
1

Briefings in Bioinformatics, 22(6), 2021, 1–11

https://doi.org/10.1093/bib/bbab100
Case Study

Integration and interplay of machine learning
and bioinformatics approach to identify genetic
interaction related to ovarian cancer chemoresistance

Kexin Chen†, Haoming Xu†, Yiming Lei, Pietro Lio, Yuan Li,
Hongyan Guo and Mohammad Ali Moni
Corresponding authors: Mohammad Ali Moni, WHO Collaborating Centre on eHealth, UNSW Digital Health, School of Public Health and Community
Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia. Telephone: +61414701759, E-mail: m.moni@unsw.edu.au;
Yiming Lei, Block 2, Science Building, School of EECS, Peking University, Haidian District, Beijing, China. Telephone: 86-10-62751774,
E-mail: leiym@pku.edu.cn; Hongyan Guo, Department of Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, Beijing, China.
Telephone: +86-10-82267510, E-mail: bysyghy@163.com.
†Kexin Chen and Haoming Xu contributed equally to this work.

Abstract

Although chemotherapy is the first-line treatment for ovarian cancer (OCa) patients, chemoresistance (CR) decreases their
progression-free survival. This paper investigates the genetic interaction (GI) related to OCa-CR. To decrease the complexity
of establishing gene networks, individual signature genes related to OCa-CR are identified using a gradient boosting
decision tree algorithm. Additionally, the genetic interaction coefficient (GIC) is proposed to measure the correlation of two
signature genes quantitatively and explain their joint influence on OCa-CR. Gene pair that possesses high GIC is identified
as signature pair. A total of 24 signature gene pairs are selected that include 10 individual signature genes and the influence
of signature gene pairs on OCa-CR is explored. Finally, a signature gene pair-based prediction of OCa-CR is identified. The
area under curve (AUC) is a widely used performance measure for machine learning prediction. The AUC of signature gene
pair reaches 0.9658, whereas the AUC of individual signature gene-based prediction is 0.6823 only. The identified signature
gene pairs not only build an efficient GI network of OCa-CR but also provide an interesting way for OCa-CR prediction. This
improvement shows that our proposed method is a useful tool to investigate GI related to OCa-CR.
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Introduction
Ovarian cancer (OCa) is a common type of cancer that has a high
mortality rate. Chemotherapy is the first-line treatment for OCa
patients, but chemoresistance (CR) decreases their progression-
free survival (PFS). Now, it is accepted that the cancer-like
diseases are affected by individual genes, and the latter also
shows the influence on CR [1, 2]. Machine learning has been
used to identify the CR-related signature genes, which helps
the researchers to select proper therapeutics and predict drug
responses [3–5]. Recent studies reveal that cancers and CR are
usually affected by both individual genes and their interactions
[6, 7]. A reason that is often cited for the lack of success in genetic
studies of complex disease is the existence of interactions
between individual signature genes. If an individual signature
gene functions primarily through a complex mechanism that
involves multiple other genes, the effect might be missed if the
gene is examined in isolation without allowing for its potential
interactions with other genes [8, 9].

The genetic interaction (GI) indicates that the effect of one
gene is related to that of another gene that helps the researchers
to delineate the pathways, protein complexes and underlying
biological processes [10–12]. Machine learning models are widely
used to identify the relationships between features and discover
GIs [13, 14]. The previous study red[15] identified hundreds of
signature gene pairs simultaneously and used gene pair-based
machine learning model to make prediction. These interactions
are important for delineating functional relationships among
genes and their corresponding proteins [16].

This paper presents our efforts to analyze the GI related
to OCa-CR. Considering that GI network in previous research
is complicated due to its high dimension, a small number of
individual signature genes are desired. Aiming to identify the
individual signature genes, we constructed an ensemble learn-
ing model based on gradient boosting decision tree (GBDT) [17].
The GBDT is a widely used machine learning algorithm, which
obtains state-of-the-art results on many machine learning tasks,
and has been actively used in computational biology and bioin-
formatics [18, 19]. To build an efficient small-size GI network,
the genetic interaction coefficient (GIC) method is proposed to
measure the correlations among individual signature genes. In
the following, the influence of signature gene pairs on OCa-CR
is discussed. Finally, it is shown that these signature gene pairs
show satisfactory performance in predicting OCa-CR.

