,
West, and Sheets (2002), MacKinnon, Fairchild, and Fritz,
(2007), and MacKinnon (2008). Indirect effects are readily
obtainable in the EQS 6.1 program by specifying “effects
= yes” in the /PRINT section.

MODEL MODIFICATION

There are at least two reasons for modifying a SEM
model: to improve fit (especially in exploratory work)
and to test hypotheses (in theoretical work). The three
basic methods of model modification are the chi-square
difference, Lagrange multiplier (LM), and Wald test. All
are asymptotically equivalent under the null hypothesis
but approach model modification differently. Because of
the relationship between sample size and 2, it is hard to
detect a difference between models when sample sizes are
small.

Chi-square difference test. If models are nested (mod-
els are subsets of each other), the x2 value for the larger
model is subtracted from the x> value for the smaller
nested model and the difference, also a XZ, is evaluated
with degrees of freedom equal to the difference between
the degrees of freedom in the two models.

Recall in Figure 23.3 the covariance between gender
and Institutional Bonds was fixed to zero. We might allow
these IVs to correlate and ask, “Does adding (estimating)
this covariance improve the fit of the model?” Although
our “theory” is that these variables are uncorrelated, is
this aspect of theory supported by the data? To exam-
ine these questions, a second model is estimated in which
Institutional Bonds and gender are allowed to correlate.
The resulting x> = 10.83, df = 3. In the original model
the Satorra-Bentler ¥> = 21.64, df = 4. The x> differ-
ence test (or likelihood ratio test for maximum likelihood)
is evaluated with df's equal to the difference between the
models, df =4 — 3 =1, p < .05. Had the data been
normally distributed the chi-squares could have simply
been subtracted. However, due to the non-normality, the
Satorra-Bentler scaled chi-square was employed. When
using the S-B chi-square an adjustment to the chi-square
difference test is needed (Satorra & Bentler, 2001). After
applying the adjustment, S — B jifrerence NV = 4,282, df
= 1) = 14.06, p < .01 and we concluded that model is
significantly improved with the addition of this covari-
ance. Although the theory specifies independence between

gender and Institutional Bonds, the data support the notion
that, indeed, these variables are correlated. Note: In the
absence of strong theory to the contrary, it is probably a
good idea to always allow the independent measured vari-
ables and factors to correlate. When a DV is repeatedly
measured such as in a longitudinal study, it may also be a
good idea to correlate its associated residual errors.

There is a disadvantage to the ¥ difference test. Two
models need to be estimated to get the x> difference value,
and estimating two models for each parameter is time
consuming with large models and/or a slow computer.

Lagrange Multiplier Test (LM). The LM test also com-
pares nested models but requires estimation of only one
model. The LM test asks if the model would be improved
if one or more of the parameters in the model that are cur-
rently fixed are estimated. Or, equivalently, What param-
eters should be added to the model to improve the fit?

The LM test applied to the example indicates that if we
add a covariance between gender and Institutional Bonds,
the expected drop in 2 value is 13.67. This is one path,
so the ¥ value of 13.67 is evaluated with 1 df. The p level
of this difference is p < .01, implying that keeping the
covariance at zero is not appropriate in the population.
If the decision is made to add the path, the model is
reestimated. When the path is added, the actual ¥> drop
is slightly larger, 14.06, but yields the same result.

The LM test can be examined either univariately or
multivariately. There is a danger in examining only the
results of univariate LM tests because overlapping vari-
ance between parameter estimates may make several
parameters appear as if their addition would significantly
improve the model. All significant parameters are candi-
dates for inclusion by the results of univariate LM tests,
but the multivariate LM test identifies the single parameter
that would lead to the largest drop in model x> and cal-
culates the expected change in 2. After this variance is
removed, the next parameter that accounts for the largest
drop in model y? is assessed, similarly. After a few can-
didates for parameter additions are identified, it is best to
add these parameters to the model and repeat the process
with a new LM test, if necessary.

Wald test. The LM test asks which parameters, if any,
should be added to a model, but the Wald test asks
which, if any, could be deleted. Are there any parameters
that are currently being estimated that could, instead, be
fixed to zero? Or, equivalently, which parameters are not
necessary in the model? The Wald test is analogous to
backward deletion of variables in stepwise regression,
where one seeks a nonsignificant change in R? when
variables are left out.
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When the Wald test is applied to the example, the only
candidate for deletion is the path predicting Acceptance of
Risky Behavior from gender. If this parameter is dropped,
the %2 value increases by 2.384, a nonsignificant change
(p = .123). The model is not significantly degraded by
deletion of this parameter. However, because this was a
key hypothesized path, the path is kept. Notice that unlike
the LM test, nonsignificance is desired when using the
Wald test. This illustrates an important point. Both the LM
and Wald tests are based on statistical, not substantive,
criteria. If there is conflict between these two criteria,
substantive criteria are more important.

Some caveats and hints on model modification. Because
both the LM test and Wald test are stepwise procedures,
Type I error rates are inflated but there are, as yet, no
available adjustments as in ANOVA. A simple approach
is to use a conservative probability value (say, p < .01) for
adding parameters with the LM test. Cross validation with
another sample is also highly recommended if modifica-
tions are made. If numerous modifications are made and
new data are not available for cross-validation, compute
the correlation between the estimated parameters from the
original, hypothesized, model and the estimated parame-
ters from the final model using only parameters common
to both models. If this correlation is high (>.90), rela-
tionships within the model have been retained despite the
modifications.

Unfortunately, the order that parameters are freed or
estimated can affect the significance of the remaining
parameters. MacCallum (1986) suggests adding all neces-
sary parameters before deleting unnecessary parameters.
In other words, do the LM test before the Wald test.

