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Abstract

Adolescence is a time period associated with marked brain maturation that coincides

with an enhanced risk for onset of psychiatric disorder. White matter tract mye-

lination, a process that continues to unfold throughout adolescence, is reported to be

abnormal in several psychiatric disorders. Here, we ask whether psychiatric vulnera-

bility is linked to aberrant developmental myelination trajectories. We assessed a

marker of myelin maturation, using magnetisation transfer (MT) imaging, in 10 major

white matter tracts. We then investigated its relationship to the expression of a gen-

eral psychopathology “p-factor” in a longitudinal analysis of 293 healthy participants

between the ages of 14 and 24. We observed significant longitudinal MT increase

across the full age spectrum in anterior thalamic radiation, hippocampal cingulum,

dorsal cingulum and superior longitudinal fasciculus. MT increase in the inferior

fronto-occipital fasciculus, inferior longitudinal fasciculus and uncinate fasciculus was

pronounced in younger participants but levelled off during the transition into young

adulthood. Crucially, longitudinal MT increase in dorsal cingulum and uncinate fascic-

ulus decelerated as a function of mean p-factor scores over the study period. This

suggests that an increased expression of psychopathology is closely linked to lower

rates of myelin maturation in selective brain tracts over time. Impaired myelin growth

in limbic association fibres may serve as a neural marker for emerging mental illness

during the course of adolescence and early adulthood.
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1 | INTRODUCTION

Abnormal neural connectivity due to structural changes in connecting

white matter pathways is implicated in a wide range of psychiatric dis-

orders including schizophrenia (Klauser et al., 2017; Kubicki et al.,

2007), autism (Karahano�glu et al., 2018), depression (Tham, San

Woon, Sum, Lee, & Sim, 2011), bipolar disorder (Nortje, Stein, Radua,

Mataix-Cols, & Horn, 2013), obsessive–compulsive disorder (Brennan,

Rauch, Jensen, & Pope Jr, 2013) and attention-deficit hyperactivity

disorder (Nagel et al., 2011). As a key determinant of white matter

integrity, myelin changes, in particular, are thought likely to contribute

significantly to a range of psychiatric symptoms. Myelin underpins the

efficiency and speed of neuronal signal conduction, enabling rapid

communication between disparate brain regions and efficient
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functional integration during cognitive processing. White matter

changes linked to myelin are associated with cognitive function both

in health (Lu et al., 2011; Mabbott, Noseworthy, Bouffet, Laughlin, &

Rockel, 2006; Nagy, Westerberg, & Klingberg, 2004) and pathology

(Vanes et al., 2019; Vanes, Mouchlianitis, Wood, & Shergill, 2018).

Individual differences in white matter myelination may thus be a

general risk factor for or an outcome of psychiatric disorders

(Fields, 2008).

Psychiatric vulnerability has recently been described within the

framework of a general psychopathology factor (or “p” factor), pro-

posed to reflect a general latent behavioural risk for common psychi-

atric disorders (Caspi et al., 2014; Lahey et al., 2012). The success of

the p-factor in capturing common and shared variance across psychi-

atric disorders (Krueger & Eaton, 2015) has contributed to a shift of

mental health research away from categorical towards more dimen-

sional approaches. The p-factor has been characterised in childhood

(Martel et al., 2017) and early adolescence (Carragher et al., 2016;

Patalay et al., 2015) through to early adulthood (Laceulle,

Vollebergh, & Ormel, 2015; St Clair et al., 2017). It is reported as rela-

tively stable throughout development (Murray, Eisner, & Ribeaud,

2016), capturing familial risk of psychopathology (Martel et al., 2017),

and is thought to be subject to genetic regulation (Brikell et al., 2018;

Neumann et al., 2016; Selzam, Coleman, Caspi, Moffitt, & Plomin,

2018). Importantly, it is widely accepted that psychiatric symptoms

(including those seen in psychosis, depression or anxiety) can occur in

the population at large and therefore be manifest patterns of behav-

ioural phenotypes spanning both healthy and clinical populations. Indi-

vidual variation entails that transdiagnostic and extended phenotypes

will be found in community cohorts with shared environmental or

familiar features noted in clinical populations (van Os & Reininghaus,

2016). As such, studying behavioural characteristics that exemplify

psychopathology in healthy samples can elucidate putative mecha-

nisms of subclinical mental health symptom patterns that are phenom-

enologically and temporally continuous with actual clinical symptom

expression. In healthy individuals, the neural substrate of the p-factor

appears to encompass a distributed network of brain structures. Volu-

metric studies implicate grey matter reductions in prefrontal (Snyder,

Hankin, Sandman, Head, & Davis, 2017), striatal (Gong et al., 2019),

occipital and cerebellar regions (Moberget et al., 2019; Romer et al.,

2018) in association with greater expression of p. In terms of white

matter integrity, commonly indexed using diffusion imaging metrics,

reduced integrity in callosal (Riem et al., 2019) and pontine-cerebellar

(Romer et al., 2018) pathways are also linked to the expression of a p-

factor. However, positive associations with corpus callosum integrity

have also been observed (Hinton et al., 2019), hinting that neu-

rodiversity rather than a simple deficit accompanies variation in p.

