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This study evaluated the sensitivity of maximum likelihood (ML)-, generalized
least squares (GLS)-, and asymptotic distribution-free (ADF)-based fit indices to
model misspecification, under conditions that varied sample size and distribution.
The effect of violating assumptions of asymptotic robustness theory also was ex-
amined. Standardized root-mean-square residual (SRMR) was the most sensitive
index to models with misspecified factor covariance(s), and Tucker-Lewis Index
(1973, TLI), Bollen’s fit index (1989; BL89), relative noncentrality index (RNT},
comparative fit index (CFI), and the ML- and GLS-based gamma hat, McDonald’s
centrality index (1989; Mc), and root-mean-square error of approximation
(RMSEA) were the most sensitive indices to models with misspecified factor
loadings. With ML and GLS methods, we recommend the use of SRMR, supple-
mented by TLI, BL89, RNI, CFI, gamma hat, Mc, or RMSEA (TLI, Mc, and
RMSEA are less preferable at small sample sizes). With the ADF method, we
recommend the use of SRMR, supplemented by TLI, BL89, RNI, or CFI. Finally,
most of the ML-based fit indices outperformed those obtained from GLS and ADF
and are preferable for evaluating model fit.

Peter M. Bentler
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This study addresses the sensilivity of various fit
indices to underparameterized model misspecifica-
tion. The issue of model misspecification has been
almost completely neglected in evalvating the ad-
equacy of fit indices used to evaluate covariance
structure models. Previous recommendations on the
adequacy of fit indices have been primarily based on
the evaluation of the effect of sample size, or the
effect of estimation method, without taking into ac-
count the sensitivity of an index to model misspeci-
fication. In other words, virtually all studies of fit
indices have concentrated their efforts on the ad-
equacy of fit indices under the modeling null hypoth-
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esis, that is, when the model is correct. Although such
an approach is useful, as noted by Maiti and Mukher-
jee (1991), it misses the main practical point for the
use of fit indices, namely, the ability to discriminate
well-fitting from badly fitting models. Of course, it is
certainly legitimate to ask that fit indices reliably
reach their maxima when the model is correct, for
example, under variations of sample size, but it seems
much more vital to assure that a fit index is sensitive
to misspecification of the model, so that it can be used
to determine whether a model is incorrect. Maiti and
Mukherjee term this characteristic sensitivity. Thus, a
good index should approach its maximum under cor-
rect specification but also degrade substantially under
misspecification. As far as we can tell, essentially no
studies have inquired to what extent this basic require-
ment is met by the many indices that have been pro-
posed across the years. Maiti and Mukherjee have
provided an analysis of only a few indices under very
restricted modeling conditions.

In this study, the sensitivity of four types of fit
indices, derived from maximum-likelihood (ML),
generalized least squares (GLS), and asymptotic dis-
tribution-free (ADF) estimators, to various types of
underparameterized model misspecification is exam-
ined. Note that in an underparameterized model, one
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or more parameters whose population values are non-
zero are fixed to zero. In addition, we evaluate the
adequacy of these four types of fit indices under con-
ditions such as violation of underlying assumptions of
multivariate normality and asymptotic robustness
theory, providing evidence regarding the efficacy of
the often stated idea that a model with a fit index
greater than (or, in some cases, less than) a conven-
tional cutoff value should be aceeptable (e.g., Bentler
& Bonett, 1980). Also, for the first time, we evaluated
several new and supposedly superior indices (i.e.,
gamma hat, McDonald’s [1989] centrality index
[Mc], and root-mean-square error of approximation
[RMSEA]) that have been recommended with little or
no empirical support. We present here a nontechnical
summary of the methods and the results of our study.
Readers wishing a more detailed report of this study
should consult cur complete technical report (Hu &
Bentler, 1997).

Historical Background

Structural equation modeling has become a stan-
dard tool in psychology for investigating the plausi-
bility of theoretical models that might explain the
interrelationships among a set of variables. In these
applications, the assessment of goodness-of-fit and
the estimation of parameters of the hypothesized mod-
el(s) are the primary goals. Issues related to the esti-
mation of parameters have been discussed elsewhere
(e.g., Bollen, 1689; Browne & Arminger, 1995; Chou
& Bentler, 1993); our discussion here focuses on
those issues that are critical to the assessment of good-
ness-of-fit of the hypothesized model(s).

The most popular ways of evaluating model fit are
those that involve the chi-square goodness-of-fit sta-
tistic and the so-called fit indices that have been of-
fered to supplement the chi-square test. The asymp-
totic chi-square test statistic was originally developed
to serve as a criterion for model evaluation or selec-
tion. In its basic form, a large value of the chi-square
statistic, relative to its degrees of freedom, is evidence
that the model is not a very good description of the
data, whereas a smail chi-square is evidence that the
mode] is a good one for the data. Unfortunately, as
roted by many researchers, this simple version of the
chi-square test may not be a reliable guide to model
adequacy. The actual size of a test statistic depends
not only on model adequacy but also on which one
among several chi-square tests actually is used, as
well as other conceptually unrelated technical condi-

tions, such as sample size being too small or violation
of an assumption underlying the test, for example,
multivariate normality of variables, in the case of the
standard chi-square test (e.g., Bentler & Dudgeon,
1996; Chou, Bentler, & Satorra, 1991; Curran, West,
& Finch, 1996; Hu, Bentler, & Kano, 1992; Muthen &
Kaplan, 1992; West, Finch, & Curran, 1995; Yuan &
Bentler, 1997). Thus, a significant gocdness-of-fit
chi-square value may be a reflection of model mis-
specification, power of the test, or violation of some
technical assumptions underlying the estimation
method. More important, it has been commonly rec-
ognized that models are best regarded as approxima-
tions of reality, and hence, using chi-square to test the
hypothesis that the population covariance matrix
matches the model-implied covariance matrix, 2 =
3(0), is too strong to be realistic (e.g., de Leeuw,
1983; Joreskog, 1978). Thus the standard chi-square
test may not be a good enough guide to model ad-
equacy.

As a consequence, alternative measures of fit,
namely, so-called fit indices, were developed and rec-
ommended as plausible additional measures of model
fit (e.g., Akaike, 1987; Bentler, 1990; Bentler & Bon-
ett, 1980; Bollen, 1986, 1989; James, Mulaik, & Brett,
1982; Joreskog & Sorbom, 1981; Marsh, Balla, &
McDonald, 1988; McDonald, 1989; McDonald &
Marsh, 1990; Steiger & Lind, 1980; Tanaka, 1987
Tanaka & Huba, 1985; Tucker & Lewis, 1973). How-
ever, despite the increasing popularity of using fit
indices as alternative measures of model fit, applied
researchers inevitably face a constant challenge in se-
lecting appropriate fit indices among a large number
of fit indices that have recently become available in
many popular structural equation modeling programs.
For instance, both LISREL 8 (Joreskog & Sorbom,
1993) and the PROC CALIS procedure for structural
equation modeling (SAS Institute, 1993) report the
values of about 20 fit indices, and EQS (Bentler &
Wu, 19953, 1995b) prints the values of almost 10 fit
indices. Frequently, the values of various fit indices
reported in a given program yield conflicting conclu-
sions about the extent to which the model matches the
observed data. Applied researchers thus often have
difficulties in determining the adequacy of their co-
variance structure models. Furthermore, as noted by
Bentler and Bonett (1980), who introduced several of
these indices and popularized the ideas, fit indices
were designed to avoid some of the problems of
sample size and distributional misspecification on
evaluation of a model. Initially, it was hoped that
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these fit indices would more unambiguously point to
model adequacy as compared with the chi-square test.
This optimistic state of affairs is unfortunately also
not true.

The Chi-Square Test

The conventional overall test of fit in covariance
structure analysis assesses the magnitude of discrep-
ancy between the sample and fitted covariance matri-
ces. Let § represent the unbiased estimator of a popu-
lation covariance matrix, X, of the observed variables.
The population covariance matrix can be expressed as
a function of a vector containing the fixed and free
model parameters, that is, 8: & = %(8). The param-
eters are estimated so that the discrepancy between
the sample covariance matrix 5 and the implied co-
variance matrix £(8) is minimal. A discrepancy func-
tion F = F[S, Z(8)] can be considered 1o be a mea-
sure of the discrepancy between § and Z(0) evaluated
at an estimator 8 and is minimized to vield F,,. Un-
der an assumed distribution and the hypothesized
model 2(0) for the population covariance matrix X,
the test statistic T = (N — 1)F;; has an asymptotic
(large sample) chi-square distribution. The test statis-
tic T is usually called the chi-square statistic by other
researchers. In general, the null hypothesis £ = 2(8)
is rejected if T exceeds a value in the chi-square dis-
tribution associated with an o level of significance.
The T statistics can be derived from various estima-
tion methods that vary in the degrees of sensitivity to
the distributional assumptions. The T statistic derived
from ML under the assumption of multivariate nor-
mality of variables is the most widely used summary
statistic for assessing the adequacy of a structural
equation model (Gierl & Mulvenon, 1995).

