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This study evaluated the sensitivity of maximum likelihood (ML)-, generalized

least squares (GLS)-, and asymptotic distribution-free (ADF)-based fit indices to

model misspecification, under conditions that varied sample size and distribution.

The effect of violating assumptions of asymptotic robustness theory also was ex-

amined. Standardized root-mean-square residual (SRMR) was the most sensitive

index to models with misspecified factor covariance(s), and Tucker-Lewis Index

(1973; TLI), Bollen's fit index (1989; BL89), relative noncentrality index (RNI),

comparative fit index (CFI), and the ML- and GLS-based gamma hat, McDonald's

centrality index (1989; Me), and root-mean-square error of approximation

(RMSEA) were the most sensitive indices to models with misspecified factor

loadings. With ML and GLS methods, we recommend the use of SRMR, supple-

mented by TLI, BL89, RNI, CFI, gamma hat, Me, or RMSEA (TLI, Me, and

RMSEA are less preferable at small sample sizes). With the ADF method, we

recommend the use of SRMR, supplemented by TLI, BL89, RNI, or CFI. Finally,

most of the ML-based fit indices outperformed those obtained from GLS and ADF

and are preferable for evaluating model fit.

This study addresses the sensitivity of various fit

indices to Underparameterized model misspecifica-

tion. The issue of model misspecification has been

almost completely neglected in evaluating the ad-

equacy of fit indices used to evaluate covariance

structure models. Previous recommendations on the

adequacy of fit indices have been primarily based on

the evaluation of the effect of sample size, or the

effect of estimation method, without taking into ac-

count the sensitivity of an index to model misspeci-

fication. In other words, virtually all studies of fit

indices have concentrated their efforts on the ad-

equacy of fit indices under the modeling null hypoth-
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esis, that is, when the model is correct. Although such

an approach is useful, as noted by Maid and Mukher-

jee (1991), it misses the main practical point for the

use of fit indices, namely, the ability to discriminate

well-fitting from badly fitting models. Of course, it is

certainly legitimate to ask that fit indices reliably

reach their maxima when the model is correct, for

example, under variations of sample size, but it seems

much more vital to assure that a fit index is sensitive

to misspecification of the model, so that it can be used

to determine whether a model is incorrect. Maiti and

Mukherjee term this characteristic sensitivity. Thus, a

good index should approach its maximum under cor-

rect specification but also degrade substantially under

misspecification. As far as we can tell, essentially no

studies have inquired to what extent this basic require-

ment is met by the many indices that have been pro-

posed across the years. Maiti and Mukherjee have

provided an analysis of only a few indices under very

restricted modeling conditions.

In this study, the sensitivity of four types of fit

indices, derived from maximum-likelihood (ML),

generalized least squares (GLS), and asymptotic dis-

tribution-free (ADF) estimators, to various types of

Underparameterized model misspecification is exam-

ined. Note that in an Underparameterized model, one
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or more parameters whose population values are non-

zero are fixed to zero. In addition, we evaluate the

adequacy of these four types of fit indices under con-

ditions such as violation of underlying assumptions of

multivariate normality and asymptotic robustness

theory, providing evidence regarding the efficacy of

the often stated idea that a model with a fit index

greater than (or, in some cases, less than) a conven-

tional cutoff value should be acceptable (e.g., Bentler

& Bonett, 1980). Also, for the first time, we evaluated

several new and supposedly superior indices (i.e.,

gamma hat, McDonald's [1989] centrality index

[Me], and root-mean-square error of approximation

[RMSEA]) that have been recommended with little or

no empirical support. We present here a nontechnical

summary of the methods and the results of our study.

Readers wishing a more detailed report of this study

should consult our complete technical report (Hu &

Bentler, 1997).

Historical Background

Structural equation modeling has become a stan-

dard tool in psychology for investigating the plausi-

bility of theoretical models that might explain the

interrelationships among a set of variables. In these

applications, the assessment of goodness-of-fit and

the estimation of parameters of the hypothesized mod-

el(s) are the primary goals. Issues related to the esti-

mation of parameters have been discussed elsewhere

(e.g., Bollen, 1989; Browne & Arminger, 1995; Chou

& Bentler, 1995); our discussion here focuses on

those issues that are critical to the assessment of good-

ness-of-fit of the hypothesized model(s).