Varied findings are also reported in studies of resting-state functional

connectivity, with a general psychopathology factor relating to

reduced fronto-temporal connectivity (Alnæs et al., 2018) as well as

delayed maturation of the default mode network (DMN) (Sato et al.,

2016), but also with increased connectivity of visual cortex with the

DMN and frontoparietal networks (Elliott, Romer, Knodt, & Hariri,

2018). The considerable heterogeneity of these findings, likely

reflecting methodological differences, suggests that multiple core net-

works may be involved in conferring diversity and associated vulnera-

bility. Structural connectivity within and between these networks,

contingent on healthy development of white matter tracts, is of par-

ticular interest in this respect.

A significant shortcoming of most neuroimaging studies is the lack

of a longitudinal design needed to fully address the relationship

between brain maturation and p-factor variation, particularly with a

focus on developmental myelin-sensitive measures. Myelination

unfolds throughout adolescence and into early adulthood, coinciding

with the very period of enhanced risk for a range of psychiatric disor-

ders. This conjunction warrants investigation of a link between myelin

maturation and differences in p-factor scores indexing individual

variation in psychiatric risk (Baumann & Pham-Dinh, 2001; Tau &

Peterson, 2010). Longitudinal studies offer unique advantages over

cross-sectional designs, particularly greater consistency and sensitivity

to the rate of change during development (Barrick, Charlton, Clark, &

Markus, 2010). In addition, longitudinal designs allow for an investiga-

tion of ongoing changes within specific developmental periods at an

individual level (as opposed to differences between subjects or

cohorts). Studying brain regional rates of myelin development is par-

ticularly important as it avoids inferring maturational status from

mean myelin levels, but instead focusses on how the trajectory of

growth is unfolding (Simmonds, Hallquist, Asato, & Luna, 2014). For

example, we recently showed in otherwise healthy adolescents that a

reduction in an expected longitudinal increase of a cortical myelin

marker is associated with domain-specific traits of compulsivity and

impulsivity (Ziegler et al., 2019). Aberrant myelin maturation has also

been linked to clinical diagnosis, for example, adolescent-onset schizo-

phrenia (Douaud et al., 2009). Therefore, leveraging longitudinal

designs to study the rate of change in white matter myelin with

respect to a general liability for mental illnesses can offer novel

insights into transdiagnostic connectivity markers of mental disorders.

We used an accelerated longitudinal design to study myelin matu-

ration in the major white matter tracts of adolescents and young

adults using magnetisation transfer (MT) saturation imaging. This

marker shows high sensitivity to myelin and related macromolecules

(Schmierer, Scaravilli, Altmann, Barker, & Miller, 2004; Turati et al.,

2015; Weiskopf, Mohammadi, Lutti, & Callaghan, 2015), bestowing it

with greater specificity over complementary markers, such as diffu-

sion metrics. Intracortical and juxtacortical myelin maturation has pre-

viously been described in this cohort (Romero-Garcia et al., 2018;

Whitaker et al., 2016; Ziegler, Hauser, et al., 2019). Here, we focus on

tract-specific MT in order to characterise if longer-range structural

connectivity changes confer explicit risk to reported mental health

problems.

We examined all tracts included within an openly available

tractography atlas (Hua et al., 2008), based on the consideration that

these have been shown to be sufficiently reproducible to be used as a

tool for quantitative analyses (Wakana et al., 2007). These include

association tracts (inferior fronto-occipital fasciculus [IFOF], inferior

longitudinal fasciculus (ILF), superior longitudinal fasciculus (SLF),

uncinate fasciculus (UF), dorsal and hippocampal cingulum), projection
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tracts (anterior thalamic radiation [ATR], corticospinal tract [CST]), as

well as anterior and posterior aspects of the commissural corpus cal-

losum (forceps minor and forceps major). To assess individual differ-

ences in p-factor scores we followed St Clair et al. (2017), estimating a

latent general p-factor (also termed “distress”) from a comprehensive

set of self-report questionnaires. We modelled longitudinal and cross-

sectional age effects on the distribution of myelin in pre-defined

tracts, as well as the relationship between the p-factor and myelin

maturation in these target regions. Based on previous research on

white matter development (Lebel & Beaulieu, 2011; Lebel, Treit, &

Beaulieu, 2017; Simmonds et al., 2014), we expected to see a trajec-

tory of myelin maturational increase in the majority of target tracts

throughout adolescence and a reduced myelin growth in subjects

experiencing higher levels of reported distress.