Table 1 presents the list of the abbreviations and their full
names used throughout the paper.

Materials and methods
Overview of analytical approach

We presented here, summarized in Figure 1, the workflow of this
research that consists of the identification of individual signa-
ture genes, identification of signature gene pairs and prediction
based on signature gene pairs.

Data preprocessing

The cancer genome atlas (TCGA) database [20] provides the
data sets of totally 35 OCa-CR and 162 OCa-CS patients. The
data set of each TCGA sample shows the expression levels of
14252 individual genes and includes PFS data (stating from initial
treatment) as well. The samples whose PFS are smaller than 9
months are classified into OCa-CR group, and those whose PFS
are higher than 15 months are classified into the OCa-CS group.

Table 1. List of abbreviations used throughout the paper

Abbreviation Full Name

OCa Ovarian cancer
CR Chemoresistance
PFS Progression-free survival
GI Genetic interaction
GBDT Gradient boosting decision tree
GIC Genetic interaction coefficient
AUC Area under curve
TCGA The cancer genome atlas
SMOTE Synthetic minority oversampling technique
CART Classification and regression tree
TP True positive
FP False positive
TN True negative
FN False negative
TG Target group
SG Standard group
GO Gene ontology

From clinical treatment perspective, the patient is considered to
be OCa-CR when the recurrence time is shorter than 6 months.
This recurrence time is counted from the ends of treatment.
However, the PFS data from TCGA are counted from the start
of the treatment and clinical treatment usually takes 6 months.
From this definition, 12 months of PFS can divide the patients
into OCa-CS and OCa-CR group. In order to avoid noise and
classification bias, we choose 9 months and 15 months to divide
OCa-CS and OCa-CR group. Genes that have expression levels of
zero are eliminated from data sets.

Data preprocessing includes data normalization and data
oversampling. In normalization of the gene expressions of each
patient, the method of Exploratory Data Analysis and Normal-
ization for Sequence data (EDASeq) is applied. EDASeq method
includes two normalization steps: a within-sample normaliza-
tion step that adjusts for gene-specific and sample-specific
effects and a between-sample normalization that corrects dis-
tributional differences between samples [21]. Besides, gene data
from TCGA usually has the problem of class imbalance, which
may affect model training and its subsequent performance [22].
To balance the OCa-CR and OCa-CS samples, OCa-CR patients are
oversampled. There are many different types of data oversam-
pling method for a typical classification problem. The most com-
mon technique is called synthetic minority oversampling tech-
nique (SMOTE) algorithm, which oversamples the minority class
by creating synthetic minority class examples [23]. Here SMOTE
algorithm is applied in the oversampling of OCa-CR samples [24].

After the data preprocessing, totally 324 samples (162 OCa-
CR samples and 162 OCa-CS samples) are finally obtained. When
dividing the data into a training set and a test set, we use hold-
out method, a widely used method in bioinformatics and gene
research [25], which randomly selects 30% of the data as test
set. Thus, the training set includes 226 samples and the test set
includes 98 samples.

GBDT modeling

Ensemble learning, includes GBDT and AdaBoost, is a widely
used methodology in genetic research. Among different ensem-
ble learning methods, GBDT possesses outstanding predicting
performance in the analysis of high dimensional gene data
[26, 27]. The GBDT is a type of ensemble model that consists of
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Machine learning and bioinformatics approach 3

Figure 1. Workflow of this research that includes the identification of individual signature genes, identification of signature gene pairs and prediction based on

signature gene pairs.

a series of decision trees. In GBDT modeling, gradient boosting
promotes the performance gradually by reducing the residual. In
each iteration, the model is refreshed to fit the negative gradient
of the loss function until it converges. The final prediction is the
summation of former model results. In GBDT modeling, classi-
fication and regression trees (CARTa) decision tree is embedded
into gradient boosting as the basic weak learner in each iteration
[28].

Training set
{
(x1, y1), . . . (xn, yn)

}
consists of n = 226 samples.