Types of Fit Indices

Unlike a chi-square test that offers a dichotomous
decision strategy implied by a statistical decision rule,
a fit index can be used to quantify the degree of fit
along a continuum. It is an overall summary statistic
that evaluates how well a particular covariance struc-
ture model explains sample data. Like R? in multiple
regression, fit indices are meant to quantify something
akin to variance accounted for, rather than to test a
null hypothesis %, = 5(8). In particular, these indices
generally quantify the extent to which the variation
and covariation in the data are accounted for by a
model. One of the most widely adopted dimensions
for classifying fit indices is the absolute versus incre-

mental distinction (Bollen, 1989; Gerbing & Ander-
son, 1993; Marsh et al.,, 1988; Tanaka, 1993). An
absolute-fit index directly assesses how well an a
priori model reproduces the sample data. Although no
reference mode! is used to assess the amount of in-
crement in model fit, an implicit or explicit compari-
son may be made to a saturated model that exactly
reproduces the observed covariance matrix. As a re-
sult, this type of fit index is analogous to R? by com-
paring the goodness of fit with a component that is
similar to a total sum of squares. In contrast, an in-
cremental fit index measures the proportionate im-
provement in fit by comparing a larget model with a
more restricted, nested baseline model. Incremental fit
indices are also called comparative fit indices. A null
model in which all the observed variables are allowed
to have variances but are uncorrelated with each other
is the most typically used baseline model (Bentler &
Bonett, 1980), although other baseline models have
been suggested (e.g., Sobel & Bohrustedt, 1985).
Incremental fit indices can be further distinguished
among themselves. We define three groups of indices,
Types 1-3 (Hu & Bentler, 1995).' A Type 1 index
uses information cnly from the optimized statistic T,
used in fitting baseline (Tg) and target (Tr) models. T
is not necessarily assumed to follow any particular
distributional form, though it is assumed that the fit
function F is the same for both models. A general
form of such indices can be writien as Type | incre-
mental indices = Ty — T l/T. The ones we study in
this article are the normed fit index (NFI; Bentler &
Bonett, 1980) and a fit index by Bollen (1986; BL86).

! The terminology of Type 1 and Type 2 indices follows
Marsh et al. (1988), although our specific definitions of
these terms are not identical to theirs. Their Type 2 index
has some definitional problems, and its proclaimed major
example is not consistent with their own definition. They
define Type 2 indices as IT. — TNE — Ty, where T is the
value of the statistic for the target model, Ty is the value for
a baseline model, and E is the expected value of T if the
target model is true. Note first that E may not be a single
quantity: Different values may be obtained depending on
additional assumptions, such as on the distribution of the
variables. As a result, the formula can give more than one
Type 2 index for any given absolute index. In addition, the
absolute values in the formula have the effect that their
Type 2 indices must be nonnegative; however, they state
that an index called the Tucker-Lewis Index (TLI; dis-
cussed later in text) is a Type 2 index. This is obviously not
true because TLI can be negative.
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Table | contains algebraic definitions, properties,
and citations for all fit indices considered in this
article.

Type 2 and Type 3 indices are based on an assumed
distribution of variables and other standard regularity
conditions. A Type 2 index additionally uses infor-
mation from the expected values of T under the cen-
tral chi-square distributicn. It assumes that the chi-
square estimator of a valid target model follows an
asymptotic chi-square distribution with a mean of dfy,
where df; is the degrees of freedom for a target
model. Hence, the baseline fit Ty is compared with
dfr, and the denominator in the Type 1 index is re-
placed by (T — dfy). Thus, a general form of such
indices can be written as Type 2 incremental fit index
= |Tg — T{}{/(Ty — dfy). On the basis of the work of
Tucker and Lewis (1973), Bentler and Bonett (1980)
called such indices nennormed fir indices, because
they need not have a 0-1 range even if Ty = T,. We
study their index (NNFI or TLI) and a related index
developed by Bollen (1989; BL89).

A Type 3 index uses Type 1 information but addi-
tionally uses information from the expected values of
T or Ty, or both, under the relevant noncentral chi-
square distribution. A noncentrality fit index usually
involves first defining a population-fit-index param-
eter and then using estimators of this parameter to
define the sample-fit index (Bentler, 1990; McDon-
ald, 1989; McDonald & Marsh, 1990; Steiger, 1989).
When the assumed distributions are cormrect, Type 2
and Type 3 indices should perform better than Type 1
indices because more information is being used. We
study Bentler’s (1989, 1990) and McDonald and
Marsh’s (1990) relative noncentrality index (RNI) and
Bentler’s comparative fit index (CFI). Note also that
Type 2 and Type 3 indices may use inappropriate
information, because any particular T may not have
the distributional form assumed. For example, Type 3
indices make use of the noncentral chi-square distri-
bution for T, but one could seriously question wheth-
er this is generally its appropriate reference distribu-
tion. We also study several absolute-fit indices. These
include the goodness-of-fit (GFI) and adjusted-GFI
(AGH) indices (Bentler, 1983; Joreskog & Sorbom,
1984; Tanaka & Huba, 1985); Steiger’s (1989}
gamma hat; a rescaled version of Akaike’s informa-
tion criterion (CAK; Cudeck & Browne, 1983); a
cross-validation index (CK; Browne & Cudeck,
1989); McDonald’s (1989) centrality index (Mc);
Hoeiter's (1983) critical N (CN); a standardized ver-
sion of Joreskog and Sorbom’s (1981) root-mean-

square residval (SRMR; Bentler, 1995); and the
RMSEA (Steiger & Lind, 1980).

Issues in Assessing Fit by Fit Indices

There are four major problems involved in using fit
indices for evaluating goodness of fit: sensitivity of a
fit index to model misspecification, small-sample
bias, estimation-method effect, and effects of viola-
tion of normality and independence. The issue on sen-
sitivity of fit index to model misspecification has long
been overlooked and thus deserves careful examina-
tion. The other three issues are a natural consequence
of the fact that these indices typically are based on
chi-square tests: A fit index will perform better when
its corresponding chi-square test performs well. Be-
cause, as noted above, these chi-square tests may not
perform adequately at all sample sizes and also be-
cause the adequacy of a chi-square statistic may de-
pend on the particular assumptions it requires about
the distributions of variables, these same factors can
be expected to influence evaluation of model fit.

Sensitivity of Fit Index to
Model Misspecification

Among various sources of effects on fit indices, the
sensitivity of fit indices to model misspecification
(Gerbing & Anderson, 1993; i.e., the effect of model
misspecification) has not been adequately studied be-
cause of the intensive computational requirements. A
correct specification implies that a population exactly
matches the hypothesized model and also that the pa-
rameters estimated in a sample reflect this structure.
On the other hand, a model is said to be misspecified
when (a) one or more parameters are estimated whose
population values are zeros (i.e., an overparameter-
ized misspecified model), (b) one or more parameters
are fixed to zeros whose population values are non-
zeros (i.e., an underparameterized misspecified
model), or both. In the very few studies that have
touched on such an issue, the results are often incon-
clusive due either to the use of an extremely smali
number of data sets (e.g., Marsh et al., 1988; Mulaik
et al., 1989) or to the study of a very small number of
fit indices under certain limited conditions (e.g.,
Bentler, 1990; La Du & Tanaka, 1989; Maiti &
Mukherjee, 1991). For example, using a small number
of simulated data sets, Marsh et al. (1988) reported
that sample size was substantially assoctated with sev-
eral fit indices under both true and false models. They
showed aiso that the values of most of the absolute-
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Table 1
Algebraic Definitions, Properties, and Citations for Incremental and Absolute-Fit Indices
Algebraic definition Property Citation
Incremental fit indices
Type 1
NFI = (Ty = To)i T Normed (has a O-1 range) Bentler & Bonett (1980)
BL86 = [(Twldfy) = (THAEI(Teldfs) Normed (has a 0—1 range) Bollen (1986)
Type 2
TLI (or NNFI) = [(Tg/dfp) — (T/df )V [(Te/dfy) Nonnormed (can fall Tucker & Lewis (1973)
-1] outside the 0-1 range) Bentler & Bonett (1980)

Compensates for the effect
of maodel complexity
BL29 = (Ty — Ty (Tg — dfy) Nonnormed Bollen (1989)
Compensates for the effect
of model complexity

Type 3
RNI = [{(Tg — dfy) — (T — dfpW(Tg — dfg) Nonnormed McDonald & Marsh (1990)
Noncentrality based Bentler (1989, 1990)
CFI = | - max[(Ty - dfp). OVmax[(Tr — 4f1), Normed (has a 0-1 range) Bentler (1989, 1990)
(Tg — df), 0] Noncentrality based
Absolute fit indices
GFLy = 1 - [(Z7'8 = I*rE' 5 Has a maximum value of Iéreskog & Séirbom (1984)
1.0
Can be less than 0
AGFL; = 1 - [plp + 1/2df)(1 — GFhL4) Has a maximum value of Joreskog & Strbom (1984)
1.0
Can be less than ()
Gamma hat = p/{p + 2[(T — df /AN - )]} Has a known distribution Steiger (1989)
Noncentrality based
CAK = [T{/(N - )] + [2¢/(N¥ = 1)] Compensates for the effect Cudeck & Browne (1983}
of model complexity
CK = [TW{(N - 1)] + [2¢/(N - p -2)] Compensates for the effect Browne & Cudeck (1989)
of model complexity
Mc = exp{-122[(T; - df: (N - 1]} Noncentrality based MceDonald (1989)
Typically has the 0-1
range (but it may exceed
1)
CN = (g4 + V22 - 1DH[2T/IN - D]} + 1 A CN value exceeding 200 Hoelter (1983)
indicates a good fit of a
given model
P Standardized Joreskog & Sorbom (1981)
SRMR = {22,2[(_;5 - C‘;j) / Sii.sjj)]z} /p(p+ 1) root-mean-square Bentler (1995)
-1 j=1 residual
RMSEA = VF/dfy, where ﬁ'o = max[(Ty — Has a known distribution Steiger & Lind (1980}
dfp(N = 1), 0] Compensates for the effect Steiger (1989)