The most popular ways of evaluating model fit are

those that involve the chi-square goodness-of-fit sta-

tistic and the so-called fit indices that have been of-

fered to supplement the chi-square test. The asymp-

totic chi-square test statistic was originally developed

to serve as a criterion for model evaluation or selec-

tion. In its basic form, a large value of the chi-square

statistic, relative to its degrees of freedom, is evidence

that the model is not a very good description of the

data, whereas a small chi-square is evidence that the

model is a good one for the data. Unfortunately, as

noted by many researchers, this simple version of the

chi-square test may not be a reliable guide to model

adequacy. The actual size of a test statistic depends

not only on model adequacy but also on which one

among several chi-square tests actually is used, as

well as other conceptually unrelated technical condi-

tions, such as sample size being too small or violation

of an assumption underlying the test, for example,

multivariate normality of variables, in the case of the

standard chi-square test (e.g., Bentler & Dudgeon,

1996; Chou, Bentler, & Satorra, 1991; Curran, West,

& Finch, 1996; Hu, Bentler, & Kano, 1992; Muthen &

Kaplan, 1992; West, Finch, & Curran, 1995; Yuan &

Bentler, 1997). Thus, a significant goodness-of-fit

chi-square value may be a reflection of model mis-

specification, power of the test, or violation of some

technical assumptions underlying the estimation

method. More important, it has been commonly rec-

ognized that models are best regarded as approxima-

tions of reality, and hence, using chi-square to test the

hypothesis that the population covariance matrix

matches the model-implied covariance matrix, 2 =

2(8), is too strong to be realistic (e.g., de Leeuw,

1983; Joreskog, 1978). Thus the standard chi-square

test may not be a good enough guide to model ad-

equacy.

As a consequence, alternative measures of fit,

namely, so-called fit indices, were developed and rec-

ommended as plausible additional measures of model

fit (e.g., Akaike, 1987; Bentler, 1990; Bentler & Bon-

ett, 1980; Bollen, 1986, 1989; lames, Mulaik, & Brett,

1982; JOreskog & Sorbom, 1981; Marsh, Balla, &

McDonald, 1988; McDonald, 1989; McDonald &

Marsh, 1990; Steiger & Lind, 1980; Tanaka, 1987;

Tanaka & Huba, 1985; Tucker & Lewis, 1973). How-

ever, despite the increasing popularity of using fit

indices as alternative measures of model fit, applied

researchers inevitably face a constant challenge in se-

lecting appropriate fit indices among a large number

of fit indices that have recently become available in

many popular structural equation modeling programs.

For instance, both LISREL 8 (Joreskog & Sorbom,

1993) and the PROC CALIS procedure for structural

equation modeling (SAS Institute, 1993) report the

values of about 20 fit indices, and EQS (Bentler &

Wu, 1995a, 1995b) prints the values of almost 10 fit

indices. Frequently, the values of various fit indices

reported in a given program yield conflicting conclu-

sions about the extent to which the model matches the

observed data. Applied researchers thus often have

difficulties in determining the adequacy of their Co-

variance structure models. Furthermore, as noted by

Bentler and Bonett (1980), who introduced several of

these indices and popularized the ideas, fit indices

were designed to avoid some of the problems of

sample size and distributional misspecification on

evaluation of a model. Initially, it was hoped that
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these fit indices would more unambiguously point to

model adequacy as compared with the chi-square test.

This optimistic state of affairs is unfortunately also

not true.

The Chi-Square Test

The conventional overall test of fit in covariance

structure analysis assesses the magnitude of discrep-

ancy between the sample and fitted covariance matri-

ces. Let S represent the unbiased estimator of a popu-

lation covariance matrix, 2, of the observed variables.