2 | MATERIALS AND METHODS

2.1 | Sample

A total of 318 healthy adolescents and young adults between the ages

of 14 and 24, recruited in London and Cambridgeshire, underwent

MRI scanning as part of the *Neuroscience in Psychiatry Network

project. Subjects were selectively recruited from a larger question-

naire cohort (N > 2,400) to ensure sex, age and ethnicity distribution

representative of the community. Exclusion criteria were any self-

reported neurological, developmental or psychiatric disorders. Sub-

jects were scanned at baseline and a subset returned for a follow-up

scan on average 1.3 (SD = 0.3) years later. After quality control, data

from 293 subjects were included in further analyses. The study was

approved by the Cambridge Central Research Ethics Committee

(12/EE/0250) and all participants (and their legal guardian where par-

ticipants were under 16 years old) gave written informed consent.

2.2 | P-factor

We utilised p-factor or “general symptomatology” scores at baseline

and follow-up, as previously validated and published by St Clair et al.

(2017), where full modelling details and fit indices can be found. In

brief, exploratory and confirmatory factor analyses yielded an optimal

model with a bifactor structure, including a general p-factor and five

specific factors. The general factor explained 92% of the reliable vari-

ance (Rodriguez, Reise, & Haviland, 2016) in total scores and as such,

the specific factors explained little beyond p. Due to this and our a

priori interest in general psychopathology, the specific factors were

not the focus of further analysis here. Analyses were conducted at

item level on items derived from self-report measures of anxiety

(Revised Children's Manifest Anxiety Scale), depression (Moods and

Feelings Questionnaire), psychotic-spectrum symptoms (Schizotypal

Personality Questionnaire), obsessionality (Revised Leyton Obses-

sional Inventory), antisocial behaviour (Antisocial Behaviour Question-

naire, self-esteem (Rosenberg Self-Esteem Questionnaire) and

well-being (Warwick-Edinburgh Mental Well-Being Scale) (Goodyer

et al., 2011; Kiddle et al., 2017). Here, we assess p-factor scores in the

MRI subsample; however, importantly, bifactor analysis was con-

ducted on the full questionnaire cohort (N = 2,228) (St Clair et al.,

2017), resulting in more reliable and representative factor scores. As a

result, the MRI sample demonstrated satisfactory stability of scores

over time, with a correlation of R = .65 (p < .001) between baseline

and follow-up p-factor scores.

2.3 | MRI acquisition and processing

Subjects were scanned on identical Siemens Magnetom TIM Trio whole-

body 3T MRI scanners in Cambridge and London as per the multi-

parameter mapping (MPM) protocol, which has previously undergone

multi-centre validation and is described in detail elsewhere (Weiskopf

et al., 2013; Weiskopf et al., 2015). Acquisition parameters were identi-

cal across sites. Whole-brain multi-echo FLASH MT weighted contrast

were acquired at 1 mm isotropic resolution (TR: 23.7, α = 6�, 176 sagittal

slices, FOV = 256 × 240 mm2, matrix = 256 × 240 × 176). Semi-

quantitative MT saturation maps were derived using biophysical models

as described in more detail in Helms, Dathe, Kallenberg, and Dechent

(2008) and Tabelow et al. (2019) using the hMRI toolbox (www.hmri.

info) for SPM (Wellcome Centre for Human Neuroimaging, London, UK,

http://www.fil.ion.ucl.ac.uk/spm). These MT maps represent the per-

centage of signal loss as a result of an off-resonance MT pre-pulse,

which preferentially saturates the macro-molecular bound water pool,

known to be a sensitive measure for myelin content (Schmierer et al.,

2004; Turati et al., 2015). In contrast to the commonly used MT ratio,

this semi-quantitative MT saturation metric explicitly removes bias

induced by spatially varying T1 relaxation times and flip angle

inhomogeneities.

MT maps were longitudinally pre-processed using a custom pipe-

line, as described in detail in Ziegler, Hauser, et al. (2019). Briefly, each

subject's baseline and follow-up scans were first registered to each

other using symmetric diffeomorphic registration (Ashburner &

Ridgway, 2013), resulting in a midpoint image for each subject. Mid-

point images were subsequently segmented using the Computational

Anatomy Toolbox (CAT, http://www.neuro.uni-jena.de/cat/). The

maps were then normalised to MNI space using SPM's geodesic

shooting and tissue-weighted smoothing with a Gaussian kernel of

3 mm full width at half maximum was applied. Tissue-weighted

smoothing (Draganski et al., 2011) was chosen so as to preserve MT

values within grey/white matter tissue classes and thereby account

for small discrepancies in spatial normalisation, ensuring that obtained

MT values within the tracts would not be contaminated by non-white

matter tissue values.

Rigorous quality assessment included manual inspection for motion

artefacts by an expert (G.Z.) and the use of statistical covariance-based

inhomogeneity measures (as implemented in the CAT toolbox), which

detects subjects with extreme overall deviation of quantitative values.

In addition, as a proxy of motion during the scan, the SD parameter of

R2* exponential decay residuals (SDR2*) in white matter areas was

computed. This has been shown to provide a reliable measure of

motion across scans in the context of MPMs (Castella et al., 2018;

VANES ET AL. 829
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Ziegler, Hauser, et al., 2019). Scans with SDR2* values above 2.5 SDs

from the sample mean were removed from all further analyses.