of model complexity
Noncentrality based

Note, NFI = normed fit index; 7y = T statistic for the baseline model; T, = 7 statistic for the target model; BL86 = fit index by Bollen
(1986); dfy = degrees of freedom for the baseline model; df 1 = degrees of freedom for the target model; TLI = Tucker-Lewis index (1973),
NNFI = nonnormed fit index; BL89 = fit index by Bollen (1989); RNI = relative noncentrality index; CFL = comparative fit index; GFL
= goodness-of-fit index; ML = maximum likelihood; tr = trace of a matrix; AGFT = adjusted-goodness-of-fit index; CAK = a rescaled
version of Akaike’s information criterion; g = no. parameters estimated, CK = cross-validation index; Mc = McDenald’s centrality index;
CN = critical N; z.;, = critical z value at a selected probability level; SRMR = standardized root-mean-square residual; 5,; = observed
covariances; &, = reproduced covariances; s;; and 5, = observed standard deviations; RMSEA = root-mean-square error of approximation.
The formulas for generalized least squares and asymptotic distribution-free versions of GFI and AGFI are shown in Hu and Bentler (1997).
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and Type 2 fit indices derived from true models were
significantly greater than those derived from false
models. La Du and Tanaka (1989, Study 2) studied
the effects of both overparameterized and underpa-
rameterized model misspecification (both with mis-
specified path[s] between observed variables) on the
ML- and GLS-based GFI and NFL. No significant
effect of overparameierized model misspecification
on these fit indices was found. A very small but sig-
nificant effect of underparameterized model misspeci-
fication was observed for some of these fit indices
(i.e., the ML-based NFI and ML-/GLS-based GFI).
The ML-based NFI also was found to be more sensi-
tive to this type of model misspecification than was
the ML- and GLS-based GFI. Marsh, Balla, and Hau
(1996} found that degrees of model misspecification
accounted for a large proportion of variance in NFI,
BL86, TLI, BL89, RNI, and CFI. Although their
study included several substantially misspecified
moadels, their analyses failed to reveal the degree of
sensitivity of these fit indices for a less misspecified
model. In cur study, the sensitivity of various fit in-
dices to model misspecification, after controlling for
other sources of effects, are examined.

Smalil-Sample Bias

Estimation methods in structural equation modeling
are developed under various assumptions. One is that
the model 3 = () is true. Another is the assump-
tion that estimates and tests are based on large
samples, which will not actually obtain in practice.
The adequacy of the test statistics is thus likely to be
influenced by sample size, perhaps performing more
poorly in smaller samples that cannot be considered
asymptotic enough. In fact, the relation between
sample size and the adequacy of a fit index when the
model is true has long been recognized; for example,
Bearden, Sharma, and Teel (1982) found that the
mean of NFI is positively related to sample size and
that NFI values tend to be less than 1.0 when sample
size is small. Their early resuits pointed out the main
problem: possible systematic fit-index bias.

If the mean of a fit index, computed across various
samples under the same condition when the model is
true, varies systematically with sample size, such a
statistic will be a biased estimator of the correspond-
ing population parameter. Thus, the decision for ac-
cepting or rejecting a particular model may vary as a
function of sampie size, which is certainly not desir-
able. The general finding seems to be a positive as-
sociation between sample size and the goodness-of-fit

fit index size for Type 1 incremental fit indices. Ob-
viously, Type 1 incremental indices will be influenced
by the badness of fit of the null model as well as the
goodness of fit of the target model, and Marsh et al.
(1988) have reported this type of effect. On the other
hand, the Type 2 and Type 3 indices seem to be sub-
stantially less biased. The resulis on absolute indices
are mixed.

A few key studies can be mentioned. Bollen (1986,
1989, 1990) found that the means of the sampling
distributions of NFL, BL86, GFI, and AGFI tended to
increase with sample size. Anderson and Gerbing
(1984) and Marsh et al. {1988) showed that the means
of the sampling distributions of GFI and AGFI were
positively associated with sample size whereas the
association between TLI and sample size was not sub-
stantial. Bentler (1990) also reported that TLI (and
NNFI) outperformed NFI on average; however, the
variability of TLI {(and NNFI) at a small sample size
(e.g., N = 50) was so large that in many samples, one
would suspect model incorrectness and, in many other
samples, overfitting. Cudeck and Browne (1983) and
Browne and Cudeck (1989) found that CAK and CK
improved as sample size increased. Bollen and Liang
(1988) showed that Hoelter’s {(1983) CN increased as
sample size increased. McDonald (1989) reported that
the value of Mc was consistent across different
sample sizes. Anderson and Gerbing (1984) found
that the mean values of RMR (the unstandardized
root-mean-square residual; Joreskog & Sorbom,
1981) was related to the sample size. J. Anderson,
Gerbing, and Narayanan (1985) further reported that
the mean values of RMR were related to the sample
size and model characteristics, such as the number of
indicators per factor, the number of factors, and indi-
cator loadings. In one of the major studies that inves-
tigated the effect of sample size on the older fit indi-
ces, Marsh et al. (1988) found that many indices were
biased estimates of their corresponding population pa-
rameters when sample size was finite. GFI appeared
to perform better than any other stand-alone index
(e.g., AGFl, CAK, CN, or RMR) studied by them.
GFI also underestimated its asymptotic value to a
lesser extent than did NFI.

The Type 2 and Type 3 incremental fit indices, in
general, perform better than either the absolute or
Type 1 incremental indices. This is true for the older
indices such as TLI, as noted above, but appears to be
especially true for the newer indices based on non-
centrality. For example, Bentler (1990) reported that
FI (called RNI in this article), CFI, and IFI (called



430 HU AND BENTLER

BL389 in this article) performed essentially with no
bias, though by definition CFI must be somewhat
downward biased to avoid out-of-range values greater
than 1, which can occur with FI. The bias, however, is
trivial, and it gains lower sampling variability in the
index. The relation of RNI to CFI has been spelled out
in more detail by Goffin (1993), who prefers RNI to
CFI for model-comparison purposes.

Estimation-Method Effects

As noted above, the three major problems involved
in using fit indices are a natural consequence of the
fact that these indices typically are based on chi-
square tests. This rationale is elaborated through a
brief review of the ML, GLS, and ADF estimation
methods, as well as their relationships to the chi-
square statistics. For a more technical review of each
method, readers are encouraged to consult Hu et al.
(1992), Bentler and Dudgeon (1996), or, especially,
the ariginal sources.

Estimation methods such as ML and GLS in co-
variance structure analysis are traditionally developed
under multivariate normality assumptions (e.g.,
Bollen, 1989; Browne, 1974; Jéreskog, 1969). A vio-
lation of multivariate normality can seriously invali-
date normal-theory test statistics. ADF methods there-
fore have been developed (e.g., Bentler, 1983;
Browne, 1982, 1984) with the promising claim that
the test statistics for model fit are insensitive to the
distribution of the observations when the sample size
is large. However, empirical studies using Monte
Carlo procedures have shown that when sample size is
relatively small or model degrees of freedom are
large, the chi-square goodness-of-fit test statistic
based on the ADF method may be inadequate (Chou
et al.,, 1991; Curran et al., 1996; Hu et al., 1992;
Muthen & Kaplan, 1992; Yuan & Bentler, 1997).

The recent development of a theory for the asymp-
totic robustness of normal-theory methods offers hope
for the appropriate use of normal-theory methods
even under violation of the normality assumption
(e.g., Amemiya & Anderson, 1990; T. W. Anderson
& Amemiya, 1988; Browne, 1987; Browne & Sha-
piro, 1988; Mooijaart & Bentler, 1991; Satorra &
Bentler, 1990, 1991). The purpose of this line of re-
search is to determine under what conditions normal-
theory-based methods such as ML or GLS can stll
correctly describe and evaluate a model with nonnor-
mally distributed variables. The conditions are tech-
nical but require the very strong condition that the
latent variables (common factors or errors) that are

typically considered as simply uncorrelated must
actually be mutually independent, and common fac-
tors, when correlated, must have freely estimated vari-
ance—covariance parameters. Independence exists
when normally distributed variables are uncorrelated.
However, when nonnormal variables are uncorrelated,
they are not necessarily independent. If the robustness
conditions are met in large samples, normal-theory
ML and GLS test statistics still hold, even when the
data are not normal, Unfortunately, because the data-
generating process is unknown for real data, one can-
not generally know whether the independence of fac-
tors and errors, or of the errors themselves, holds, and
thus, the practical application of asymptotic robust-
ness theory is unclear.

Although Hu et al, (1992) have examined the ad-
equacy of six chi-square goodness-of-fit tests under
various conditions, not much is known about estima-
tion effects on fit indices. Even if the distributional
assumptions are met, different estimators yield chi-
square statistics that perform better or worse at vari-
ous sample sizes. This may translate into differential
performance of fit indices based on different estima-
tors. However, the overall effect of mapping from
chi-square to fit index, while varying estimation
method, is unclear. In pioneering work, Tanaka
(1987) and La Du and Tanaka (1989) have found that
given the same model and data, NFI behaved errati-
cally across ML and GLS estimation methods. On the
other hand, they reported that GFI behaved consis-
tently across the two estimation methods. Their re-
sults must be due to the differential quality of the null
model chi-square used in the NFI but not the GFI
computations.z On the basis of these results, Tanaka
and Huba (1989) have suggested that GFI is more
appropriate than NFT in finite samples and across dif-
ferent estimation methods. Using a large empirical
data set, Sugawara and MacCallumn (1993) have found
that absolute-fit indices (i.e., GFI and RMSEA) tend
to behave more consistently across estimation meth-
ods than do incremental fit indices (i.e., NFI, TLI,
BL86, and BL89). This phenomenon is especially evi-
dent when there is a good fit between the hypoth-
esized model and the observed data. As the degree of
fit between hypothesized models and observed data
decreases, GFI and RMSEA behave less consistently

2 Earlier versions of EQS also incorrectly computed the
null model chi-square under GLS, thus affecting all incre-
mental indices.
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across estimation methods. Sugawara and MacCallum
have stated that the effect of estimation methods on fit
is tied closely to the nature of the weight matrices
used by the estimation methods. Ding, Velicer, and
Harlow (1995) found that all fit indices they studied,
except the TLI, were affected by estimation method.