The population covariance matrix can be expressed as

a function of a vector containing the fixed and free

model parameters, that is, 9: 2 = 2(9). The param-

eters are estimated so that the discrepancy between

the sample covariance matrix S and the implied Co-

variance matrix 2(§) is minimal. A discrepancy func-

tion F - F[S, 2(9)] can be considered to be a mea-

sure of the discrepancy between 5 and 2(9) evaluated

at an estimator § and is minimized to yield Fmin. Un-

der an assumed distribution and the hypothesized

model 2(9) for the population covariance matrix 2,

the test statistic T — (N - l) ,̂, has an asymptotic

(large sample) chi-square distribution. The test statis-

tic T is usually called the chi-square statistic by other

researchers. In general, the null hypothesis 2 = 2(9)

is rejected if T exceeds a value in the chi-square dis-

tribution associated with an a level of significance.

The T statistics can be derived from various estima-

tion methods that vary in the degrees of sensitivity to

the distributional assumptions. The T statistic derived

from ML under the assumption of multivariate nor-

mality of variables is the most widely used summary

statistic for assessing the adequacy of a structural

equation model (Gierl & Mulvenon, 1995).

Types of Fit Indices

Unlike a chi-square test that offers a dichotomous

decision strategy implied by a statistical decision rule,

a fit index can be used to quantify the degree of fit

along a continuum. It is an overall summary statistic

that evaluates how well a particular covariance struc-

ture model explains sample data. Like R2 in multiple

regression, fit indices are meant to quantify something

akin to variance accounted for, rather than to test a

null hypothesis 2 = 2(6). In particular, these indices

generally quantify the extent to which the variation

and covariation in the data are accounted for by a

model. One of the most widely adopted dimensions

for classifying fit indices is the absolute versus incre-

mental distinction (Bollen, 1989; Gerbing & Ander-

son, 1993; Marsh et al., 1988; Tanaka, 1993). An

absolute-fit index directly assesses how well an a

priori model reproduces the sample data. Although no

reference model is used to assess the amount of in-

crement in model fit, an implicit or explicit compari-

son may be made to a saturated model that exactly

reproduces the observed covariance matrix. As a re-

sult, this type of fit index is analogous to R2 by com-

paring the goodness of fit with a component that is

similar to a total sum of squares. In contrast, an in-

cremental fit index measures the proportionate im-

provement in fit by comparing a target model with a

more restricted, nested baseline model. Incremental fit

indices are also called comparative fit indices. A null

model in which all the observed variables are allowed

to have variances but are uncorrelated with each other

is the most typically used baseline model (Bentler &

Bonett, 1980), although other baseline models have

been suggested (e.g., Sobel & Bohrnstedt, 1985).

Incremental fit indices can be further distinguished

among themselves. We define three groups of indices,

Types 1-3 (Hu & Bentler, 1995).' A Type 1 index

uses information only from the optimized statistic T,

used in fitting baseline (TB) and target (7"T) models. T

is not necessarily assumed to follow any particular

distributional form, though it is assumed that the fit

function F is the same for both models. A general

form of such indices can be written as Type 1 incre-

mental indices = \TB — T^ITS. The ones we study in

this article are the normed fit index (NFI; Bentler &

Bonett, 1980) and a fit index by Bollen (1986; BL86).

1 The terminology of Type 1 and Type 2 indices follows

Marsh et al. (1988), although our specific definitions of

these terms are not identical to theirs. Their Type 2 index

has some definitional problems, and its proclaimed major

example is not consistent with their own definition. They

define Type 2 indices as irT - TB\/\E - TB\, where TT is the

value of the statistic for the target model, 7"B is the value for

a baseline model, and E is the expected value of TT if the

target model is true. Note first that E may not be a single

quantity: Different values may be obtained depending on

additional assumptions, such as on the distribution of the

variables. As a result, the formula can give more than one

Type 2 index for any given absolute index. In addition, the

absolute values in the formula have the effect that their

Type 2 indices must be nonnegative; however, they state

that an index called the Tucker-Lewis Index (TLI; dis-

cussed later in text) is a Type 2 index. This is obviously not

true because TLI can be negative.
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Table 1 contains algebraic definitions, properties,

and citations for all fit indices considered in this

article.