Here xi represents the gene expression level of patient i, whereas
yi indicates whether patient i belongs to OCa-CR group. F(x) refers
to the functional relationship between gene expressions and
OCa-CR. Using the training set, the goal of the algorithm is to find
out an approximation F̂(x) to the function F(x) that minimizes
the expected value of some specified loss function L(y, F(x)) and
identify individual signature genes accordingly:

F̂ = arg min
F

Ex,y [L(y, F(x))] (1)

In order to improve predicting accuracy of identified
individual signature genes, gradient boosting seeks an approx-
imation in the form of a weighted sum of weak learners
h1(x), h2(x), . . . , hM(x), i.e.

F̂ =
∑M

m=1
ρmhm(x) (2)

Here we set M = 100 to avoid over-fitting and under-fitting.
In the iteration process, GBDT solving the binary classification
problem has the form

F0(x) = 0.5 ∗ log
( ∑n

i=1 yi∑n
i=1 (1 − yi)

)
(3)

and

Fm(x) = Fm−1(x) + ρmhm(x) (4)

The ensemble model uses
{
(x1, r1m) · · · (xn, rnm)

}
to train a Weak

learner decision tree hm(x), where rim is the pseudo-residuals, i.e.

rim = −
[

∂L(yi,F(xi))
∂F(xi)

]
F(x)=Fm−1(x)

(5)

Here, the parameter ρm is selected to ensure that the gradient
of Fm(x) is the one that makes the loss function of the former
model Fm−1(x) decreases fastest, therefore ρm has the form

ρm = arg min
ρ

∑n

i=1
L(yi, Fm−1(xi) + ρhm(xi)) (6)

Then, the individual signature genes are selected according
to their contribution to the classification process of GBDT and its
weak learners. In GBDT modeling, decision tree (especially CART
tree) is regarded as weak learner hm(x), which has the form

hm(x) =
∑J

j=1
bjmI(x ∈ Rjm) (7)

where J is the number of its leaves. The tree partitions the input
space into J disjoint regions R1m, . . . , RJm and predicts a constant
value in each region. bjm is the value predicted in Rjm.

Feature importance quantifies each gene’s contribution to
the model. Thus, individual signature genes can be selected to
acquire better interpretability based on the feature importance
of GBDT modeling.

Feature importance of GBDT is calculated by the average
feature importance over all of the CART trees in the model. CART
tree uses Gini impurity criterion to split the node and create
decision tree. Based on Gini impurity, the feature importance of
variable j in tree T can be calculated as

FIj(T) =
∑L

t=1
�GiniI(vt = j) (8)
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which is the summation of the non-terminal nodes t of the tree
T, vt is the splitting variable associated with node t, and �Gini is
the corresponding decrease of Gini impurity. For a series of CART
trees {Tm} obtained through gradient boosting approach, feature
importance of variable j can be generalized by the average value
of all the trees in the sequence

FIj = 1
M

∑M

m=1
FIj(Tm) (9)

In order to improve the stability of the algorithm and avoid
the influence of randomness, the experiment is repeated 20
times. Let FIj

(k) denotes the feature importance of variable j in
kth experiment. FIj

(k) > 0 represents that variable j are used in
kth experiment, whereas FIj

(k) = 0 means that variable j does not
contribute to the model. Thus the frequency of variable j in our
experiments, fj, can be defined as

fj =
20∑

k=1

sign(FIj
(k)) (10)

where sign(·) is the sign function that has the form:

sign(x) =
{

1 x > 0
0 x = 0

(11)

The identified individual signature genes are those that make
a stable contribution to the model. This contribution is quanti-
fied by frequency fj in Equation (10). The threshold is manually
set as half of the experiment times N. In our experiments, we set
experiment times N = 20.

Analysis method

This section validates the identified individual signature genes.
In the validation using data processing indicators, the accuracy,
precision and area under curve (AUC) values are calculated. The
identified individual signature genes are also validated using
published biological literature. For properly evaluating the iden-
tified individual signature genes, we established a random forest
classifier to calculate above data processing indicators [29]. Their
definitions are listed as follows.