A more subtle limitation is that tests leading to model
modification examine overall changes in %2, not changes
in individual parameter estimates. Large changes in 2
are sometimes associated with small changes in param-
eter estimates. A missing parameter may be statistically
needed but the estimated coefficient may have an uninter-
pretable sign. If this happens, it may be best not to add
the parameter, although the unexpected result may help
to pinpoint problems with one’s theory. Finally, if the
hypothesized model is wrong, tests of model modifica-
tion, by themselves, may be insufficient to reveal the true
model. In fact, the “trueness” of any model is never tested
directly, although cross validation does add evidence that
the model is correct. Like other statistics, these tests must
be used thoughtfully.

If model modifications are done in hopes of developing
a good-fitting model, the fewer modifications the better,
especially if a cross-validation sample is not available.
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If the LM test and Wald tests are used to test specific
hypotheses, the hypothesis will dictate the number of
necessary tests.

MULTIPLE GROUP MODELS

The example shown in this chapter uses data from a
single sample. It is also possible to estimate and compare
models that come from two or more samples, called
multiple group models (Joreskog, 1971; Sorbom, 1974).
The general null hypothesis tested in multiple group
models is that the data from each group are from the
same population. For example, if data are drawn from a
sample of boys and a sample for girls for the Acceptance
of Risky Behavior model, the general null hypothesis
tested is that the two groups are drawn from the same
population. If such a restrictive model was acceptable,
a single model and model reproduced covariance matrix
would approximate the two sample covariance matrices
for girls and boys. Typically, identical models do not quite
fit, and some differences between models must be allowed.

The analysis begins by developing good-fitting models
in separate analyses for each group. The models are then
tested in one run with none of the parameters across models
constrained to be equal. This unconstrained multiple-group
model serves as the baseline against which to judge more
restricted models. Following baseline model estimation,
progressively more stringent constraints are specified by
constraining various parameters across all groups. When
parameters are constrained they are forced to be equal to
one another. In EQS, an LM test is available to evaluate
whether the constraint is acceptable or needs to be rejected.
The same result can be obtained by a chi-square difference
test. The goal is to not degrade the models by constrain-
ing parameters across the groups; therefore, you want a
nonsignificant ¥*. If a significant difference in %2 is found
between the models at any stage, the LM test can be exam-
ined to locate the specific parameters that are different in
the groups. Such parameters should remain estimated sep-
arately in each group, that is, the specific across group
parameter constraints are released.

Hypotheses are tested in a specific order. The first
step is usually to constrain the factor loadings (regression
coefficients) between factors and their indices to equality
across groups. This step tests the hypothesis that the fac-
tor structure is the same in the different groups. If these
constraints are reasonable, the x 2 difference test between
the restricted model and the baseline model will be non-
significant for both groups. If the difference between the
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restricted and nonrestricted models is significant, we need
not throw in the towel immediately; rather results of the
LM test can be examined and some equality constraints
across the groups can be released. Naturally, the more
parameters that differ across groups, the less alike the
groups are. Consult Byrne, Shavelson, and Muthén (1989)
for a technical discussion of issues concerning partial mea-
surement invariance.

If equality of the factor structure is established, the sec-
ond step is to ask if the factor variances and covariances
are equal. If these constraints are feasible, the third step
examines equality of the factor regression coefficients.
If all of these constraints are reasonable, the last step
is to examine the equality of residual variances across
groups, an extremely stringent hypothesis not often tested.
If all the regression coefficients, variances, and covari-
ances are the same across groups, it is concluded that the
two samples arise from the same population. An example
of multiple-group modeling of program evaluation that
utilizes a Solomon Four Group design can be found in
Ullman, Stein, and Dukes (2000).

A completely different type of multiple-group model is
called a multilevel model. In this type of modeling anal-
ysis, separate models are developed for different levels
of a nested hierarchy. For example, researchers might be
interested in evaluating an intervention given to several
classrooms of students. In these models the dependent
variable is measured at the level of the person and pre-
dictor variables are included at the individual level and/or
at higher levels, say, the classroom. Of particular inter-
est in these models are tests of variability in slopes and
intercepts across groups. When there is variability, it is
possible to test interesting hypotheses about the moder-
ating effects of level-two variables (say, class size) on
level-one relationships (math achievement as a function
of gender). An example of a multilevel latent variable
model is Stein, Nyamathi, Ullman, and Bentler (2007).
Stein et al. examined the effect of marriage (a level-two)
variable on risky behaviors (level-one, individual-level
behavior) in homeless adults.

Incorporating a mean and covariance structure. Model-
ing means in addition to variances and covariances requires
no modification of the Bentler-Weeks model. Instead a
constant, a vector of 1s (labeled V999 in EQS) is included
in the model as an independent variable. As a constant, this
independent “variable” has no variance and no covariances
with other variables in the model. Regressing a variable
(either latent or measured) on this constant yields an inter-
cept parameter. The model-reproduced mean of a variable
is equal to the sum of the direct and indirect effects for that

variable. Therefore if a variable is predicted only from the
constant, the intercept is equal to the mean; otherwise, the
mean is a function of path coefficients. The inclusion of
intercepts allows for tests of latent mean differences across
groups and across time. An example of tests of latent
means in the context of a Solomon Four Group design
evaluating D.A.R.E can be found in Ullman, Stein, and
Dukes (2000). Another type of model that incorporates a
mean structure is a latent growth curve model. These are
outside the scope of this chapter but the interested reader
may want to read Biesanz, Deeb-Sossa, Papadakis, Bollen,
and Curran (2004), Curran (2000), Curran, Obeidat, and
Losardo (2010), Duncan, Duncan, Strycker, Li, and Alpert
(1999), Khoo and Muthén, (2000), McArdle and Epstein
(1987), and Mehta and West (2000).