Effects of Violation of Normality
and Independence

An issue related to the adequacy of fit indices that
has not been studied is the potential effect of violation
of assumptions underlying estimation methods, spe-
cifically, violation of distributional assumptions and
the effect of dependence of latent variates. The de-
pendence condition is one in which two or more vari-
ables are functionally related, even though their linear
correlations may be exactly zero. Of course, with nor-
mal data, a linear correlation of zero implies indepen-
dence. Nothing is known about the adequacy of fit
indices under conditions such as dependency among
common and unique latent variates, along with viola-
tions of multivariate normality, at various sample
sizes.

Study Questions and Performance Criteria

This study investigates several critical issues re-
lated to fit indices. First, the sensitivity of various
incremental and absolute-fit indices derived from ML,
GLS, and ADF estimation methods to underparam-
eterized model misspecification is investigated. Two
types of underparameterized model misspecification
are studied: simple misspecified models (i.e., models
with misspecified factor covariance[s]) and complex
misspecified models (i.e., models with misspecified
factor loading[s]). Second, the stability of various fit
indices across ML, GLS, and ADF methods (i.e., the
effect of estimation method on fit indices) is studied.
Third. the performance of these fit indices, derived
from the ML, GLS, and ADF estimators under the
following three ways of violating theoretical condi-
tions, is examined: {a) Distributional assumptions are
violated, (b) assumed independence conditions are vi-
olated, and (c) asymptotic sample-size requirements
are violated. Our primary goals are to recommend fit
indices that perform the best overall and to identify
those that perform poorly. Good fit indices should be
(a) sensitive to model misspecification and (b) stable
across different estimation methods, sample sizes, and
distributions. Finally, attempts are also made to evalu-
ate the ‘‘rule of thumb’’ conventional cutoff criterion
for a given fit index (Bentler & Bonett, 1980), which

has been used in practice to evaluate the adequacy of
models.

Method

Two types of confirmatory factor models (called
simple model and complex model), each of which can
be expressed as x = A& + g, were used to generate
measured variables x under various conditions on the
common factors € and unique variates (errors) s. That
is, the vector of observed variables (xs) was a
weighted function of a common-factor vector (£) with
weights given by the factor-loading matrix, A, plus a
vector of error variates (g). The measured variables
for each model were generated by setting certain re-
strictions on the common factors and unigue variates.
Several properties are noted in the usual application of
these types of factor analytic approaches. First, factors
are allowed to be correlated and have a covariance
matrix, ®. Second, errors are uncorrelated with fac-
tors. Third, various error variates are uncorrelated and
have a diagonal covariance matrix, V. Consequently,
the hypothesized model can be expressed as 2 = 2(0)
= ADPA’ + ¥, and the elements of 8 are the unknown
parameters in A, ®, and V.

Study Design

Simple and complex models are both confirmatory
factor analytic models based on 15 observed variables
with three common factors. Although many other
model types are possible, most models used in prac-
tice involve latent variables, and the confirmatory fac-
tor model is most representative of such models. For
example, variants of confirmatory factor models have
been the typically studied models in the new journal
Structural Equation Modeling, in the special section
on ‘“‘Structural Equation Modeling in Clinical Re-
search’’ (Hoyle, 1994) published in the Journal of
Consulting and Clinical Psychology, and in the larger
models among the approximately two dozen modeling
articles published in the Jowrnal of Personality and
Social Psychology (JPSP) during 1995. In practice,
correlations among factors may be replaced by hy-
pothesized paths, and correlated residuals may be
added. Such models also form the basis of many re-
cent simulation studies {e.g., Curran et al., 1996; Ding
et al.,, 1995; Marsh et al., 1996). It is important to
choose a number of variables that is not too small
{e.g., Hu et al., 1992) yet remains practical in the
context of a large simulation. We chose a number
larger than the median number of variables (9-10)
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used in JPSP's 1995 modeling studies but smaller
than many ambitious studies {(e.g., Hoyle’s special
section contains five studies with 24 or more vari-
ables). We also chose distributional conditions and
samples sizes to cover a wider range of practical rel-
evance. Figure 1 displays the structures of true-
population and misspecified models used in this
study.

The factor-loading matrix (transposed) A’ for the
simple model had the structure shown at the top of the
page.

The structure of the factor-loading matrix (trans-
posed) A’ for the complex model was as shown at the
bottom of the page.

For both the simple model and complex model,
variances of the factors were 1.0, and the covariances
among the three factors were 0.30, 0.40, and 0.50. The
unique variances were taken as values that would
yield unit-variance measured variables under normal-
ity for the simple model. For the complex model, the
unique variances were taken as values that would
yield unit variance for most measured variables {ex-
cept for the 1st, 4th, and 9th observed variables in the
model) under normality. The unique variances for the
1st, 4th, and 9th observed variables were 0.51, 0.36,
and 0.36, respectively. In estimation, the factor load-
ing of the last indicator of each factor was fixed for
identification at 0.80, and the remaining nonzero pa-
rameters were free to be estimated.

Two hundred replications {samples) of a given
sample size were drawn from a known population
model in each of the seven distributional conditions as
defined by Hu et al. (1992). The first was a baseline
distributional condition involving normality, the next
three involved nonnormal variables that were inde-
pendently distributed when uncorrelated, and the final
three distributional conditions involved nonnormal vari-
ables that, although uncorrelated, remained dependent.

Distributional Condition 1. The factors and errors

and hence measured variables are multivariate nor-
mally distributed.

Distributional Conditions 2. Nonnormal factors
and errors, when uncorrelated, are independent, but
asymptotic robustness theory does not hold because
the covariances of common factors are not free pa-
rameters. The true excess kurtoses for the nonnormal
factor in the population are —1.0, 2.0, and 5.0. The
true excess kurtoses for the unique variates are —1.0,
0.5,2.5,45,65,-1.0,1.0,3.0,50,7.0,-0.5, 1.5,3.5,
5.5, and 7.5.

Distributional Condition 3. Nonnormal factors
and errors are independent but not multivariate nor-
mally distributed. The true kurtoses for the factors and
unique variates are identical to those in Distributional
Condition 2.

Distributional Condition 4. The errors and hence
the measured variables are not multivariate normally
distributed. The true kurtoses for the unique variates
are identical to those in Distributional Conditions 2
and 3, but the true kurtoses for the factors are set to
Zero.

Distributional Condition 5. An elliptical distribu-
tion: Factors and errors are uncorrelated but depen-
dent on each other.

Distributional Condition 6. The errors and hence
the measured variables are not multivariaie normally
distributed, and both factors and errors are uncorre-
lated but dependent on each other.

Distributional Condition 7. Nonnormal factors and
errors are uncorrelated but dependent on each other.

In Distributional Cenditions 5-7, the factors and
error variates were divided by a random variable, z =
23123, that was distributed independently of
the original common and unigue factors. The division
was made so that the variances and covariances of the
factors remained unchanged but the kurtoses of the
factors and errors became maodified. As a conse-
quence of this division, the factors and errors were

70 .70 75 80 .80 .00 .00 .00 .00 00 00 .00 .00 .00 00
00 .00 .00 .70 .00 .70 70 .75 .80 .80 .00 .00 .00 .00 .00
70 .00 .00 .00 .00 00 .00 .00 .70 0G 70 70 .75 .80 80
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Figure 1. Structures of true-population and misspecified models used in this study. Solid lines (except solid line ) represent
parameters that exist in the simple true-population model and both simple misspecified models, 1 and 2; dashed line a
represents the parameter that exists in the simple true-population model but was omitted from both simple misspecified models,
1 and 2; dashed line b represents the parameter that exists in the simple true-population model but was omitted from simple
Misspecified Model 2 only. Solid lines (including solid line ¢) and dashed lines (a and b) represent parameters that exist in the
complex true-population model and both complex misspecified models, 1 and 2; dashed and dotted line ¢ represents the
parameter that exists in the complex true-population model but was omitted from both complex misspecified models, 1 and
2; dashed and dotted line d represents the parameter that exists in the complex true-population medel but was omitted from

Complex Misspecified Model 2 only. V = observed variable.

uncorrelated but dependent on each other. Because of
the dependence, asymptotic robustness of normal-
theory statistics was not to be expected under Distri-
butional Conditions 5-7. To provide some idea about
the degree of nonnormality of the factors and unique
variates in Distributional Conditions 5-7 after the di-
vision, the empirical univariate kurtoses of the latent
variables were computed across 5,000 x 200 =
1,000,000 observations. In Distributional Condition 5,
the empirical kurtoses for the factors were 3.1, 6.0,
and 5.5. The empirical kurtoses for the unique variates
were 4.9, 6.0, 4.7, 4.5,4.9,6,1,5.7,5.2,4.3,4.8,59,
4.8, 5.1, 4.8, and 5.1. In Distributional Condition 6,
the empirtcal kurtoses for the factors were 5.1, 6.0,
and 5.5. The empirical kurtoses for the unique variates
were 2.6, 7.5, 10.4, 14.0, 19.3, 3.2, 9.5, 11.6, 15.1,
199, 44, 8.2, 14.2, 19.2, and 28.3. In Distributional
Condition 7, the empirical kurtoses for the factors
were 2.5, 18.0, and 2.14. The empirical kurtoses for
the unique variates were 2.6, 7.5, 10.4, 14.0, 19.3, 3.2,
05,116, 15.1, 199, 44, 82, 142, 19.2, and 28.3.
Note that the empirical kurtoses for factors and unigue
variates in Distributional Conditions 1-4 were very
close to the true kurtoses specified in these distribu-
tional conditions. By means of modified simulation
procedures in EQS (Bentler & Wu, 1995b) and SAS

program (SAS Institute, 1993), the various fit indices
based on ML, GLS, and ADF estimation methods
were computed in each sample.’