The final data set included in our analyses consisted of 283 base-

line scans and 203 follow-up scans (from a total of 293 subjects).

2.4 | Region of interest histogram extraction

We defined 10 tract ROIs based on the JHU White Matter

Tractography Atlas (Hua et al., 2008) corresponding to the ATR, dorsal

cingulum bundle, hippocampal cingulum bundle, corticospinal tract

(CST), forceps major, forceps minor, inferior fronto-occipital fasciculus

(IFOF), ILF, SLF and UF. Probability maps for each of these tracts were

thresholded at 20% to minimise partial voluming. Separate unilateral

masks for each hemisphere were created for all ROIs except for for-

ceps major and forceps minor, which remained bilateral. For each MT

map, we summed the number of voxels within each ROI for 100 uni-

form bins within a range of MT values from 0.8 to 2.2. We then

normalised each histogram with respect to its area and extracted the

histogram mean (first moment), variance (second moment) and skew-

ness (third moment). Therefore, each ROI yielded three metrics for

every subject at each available time point within each hemisphere

(with the exception of forceps major and minor, which were not split

by hemisphere).

2.5 | Statistical analysis

2.5.1 | Modelling tract-wise MT changes

ROI histogram mean, as an index of average level of myelination

within a tract, was the primary dependent variable in the following

analyses. We performed model comparisons for each ROI in order

to identify tracts showing significant developmental MT increase in

our cohort. First, to disentangle longitudinal from cross-sectional

age effects, we deconstructed age into separate within-subject (lon-

gitudinal) and between-subject (cross-sectional) components (as

recommended in Neuhaus & Kalbfleisch, 1998). Specifically, cross-

sectional age for a subject i was calculated as �agei− �age (where �agei

is subject i's mean age across visits and �age is the mean age across the

whole sample), thus representing a subject's mean centred age with

respect to the sample. Longitudinal age for subject i at time point

j was calculated as ageij− �agei, thus representing the within-subject

centred deviation from the subject's own mean age. This distinction

allows an assessment of true within-subject change (taking into

account the temporal distance between two scans) independent of

cross-sectional age effects.

For each ROI, histogram means were modelled using linear mixed-

effects models (Pinheiro, Bates, DebRoy, Sarkar, & R Development

Core Team, 2013), allowing for a random intercept for each subject.

Covariates included in all models were sex, ethnicity, total intracranial

volume, subject motion, acquisition site, and, where applicable, tract

laterality (left vs. right). A null model (M0) including these covariates

alone was fit as a first step. Next, a model (M1) was fit including these

covariates as well as the main effects of longitudinal and cross-

sectional age. Finally, an additional interaction between longitudinal

and cross-sectional age was added (M2), which assesses whether lon-

gitudinal change in MT differs across the sample's age range. Model

comparisons using likelihood ratio F tests were conducted to identify

the winning model (M0, M1 or M2) for each ROI. Lastly, we tested

individually whether the winning model could be improved with the

additions of sex × longitudinal age, sex × cross-sectional age, laterality

× longitudinal age or laterality × cross-sectional age interaction terms,

thereby assessing whether age effects differed for the two hemi-

spheres or the two sexes. All model comparisons were Bonferroni

corrected for the set of 10 regions, resulting in a significance thresh-

old of p < .05/10 = .005 used throughout.

2.5.2 | Assessing associations between general
psychopathology and MT changes

Next, we tested for associative effects of p-factor scores on changes

in MT within tracts identified in the previous step as showing a signifi-

cant longitudinal increase in our sample. To achieve this, we dec-

onstructed the p-factor into longitudinal and cross-sectional

components in an identical fashion to age. Thus, cross-sectional p-

factor scores represent a subject's average level of p across both

visits, relative to the whole sample average. Longitudinal p-factor

scores represent the (within-subject centred) level of p for each time

point. This approach enables us to disentangle the effects of overall

differences in p-factor scores on MT from the effects of change in

p on MT.

We compared the winning model from the previous step to an

identical model including additional main effects of longitudinal p-fac-

tor, cross-sectional p-factor, as well as an interaction between cross-

sectional p-factor and longitudinal age (assessing whether longitudinal

MT change differs across levels of general psychopathology). If the

previously winning model included a significant interaction term

between longitudinal and cross-sectional age (i.e., M2), this was also

compared to an additional model including the three-way interaction

with cross-sectional p-factor (and lower order two-way interactions).

Finally, we tested whether the winning model would be improved

with the addition of an interaction between sex and the highest order

term involving p-factor (e.g., sex × cross-sectional p-factor × longitudi-

nal age).