A GUIDE TO SOME RECENT LITERATURE

SEM continues to be an ever-expanding field, both in terms
of methodology and in terms of applications (Hershberger,
2003). The growth of SEM has mirrored an increase in
methodological sophistication of a variety of fields; see
Jaffe and Bentler (2009) for the example of drug abuse.
SEM research in specific fields can easily be found through
search sites such as Bing or Google. Compact overviews
of the field are given in books that provide generic insight
into SEM concepts and practices, such as those of Byrne
(2006), Kline (2010), and Mulaik (2009), and in a very
different domain, Grace (2006). Bollen, Bauer, Christ,
and Edwards (2010) provide a general overview. Lee
(2007), Yuan and Bentler (2007¢), and Hayashi, Bentler,
and Yuan (2008) provide statistical overviews. General
but technical formulations that handle a wide variety
of modeling situations can be found in Bartholomew,
Knott, and Moustaki (2011) and Skrondal and Rabe-
Hesketh (2011). In order to provide a guide to some recent
literature on specific topics, and to alert the reader to
issues and developments that might become relevant to
their own research, this section provides a selective guide
to a number of recent methodological publications. We
devote a few paragraphs to a half dozen general topics,
followed by literature referrals on another dozen topics
listed alphabetically.

Conceptions of latent variables. 1t is clear from our
introduction that the vast majority of structural equation
models use unmeasured constructs or latent variables.
The best conceptual overview of different approaches to
defining latent variables is given by Bollen (2002). We
cannot review all these viewpoints here, but to give a
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flavor, one approach involves the use of true scores of
classical test theory. For practical SEM the main concep-
tual disagreement on latent variables over the last several
decades has been in terms of the direction of the arrows
in a path diagram and their equation and model testing
consequences. On the one hand is the approach empha-
sized in this review that equates latent variables with
common factors. Common factors generate variation in
and explain the correlations among the dependent vari-
ables that they predict; for example, first-order factors
explain correlations of observed variables while second-
order factors explain the correlations among first-order
factors. If observed variables are not correlated, there can
be no factor underlying them. Recently this 100-year-
old tradition of measurement (see Cudeck & MacCallum,
2007) has also been called “reflective” measurement. In
factor analysis, the arrows in a path diagram go from
the latent to the observed variables. When included in a
SEM, along with unmeasured residuals (unique or spe-
cific factors), the result is a latent variable model because
the dimensionality of the space of independent variables
is larger than that of the observed variables (Bentler,
1982).

In contrast to this position is the viewpoint that, in
many circumstances, the model should be specified dif-
ferently with the arrows going from the observed to the
latent variables; that is, the observed variables are meant
to create, and create meaning for, the latent variables:
“The indicators determine the latent variable” (Bollen &
Lennox, 1991, p. 306). These latent variables presumably
are not common or unique factors. They are sometimes
called formative factors, and their indicator variables, for-
mative or causal indicators. Although formative indicators
also have a long history in partial least squares (PLS;
see further on), they were introduced into psychology by
Bollen and Lennox (1991) and MacCallum and Browne
(1993).

The reality is that formative latent variables cannot
be identified without somehow requiring the presence of
ordinary common factors. In fact, they actually derive
their meaning from those factors. Some background and
details on this issue, as well as a resolution on how
formative factors can be created as ordinary factors and
indeed be used in SEM is given in Treiblmaier, Bentler,
and Mair (2011). A previous lively discussion is given
by Bagozzi (2007), Bollen (2007), and Howell, Breivik,
and Wilcox (2007a, 2007b). Additional recent references
are Bollen and Davis (2009a, 2009b), Franke, Preacher,
and Rigdon (2008), and Hardin, Chang, and Fuller
(2011).
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Exploratory Factor Analysis

As just noted, latent variables are just the factors of
exploratory and confirmatory factor analysis (EFA, CFA).
At the preliminary stages of research, EFA is typically
an essential methodology to help reduce a variable set,
to determine the key dimensions of interest, and to pro-
vide evidence on the quality of potential indicators of
factors. Preacher and MacCallum (2003) and Costello and
Osborne (2005) provide short useful guides on such issues
as number of factors and choice of rotation method; a
comprehensive overview of both EFA and CFA is given
by Mulaik (2010). For technical analysis of alternative
factor models such as image factor analysis that seem
to have fallen out of favor, see Hayashi and Bentler
(2000). A typical controversy revolves around whether
principal component analysis can be used to substitute for
factor analysis. According to Bentler and Kano (1990)
the answer is no, because to do so adequately would
require the use of far more measured variables than typi-
cally can be accommodated in SEM. That is, factors and
components become equivalent only if the number of vari-
ables that indicate a given factor becomes large. A new
approach to the mathematical relation between factor anal-
ysis and component analysis in any given model—not
only as the number of indicators gets large—is given in
Bentler and de Leeuw (2011), who also provide a new
factor analysis estimation methodology.

Extracting too many factors can be a serious problem
(Hayashi, Bentler, & Yuan, 2007). If factors are weak
in CFA, and surely equally so in EFA, least squares
may be a better option than maximum likelihood (ML)
(Ximénez, 2009). The usual problems of missing or non-
normal data, or existence of outliers, affects not only SEM
but also EFA (Yuan, Marshall, & Bentler, 2002). Recent
studies of alternative rotation criteria are given in Sass and
Schmitt (2010) and Schmitt and Sass (2011). Inspired by
item response theory, Reise, Moore, and Haviland (2010)
propose that the bifactor model, a model with one large
general factor and several group factors, may provide
a more satisfactory structure than existing alternatives
in situations where a general dimension makes sense.
Jennrich and Bentler (2011) provide a new rotation method
for EFA to help find bifactor solutions. EFA is being
incorporated into EQS (Bentler, 2008).