Specification of Models and Procedure

For each type of modei (i.e., simple or complex),
one true-population model and two misspecified mod-
els were used to examine the degree of sensitivity to
model misspecification of various fit indices.

True-popularion model. The performance of four
types of fit indices, derived from ML, GLS, and ADF
estimation methods, were examined under the above-
mentioned seven distributional conditions. A sample
size was drawn from the population, and the model
was estimated in that sample. The results were saved,
and the process was repeated for 200 replications.
This process was repeated for sample sizes 150, 250,
500, 1,000, 2,500, and 5,000. In all, there were 7
(distributions) x 6 (sample sizes) x 200 (replications)
= 8,400 samples. The fit indices based on ML, GLS,
and ADF methods were calculated for each of these

* BL86, BL8Y, RNI, gamma hat, CAK, CK, Mc, CN, and
RMSEA were computed by SAS programs.



434 HU AND BENTLER

samples. This procedure was conducted for simple
and complex models separately.

Misspecified models. Although both underparam-
eterized and overparameterized models were consid-
ered as incorrectly specified models, our study only
examined the sensitivity of fit indices to underparam-
eterization. For a simple model, the covariances
among the three factors in the correctly specified
population model (true-population model) were non-
zero (see Figure 1). The covariance between Factors |
and 2 (Covariance a in Figure 1) was fixed to zero for
Simple Misspecified Model 1. The covariances be-
tween Factors 1 and 2, as well as between Factors 1
and 3 (Covariances a and b) were fixed to zero for
Simple Misspecified Medel 2. For a complex model,
three observed variables loaded on two factors in the
true-population model: (a) The first observed variable
Ioaded on Factors 1 and 3, (b) the fourth observed
variable loaded on Factors 1 and 2, and (¢) the ninth
observed variables loaded on Factors 2 and 3 (see
Figure 1). Complex Misspecified Model 1, the first
observed variable loaded onty on Factor 1 (Omitted
Path ¢), whereas the rest of the model specification
remained the same as the complex true-popuiation
model. In Complex Misspecified Model 2, the first
and fourth observed variables loaded only on Factor
1: Omitted Paths ¢ and d.

Using the design parameters specified in either the
simple or complex true-population model, a sample
size was drawn from the population, and each of the
misspecified models was estimated in that sample.
That is, the data for a given sample size were gener-
ated based on the structure specified by a true-
population {(correct) model, and then the goodness-of-
fit between a misspecified model and the generated
data was tested. For each misspecified model, there
were 7 (distributions) x 6 (sample sizes) x 200 (rep-
lications) = 8,400 samples. The fit indices based on
ML, GLS, and ADF methods were calculated for each
of these samples.

Results

The adequacy of the simulation procedure and the
characteristics specified in each distributional condi-
tion were verified by Hu et al. (1992}, and thus are not
discussed here. The overall mean distances (OMDs)
between observed fit index values and the correspond-
ing expected fit index values for the true-population
models were calculated for each fit index and are
tabulated in Table 2.* Separate correlation matrices

among fit indices derived from ML, GLS, and ADF
methods also were obtained, to determine empirically
which subset of fit indices might have similar char-
acteristics. Results are shown in Table 3. A series of
analyses of variance (ANOVAs) were conducted for
each fit index obtained for the simple and complex
models. The 0%, indicating the proportion of variance
in each fit index accounted for by each predictor vari-
able or interaction term, are presented in Tables 4
through 9. Note that the n? reported in this article is
equivalent to R? (Hays, 1988, p. 369) and was calcu-
lated by dividing the Type 3 sum of squares for a
given predictor or interaction term by the corrected
total sum of squares (i.e., corrected total variance).” In
addition, a statistical summary of the mean value and
standard deviation of each fit index across the 200
replications and the empirical rejection frequency (for
all but CAK and CK) based on rules of thumb were
tabulated by distribution, sample size, and estimation
method, Tables for the statistical summary for all fit
indices are included in our technical report (Hu &
Bentler, 1997).

“ The overall coefficient of variation, which is defined as
the mean of a distribution divided by its standard deviation,
also was calculated for each fit index derived from ML,
GLS, and ADF estimation methods. The conclusions re-
garding the performance of fit indices based on the mean
distance and coefficients of variation were similar, How-
ever, the overall mean distance provided a much better in-
dex when compared across fit indices with different ex-
pected values (i.e., 0 and 1) for a true-population model and
thus is reported in this article.

* We calculated m? values to determine the relative con-
tribution of each main effect and interaction term. Given the
very large sample size, significance tests would not be in-
formative. Although our mixed-model ANOVA designs in-
cluded a repeated measure (i.e., model misspecification or
estimation method), we always used the total variance as the
denominator in our calculations, so that all effects were in a
common metric and are therefore directly comparable. This
approach can underestimate the effect sizes for the repeated
measures effects in mixed-model designs (Dodd & Schultz,
1973), and alternative approaches have been suggested
(e.g., Dodd & Schultz, 1973; Dwyer, 1974; Kirk, 1995;
Vaughan & Corballis, 1969); however, these approaches
make comparison of between- and within-subjects estimates
difficult because they are in different metrics. In our study,
the error components were extremely small, and the sample
size was very large, so that any advantage of using one of
these alternative approaches would be negligible (see
Sechrest & Yeaton, 1982).
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Table 2
Overall Mean Distances Between Observed Fit-Index Values and the Corresponding True Values for Each Fit Index
Under Simple and Complex True-Population Moedels

Simple medel

Complex model

Fit index ML GLS ADF ML GLS ADF
NFI .058 237 187 .047 227 175
BL86 069 .284 223 .058 281 .216
TLI .035 132 125 .029 131 115
BL89 028 102 101 .023 096 090
RNI 029 .110 105 023 105 003
CHl .029 106 105 .023 101 .093
GFI 054 .050 .058 052 .048 054
AGFI 075 .069 .079 074 069 077
Gamma hat .026 016 046 .025 016 042
CAK .660 585 869 .663 591 832
CK .681 606 390 687 614 855
Mc 092 059 156 088 057 141
SRMR .038 053 110 035 049 .114
RMSEA 035 028 .047 .034 028 .043

Note. Mean distance = +{[Z(observed fit-index value — true fit-index value)?}/(no. observed fit indexes)}. ML = maximum likelihood:
GLS = generalized least squares; ADF = asymptotic distribution-free method; NFI = normed fixed index; TLI = Tucker-Lewis Index
(1973); BL86 = fit index by Bollen (1986); BLE9 = fir index by Bollen (1989); RNI = relative noncentrality index; CFI = comparative
fit index; GFI = goodness-of-fit index; AGFI = adjusted goodness-of-fit index; CAK = a rescaled version of Akaike’s information criterion;
CK = cross-validation index; Mc = McDonald’s centrality index; CN = critical N; SRMR = standardized root-mean-square residual;

RMSEA = root-mean-square error of approximation. Smallest value in each column is italicized. CN methods were not applicable.

Overall Mean Distance

The OMDs between observed fit-index values and
the corresponding expected fit-index values for the
simple and complex true-population models were cal-
culated for each fit index derived from ML, GL.S, and
ADF estimation methods. For example, the mean dis-
tance for ML-based NFI of the simple true-population
model was equal to the square root of {[Z(cbserved
fit-index value — 1)?1/8,400}. The smaller the mean
distance, the better the fit index. The purpose for cal-
culating the OMD was to gauge how likely and how
much each fit index might depart from its true value
under a correct model. Theoretically, these fit indices
would equal their true values under correct models,
and thus any departure from their values would indi-
cate instability resulting from small sample size or
violation of other underlying assumptions. For ex-
ample, TLI or RNI wonld behave as a normed fit
index asymptotically, but it could fall outside the (~1
range when sample size was small or other underlying
assumptions were violated. Thus, the OMD was a fair
criterion for comparing the performance of fit indices
under true-population (correct) models, although one
might argue that it was an unfair comparison because
the ranges of fit indices differ (in fact, this only occurs

under some unusual conditions such as small sample
size). Table 2 contains the OMDs between the ob-
served fit-index values and the corresponding ex-
pected fit-index values. Overall, the values of the ML-
based TLI, BL89, RNI, CFl, gamma hat, SRMR, and
RMSEA were much closer to their corresponding true
values than the other MI-based fit indices. The values of
the GLS- or ADF-based GFI, gamma hat, and RMSEA
as well as the GLS-based Mc and SRMR also were
closer to their corresponding true values than the other
GLS- or ADF-based fit indices. The distances for
CAK and CK were always unacceptable.

Similarities in Performance of Fit Indices

Separate correlation matrices among fit indices de-
rived from ML, GLS, and ADF methods for simple
and complex models were obtained, to determine
which fit indices might behave similarly. Each corre-
lation matrix was calculated by collapsing across
sample sizes, distributions, and medel misspecifica-
tions, to determine if fit indices derived from ML,
GLS, or ADF method for simple or complex models
behaved similarly along three major dimensions:
sample size, distribution, and model misspecification.
The resulting patterns of correlations were identical;
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thus, we further calculated separate overall correlation
matrices across simple and complex models for ML,
GLS, and ADF methods. Table 3 contains the corre-
lations. Inspection of the correlation matrix for the
ML-based fit indices revealed that there were two
major clusters of correlated fit indices. NFI, BL86,
GFI, AGFI, CAK, and CK were clustered with high
correlations. Another cluster of high intercorrelations
included TLI, BL89, RNI, CFI, Mc, and RMSEA. CN
and SRMR were found to be least similar to the other
ML-based fit indices. The same pattern was observed
for the GLS-based fit indices. Finally, three clusters of
ADF-based fit indices were observed in the correla-
tion matrix. The first cluster included NFI, BLE6,
TLI, BL89, RNI, and CFI. The second cluster in-
cluded CAK, CK, gamma hat, Mc, and RMSEA. The
last cluster included GFI and AGFI. As with ML and
GLS, CN and SRMR seemed to be less similar to the
other ADF-based fit indices.