Type 2 and Type 3 indices are based on an assumed

distribution of variables and other standard regularity

conditions. A Type 2 index additionally uses infor-

mation from the expected values of TT under the cen-

tral chi-square distribution. It assumes that the chi-

square estimator of a valid target model follows an

asymptotic chi-square distribution with a mean of df?,

where dfj- is the degrees of freedom for a target

model. Hence, the baseline fit Tz is compared with

dfT, and the denominator in the Type 1 index is re-

placed by (TB - dff). Thus, a general form of such

indices can be written as Type 2 incremental fit index

= I7"B - TTi/(rB - dfT). On the basis of the work of

Tucker and Lewis (1973), Rentier and Bonett (1980)

called such indices nonnormed fit indices, because

they need not have a 0-1 range even if TK ^ TT. We

study their index (NNFI or TLI) and a related index

developed by Bollen (1989; BL89).

A Type 3 index uses Type 1 information but addi-

tionally uses information from the expected values of

7"T or 7"B, or both, under the relevant noncentral chi-

square distribution. A noncentrality fit index usually

involves first defining a population-fit-index param-

eter and then using estimators of this parameter to

define the sample-fit index (Bentler, 1990; McDon-

ald, 1989; McDonald & Marsh, 1990; Steiger, 1989).

When the assumed distributions are correct, Type 2

and Type 3 indices should perform better than Type 1

indices because more information is being used. We

study Bentler's (1989, 1990) and McDonald and

Marsh's (1990) relative noncentrality index (RNI) and

Bentler's comparative fit index (CFT). Note also that

Type 2 and Type 3 indices may use inappropriate

information, because any particular T may not have

the distributional form assumed. For example, Type 3

indices make use of the noncentral chi-square distri-

bution for TB, but one could seriously question wheth-

er this is generally its appropriate reference distribu-

tion. We also study several absolute-fit indices. These

include the goodness-of-fit (GFI) and adjusted-GFI

(AGFI) indices (Bentler, 1983; Joreskog & Sorbom,

1984; Tanaka & Huba, 1985); Steiger's (1989)

gamma hat; a rescaled version of Akaike's informa-

tion criterion (CAK; Cudeck & Browne, 1983); a

cross-validation index (CK; Browne & Cudeck,

1989); McDonald's (1989) centrality index (Me);

Hoelter's (1983) critical N (CN); a standardized ver-

sion of Joreskog and Sorbom's (1981) root-mean-

square residual (SRMR; Bentler, 1995); and the

RMSEA (Steiger & Lind, 1980).

Issues in Assessing Fit by Fit Indices

There are four major problems involved in using fit

indices for evaluating goodness of fit: sensitivity of a

fit index to model misspecification, small-sample

bias, estimation-method effect, and effects of viola-

tion of normality and independence. The issue on sen-

sitivity of fit index to model misspecification has long

been overlooked and thus deserves careful examina-

tion. The other three issues are a natural consequence

of the fact that these indices typically are based on

chi-square tests: A fit index will perform better when

its corresponding chi-square test performs well. Be-

cause, as noted above, these chi-square tests may not

perform adequately at all sample sizes and also be-

cause the adequacy of a chi-square statistic may de-

pend on the particular assumptions it requires about

the distributions of variables, these same factors can

be expected to influence evaluation of model fit.

Sensitivity of Fit Index to

Model Misspecification

Among various sources of effects on fit indices, the

sensitivity of fit indices to model misspecification

(Gerbing & Anderson, 1993; i.e., the effect of model

misspecification) has not been adequately studied be-

cause of the intensive computational requirements. A

correct specification implies that a population exactly

matches the hypothesized model and also that the pa-

rameters estimated in a sample reflect this structure.

On the other hand, a model is said to be misspecified

when (a) one or more parameters are estimated whose

population values are zeros (i.e., an overparameter-

ized misspecified model), (b) one or more parameters

are fixed to zeros whose population values are non-

zeros (i.e., an underparameterized misspecified

model), or both. In the very few studies that have

touched on such an issue, the results are often incon-

clusive due either to the use of an extremely small

number of data sets (e.g., Marsh et al., 1988; Mulaik

et al., 1989) or to the study of a very small number of

fit indices under certain limited conditions (e.g.,

Bentler, 1990; La Du & Tanaka, 1989; Maiti &

Mukherjee, 1991). For example, using a small number

of simulated data sets. Marsh et al. (1988) reported

that sample size was substantially associated with sev-

eral fit indices under both true and false models. They

showed also that the values of most of the absolute-
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Table 1