Confirmatory factor analysis. As we discussed earlier,
CFA is a fundamental component of SEM. Indeed CFA
often is the model to use to verify the appropriateness of a
measurement model prior to being concerned with regres-
sions among the latent variables. Good basic sources on
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CFA are Brown (2006) and Harrington (2009). Some tech-
nical issues relating to factor loadings and standard errors
are discussed in Yuan, Cheng, and Zhang (2010). Yuan and
Chan (2008) discuss how to handle near-singular covari-
ance matrices. A good discussion of reporting practices is
given in Jackson, Gillaspy, and Purc-Stephenson (2009).
Confirmatory factor analysis in multiple groups with
restrictions across groups is one of the main methods
for evaluating measurement invariance, a key issue in
assuring that instruments are used fairly and are not biased
against certain groups. Bauer (2005a) points out that use
of the usual CFA indicators that are generated linearly
from factors, when the relation is really nonlinear, can
be a serious problem. The equality of factor loadings
across groups is a widely known to be a key requirement
for invariance, but Wicherts and Dolan (2010) show that
equality of intercepts is also critical. The most thorough
and modern overview of measurement invariance in a
variety of model and data types is given by Millsap (2011).

Exploratory SEM

Although CFA methods integrated into SEM allow some
model modification to correct gross misspecifications in
the measurement model for the latent variables, develop-
ments in SEM across the past four decades have been
based on the assumption that the factor structure of the
variables is largely known. Indeed, the limitations on
number of variables built into current SEM methodology
preclude using all the dozens or even hundreds of vari-
ables that may exist in a survey or testing context. As a
result, some preliminary use of EFA, CFA, and possibly
creating composite parcel variables (Little, Cunningham,
Shahar, & Widaman, 2002; Yuan, Bentler, & Kano, 1997)
to reduce an initial variable set to a manageable one
is essential. Thus, by the time a structural model for a
selected set of variables and factors becomes relevant to
SEM, the measurement model is largely understood. Such
a measurement model is usually a cluster-structure model
that does not encourage more than one factor to influence
any given observed variable.

A different viewpoint is given by Asparouhov and
Muthén (2009). Assuming that any large variable set
already has been reduced to the key ones for use in SEM,
they propose that the measurement model ought to be
developed at the same time as the complete SEM. Their
exploratory SEM (ESEM) replaces the typical CFA mea-
surement model with an EFA model, but allows latent
regressions. The factors that define the latent variables
are determined during the EFA with rotations and are

subsequently entered into the regressions among factors.
As a consequence, the measurement model is rarely a
simple cluster structure and correlations between factors
and/or latent regression effects are lower. Marsh et al.
(2009) illustrate this approach in data on student teach-
ing, suggesting that a simple cluster structure is not an
appropriate measurement model and that ESEM allows the
full factorial complexity to appear. Similarly, Marsh et al.
(2010) apply this approach to the NEO five-factor inven-
tory and report a better fit as compared to CFA with fewer
correlated factors; see also Rosellini and Brown (2011).

SEM With Binary, Ordinal,
and Continuous Variables

Real datasets are likely to contain a mixture of response
formats for variables, including dichotomous (yes/no, etc.)
responses, ordinal categorical or polytomous (Likert-type
etc.), and continuous variables. At the present time, the
polychoric/polyserial methodology (e.g., Lee, Poon, &
Bentler, 1995) remains one of the best ways to deal with
such varied response formats. In this approach, the cat-
egorical responses are viewed as emanating from cuts
on an underlying normally distributed continuum with a
joint bivariate normality assumed to be underlying the
joint categorical contingency table. Even in item response
theory, historically a unidimensional but recently also
a multidimensional measurement model for categorical
variables (e.g., de Ayala, 2009; Reckase, 2009; Wu &
Bentler, 2011), there is growing recognition that limited
information methods may provide more accurate param-
eter estimates and model evaluation, and provide more
power, except at extremely huge sample sizes (e.g., Joe &
Maydeu-Olivares, 2010; Maydeu-Olivares & Joe, 2005).
Although modeling all possible response patterns remains
an important goal, and spectacular computing improve-
ments to achieve this are being made (see Item Factor
Analysis earlier), the approach remains unlikely to be suc-
cessful in the SEM field where data from only a few
hundred subjects may be available but there could be
thousands upon thousands of possible response patterns
to model. The data are just too sparse.