Accuracy = TP + TN
TP + TN + FP + FN

(12)

Precision = TP
TP + FP

(13)

Recall = TP
TP + FN

(14)

For each patient in the test set, if the prediction outcome is
CR and the actual situation is also CR, then it is called a true
positive (TP); however, if the actual situation is CS, then it is said
to be a false positive (FP). Conversely, a true negative (TN) has
occurred when both the prediction and the actual situation are
CS, and false negative (FN) is when the prediction is CS, whereas
the actual situation is CR.

The area under the Receiver Operating Characteristic (ROC)
curve is also used in the validation process [30]. ROC is created
by plotting the recall against the specificity at various threshold
settings. Thus AUC is calculated as

AUC =
∫ 1

x=0
Recall(Specificity−1(x))dx (15)

Specificity = TN
TN + FP

(16)

Genetic interaction coefficient

In machine learning, the research on feature correlation attracts
clear attentions [31]. GIC is proposed to measure the correlation
of two variables quantitatively and explain their joint influence
on the dependent variable. To calculate GIC of each gene pair,
the OCa samples are divided into two groups, target group (TG)
and standard group (SG), according to the dependent variable α.
We assume β = 1 in TG, whereas β = 0 in SG. The calculation
of GIC includes three steps: normalization, discretization and
Hadamard product. α

βai,j

∣∣
β=1

is gene j’s expression level of patient

i in TG. Firstly, α
βbi,j

∣∣
β=1

is the result after applying normalization

on α
βai,j

∣∣
β=1

, and nα is the number of samples in TG.

α
βbi,j

∣∣
β=1 =

α
βai,j

∣∣
β=1

− α
βμj

∣∣
β=0

α
βσj

∣∣
β=0

(17)

where α
βμj

∣∣
β=0

is the mean of gene j’s expression level in SG, i.e.

α
βμj

∣∣
β=0 =

∑nα

i=1
α
βai,j

∣∣
β=0

nα

(18)

where α
βσj

∣∣
β=0

is the standard deviation of gene j’s expression
level in SG, i.e.

α
βσj

∣∣
β=0 =

√√√√∑nα

i=1 ( α
βai,j

∣∣
β=0

− α
βμi,j

∣∣
β=0

)2

nα

(19)

Secondly, α
βbi,j

∣∣
β=1

is discretized into α
βci,j

∣∣
β=1

as follows:

α
βci,j

∣∣
β=1 =

⎧⎪⎨
⎪⎩

1 α
βbi,j

∣∣
β=1

> λ1

0 λ2 ≤ α
βbi,j

∣∣
β=1

≤ λ1

−1 α
βbi,j

∣∣
β=1

< λ2

(20)

For the convenience of following clarifications, here the
upper bar and lower bar of α

βbi,j

∣∣
β=1

are, respectively, denoted as
λ1 and λ2, which are determined by the data set and experiments.

Thirdly, the information degree (ID) vector of variable p and q
with regard to the dependent variable α can be defined as

α
βdp,q

∣∣
β=1 = α

βcp

∣∣
β=1 � α

βcq

∣∣
β=1 (21)

where α
βcp

∣∣
β=1

and α
βcq

∣∣
β=1

is the pth and qth column vector of
the matrix we calculate in Equation (20); � represents Hadamard
product, a binary operation that produces a n × 1 matrix where
each element is the product of elements in α

βcp

∣∣
β=1

and α
βcq

∣∣
β=1

.
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Table 2. Literature review of individual signature genes

Gene symbol Full name Reference Description

PTBP1 Polypyrimidine tract binding
protein 1

[32] The expression of PTBP1 is related to platinum-resistance in
OCa. PTBP1 plays a role in pre-mRNA splicing and in regulating
alternative splicing events.

ANXA4 Annexin A4 [33] ANXA4 is overexpressed in ovarian clear cell carcinoma and
induces CR to platinum-based drugs.

OGN Osteoglycin [34] OGN and PSAT1 are the major genes associated with cisplatin
resistance in OCa.