Algebraic Definitions, Properties, and Citations for Incremental and Absolute-Fit Indices

Algebraic definition Property Citation

Incremental fit indices

Typel

NFI = (TB - rTyrB

BL86 = [(V<ffB) - (7y<ffT)]/(rB/<ffB)

Type 2

TLI (or NNFI) = [<TBW/B) - (T-r/dfr)]/[(Ts/dfs)

-1]

BL89 = (TB - rT)/(rB - <J/T)

TypeS

RNI = [(TB - dfB) - (TV - dfT)]/(TB - dfB)

CFI = 1 - max[(7"T - dfT), 0]/max[(7V - d/T

(7-B - rf/B), 0]

Absolute fit indices

GF!ML = 1 - [tr(2-'S - /)2/tr(S-'S)2]

AGFIML = 1 - - GFIMJ

Gamma hat = p/{p + 2[(7T - dfT)/(N - 1)]}

CAK= (TT/(N - 1)] + [2q/(N - 1)]

CK = [iy(AT - 1)] + \2qKN - p -2)]

Me = exp(-l/2[(rT - d/T)/(A- - 1)])

CN = {(zcri,

SRMR =

RMSEA

V c .'

{2S-2X-<%)/<*,
,-1 J.I

, where F0 = max[(TV -

Normed (has a 0-1 range)

Normed (has a 0-1 range)

Nonnormed (can fall

outside the 0-1 range)

Compensates for the effect

of model complexity

Nonnormed

Compensates for the effect

of model complexity

Nonnormed

Noncentrality based

Normed (has a 0-1 range)

Noncentrality based

Has a maximum value of

1.0

Can be less than 0

Has a maximum value of

1.0

Can be less than 0

Has a known distribution

Noncentrality based

Compensates for the effect

of model complexity

Compensates for the effect

of model complexity

Noncentrality based

Typically has the 0-1

range (but it may exceed

1)
A CN value exceeding 200

indicates a good fit of a

given model

Standardized

root-mean-square

residual

Has a known distribution

Compensates for the effect

of model complexity

Noncentrality based

Bentler & Bonett (1980)

Bollen (1986)

Tucker & Lewis (1973)

Bentler & Bonett (1980)

Bollen (1989)

McDonald & Marsh (1990)

Bentler (1989, 1990)

Bentler (1989, 1990)

Joreskog & Sorbom (1984)

Joreskog & Sorbom (1984)

Steiger (1989)

Cudeck & Browne (1983)

Browne & Cudeck (1989)

McDonald (1989)

Hoelter (1983)

Joreskog & Sorbom (1981)

Bentler (1995)

Steiger & Lind (1980)

Steiger (1989)

Note. NFI = normed fit index; TB — T statistic for the baseline model; TT = T statistic for the target model; BL86 = fit index by Bollen
(1986);d/B = degrees of freedom for the baseline model; dfr = degrees of freedom for the target model; TLI = Tucker-Lewis index (1973);
NNFI = nonnormed fit index; BL89 = fit index by Bollen (1989); RNI = relative noncentrality index; CFI = comparative fit index; GFI
= goodness-of-fit index; ML — maximum likelihood; tr — trace of a matrix; AGFI = adjusted-goodness-of-fit index; CAK — a rescaled
version of Akaike's information criterion; q = no. parameters estimated; CK = cross-validation index; Me — McDonald's centrality index;
CN = critical N; zcn, = critical z value at a selected probability level; SRMR = standardized root-mean-square residual; s,; = observed
covariances; as = reproduced covariances; su and SA = observed standard deviations; RMSEA = root-mean-square error of approximation.
The formulas for generalized least squares and asymptotic distribution-free versions of GFI and AGFI are shown in Hu and Benuer (1997).
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and Type 2 fit indices derived from true models were

significantly greater than those derived from false

models. La Du and Tanaka (1989, Study 2) studied

the effects of both overparameterized and underpa-

rameterized model misspecification (both with mis-

specified path[s] between observed variables) on the

ML- and GLS-based GFI and NFI. No significant

effect of overparameterized model misspecification

on these fit indices was found. A very small but sig-

nificant effect of underparameterized model misspeci-

fication was observed for some of these fit indices

(i.e., the ML-based NFI and ML-/GLS-based GFI).