Sensitivity to Underparameterized Model
Misspecification and Effects of Sample Size
and Distribution

Our preliminary analyses indicated that values of
most fit indices vary across different estimation meth-
ods; thus, we performed a series of ANOVAs sepa-
rately for fit indices based on ML, GLS, and ADF
methods, to determine if different patterns of effects
of model misspecification, sample size, and distribu-
tion existed among the three estimation methods. Spe-
cifically, to examine the potential additive or multi-
plicative effects of model misspecification (i.e.,
sensitivity to underparameterized model misspecifica-
tion) to the effect of sample size and distribution on fit
indices, we performed a series of 6 x 7 x 3 (Sample
Size x Distribution x Model Misspecification)
ANOVAs on each of the ML-, GLS-, and ADF-based
fit indices. Separate analyses were performed for
simple and complex models, to determine if different
types of model misspecification (i.e., models with
misspecified factor covariance[s] and models with
misspecified factor loadings) exerted differential ef-
fects on fit indices derived from ML, GLS, and ADF
methods. The larger the amount of variance accounted
for by model misspecification and the smaller the
amount of variance accounted for by sample size and
distribution, the better the fit index was considered to
be. Tables 4 through 6 display the m> for each pre-
dictor variable and interaction term derived from the
ANOVA performed on each fit index.

Analyses for simple models. For the ML- and

GLS-based fit indices derived for simple models (see
Tables 4 and 5), an extremely large proportion of
variance in SRMR (n% = 914 and .859, respec-
tively) and a moderate proportion of variance in TLI,
BL89, RNI, CFI, gamma hat, Mc, and RMSEA were
accounted for by model misspecification (s ranged
from .309 to .487). Inspection of the cell means sug-
gested that the mean values of these fit indices derived
from the two simple misspecified models were sub-
stantially different from those derived from the simple
true-population model, Thus, these fit indices, espe-
cially SRMR, were more sensitive to simple misspeci-
fied medels than the rest of the other fit indices.
Model misspecification accounted for a substantial
amount of variance (n° = .608) in the ADF-based
SRMR and a moderate amount of variance (n7s
ranged from .389 to .516) in the ADF-based NFI,
BLS86, TLI, BL89, RNI, and CFI; thus, these ADF-
based fit indices were more sensitive to simple mis-
specified models than the other fit indices (see Ta-
ble 6).

Furthermore, sample size accounted for a substan-
tial amount of variance (s ranged from .605 to .882)
in the ML- and GLS-based NFI, BL86, GFI, AGFI,
CAK, and CK, after controlling for the effects of dis-
tribution, model misspecification, and their interac-
tion terms. Distribution accounted for a relatively
small proportion of variance in any of the ML- and
(GLS-based indices. Sample size accounted for a large
proportion of variance (v’s ranged from .674 to .877)
in the ADF-based gamma hat, CAK, CK, Mc, and
RMSEA. Sample size also accounted for a moderate
proportion of variance (m?s = .343) in the ADF-based
CN. Distribution exerted a moderate effect on the
ADF-based GFI and AGFI (n°s = .373 and .382,
respectively). Also, a moderate interaction effect be-
tween sample size and model misspecification on the
ML-, GLS-, and ADF-based CN (s ranged from
.340 10 .390) indicated that the sample-size effect was
more substantial for the simple true-population model
than for the two complex misspecified models.

Analyses for complex models. For the ML- and
GLS-based fit indices derived for complex models
(see Tables 4 and 5), a relatively large proportion of
variance in TLI, BL89, RNI, CFI, gamma hat, Mc,
and RMSEA (n’s ranged from .699 to .766) was ac-
counted for by model misspecification. A moderate
amount of variance in ML- and GLS-based NFI and
BL36 and the ML-based GFI and AGFT (n’s ranged
from .454 to .549) was accounted for by model mis-
specification. Model misspecification accounted for a
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small-to-moderate amount of variance in the GLS-
based GFI and AGFI (m%s = .331 and .320, respec-
tively). It accounted for a moderate to relatively large
amount of variance in the ML- and GLS-based SRMR
(-rlzs = 653 and .588, respectively). Model misspeci-
fication accounted for a moderate to relatively large
amount of variance (1125 ranged from 5.93 to .667) in
the ADF-based NFI, BL86, TLI, BL89, RNI, and CFI
(see Table 6). Overall, all types of fit indices (except
SRMR) seemed more sensitive in detecting the com-
plex misspecified models (i.e., models with misspeci-
fied factor loading[s]) than the simple misspecified
models (i.e., models with misspecified factor covari-
ance[s]).* SRMR was more sensitive in detecting the
simple than the complex misspecified models, al-
though the ability to detect complex misspecified
models for the ML- and GLS-based SRMR remained
reasonably high.

Sample size accounted for a small-to-large propor-
tion of variance in the ML- and GLS-based NFI,
BL86, GFI, AGF], CAK, and CK (nzs ranged from
.293 to .792). Sample size also accounted for a sub-
stantial amount of variance in the ADF-based gamma
hat, CAK, CK, Mc, and RMSEA (nzs ranged from
.541 to .827). Distribution accounted only for a med-
erate amount of variance in the ADF-based GFI and
AGFI (n?s = 409 and .422, respectively). A moder-
ate interaction effect between sample size and model
misspecification on the ML-, GL.S-, and ADF-based
CN (m’s ranged from .352 to .401) also was observed,
indicating that the sample-size effect was more sub-
stantial for the complex true-population model than
for the two complex misspecified models.

Effects of Estimation Method, Distribution, and
Sample Size on Fit Indices

To determine the importance of the additive and
multiplicative effects of sample size, distribution, and
estimation method on fit indices, we conducted a se-
ries of ANOVAs on fit indices derived from each of
the simple and complex true-population models and
misspecified models. These analyses were performed
separately for simple and complex true-population
models and misspecified models, to determine if the
effect of estimation method after controlling for the
effects of sample size and distribution varied as a
function of model quality, as reported by Sugawara
and MacCallum (1993). The results for simple and
complex models were similar and hence are discussed
together. Tables 7 through 9 contain the proportion of
variance in each fit index accounted for by sample

size, distribution, estimation method, and various in-
teraction terms derived from each ANOVA. Note that
the smaller the effects of sample size, distribution, and
estimation method, the better was the fit index.
Analyses for simple and complex true-population
models. The 6 x 7 x 3 (Sample Size x Distribution
x Estimation Method) ANOV As performed an the fit
indices derived for the two types of true-population
models revealed that sample size accounted for a sub-
stantial amount of variance in each of the following fit
indices (see Table 7): NFI, BL86, GFI, AGFI, CAK,
CK, and CN (1% ranged from .480 to .888). A small-
to-moderate amount of variance was observed also for
the other fit indices. The interaction between sample
size and estimation method accounted for relatively
small amounts of variance in NFI, BL86, TLI, BL89,
RNI, CFI, gamma hat, Mc, and RMSEA (1125 ranged
from 102 to .266). Inspection of cell means revealed
that NFI, BL86, TLI, BL89, RNI, and CFI behaved
differently across estimation methods at small sample
sizes, but they behaved consistently across estimation
methods at large sample sizes. Gamma hat, Mc, and
RMSEA also behaved less consistently across estima-
tion methods at small sample sizes. In addition, dis-
tribution accounted for a relatively small proportion
of variance in TLL, BL89, RNI, CFI, GFI, AGFI, and
RMSEA (1% ranged from .116 to .160). Estimation
method accounted for a small proportion of variance
in NFI and BL86 (n’s ranged from .242 to .264).
Analysis for simple and complex misspecified mod-
els 1 and 2. A series of 6 x 7 x 3 (Sample Size x
Distribution x Estimation Method) ANOVAs were
conducted on the fit indices derived from the simple
and complex misspecified models. The results were
similar for all the misspecified models; however, the
effect of estimation method was slightly increased as
the degree of model misspecification increased (see
Tables 8 and 9). Sample size was found to account for
a relatively small proportion of variance in NFI and
BL86 (m’s ranged from .144 to .206) and a moderate-
to-substantial amount of variance in GFI, AGFI,
gamma hat, CAK, CK, Mc, CN, and RMSEA (7’s

® Results from a five-way ANOVA (Sample Size x Dis-
tribution x Model Misspecification x Estimation Method x
Model Type) revealed that there were moderate-to-
substantial interaction effects between model misspecifica-
tion and model type (simple vs. complex model) for all fit
indices but CN.
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ranged from .268 to .825) under simple misspecified
models 1 and 2, as well as complex misspecified
model 1. Sample size accounted only for a moderate-
to-large proportion of variance in CAK, CK, and CN
(m?s ranged from .332 to .709) under complex mis-
specified model 2. A small proportion of variance in
GFI and AGFI also was accounted for by distribution
(m’s ranged from .153 to .264). Estimation method
had a moderate-to-substantial effect on NFI, BL86,
TLI, BL89, RNI, CFI, and SRMR (n’s ranged from
.292 to .673) derived from simple and complex mis-
specified models. A relatively small estimation-
method effect (*qzs ranged from .226 to .263) was
observed for gamma hat, Mc, and RMSEA derived
from complex misspecified model 2. Furthermore,
there were also relatively small-to-moderate interac-
tion effects between sample size and estimation
method (m?s ranged from .222 to .345) on gamma hat,
Mc, and RMSEA derived from simple and complex
misspecified models. Inspection of cell means re-
vealed that these three fit indices behaved less con-
sistently at small sample sizes than at large sample
sizes. Under the complex misspecified model 2, there
were a small distribution effect and a small interaction
effect between distribution and estimation method on
GFI and AGFI. Inspection of cell means suggested
that GFI and AGFI derived from complex misspeci-
fied model 2 behaved less consistently across estima-
tion methods under Distributional Conditions 1, 3,
and 4. Finally, inspection of Tables 7 through 9
yielded a systematic decrease in the magnitude of
estimation-method effect as a result of a decrease in
quality of models.”