Although our main hypothesis pertained to an association

between p-factor scores and MT in tracts still undergoing maturation,

for completeness we also assessed effects of p on MT in tracts that

did not show any longitudinal MT change overall. This was to ensure

that we would not miss overall growth effects due to large amounts

of variance induced by inter-individual differences in psychopathol-

ogy. For this reason, a significance threshold of p < .005, correcting

for all ROIs, was retained for these analyses.

2.5.3 | Developmental effects on histogram shape

To fully characterise the potential effects of age on the distribution of

MT values in each tract, we conducted identical model comparisons

830 VANES ET AL.
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for histogram variance and skewness. These exploratory analyses

reflect the possibility that myelin maturation is not only characterised

by a mean increase in myelin but also, for example, increased tissue

homogeneity (i.e., narrowing of the distribution of MT values) and/or

a change in the symmetry of MT distributions within tracts.

3 | RESULTS

Mean histograms for each ROI (normalised with respect to the area

for illustrative purposes) at baseline by laterality and cross-sectional

age bin are presented in Supplementary Figure 1.

3.1 | Identifying tracts showing developmental
increase of myelin-sensitive MT

The null model (M0) was not significantly improved by the addition of

age in the CST (χ2 = 1.31, p = .520), forceps major (χ2 = 2.64, p = .267)

and forceps minor (χ2 = 5.20, p = .074), suggesting there were no (lon-

gitudinal or cross-sectional) age effects on mean MT in these tracts.

The additive model (M1) including main effects of longitudinal and

cross-sectional age was the winning model for the ATR (χ2 = 36.34,

p < .0001), dorsal cingulum (χ2 = 32.63, p < .0001), hippocampal cin-

gulum (χ2 = 37.83, p < .0001) and SLF (χ2 = 23.25, p < .0001). All four

ROIs showed a significant positive effect of longitudinal age (all

ps < .0001), indicating a within-subject increase of MT in these tracts

(see Figure 1). Only the hippocampal cingulum showed an additional

significant effect of cross-sectional age, indicating higher MT in older

subjects in this cohort, p = .002. A significant effect of laterality indi-

cated higher MT values in the right compared to the left hemisphere

for the ATR, dorsal cingulum, hippocampal cingulum, IFOF and ILF,

and higher MT in the left compared to right hemisphere for the SLF

and UF, all p < .001.

There was a significant negative interaction between longitudinal

age and cross-sectional age (M2) in the IFOF (χ2 = 11.40, p < .0001),

ILF (χ2 = 9.39, p = .002) and UF (χ2 = 8.66, p = .003). As seen in

Figure 2, longitudinal MT increase was strongest in youngest adoles-

cents in these tracts, whereas virtually no increase was seen in early

adulthood. IFOF and ILF showed higher MT values in the right com-

pared to the left hemisphere, whereas there were higher mean MT

values in the left compared to the right UF, all ps < .001. Neither the

rate of change of MT nor cross-sectional age effects on MT differed

significantly between the two hemispheres or between the two sexes

in any of the reported ROIs.

3.2 | Association between development of MT and
p-factor scores

We conducted additional model comparisons for tracts showing sig-

nificant MT increase (ATR, dorsal and hippocampal cingulum, SLF,

IFOF, ILF and UF) as well as tracts not showing an overall MT increase

(CST, forceps major and forceps minor). Including the p-factor in the

model improved the model significantly for dorsal cingulum

(χ2 = 20.56, p < .0001) and UF (χ2 = 13.13, p = .004). In both of these

tracts, there was a significant negative interaction between cross-

sectional p-factor and longitudinal age, indicating that longitudinal MT

change over study visits in the dorsal cingulum and UF differed as a

function of p. As seen in Figure 3, subjects showing high p-factor

scores showed the least MT increase, whereas subjects with low p-

factor scores showed the strongest MT increase in these tracts. The

models for both tracts were not improved by the addition of a three-

way interaction between cross-sectional p-factor, longitudinal age and

sex, indicating that the depicted effect did not differ between male

and female participants.

None of the models revealed significant main effects of cross-

sectional or longitudinal p-factor, indicating no direct correlation

between mean levels of p and mean level of myelination, and no corre-

lation between longitudinal change in p and longitudinal change in MT.

3.3 | Histogram variance and skewness

Histogram variance in the CST and forceps minor, as well as skewness

in the CST and ATR, were best explained by a model including longitu-

dinal and cross-sectional age effects (all χ2 > 16.08, p < .005), as seen

in Supplementary Table 1. Specifically, histogram variance in the CST

and forceps minor decreased as a function of cross-sectional age, indi-

cating a narrower distribution of MT values in older subjects in these

regions. Skewness in the ATR and CST was also negatively impacted

by cross-sectional age, suggesting that older subjects exhibit more

negatively skewed distributions compared to younger subjects. In the

CST, this tendency was also reflected in a negative effect of longitudi-

nal age on histogram skewness, p < .001. There were no significant

age by laterality interactions in any of these tracts. Furthermore, the

addition of the p-factor did not improve model fit for any of the ROIs.

Further details of ROI-specific model comparisons for histogram vari-

ance and skewness are found in Supplementary Table 1.