The ML-based NFI also was found to be more sensi-

tive to this type of model misspecification than was

the ML- and GLS-based GFI. Marsh, Balla, and Hau

(1996) found that degrees of model misspecification

accounted for a large proportion of variance in NFI,

BL86, TLI, BL89, RNI, and CFI. Although their

study included several substantially misspecified

models, their analyses failed to reveal the degree of

sensitivity of these fit indices for a less misspecified

model. In our study, the sensitivity of various fit in-

dices to model misspecification, after controlling for

other sources of effects, are examined.

Small-Sample Bias

Estimation methods in structural equation modeling

are developed under various assumptions. One is that

the model 2 = 2(6) is true. Another is the assump-

tion that estimates and tests are based on large

samples, which will not actually obtain in practice.

The adequacy of the test statistics is thus likely to be

influenced by sample size, perhaps performing more

poorly in smaller samples that cannot be considered

asymptotic enough. In fact, the relation between

sample size and the adequacy of a fit index when the

model is true has long been recognized; for example,

Bearden, Sharma, and Teel (1982) found that the

mean of NFI is positively related to sample size and

that NFI values tend to be less than 1.0 when sample

size is small. Their early results pointed out the main

problem: possible systematic fit-index bias.

If the mean of a fit index, computed across various

samples under the same condition when the model is

true, varies systematically with sample size, such a

statistic will be a biased estimator of the correspond-

ing population parameter. Thus, the decision for ac-

cepting or rejecting a particular model may vary as a

function of sample size, which is certainly not desir-

able. The general finding seems to be a positive as-

sociation between sample size and the goodness-of-fit

fit index size for Type 1 incremental fit indices. Ob-

viously, Type 1 incremental indices will be influenced

by the badness of fit of the null model as well as the

goodness of fit of the target model, and Marsh et al.

(1988) have reported this type of effect. On the other

hand, the Type 2 and Type 3 indices seem to be sub-

stantially less biased. The results on absolute indices

are mixed.

A few key studies can be mentioned. Bollen (1986,

1989, 1990) found that the means of the sampling

distributions of NFI, BL86, GFI, and AGFI tended to

increase with sample size. Anderson and Gerbing

(1984) and Marsh et al. (1988) showed that the means

of the sampling distributions of GFI and AGFI were

positively associated with sample size whereas the

association between TLI and sample size was not sub-

stantial. Bentler (1990) also reported that TLI (and

NNFI) outperformed NFI on average; however, the

variability of TLI (and NNFI) at a small sample size

(e.g., N = 50) was so large that in many samples, one

would suspect model incorrectness and, in many other

samples, overfitting. Cudeck and Browne (1983) and

Browne and Cudeck (1989) found that CAK and CK

improved as sample size increased. Bollen and Liang

(1988) showed that Hoelter's (1983) CN increased as

sample size increased. McDonald (1989) reported that

the value of Me was consistent across different

sample sizes. Anderson and Gerbing (1984) found

that the mean values of RMR (the unstandardized

root-mean-square residual; Joreskog & Sorbom,

1981) was related to the sample size. J. Anderson,

Gerbing, and Narayanan (1985) further reported that

the mean values of RMR were related to the sample

size and model characteristics, such as the number of

indicators per factor, the number of factors, and indi-

cator loadings. In one of the major studies that inves-

tigated the effect of sample size on the older fit indi-

ces. Marsh et al. (1988) found that many indices were

biased estimates of their corresponding population pa-

rameters when sample size was finite. GFI appeared

to perform better than any other stand-alone index

(e.g., AGFI, CAR, CN, or RMR) studied by them.

GFI also underestimated its asymptotic value to a

lesser extent than did NFI.