The important question thus is how well this method-
ology performs and how to assure that it is appropri-
ately applied. The evidence indicates that polychorics
perform very well under a variety of estimation methods
(Forero, Maydeu-Olivares, & Gallardo-Pujol, 2009; Yang-
Wallentin, Joreskog, & Luo, 2010), although robust stan-
dard errors need to be used. Polychorics have been shown
to provide more accurate estimates of a model structure
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when compared to Pearson correlations (Holgado-Tello,
Chacén-Moscoso, Barbero-Garcia, & Vila-Abad, 2010).
Although the assumptions of polychoric correlations are
strong, they can be evaluated if desired (Maydeu-Olivares,
Garcia-Forero, Gallardo-Pujol, &Renom, 2009). Further-
more, Flora and Curran (2004) find that the methodology
was fairly robust to violation of distributional assump-
tions. See also Bollen and Maydeu-Olivares (2007).
Alternatives also exist, but they are not well stud-
ied. Liu (2007) and Liu and Bentler (2009) developed an
approach based on a pairwise likelihood that maximizes
an objective function based on the product of bivariate
probabilities to estimate thresholds as well as polychoric
and polyserial correlations simultaneously. The asymp-
totic distribution of the maximum pairwise likelihood esti-
mators is used to develop a methodology for SEM models.
Although it has not been developed for SEM, it is pos-
sible that an approach that corrects ordinary correlations
based on binary and ordinal data for the coarseness of the
response categories (i.e., to minimize the consequences
of reducing a continuous variable to one with a few cat-
egories) (see Aguinis, Pierce, & Culpepper, 2009) could
be developed to produce a useful SEM methodology.
One of the persistent problems with these types of
methodologies is that the correlation matrices computed
from pairwise information, as is typical with polychorics,
may not represent the correlations among real-valued
variables; that is, the matrix may have zero or nega-
tive eigenvalues or be so badly conditioned that model
estimation breaks down. For example, Timmerman and
Lorenzo-Seva (2011) report, “The convergence problems
of the polychoric approach prevent its general applica-
tion to empirical data” (p. 218). However, two different
approaches were recently developed that can deal with
this problem. Bentler and Yuan (2011) developed a way
to scale indefinite matrices to assure that the resulting
matrix is positive definite. Even better, Yuan, Wu, and
Bentler (2011) developed a method for using a ridge cor-
rection during estimation with appropriate adjustments to
assure that the resulting statistics are correct. The latter
two approaches are being incorporated into EQS.
Missing data. Although missing data may be planned as
part of design (Graham, Taylor, Olchowski, & Cumsille,
2006), unexpected missing data is inevitable in real data
and hence SEM cannot escape dealing with it (Allison,
2003; Enders, 2010; Little & Rubin, 2002; Schafer & Gra-
ham, 2002). Peugh and Enders (2004) report that listwise
deletion or pairwise present computations are used almost
universally. Omitting any subjects that show any missing
data can reduce the sample size to the point of instability
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of estimates and tests, not to speak of bias that often will
result. If sample size is not an issue, listwise deletion
is acceptable if the missing data mechanism is missing
completely at random (MCAR), meaning roughly that the
missingness does not depend on either observed or missing
data. Tests for MCAR are given by Little (1988) and Kim
and Bentler (2002) and further developed for non-normal
data by Jamshidian and Jalal (2010) and incorporated into
EQS. Although less efficient, pairwise present methods are
now also statistically justified (Savalei & Bentler, 2005)
and available in EQS.

However, even if MCAR is rejected, data may be
missing at random (MAR), meaning roughly that miss-
ingness may depend on observed data. Then case-wise
or direct ML, computed in EQS via Jamshidian and
Bentler (1999), provides an optimal solution for normal
data as well as a consistent solution for non-normal data
(Yuan & Bentler, 2010a) with robust statistics from Yuan
and Bentler (2000a). The Satorra-Bentler (1994) adjusted
(mean/variance corrected) statistic performs best under a
variety of conditions including small sample sizes and is to
be recommended (Savalei, 2010; Yuan & Bentler 2010b).
Although the direct ML approach is in principle the best
possible, and performs well in practice (Gold, Bentler, &
Kim, 2003), the new two-stage ML method (Savalei &
Bentler, 2009) is probably better in small samples (see
also Cai, 2008; Yuan & Lu, 2008). In the first stage, an
unstructured covariance matrix is computed; then the SEM
is fit to that matrix using appropriate statistical corrections
including for non-normality. An important advantage of
this approach is that auxiliary variables can be incorporated
into the first stage to reduce bias and variance. Unlike the
approach of Graham (2003), they are not used in the SEM
of interest that is estimated in the second stage. A techni-
cal development of ML under distributional violation with
missing data is given by Yuan (2009b). Multiple imputa-
tion (MI) is sometimes recommended. It is no doubt a fine
method when the data are normal. However, Yuan, Wal-
lentin, and Bentler (2011) compared MI to ML on bias and
efficiency of parameter estimates and standard error esti-
mates under non-normality, and found that MI parameter
estimates are less efficient and have more biases than those
of ML. All of the ML and robust ML methods mentioned
here are in EQS. An adapted model-based bootstrap may
work well (Savalei & Yuan, 2009).

Research is only beginning on how to handle missing-
not-at-random data mechanisms (MNAR). Yuan (2009b)
shows how to identify variables that might be responsible
for this. Enders (2011) discusses the growth curve context.
Kano and Takai (2011) allow the missing-data mechanism
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to depend on the latent variables without any need to
specify its functional form, and propose a new estima-
tion method based on multi-sample analysis. Surprisingly,
complete-case analysis can produce consistent estimators
for some important parameters in the model. Song and Lee
(2007) developed a Bayesian approach to nonignorable
missing data, while Cai, Song, and Lee (2008) provided
a more general approach that also handles ordinal as well
as continuous data. See also Jamshidian, Yuan, and Le
(in press).