4 | DISCUSSION

We investigated white matter development using MT imaging in

10 pre-defined white matter tracts in healthy participants aged

14–24, assessing the relationship of myelin-sensitive MT to latent

psychopathology (“p”-factor) scores, thought to index general psychi-

atric vulnerability. Several tracts, including bilateral ATR, cingulum and

SLF showed an MT increase through adolescence into early adult-

hood. Other tracts including IFOF, ILF and UF showed longitudinal

increases that were evident in younger participants but slowed with

cross-sectional age. In addition, availing of multiple distributional

descriptors in each tract, we found that age-related MT changes in

some projection and callosal fibres were best captured by change in

variance and skewness, over and above the mean, potentially

reflecting distinct developmental microstructural processes within

these regions. In terms of associations with psychopathology, MT

increase in the dorsal cingulum and UF decelerated with higher p-

factor scores, indicating that myelin maturation in these frontal tracts
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may be slowed in individuals with higher levels of psychiatric

symptoms.

4.1 | Developmental findings

MT, likely reflecting myelin (Turati et al., 2015), increased in the

majority of white matter tracts throughout adolescence, a finding that

aligns with much existing literature on white matter development,

albeit a literature that mostly relies on diffusion imaging metrics (Bava

et al., 2010; Krogsrud et al., 2016; Lebel, Walker, Leemans, Phillips, &

Beaulieu, 2008; Schmithorst & Yuan, 2010; Simmonds et al., 2014;

Wang et al., 2012). These metrics, such as fractional anisotropy (FA),

tend to be sensitive to white matter microstructural change, but are

less specific to myelin changes per se (Beaulieu, 2002; Wheeler &

Voineskos, 2014). Recent reviews of developmental change using dif-

fusion metrics indicate a consensus in a view that there are consider-

able regional differences in both rate and timing of white matter

maturation (Lebel et al., 2017; Lebel & Deoni, 2018; Schmithorst &

Yuan, 2010; Tamnes, Roalf, Goddings, & Lebel, 2018). Our study lends

support to a literature, which suggests a protracted maturation of

frontotemporal connections, including within the cingulum and SLF

that extends well into adulthood (Lebel et al., 2008; Tamnes et al.,

F IGURE 1 Longitudinal change in mean magnetisation transfer (MT) in the anterior thalamic radiation (ATR), dorsal cingulum, hippocampal
cingulum and superior longitudinal fasciculus (SLF), by laterality. MT significantly increases with a longitudinal age
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2009). Maturation of dorsal cingulum, in particular, has been shown

to occur much later compared to other tracts (Lebel et al., 2017;

Simmonds et al., 2014). However, we did not replicate a similar pat-

tern of late maturation of the UF, which is often observed in terms

of FA (Lebel et al., 2017). Instead, in our data, the longitudinal

change in UF decelerated post-adolescence. This observation aligns

more closely with findings of earlier UF maturation in terms of

mean diffusivity (MD) compared to FA (Lebel et al., 2008; Wang

et al., 2012), indicating that MD may be more reflective of myelin

changes.

We found evidence for a deceleration in myelin change in the

IFOF and ILF, manifest as MT increase levelling off with age. This is

consistent with reports that both these tracts reach 90% of their adult

FA values before adulthood, and certainly earlier than the cingulum

bundle, which continues to undergo change up to the late 20s (Lebel

et al., 2008; Simmonds et al., 2014). Nonlinear trajectories of white

matter development have been reported in a number of large neuro-

imaging studies, with regionally specific peaks reached at variable time

points in late adolescence and early adulthood (Lebel & Deoni, 2018).

We note that nonlinear development could not be explicitly modelled

longitudinally in our analysis due to the presence of only two scan

time points (Fjell et al., 2010), though we were able to test for

nonlinear development indirectly by assessing whether longitudinal

change differed over the sampled age range.

F IGURE 3 Longitudinal change in mean magnetisation transfer (MT) as a function of p-factor (distress) in the dorsal cingulum and uncinate
fasciculus (UF), by laterality. MT increase is strongest in participants with low p-factor scores and flattens out with increasing psychopathology

F IGURE 2 Longitudinal change in mean magnetisation transfer (MT) as a function of cross-sectional age (baseline age is used for illustrative
purposes) in the inferior fronto-occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF) and uncinate fasciculus (UF), by laterality. MT
increase is strongest in the youngest participants and levels off in older participants
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We found no evidence for age-dependent myelin growth in the

forceps major and minor, compatible with previous diffusion imaging

findings that microstructural development in the anterior (genu) and

posterior (splenium) corpus callosum is mostly complete by early ado-

lescence (Lebel et al., 2008; Pohl et al., 2016; Rollins et al., 2010). Cal-

losal microstructural changes in adolescence and adulthood, if

present, are more frequently reported in the callosum body (Lebel &

Beaulieu, 2011; Rollins et al., 2010), which was not included in our

analyses. The forceps major, containing the splenium of the corpus

callosum, shows a particularly fast FA increase before the age of

13 (Mah, Geeraert, & Lebel, 2017), consistent with a posterior-to-

anterior gradient of myelin maturation in the brain.