GNG12 G protein subunit gamma 12 [35] GNG12 is selected as chemotherapy-resistant gene of OCa.
WDR6 WD repeat domain 6 [36] WDR6 is an upregulated signature gene in OCa data set with

reduced sensitivity to platinum.
HLA-A Major histocompatibility

complex, class I, A
[37] HLA-A is recognized as a down-regulated gene that is

predominantly linked to the immune response in
chemotherapy treatment and OCa.

IDO1 Indoleamine 2,3-dioxygenase 1 [38, 39] IDO1 is positively associated with CR in paclitaxel-based
therapy in OCa. IDO1 is also involved in the immune response.

The GIC α
βGICp,q

∣∣
β=1

is defined as the percentage of non-zero

elements in ID vector α
βdp,q

∣∣
β=1

:

α
βGICp,q

∣∣
β=1 =

{
num(1)

nα
num(1) ≥ num(−1)

− num(−1)
nα

num(1) < num(−1)
(22)

where num(1) and num(−1) is the number of element that equals
to 1 and -1 in vector α

βdp,q

∣∣
β=1

.

Functional enrichment approaches

We performed functional analyses of our identified genes by
using gene ontology (GO) and cell signaling pathways to eval-
uate the biological relevance and functional enrichment. All
enrichment analyses were performed using the Enrichr https://
amp.pharm.mssm.edu/Enrichr/ software tools [40, 41]. For cell
signaling pathway analyses we used KEGG, WikiPathways, Bio-
Carta and Reactome databases. We employed the Gene Ontology
Biological Process database for gene ontological analysis [40].
For this work an adjusted P-value ≤0.05 was considered as
statistically significant for functional analyses [42].

Evaluation

To evaluate the performance of signature gene pairs, a
Support Vector Machine (SVM) classifier with linear kernel
was selected to test the performance [43]. For training data
{(x1, y1), (x2, y2), . . . (xn, yn)}, the decision function of SVM is

f (x) = sign(w∗ · x + b∗) (23)

where sign(·) represents sign function and w∗ and b∗ is the
optimal solution of this convex quadratic programming:

min
w,b,ξ

1
2

‖w‖2 + C
n∑

i=1

ξi

s.t.

{
yi(w · xi + b) ≥ 1 − ξi, i = 1, 2, . . . , n
ξi ≥ 0, i = 1, 2, . . . , n

(24)

By solving for the Lagrangian dual of the above problem, the
simplified form is obtained as

min
α

1
2

n∑
i=1

n∑
j=1

αiαjyiyj(xi · xj) −
n∑

i=1

αi

s.t.

⎧⎨
⎩

n∑
i=1

αiyi = 0

0 ≤ αi ≤ C, i = 1, 2, . . . , n

(25)

When the optimal solution α∗ = (α1
∗, α2

∗, . . . αn
∗)T is obtained,

the key parameters w∗ and b∗ can be solved as

⎧⎪⎪⎨
⎪⎪⎩

w∗ =
n∑

i=1
αi

∗yixi

b∗ = yj −
n∑

i=1
yiαi

∗(xi · xj), 0 < αi
∗ < C

(26)

Results
We applied our machine learning approach to identify GI related
to OCa-CR. For this reason, we have preprocessed the TCGA
data set. In order to reduce the complexity of the GI network,
individual signature genes are identified based on the GBDT
algorithm. In our experiments, we set experiment N = 20,
and 35 individual signature genes are identified. Figures 2 and
3 show the frequency fj of different genes in 20 experiments
and the feature importance of individual signature genes in 20
experiments, respectively. Here, 35 individual signature genes
are selected, as their frequency is higher than the threshold 10.
The individual signature genes are validated using data process-
ing indicators, and here Figure 4 presents the curves of data
processing indicators (accuracy, precision and AUC) when the
number of the individual signature genes increases gradually. It
can be noticed that when the number of signature genes is more
than 34, the data processing indicators reach the upper bound
and hardly increase. In addition, 35 individual signature genes
are enough to show a satisfactory prediction. These individual
signature genes are finally selected to establish the GI network.