Other Important Topics

Case-robust and distribution-robust methods. Statistics in
SEM that hold under distributional violations now have
a long history (Bentler & Dijkstra, 1985; Browne, 1984;
Satorra & Bentler, 1994). Problems of inference in SEM
that result from skew and kurtosis are becoming known
(e.g., Yuan, Bentler, & Zhang, 2005), and corrections have
made it into SEM programs. However, “robust” meth-
ods that correct for skew and kurtosis are based on the
assumption that the distributions are smooth even if they
are not normal. They accept the sample covariance matrix
as an appropriate matrix to be modeled. An alternative
viewpoint is that outliers or influential cases may make
the covariance matrix badly behaved and lead to anoma-
lous estimates (e.g., Bollen, 1987; Yuan & Bentler, 2001).
The idea that subjects or cases need to be differentially
weighted to better estimate the population covariance of
the majority of cases was proposed quite early (Huba &
Harlow, 1987). It is still largely ignored, even though Yuan
and colleagues have worked out various justified statisti-
cal approaches for SEM (Yuan & Bentler, 1998a, 1998b,
2000b; Yuan, Bentler, & Chan, 2004; Yuan, Chan, &
Bentler, 2000). Reviews are provided by Yuan and Bentler
(2007b) and Yuan and Zhong (2008). Classical data on
smoking and cancer, reanalyzed by case-robust SEM,
illustrate one approach (Bentler, Satorra, & Yuan, 2009).

Correlation structures. Over the past 100 years, many
interesting psychological theories have been phrased in
terms of correlation coefficients (standardized covari-
ances) and quantities derived from them, not in terms of
covariances. For example, in a typical application, CFA is
concerned with the correlational structure of variables, and
variances are not really important. Because a statistical
theory based on the distribution of correlations was not so
easy, the main statistical rationale for SEM over the past
40 years has been based on the asymptotic distribution of
covariances. Hence the typical name covariance structure
analysis. However, the statistical theory now exists for the

correct analysis of correlations. See Bentler (2007a) and
Bentler and Savalei (2010), or the EQS program.

Diagnostics. The field is still struggling with indices
for the evaluation of model adequacy as well as diagnos-
tics for possible problems within an otherwise acceptable
model. Overall model test statistics remain important, and
attempts to improve them continue (Lin & Bentler, 2010).
The relative roles of test statistics versus fit indices is dis-
cussed in Yuan (2005), Barrett (2007) with various replies
(e.g., Bentler, 2007b; Steiger, 2007), and Saris, Satorra,
and van der Veld (2009). Among many studies, Sharma,
Mukherjee, Kumar, and Dillon (2005) and Chen, Cur-
ran, Bollen, Kirby, and Paxton (2008) provide evidence
and caution on the use of standard cutoffs for fit indices.
Hancock and Mueller (2011), McDonald (2010), O’Boyle
and Williams (2011), and Williams and O’Boyle (2011)
discuss the importance of evaluating fit of measurement
versus structural models. Various useful model diagnos-
tics are provided by Yuan, Kouros, and Kelley (2008) and
Yuan and Hayashi (2011).

Growth curve models. SEM structures that evaluate the
means as well as measurement and regression relations
have become an important part of structural modeling.
A specialized data setup is that of repeated measurement
of the same individuals on a given variable across time,
where one is interested in a specialized mean structure
resulting from the trends across time of individuals on
this variable: Some cases may be increasing in level of a
trait, others may be staying even, and still others declin-
ing. Although the individual trends are of interest, it is
the summary statistics such as the mean starting point
and the variance around that point, or the mean increment
across time and its variance, that can actually be estimated.
Luckily, when several sets of such variables are evalu-
ated, along with precursor and consequent variables, quite
complicated latent curve models can be motivated and ana-
lyzed meaningfully. Short overviews are given by Bentler
(2005) and T. Duncan and Duncan (2009), while good texts
are Bollen and Curran (2006) and Duncan, Duncan, and
Stryker (2006). Interesting modeling issues include: com-
bining model types (Bollen & Curran, 2004), discover-
ing misspecification (Wu & West, 2010), ordinal indica-
tors (Mehta, Neale, & Flay, 2004), power (Hertzog, van
Oertzen, Ghisletta, & Linderberger, 2008), multilevel and
multiple-group analyses (Hung, 2010), structured models of
change (Blozis, 2004), and residual structures (Grimm &
Widaman, 2010). A few examples are Bentler, Newcomb,
and Zimmerman (2002), Benyamini, Ein-Dor, Ginzburg,
and Solomon (2009), Byrne, Lam, and Fielding (2008),
and Rudolph, Troop-Gordon, Hessel, and Schmidt (2011).
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Interactions and nonlinear effects. In this chapter we
emphasize the Bentler-Weeks model. Like all basic SEM
approaches, its equations are linear specifications. Unfortu-
nately, chi-square tests in standard SEM may not be able to
detect violations of linearity (Mooijaart & Satorra, 2009).
Non-normal distributions in variables that are indicators
of dependent factors can provide a clue that nonlinear
effects may be needed. Methods to allow latent variable
interactions and nonlinear relations have been expanding
rapidly since Kenny and Judd (1984). Recent examples
include Bauer (2005b), Coenders, Batista-Foguet, and
Saris (2008), Cudeck, Harring, and du Toit (2009), Klein
and Muthén (2007), Lee, Song, and Tang (2007), Marsh,
Wen, and Hau (2004), and Wall and Amemiya (2003).
Mooijaart and Bentler (2010) developed an approach that
includes use of third-order moments. This method seems to
be the only one that is insensitive to the standard assump-
tion that the factors involved in nonlinear relations are
normally distributed (Mooijaart & Satorra, 2011). Mooi-
jaart and Satorra (in press) show how to optimally select
the necessary moments. This method is becoming available
in EQS.

Item factor analysis. Conceptually, the factor analysis
of responses to individual items that make up larger inven-
tories is just a branch of EFA or CFA depending on the
goal and the method. However, factor analysis of indi-
vidual items usually implies analysis of dichotomous or
ordinal responses for which a special set of methodologies
has been developing that make modern full information
ML methods possible in a reasonable amount of comput-
ing time. These developments are described in the review
of Wirth and Edwards (2007), and especially in the more
recent approaches of An and Bentler (2011a, 2011b), Cai
(2010a, 2010b, 2010c), and Edwards (2010). An impor-
tant application is to the bifactor model in multiple groups
(Cai, Yang, & Hansen, 2011) that allows evaluating vari-
able means and variances across groups.