Discussion

Our findings suggest that the performance of fit
indices is complex and that additional research with a
wider class of models and conditions is needed, to
provide final answers on the relative merits of many
of these indices. In spite of this complexity, there are
enough clear-cut results from this study to permit us
to make some very specific recommendations for
practice. We do this in a sequential manner, first mak-
ing suggestions about which indices not to use, then
concluding with suggestions about indices to use. A
good fit index should have a large model misspecifi-
cation effect accompanied with trivial effects of
sample size, distribution, and estimation method.
Summary tables and detailed description of various
sources of effects on fit indices are presented in our
technical report (Hu & Bentler, 1997).

Recommendations for the Selection of Fit
Indices in Practice

CAK and CK are not sensitive to model misspeci-
fication, estimation method, or distribution but are
extremely sensitive to sample size. We do nol recom-
mend their use.

CN is not sensitive to model misspecification, es-
timation method, or distribution but is very sensitive
to sample size. We do not recommend its use.

NFI and BL86 are not sensitive to simple model
misspecification but are moderately sensitive to com-
plex model misspecification. Although a slight effect
of estimation method under true-population models
and a substantial estimation-method effect under mis-
specified models were observed for NFI and BL86,
they are not sensitive to distribution. ML- and GLS-
based NFI and BL86 are sensitive to sample sizes.
The ADF-based NFI and BL86 are less sensitive to
sample size, but they substantially underestimate true-
population values. We do not recommend their use.

GFI and AGFI are not sensitive to model misspeci-
fication and estimation method. ML- and GLS-based
GFl and AGFI are not sensitive to distribution but are
sensitive to sample size. ADF-based GFI and AGFI
are sensitive to distribution but are not sensitive to
sample size. We do not recommend their use.

TLI, BL8%, RNI, and CFI are moderately sensitive
to simple model misspecification but are very sensi-
tive 1o complex model misspecification. They are not
influenced by estimation method under true-
population models but are substantially influenced by
estimation method under misspecified models. These
fit indices are less sensitive to distribution and sample
size. We recommend these fit indices be used in gen-
eral; however, ML-based TLI, BL.89, RNI, and CFI
are more preferable when sample size is small (e.g., N
= 250), because the GLS- and ADF-based TLI,
BL89, RNI, and CFI underestimate their true-
population values and have much larger variances
than those based on ML at small sample size.

ML- and GLS-based gamma hat, Mc, and RMSEA
are moderately sensitive to simple model misspecifi-

7 Four-way ANOVAs (Sample Size x Distribution x
Model Misspecification x Estimation Method) revealed that
there are substantial interaction effects between model mis-
specification and estimation method for Type 1, Type 2, and
Type 3 incremental fit indices and SRMR.
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cation and are very sensitive to complex model mis-
specification. These fit indices based on the ADF
method are less sensitive to both simple and complex
mode! misspecification. Estimation method exerts an
effect on gamma hat, Mc, and RMSEA at small
sample sizes but exerts no effect at large sample sizes.
ML- and GLS-based gamma hat, Mc, and RMSEA
are less sensitive to distribution and sample size. The
fit indices based on the ADF method are not sensitive
to distribution but are very sensitive to sample size.
ML- and GLS-based gamma hat, Mc, and RMSEA
performed equally well, and we recommended their
use. However, we do not recommend that the ADF-
based gamma hat, Mc, and RMSEA be used in prac-
tice.

Among all the fit indices studied, SRMR is most
sensitive to simple model misspecification and is
moderately sensitive to complex model misspecifica-
tion. SRMR is not sensitive to estimation method un-
der true-population medels but is sensitive to estima-
tion method under misspecified models. SRMR is less
sensitive to distribution and sample size. At small
sample sizes, GLS-based SRMR has a slight tendency
to overestimate true-population values, and ADF-based
SRMR substantially overestimates true-population
values. We recommend the ML-, GLS-, and ADF-
based SRMR be used in general, but ML-based
SRMR is preferable when sample size is small (e.g., N
< 250). The average absolute standardized residual
computed by EQS, not studied here, has an identical
rationale and should perform the same as SRMR.

On the basis of these results, with ML and GLS
methods, we recommend a two-index presentation
strategy for researchers. This would include definitely
using SRMR. and supplementing this with one of the
following indices: TLI, BL8&9, RNI, CFi, gamma hat,
Mc, or RMSEA. By using cutoff criteria for both
SRMR and one of the supplemented indices, research-
ers should be able to identify models with underpa-
rameterized factor covariance(s), underparameterized
factor loading(s), or a combination of both types of
underparameterization. These alternative indices per-
form interchangeably in all distributional conditions
{see Table 3} except when sample size is small (e.g.,
N =< 250). At small sample size, (a) the range of TLI
(or NNFI) tends to be large (e.g., Bentler, 1990); (b)
Mc tends to depart substantially from its true-
population values; and (c) RMSEA tends to overreject
substantially true-population models. Therefore a cau-
tious interpretation of model acceptability based on
any of these three fit indices is recommended when

sample size is small. Note that Marsh et al. (1996)
have proposed a normed version of TLI, to reduce the
variance of TLI, and have suggested that the normed
version of TLI may be more preferable when sample
size is small.

With the ADF method, we recommend the definite
use of SRMR, supplemented with one of the follow-
ing indices: TLI, BL.89, RNI, or CFI. However, we do
not recommend the use of any ADF-based fit indices
when sample size is small, because they depart sub-
stantially from their true-population values and tend
to overreject their true-population models (see also
Hu et al., 1992). Better results may be observed with
new approaches that attempt to improve ADF estima-
tion in small samples.”

Finally, most of the fit indices {(except gamma hat,
Mc, and RMSEA, which perform equally well under
ML and GLS methods) obtained from ML perform
much better (less likely to be influenced by various
sources of irrelevant effects and less likely to depart
from their true-population values) than those obtained
from GLS and ADF and should be preferred indica-
tors for model selection and evaluation.

Other General Observations

The ability to discriminate well-fitting from badly
fitting models for the ML-, GLS-, and ADF-based
SRMR is substantially superior to that of any other fit
index under simple misspecified models, but it is
slightly less sensitive to complex model misspecifi-
cation than several above-mentioned fit indices. One
possible explanation for this finding is that the load-
ings of the observed indications on a given factor
become biased due to the misspecification of the co-

® Under the ADF method, there was a substantial sample-
size effect on the three noncentrality-based absolute-fit in-
dices. Because these absolute-fit indices rely very heavily
on the quality of the ADF chi-square statistic and because
this statistic simply cannot be trusted at smaller sample sizes
(e.g., Bentler & Dudgeon, 1996; Hu et al., 1992), we are
optimistic that the finite sample improvements in the ADF
tests made, for example, by Yuan and Bentler (1997) will
remove this performance problem in the near future. In
general, these indices also have good sensitivity to model
misspecification. This does break down with ADF estima-
tion, and it is possible that this breakdown also will be
prevented with the Yuan—Bentler ADF test. Future work
will have to evaluate this suggestion.
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variance between two factors and thus the average of
squared residuals is more likely to capture this type of
misspecification as a result of a greater number of
biased parameter estimates obtained. Qur findings are
consistent with La Du and Tanaka’s (1989) findings
that ML-based NFI is more sensitive to the underpa-
rameterized model misspecification than the ML- and
GLS-based GFL. However, in contrast to the results of
Maiti and Mukherjee (1991), we have found GFI to be
quite insensitive to various types of underparameter-
ized model misspecification. Because they found GFI
to be sensitive as their newly proposed indices of
structural closeness (ISC), we suspect that ISC also
would not have performed well in our study. How-
ever, [SC possesses, under some circumstances, an
excellent property of going to an extremely small
value under extreme misspecification, which they call
specificity. Certainly this feature, and the ISC indices,
require further evaluation under conditions of extreme
model misfit.

A major effort in prior research on fit indices has
been to examine sensitivity of fit indices to sample
size. Virtnally all of this research has been conducted
under the true models (e.g., Anderson & Gerbing,
1984; Anderson et al., 1985; Bollen, 1986, 1980,
1990; Marsh et al., 1988). To test the generality of
previous findings, we examined the effect of sample
size on fit indices under both true-population and mis-
specified models. The means of the empirical sam-
pling distributions for Type 2 and Type 3 tncremental
indices varied with sample size to a lesser extent than
was found for Type 1 incremental fit indices. In keep-
ing with the findings of Marsh et al. (1988), Type 1
incremental fit indices tended to underestimate their
asymptotic values and overreject true models at small
sample sizes. This was especially true for indices ob-
tained from GLS and ADF. Obviously, Type 1 incre-
mental indices are influenced by the badness of the
null model as well as the goodness of fit of the target
model. Among the absolute-fit indices, GFI, AGFI,
CAK, and CK derived from ML and GLS methods, as
well as CAK, CK, and the noncentrality-based abso-
lute-fit indices derived from the ADF method, were
substantially influenced by sample size. The quality
of models does not have a substantial effect on the
relationship between the sample size and the mean
values of most of the fit indices studied here (CN is
the only exception). The pattern of association be-
tween the mean values of all three types of fit indices
and sample size for the two misspecified models are
quite similar to that for the true-population model.