Interestingly, we did not observe any longitudinal change in mean

MT within the CST. This is inconsistent with previous studies

suggesting that CST is one of the latest maturing tracts in terms of dif-

fusion parameters (Lebel et al., 2017). The absence of MT increase in

our sample could be due to the specific studied age range, as slopes

may temporarily flatten off consistent with the idea of a putative

interim period in some tracts during which there is no myelin growth

during adolescence (Simmonds et al., 2014). However, intriguingly, we

observed an effect of cross-sectional age on both variance and skew-

ness of MT in the CST, findings reflecting a narrowing of the MT dis-

tribution with age as well as a shift of the mass of the distribution

towards higher values. The latter was also evident longitudinally. MT

saturation imaging and diffusion parameters likely index different

aspects of white matter microstructure, with MT showing higher

specificity for myelin. It has been suggested that discrepancies in the

developmental findings from different white matter neuroimaging

techniques might be explained by a greater sensitivity of diffusion

metrics to, for example, axonal packing (Lebel & Deoni, 2018). As

such, a more protracted change in axonal packing (rather than or in

addition to myelin per se) might be more readily reflected in a change

in variance (rather than the mean) of MT values due to increased tis-

sue homogeneity. Furthermore, if myelin maturation does indeed con-

tinue for longer on average than is the case for other tracts, but

shows greater variability in the exact timing of the peak, this may be

more readily reflected in changes in skewness than in mean values.

This highlights the importance of not only cross-modal imaging and

replication but also the use of within-modality metrics that go beyond

simple averages (which also appear to be differentially sensitive to

longitudinal and cross-sectional effects).

4.2 | P-factor findings

Crucially, we found that increased expression of p-factor scores was

associated with reduced rates of MT increase, which we interpret as

slower myelination, in dorsal cingulum and UF. Both tracts constitute

core-connecting pathways of distinct limbic networks and have been

implicated in several neuropsychiatric disorders (Buckholtz & Meyer-

Lindenberg, 2012; Passamonti et al., 2012). The temporo-amygdala-

orbitofrontal network, connected through UF, is implicated in the

integration of emotion and cognition (Catani, Dell'Acqua, De

Schotten, & Reviews, 2013), and is particularly important for

processes such as flexible reward learning (Schoenbaum, Roesch,

Stalnaker, & Takahashi, 2009; Stalnaker, Franz, Singh, & Schoenbaum,

2007) and emotional memory (LaBar & Cabeza, 2006; Rauch et al.,

1996). The DMN, the medial portion of which (posterior cingulate/

precuneus to anterior cingulate/medial prefrontal cortex) is connected

through the dorsal cingulum, shows deactivation during goal-directed

tasks and is implicated in introspective and self-referential thought

(Raichle et al., 2001).

Functional and structural imaging studies point towards an

involvement of the DMN and temporo-amygdala-orbitofrontal net-

works in general psychopathology during development. In one study,

delayed maturation of functional connectivity within the DMN was

associated with childhood psychopathology (Sato et al., 2016), while

in young adults functional hyperconnectivity between visual associa-

tion cortex and DMN has been associated with higher p-factor scores

(Elliott et al., 2018). A recent cross-sectional diffusion imaging study in

over 700 healthy adolescents showed that general psychopathology,

as well as cognitive performance, was associated with frontotemporal

white matter disconnectivity at the intersection of the UF and IFOF

(Alnæs et al., 2018). Consistent with our findings, the latter suggests

that the structural integrity of frontotemporal circuits may be a trans-

diagnostic brain phenotype for psychiatric vulnerability. Our results

extend these earlier findings in two crucial ways: first, we show that

myelination may underpin this association; second, by using a longitu-

dinal design we demonstrate that—with respect to MT—it is the rate

of change that is the most relevant feature for general psychopathol-

ogy during development. Indeed, absolute MT values showed no rela-

tionship to p-factor scores in our study, underscoring intra- rather

than inter-individual maturational status as a critical factor. Impor-

tantly, our findings provide a potential neural mechanism underlying

the ability of the p-factor to predict future functioning, as found in

adolescents (Patalay et al., 2015) and adults (Lahey et al., 2012) over

periods as long as 3 years. In this framework, the persistence of prob-

lems likely reflected in the p-factor appears to be underpinned by

slowed maturation over time of white matter tracts central to cogni-

tive and emotional processing.

With respect to cortical maturation, our findings dovetail with

observations in this same data set that highlight adolescence as a key

period for consolidation of highly connected hubs in association corti-

ces, driven in large part by myelination and linked to the expression of

genes enriched for risk of schizophrenia (Whitaker et al., 2016). In

addition, aberrant myelin development in intra- and juxta-cortical

regions has been specifically linked to an expression of compulsive

and impulsive traits (Ziegler, Hauser, et al., 2019), highlighting the link

between non-normative longitudinal brain maturation trajectories and

psychiatric vulnerability in adolescence.