Mediation. Traditional regression emphasizes direct
effects of predictor variables on their dependent variables.
SEM, of course, has widely expanded the ability to eval-
uate not only the existence of such effects, but potentially
their mechanism of action via intermediary variables.
Hence models with mediational paths such as X — Y —
Z have exploded in SEM. The most complete overview is
given by MacKinnon (2008). Some other overviews and
discussions of theoretical, practical, and technical issues
are MacKinnon et al. (2007), Fairchild and MacKinnon
(2009), MacKinnon and Fairchild (2009), Zu and Yuan
(2010), Preacher and Kelley (2011), Macho and Leder-
mann (2011), and Wang and Zhang (2011). However, the
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SEM approach to mediation has come under criticism,
e.g., for its reliance on linear equations (Imai, Keele, &
Tingley, 2010).

Mixture models. Latent class models for categorical
variables have always been an attractive methodology.
They remain important with the extension to latent tran-
sition analysis that allows for modeling stage-sequential
change (Collins & Lanza, 2009). But to SEM researchers,
models that attempt to disaggregate a sample with contin-
uous observed variables into subsamples or latent classes
that may require different SEM structures is especially
interesting. Muthén (1989) was influential in noting that
aggregate models may distort paths and effects that may
be occurring in subgroups (classes) and proposing the
need to disaggregate. This is done with finite mixture
SEM. Multiple-group models are specified, one for as
many groups as needed, even though the groups are
unknown and have to be discovered as part of the analy-
sis. The basic idea is that individuals may come from one
or more latent classes and that non-normal distributions
may arise from mixing of only a few normal distributions.

Ilustrative early papers are Yung (1997) and Muthén
and Shedden (1999). Developments and uses have grown
rapidly in the last decade. The most important subsets of
models are factor mixture models (e.g., Lubke & Muthén,
2005; Lubke & Neale, 2008) and growth mixture models
(e.g., Grimm & Ram, 2009; Wu, Witkiewitz, McMahon, &
Dodge, 2010). An overview of approaches and applications
is given in Hancock and Samuelsen (2008) and Lubke
(2010). Overextraction of number of classes, local min-
ima, and other technical problems occur (Bauer, 2007;
Bauer & Curran, 2003; Hipp & Bauer, 2006; Nylund,
Asparouhov, & Muthén, 2007; Tueller, Drotar, & Lubke,
2011; Tueller & Lubke, 2010). New approaches include
multilevel mixture regression (Muthén & Asparouhov,
2009a), fitting multiple conventional SEM models (Yuan &
Bentler, 2010c), and allowing covariates for mixed binary
and continuous responses (An & Bentler, 201 1¢c; Muthén &
Asparouhov, 2009b).

Model comparison. It is often important to compare the
fit of two nested models. This process occurs even when
only one model is fit, since fit indices like the compara-
tive fit index explicitly compare the current model to the
model of uncorrelated variables. As noted by Widaman
and Thompson (2003), for resulting fit indices to be mean-
ingful, the models have to be nested, that is, one model
must be obtainable from the other by adding restrictions.
It is not always obvious whether two models are nested.
Bentler and Satorra (2010) provide a simple NET (nest-
ing and equivalence) procedure to evaluate nesting. Their
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method also can answer the important question of whether
two models, for example, X - Y - Zand X < Y, < Z,
might be equivalent (they are). Equivalent models fit iden-
tically and cannot be distinguished statistically, but their
interpretations may be quite different.

Most nested model comparisons are done with chi-
square difference tests. Yuan and Bentler (2004a) discuss
the performance of this test when the base model is
misspecified. When robust statistics such as the Satorra-
Bentler (1994) SB-scaled test are used, this requires a
somewhat involved hand computation (Satorra & Bentler,
2001) and can result in a negative SB chi-square value.
Satorra and Bentler (2010) show how to modify the SB
difference computations to avoid negative chi-squares;
EQS is automating these computations. Bryant and Satorra
(in press) show that different programs compute slightly
different robust quantities, and hence require tweaks to the
basic methodology. MacCallum, Browne, and Cai (2006)
propose a method based on RMSEAs to compare and
compute power for evaluating small differences between
two models. Li and Bentler (2011a) show that their
procedure can be improved by a judicious use of a single
RMSEA value for these model differences.

Model misspecification. Model evaluation remains a
critical issue, both statistically and with fit indices as
noted above. From both points of view, everything ever
written about model evaluation could be cited here, but
we emphasize only a few additional recent publications.
Yuan, Marshall, and Bentler (2003) trace the effects
of misspecification on parameter estimates. Saris et al.,
(2009) propose using modification indices (LM test) and
expected parameter change to judge misspecifications.
Kim (2005) relates fit indices and power, MacCallum,
Lee, and Browne (2010) discuss the role of isopower in
power analysis, and von Oertzen (2010) discusses how
study design can be improved without changing power.
Culpepper and Aguinis (2011) discuss analysis of covari-
ance with covariates measured with error, and Yuan and
Bentler (2006a) discuss power in latent versus mani-
fest mean structure models. The bootstrap is also useful
(Yuan & Hayashi, 2006; Yuan, Hayashi, & Yanagihara,
2007; Savalei & Yuan, 2009).