The 35 individual signature genes show satisfactory perfor-
mance in the validation of data-processing indicators. Specially,
the accuracy, precision and AUC reach 0.9410, 0.9309 and 0.9677,
respectively. In addition to the above validation, we also seek
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Figure 2. The identified individual signature genes and their frequency in 20 experiments.

Figure 3. The feature importance of individual signature genes in 20 experi-

ments.

Figure 4. The accuracy, precision and AUC results when the number of individual

signature gene increases gradually.

those individual signatures genes that have previously been
reported in biological literature. We found that 7 of our 35 indi-
vidual signature genes have previously been confirmed as being
associated with OCa-CR. These 7 individual signature genes are
PTBP1, ANXA4, OGN, GNG12, WDR6, HLA-A and IDO1, and their
details are shown in Table 2. In addition to seven signature genes

Figure 5. The GI network of selected 35 individual signature genes, where the

width of connection represents GIC value and the size of the node represents

frequency fj in Equation (10).

that are supported by literature evidence, other signature genes
are newly discovered, which may lead to further enlightenment
on future research of OCa-CR.

As presented above, GIC measures the correlation among
genes. Here, GIC can be calculated for totally 595 gene pairs based
on the selected 35 individual signature genes. In Figure 5, a GI
network of individual signature genes is shown, where the width
of connection denotes the GIC value and the size of the node
represents frequency fj in Equation (10).

It can be seen that a small number of gene pairs show
significant GIC values. Here, we let α represents CR, and we also
set λ1 = 0.2 and λ2 = −0.2. We set the threshold of GIC as
0.75 to select the signature gene pairs, and totally 24 gene pairs
are identified. These signature gene pairs form a simplified GI
network, which is presented in Figure 6. Each edge represents a
signature gene pair, and GIC is the width of the edge. This net-
work is easy to understand since the number of individual sig-
nature genes is rather small and only the important GI is shown.
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Machine learning and bioinformatics approach 7

Figure 6. The GI network of 24 signature gene pairs, where the width of connec-

tion represents GIC value and the size of node represents frequency fj in Equation

(10). This network is easy to understand since the number of individual signature

genes is rather small and only the important GI is shown.

Table 3. The number of connections of each signature gene

Signature gene Number of connections

GBP1P1 7
GBP5 7
IDO1 8
HLA-A 4
HLCS 5
HSPA5 1
LAX1 7
PLPP6 3
PTBP1 3
TMEM268 3

From Figure 6, we found that each signature gene has differ-
ent number of connections with other signature genes. The
number of connections of each signature gene is quantified in
Table 3. These connections may help the researchers to delin-
eate the pathways, protein complexes and underlying biological
processes of OCa-CR. For example, the number of connections
of signature gene IDO1 is 8, which implies that IDO1 and its
gene interactions are important factors in underlying biological
mechanism.

The identified signature gene pairs are validated by informa-
tion value, where the latter is an index that measures a feature’s
influence on the target [44]. The information values of signature
gene pairs are presented in Figure 7, where different levels of
information value are presented in different colors. A feature is
considered to be predictive when its information value is larger
than 0.3. We can notice that these signature gene pairs show
satisfactory performance on information value validation.

Figure 7. The information value of selected signature gene pairs, where the high

information value represents signature gene pair’s satisfying predicting ability.

Here different levels of information value are presented in different colors.

Functional enrichment

We have performed the functional analyses of our identified
genes. In this regard we have performed signaling pathway
and GO analysis as shown in Figure 8 and 9. We found that
our identified biomarkers are strongly associated with the can-
cer immune-related pathways including proteins with altered
expression in cancer immune redescape, transcription factors
in beta–cell neogenesis and MHC1 causes antigen presentation
failure in cancer immune escape signaling pathways that are
strongly associated with cancer progression. Similarly, we found
several functional (biological) pathways that are strongly asso-
ciated with the OCa progression from the GO and functional
pathway analysis.