4.3 | Limitations and outlook

An open question remains as to whether altered myelin maturation is

an underlying cause of increased psychopathology, an adverse out-

come thereof, or a concomitant effect of other disrupted brain pro-

cesses more central to psychopathology. Myelin is known to be
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subject to substantial experience-dependent changes (Cicchetti, 2002;

Grossman et al., 2003), a notion firmly embedded in the childhood

adversity literature (Daniels et al., 2013; Ziegler et al., 2019). For

example, chronic hyperactivity of the hypothalamic–pituitary–adrenal

axis as a result of life stressors is thought to result in a slowing down

of myelin development (Sapolsky, 1992). Conversely, there is tentative

evidence that genetic dysregulation of myelin development causally

underlies specific psychiatric symptoms, particularly in schizophrenia

(Hakak et al., 2001; Nave & Ehrenreich, 2014), a finding strengthened

by animal studies that experimentally manipulate genes specifically in

oligodendrocytes (Roy et al., 2007). Therefore, the most likely account

of the association between neurodevelopment and psychopathology

may be one of bidirectional and mutually exacerbating influences

between the two (Nigg, 2016), but further neuroepidemiological stud-

ies are needed to explicitly address this hypothesis.

A further potential limitation concerns the specificity of MT satu-

ration imaging to myelin content. MT saturation is one of several MRI

metrics commonly used to index myelin, including estimations of the

myelin water fraction (MWF) (e.g., derived from multicomponent T1

and T2 relaxometry, Deoni, Rutt, Arun, Pierpaoli, & Jones, 2008),

T1w/T2w ratio, or the longitudinal relaxation rate R1. While there is

evidence for substantial correlations with histological measures of

myelin for MT (Schmierer et al., 2004), MWF (Laule et al., 2006) and

R1 (Stueber et al., 2014), imperfect correlations between these met-

rics suggest that each may be differentially sensitive to distinct

aspects of tissue microstructure (Geeraert et al., 2017; Hagiwara

et al., 2018; O'Muircheartaigh et al., 2019). Quantitative, or semi-

quantitative, MT related metrics are suggested as more robust mea-

sures of myelin compared to MWF (Dula, Gochberg, Valentine, Valen-

tine, & Does, 2010) and T1w/T2w ratio (Hagiwara et al., 2018), as

well as more specific to myelin compared to R1 and R2* (Callaghan

et al., 2014), which show additional sensitivity to iron content. How-

ever, MT measures may also be sensitive to the effects of neu-

roinflammation or oedema (Gareau, Rutt, Karlik, & Mitchell, 2000;

Stanisz, Webb, Munro, Pun, & Midha, 2004) and as such remain an

imperfect measure of myelin. Future research might usefully address

the specificity of our longitudinal findings to myelination by compar-

ing MT saturation effects with other white matter microstructure

metrics, an approach adopted in recent work in studies of late child-

hood and early adolescence, albeit reports on cross-sectional and not

longitudinal data (Geeraert, Lebel, & Lebel, 2019; Moura et al., 2016).

Since we excluded subjects with self-reported mental health diag-

noses, our sample reflects a relatively healthy population at the time

of study. This selection approach is in line with the general notion sur-

rounding the p-factor and comes with a number of advantages. First,

the p-factor as measured in healthy community cohorts is thought to

reflect “distress” that is phenomenologically continuous with clinical

expression of psychopathology (Caspi et al., 2014; St Clair et al.,

2017) and subject to identical neurodevelopmental, as well as envi-

ronmental and genetic, influences. Second, several studies in non-

clinical community samples have shown that the p-factor is predictive

of later adverse mental health and life outcomes (Laceulle, Chung,

Vollebergh, & Ormel, 2019; Lahey et al., 2012; Pettersson, Lahey,

Larsson, & Lichtenstein, 2018), suggesting that assessing p in healthy

individuals, particularly during apparently healthy development, is a

useful tool for estimating risk for distal clinical outcomes (Snyder,

Young, & Hankin, 2017). Nevertheless, we recognise that certain neu-

robiological discontinuities may also exist between healthy, subclinical

and clinical populations and that future research is necessary to test

explicitly the correspondence of neural mechanisms underlying gen-

eral psychopathology construct in healthy and clinical samples.

5 | CONCLUSIONS

In summary, we replicate and extend previous findings of protracted

white matter development throughout adolescence and early adult-

hood across the majority of large-scale white matter tracts, develop-

mental effects most likely reflecting myelin maturation. Furthermore,

our results suggest that the rate of myelination in limbic association

fibres may be a useful transdiagnostic marker for psychiatric vulnera-

bility during development. The longitudinal design of our study lends

weight to this finding. Avenues for future research include investiga-

tions into how this association might change across the lifespan

including whether it might give rise to distinct clinical phenotypes.
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