The noncentral chi-square distribution and the associ-
ated noncentrality parameter provide key information for
power analysis, confidence intervals in RMSEA, and so
on. Curran, Bollen, Paxton, Kirby, and Chen (2002) find
empirically that this is acceptable with small misspecifica-
tions; Olsson, Foss, and Breivik (2004) agree, but also find
that the noncentral chi-square distribution may be inappro-
priate. Yuan (2008) and Yuan, Hayashi, and Bentler (2007)

propose that when model errors are more than minor, the
normal distribution may be more appropriate as a ref-
erence distribution. See also Shapiro (2009). Chun and
Shapiro (2009) marshal simulation evidence to disagree.
Raykov (2005) suggests use of a bias-corrected estima-
tor of noncentrality, while Herzog and Boomsma (2009)
propose that a correction due to Swain can improve esti-
mation in small samples.

Multilevel models. Data often has a hierarchical, or
multilevel, structure so that standard assumptions of inde-
pendence of subjects break down. For example, students
are nested within schools, and many schools exist. In such
cases, hierarchical linear regression models (HLM) and
multilevel latent variable models (MLM) analyze variation
into within Level-1 units (student) and between Level-2
units (schools). Additional levels may also exist (repeated
measures within individuals; schools in districts). Some
HLM models can be estimated as standard SEM mod-
els (Bauer, 2003). Recent overviews include de Leeuw
and Meijer (2008), Hox (2010), Hox and Roberts (2011),
and Snijders and Bosker (2011). The HLM approach is
not SEM, so we concentrate on recent advances in MLM
developments. In MLM, as in multiple groups, two or
more model matrices are required and the models for
these may be identical, similar, or completely unrelated
depending on theory.

As in ordinary SEM, there are some lucky
circumstances—hard to count on in practice—where
MLM statistics are robust to violation of normality
assumptions as sample size gets very large (Yuan &
Bentler, 2005, 2006b). It is usually sample size at the
highest level that is critical to acceptable performance
of MLM statistics. Normal theory maximum likelihood
is now the default estimation method (Bentler et al.,
2011; Liang & Bentler, 2004). More generally, robust
statistics have to be used with non-normal distributions.
These are provided by Yuan and Bentler (2002a, 2003,
2004b). Bentler and Liang (2008) related MLM and linear
mixed effect models, permitting SEM statistics to become
relevant to the latter. Yuan and Bentler (2007c) propose
fitting multiple single-level models, making the models
similar to standard SEM. Culpepper (2009) discusses a
multilevel approach to profile analysis for binary data.
Grilli and Rampichini (2007) discuss multilevel models
for ordinal variables. Rabe-Hesketh, Skrondal, and Pickles
(2004) present a generalized linear latent and mixed model
framework with a response model and a structural model
for the latent variables that allows continuous, ordered
categorical, and count responses and a wide range of
latent variable structures.
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FPartial least squares. As in the case of formative
measurement, PLS allows estimation of latent factors from
observed variables; that is, proxys for the true latent
variables are used in the model. However, a consequence
is that as of now, “in general, not all parameters will be
estimated consistently” (Dijkstra, 2010, p. 37). This means
that while the PLS procedure can always be implemented,
and may perform quite well in practice (e.g., Reinartz,
Haenlein, & Henseler, 2009), even today the properties
of the solution remain unknown. An alternative approach
was developed by Skrondal and Laake (2001) based on
factor score estimates, but it is limited to three groups of
factors and allows no higher-order factors. Hoshino and
Bentler (2011) developed an extension to Skrondal and
Laake’s methodology.

Reliability. Internal consistency reliability is estimated
almost universally by coefficient alpha. This is not always
the best idea, because SEM-based methods lead to superior
estimates (Sijtsma, 2009). A review of old and new coeffi-
cients from the SEM viewpoint is given by Bentler (2009).
The greatest lower bound (GLB) to reliability does not
assume a specific SEM model, simply a factor model with
an unspecified number of factors. Li and Bentler (2011b)
propose a bias reduction method that improves estimation
of the GLB. For any given SEM model, the coefficient
defined by Bentler (2007c) yields the maximal reliabil-
ity of a unit-weighted sum. Both of these are computed
in EQS. Revelle and Zinbarg (2009) recommend a coef-
ficient based on an SEM model with a general factor. To
measure unidimensionality, ten Berge and Socan (2004)
propose use of the proportion of common variance due to
a single factor. Raykov has worked extensively on relia-
bility. Illustrative articles on this topic are on reliability for
multilevel models (Raykov & Penev, 2010) and for binary
measures (Raykov, Dimitrov, & Asparouhov, 2010), on
the relation between maximal reliability and maximal
validity (Penev & Raykov, 2006), and how to compute
generalizability coefficients using SEM (Raykov & Mar-
coulides, 2006). Statistical issues related to some reliability
coefficients are included in Maydeu-Olivares, Coffman,
and Hartmann (2007), Maydeu-Olivares, Coffman, Garcia-
Forero, and Gallardo-Pujol (2010), Shapiro and ten Berge
(2000), and Yuan and Bentler (2002b).

Simulation. Chun and Shapiro (2010) develop a new
numerical procedure that can construct covariance matri-
ces with the property that, for a given SEM and a dis-
crepancy function, the corresponding minimizer of the
discrepancy function has a specified value. Their method
achieves a wider range of covariance matrices than the
method of Cudeck and Browne (1992). Headrick (2010)
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develops power method polynomials and other transfor-
mations to non-normality of variables while maintaining
correlation structures. Mair, Satorra, and Bentler (2011)
describe a procedure based on multivariate copulas for
simulating multivariate non-normal data that satisfies a
specified covariance matrix that can be based on a general
SEM model. This method provides a new way to gener-
ate data for Monte Carlo studies. Mair, Wu, and Bentler
(2010) provide an interface between the statistical pack-
age R and EQS.
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