Discussions and conclusion
In this study, we investigated the GI related to OCa-CR. We
employed the GBDT approach to demonstrate a method for bet-
ter reducing the dimension in the gene network. Thus, 35 indi-
vidual signature genes are selected among 14252 genes. These
individual signature genes show satisfactory performance in
the validation of data-processing indicators, where the accuracy,
precision and AUC are 0.9410, 0.9309 and 0.9677, respectively.
Here we also found 7 genes, PTBP1, ANXA4, OGN, GNG12, WDR6,
HLA-A and IDO1 out of our 35 identified individual signature
genes are confirmed in previously published biological liter-
ature. Since GIC method measures the correlation to denote
association between two quantitative variables and explain two
independent variables with joint effect on the dependent vari-
able, it seems natural to choose GIC over other approaches of
identification of the signature gene pairs on OCa-CR. In our
study, totally 24 signature gene pairs with high GIC weights are
identified, and their information values are calculated as well. It
is interesting to notice that 24 signature gene pairs include 10
individual genes only. The identified signature gene pairs not
only build an efficient GI network of OCa-CR but provide an
alternative way to predict the OCa-CR as well.

We have also applied bubble heat chart to visualize the aver-
age target value across interaction between signature gene pairs.
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8 Chen et al.

Figure 8. Significant signaling pathways associated with the identified genes. A.Top significant pathways using the Bioplanet pathway database B.Top significant

pathways using the KEEG pathway database C. Top significant pathways using the REACTOM pathway database D. Top significant pathways using the WikiPathways

pathway database.
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Figure 9. Significant GO (biological process) pathways associated with the identified genes.

Figure 10 presents a positive relationship in gene pair (num1
and GBP5). If we consider gene pair as a composite feature, then
GIC helps to find out these composite features that differentiate
OCa-CR and OCa-CS patients. Figure 10 is a visualization of how
signature gene pairs affect OCa-CR [45]. The most important

insight comes from the color of the bubble, darker color repre-
sents a higher probability of CR. The size of the bubble implies
the number of samples in that class. For simplicity we use IDO1
and GBP5 to substitute α

βci,IDO1

∣∣
β=1

, α
βci,GBP5

∣∣
β=1

in Equation (20).
From Figure 10, we can notice that patient i has the highest
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Figure 10. Bubble heat map uses a warm-to-cool color spectrum, the warm color

of the bubble represents higher probability of OCa-CR. This figure visualizes the

OCa-CR distribution in gene pairs that possess positive relationship. (IDO1 and

GBP5) is taken as an example here. Patient i has the highest probability to show

CR when IDO1 = −1 and GBP5 = −1.

Figure 11. The accuracy, precision, recall and AUC results of 24 signature gene

pairs, compared to the results of 10 individual signature gene.

probability to show CR when IDO1 = −1 and GBP5 = −1.
If patient i only satisfies one condition, rather than both two
conditions, the probability of CR will decrease.

It can be noticed from the GI network in Figure 6 that 24 sig-
nature gene pairs comprise of 10 signature genes only. SVM clas-
sifier with a linear kernel is applied to compare the performance
of signature gene pairs and individual signature genes. As shown
in Figure 11, the accuracy, precision, recall and AUC of signature
gene pairs reach 0.9082, 0.8636, 0.9268 and 0.9658, respectively.
On the other hand, the accuracy, precision, recall and AUC of
10 individual signature genes are 0.6367, 0.6167, 0.6244 and
0.6823, respectively. Apparently, the predicting performance of
signature gene pairs is much better than individual signature
genes. In summary, we regard our proposed methods as a useful
tool to investigate the GI related to OCa-CR. Our method could
be useful to develop potential therapies, and patients with OCa
may expect a better genetic diagnosis in future. Moreover, using
this identified biomarker, it is possible to predict OCa patients at
the early stage and these prognostic markers could be useful at
the genetic clinics for the diagnosis.

Code Availability
All of the methods are implemented in Python. The original data
and source code is available at GitHub page: https://github.com/
Nikki0526/gene-pair-research.
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Key Points
• This work investigates the genetic interaction related

to ovarian cancer (OCa) chemoresistance (CR).
• The individual signature genes are selected using a

machine learning approach.
• The gene interaction coefficient is proposed to iden-

tify the signature gene pairs on OCa-CR and provided
a signature pair-based prediction method of OCa-CR.

• This work may lead to the discovery of possible gene
interaction related to OCa-CR.
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