Our results on absolute indices are mixed. The Type 2
and Type 3 incremental fit indices and the noncen-
trality-based absolute-fit indices, in general, outper-
form the Type 1 incremental and the rest of the ab-
solute-fit indices. The underestimation of perfect fit
by the fit indices studied here, which is evident at the
smaller sample sizes, becomes trivially small at the
two largest sample sizes (i.e., 2,500 and 5,000). This
is consistent with the theoretically predicted asymp-
totic properties and has been noted previously in sev-
eral other studies (e.g., Bearden et al., 1982; Bentler,
1990; La Du & Tanaka, 1989).

Qur findings on the effect of estimation method on
all three types of incremental fit indices are more
optimistic than those of Sugawara and MacCallum
(1993). Sugawara and MacCallum have reported that
values of incremental fit indices such as NFI, BL86,
BL89, and TLI varied substantially across estimation
methods and that this phenomenon held for both poor-
and well-fitting methods. However, our results indi-
cated that Type 2 and Type 3 incremental as well as
absolute-fit indices behave relatively consistently
across the three estimation methods under both types
of true-population models (especially when sample
size is relatively large), although Type | incremental
fit indices seem to behave less consistently across
estimation methods under hoth true-population and
misspecified models. These inconsistent findings may
be due to the differences in the range of sample sizes
and quality of models used in each of the studies, for
example, (a) small sample-size-to-model-size ratios
and (b) the use of good-fitting models instead of true-
population models by Sugawara and MacCallum.

Under both simple and complex misspecified mod-
els, all three types of incremental fit indices behave
less consistently across ML, GLS, and ADF methods.
These findings are consistent with those of Sugawara
and MacCallum (1993). Sugawara and MacCallum
have suggested that the effect of estimation methods
on fit is tied closely to the nature of the weight ma-
trices used by the methods. According to them, incre-
mental fit indices, which use the discrepancy function
value for the null model in their calculation, tend to
behave erratically across estimation methods, because
the discrepancy function values for a null model vary
as a function of the weight matrices defined in various
estimation methods. They also suggest that this phe-
nomenon will occur even for a model that is quite
consistent with the observed data. Our findings sug-
gest that their proposition cannct be generalized to
various situations (e.g., when there is dependence
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among latent variates or when a true-population
model is analyzed). For example, Type 2 and Type 3
incremental fit indices for the true-population model
behave consistently at moderate or large sample sizes
under the independence condition. It seems that when
more information is used for deriving a fit-index
value, the influence of weight matrices (and hence
estimation methods) on the performance of incremen-
tal fit indices (e.g., Type 2 and Type 3 incremental fit
indices} decreases. This is evident from our findings
that Type 2 and Type 3 incremental fit indices behave
much more consistently across estimation methods
than Type | incremental fit indices. This is especially
true when the sample size is large, the model is cor-
rectly specified, and the conditions for asymptotic ro-
bustness theory are satisfied. In addition, estimation
method has no effect on GFI, AGFI, CAK, and CK
derived from simple and complex true-population and
misspecified models. Estimation method has no effect
on CN under simple models, but it exerts small effect
on CN under complex models when sample size is
small, especially when there is dependence among
latent variates. Estimation method has a relatively
small effect on SRMR under both simple and complex
true-population models, whereas it has a moderate-to-
large effect on SRMR under both types of misspeci-
fied models. Thus, Sugawara and MacCallum’s sug-
gestion that nonincremental fit indices tend 1o behave
much more consistently across estimation than do in-
cremental fit indices is only partially supported, and
the differential performance among three types of in-
cremental fit indices need to be emphasized. Further-
mare, the interaction effect between sample size and
estimation method on the noncentrality-based abso-
lute-fit indices (i.e., gamma hat, Mc, and RMSEA)
seems to suggest that difference of weight matrices
used for various estimation methods by itself does not
provide sufficient rationale for explaining the incon-
sistent performance of various fit indices across esti-
mation methods. One of the plausible explanations to
this unexpected finding may be that the difference
between a sample test statistic T and its degrees of
freedom provides a biased estimate of the correspond-
ing population noncentrality parameter when sample
size is small.

The quality of models (degrees of model misspeci-
fication) seems to be related to the inconsistent per-
formance of all fit indices, although this relationship
is much less substantial for GFI, AGFI, CAK, and
CK. In general, they tend to perform less consistently
across estimation methods under the misspecified

models than under the true-population mode!. All the
fit indices behave more consistently across estimation
methods under the true-population model than under
the two misspecified models. In keeping with Suga-
wara and MacCallum’s (1993) findings, the extent of
consistent performance across estimation methods for
the absolute-fit indices depends on the quality of mod-
els. One relevant and interesting <question is how the
extent of model misspecification may affect the per-
formance of the noncentrality-based Type 3 incre-
mental and absolute-fit indices. As suggested, a test
statistic T can be approximated in large samples by
the noncentral x2 (df, \) distribution with true or not
extremely misspecified models and distributional as-
sumptions. It is likely that the degree of model mis-
specification will influence the performance of these
noncentrality-based fit indices more than it will affect
the other types of fit indices because of the violation
of assumption underlying the noncentrality-based fit
indices (i.e., they may not be distributed as a noncen-
tral chi-square variate under extremely misspecified
models). Future research needs to further address this
issue.

The only important remaining issue is the cutoff
value for these indices. Considering any model with a
fit index above .9 as acceptable (Bentler & Bonett,
1980), and one with an index below this value as
unacceptable, we have evaluated the rejection rates
for most of the fit indices, except CAK, CK, CN,
SRMR, and RMSEA. A cutoff value of 200 was used
for CN (cf., Hoelter, 1983). A cutoff value of .05 was
used for SRMR and RMSEA. Steiger (1989), Browne
and Mels (1990), and Browne and Cudeck (1993)
have recommended that values of RMSEA less than
.05 be considered as indicative of close fit. Browne
and Cudeck have also suggested that values in the
range of .05 to .08 indicate fair fit and that values
greater than .10 indicate poor fit. MacCallum,
Browne, and Sugawara (1996) consider values in the
range of .08 to .10 to indicate mediocre fit.

Although it is difficult to designate a specific cutoff
value for each fit index because it does not work
equally well with various types of fit indices, sample
sizes, estimators, or distributions, our results suggest a
cutoff value close to .95 for the ML-based TLI, BL.89,
CFI, RNI, and gamma hat; a cutoff value close to .90
for Mc; a cutoff value close to .08 for SRMR; and a
cutoff value close to .06 for RMSEA, before one can
conclude that there is a relatively good fit between the
hypothesized model and the observed data. Further-
more, the proposed twe-index presentation strategy
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(i.e., the use of the ML-based SRMR, supplemented
by either TLI, BL89, RNI, CFI, gamma hat, Mc, or
RMSEA) and the proposed cutoff values for the rec-
ommended fit indices are required to reject reasonable
propertions of various types of true-population and
misspecified models. Finally, the ML-based TLI, Mc,
and RMSEA tend to overreject true-population mod-
els at small sample sizes (N =< 250), and are less
preferable when sample size is small. Note that dif-
ferent cutoff values under various conditions (e.g.,
various sample sizes) are required for GLS- and ADF-
based fit indices and, hence, no cutoff values for GLS-
and ADF-based fit indices are recommended here. We
present a detailed discussion on the selection of cutoff
values for the ML-based fit indices elsewhere (Hu &
Bentler, 1997, 1999),

Conclusion

Our study has several strengths. First, a wide vari-
ety of fit indices, including several new indices such
as gamma hat, Mc, and RMSEA, were evaluated un-
der various conditions, such as estimation method,
distribution, and sample size, often encountered in
practice. Second, we studied performance of fit indi-
ces under various types of correct and misspecified
models. However, there are also limitations to this
study. Although a misspecified model has often been
defined by a nonzero noncentrality parameter (e.g.,
MacCallum et al., 1996; Satorra & Saris, 19853), the
rationale for model selection or misspecification re-
mains a weak link in any simulation study, in the
absence of consensus on the definition of model mis-
specification or systematic study of models in the lit-
erature and their likely misspecification. In our view,
parsimony is a separate issue, and we did not evaluate
the performance of fit indices against this criterion.
Some fit indices include penalty functions for nonpar-
simonious models (e.g., AGFl, TLI, CAK, CK,
RMSEA), whereas others do not (e.g., NFIL, GFI, and
CFI). Finally, our study examined the performance of
fit indices only under correct and underparameterized
confirmatory factor models. Further work should be
performed to explore the limits of generalizability in
various ways, for example, across types of structural
models and overparameterized models.

On the basis of the findings from previous studies
and our Monte Carlo study, we identified several criti-
cal factors that may influence the adequacy of perfor-
mance of fit indices. These factors include the degree
of sensitivity to model misspecification, sample size,

assumptions regarding the independence of latent
variates, and estimation methods. Violation of multi-
variate normality assumption alone seems to exert less
impact on the performance of fit indices. Like chi-
square statistics, fit indices are measures of the overall
model fit, but it is likely that one may acquire a very
good overall fit of the model while one or more areas
of local misspecification may remain. Thus, although
our discussion has been focused on the issues regard-
ing overall fit indices, consideration of other aspects
such as the adequacy and interpretability of parameter
estimates, model complexity, and many other issues
remains critical in deciding on the validity of a model.
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