The Type 2 and Type 3 incremental fit indices, in

general, perform better than either the absolute or

Type 1 incremental indices. This is true for the older

indices such as TLI, as noted above, but appears to be

especially true for the newer indices based on non-

centrality. For example, Bentler (1990) reported that

FI (called RNI in this article), CFI, and IFI (called
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BL89 in this article) performed essentially with no

bias, though by definition CFI must be somewhat

downward biased to avoid out-of-range values greater

than 1, which can occur with FI. The bias, however, is

trivial, and it gains lower sampling variability in the

index. The relation of RNI to CFI has been spelled out

in more detail by Goffin (1993), who prefers RNI to

CFI for model-comparison purposes.

Estimation-Method Effects

As noted above, the three major problems involved

in using fit indices are a natural consequence of the

fact that these indices typically are based on chi-

square tests. This rationale is elaborated through a

brief review of the ML, GLS, and ADF estimation

methods, as well as their relationships to the chi-

square statistics. For a more technical review of each

method, readers are encouraged to consult Hu et al.

(1992), Bentler and Dudgeon (1996), or, especially,

the original sources.

Estimation methods such as ML and GLS in co-

variance structure analysis are traditionally developed

under multivariate normality assumptions (e.g.,

Bollen, 1989; Browne, 1974; Joreskog, 1969). A vio-

lation of multivariate normality can seriously invali-

date normal-theory test statistics. ADF methods there-

fore have been developed (e.g., Bentler, 1983;

Browne, 1982, 1984) with the promising claim that

the test statistics for model fit are insensitive to the

distribution of the observations when the sample size

is large. However, empirical studies using Monte

Carlo procedures have shown that when sample size is

relatively small or model degrees of freedom are

large, the chi-square goodness-of-fit test statistic

based on the ADF method may be inadequate (Chou

et al., 1991; Curran et al., 1996; Hu et al., 1992;

Muthen & Kaplan, 1992; Yuan & Bentler, 1997).

The recent development of a theory for the asymp-

totic robustness of normal-theory methods offers hope

for the appropriate use of normal-theory methods

even under violation of the normality assumption

(e.g., Amemiya & Anderson, 1990; T. W. Anderson

& Amemiya, 1988; Browne, 1987; Browne & Sha-

piro, 1988; Mooijaart & Bentler, 1991; Satorra &

Bentler, 1990, 1991). The purpose of this line of re-

search is to determine under what conditions normal-

theory-based methods such as ML or GLS can still

correctly describe and evaluate a model with nonnor-

mally distributed variables. The conditions are tech-

nical but require the very strong condition that the

latent variables (common factors or errors) that are

typically considered as simply uncorrelated must

actually be mutually independent, and common fac-

tors, when correlated, must have freely estimated vari-

ance-covariance parameters. Independence exists

when normally distributed variables are uncorrelated.

However, when nonnormal variables are uncorrelated,

they are not necessarily independent. If the robustness

conditions are met in large samples, normal-theory

ML and GLS test statistics still hold, even when the

data are not normal. Unfortunately, because the data-

generating process is unknown for real data, one can-

not generally know whether the independence of fac-

tors and errors, or of the errors themselves, holds, and

thus, the practical application of asymptotic robust-

ness theory is unclear.

Although Hu et al. (1992) have examined the ad-

equacy of six chi-square goodness-of-fit tests under

various conditions, not much is known about estima-

tion effects on fit indices. Even if the distributional

assumptions are met, different estimators yield chi-

square statistics that perform better or worse at vari-

ous sample sizes. This may translate into differential

performance of fit indices based on different estima-

tors. However, the overall effect of mapping from

chi-square to fit index, while varying estimation

method, is unclear. In pioneering work, Tanaka

(1987) and La Du and Tanaka (1989) have found that

given the same model and data, NFI behaved errati-

cally across ML and GLS estimation methods. On the

other hand, they reported that GFI behaved consis-

tently across the two estimation methods. Their re-

sults must be due to the differential quality of the null

model chi-square used in the NFI but not the GFI

computations.2 On the basis of these results, Tanaka

and Huba (1989) have suggested that GFI is more

appropriate than NFI in finite samples and across dif-

ferent estimation methods. Using a large empirical

data set, Sugawara and MacCallum (1993) have found

that absolute-fit indices (i.e., GFI and RMSEA) tend

to behave more consistently across estimation meth-

ods than do incremental fit indices (i.e., NFI, TLI,

BL86, and BL89). This phenomenon is especially evi-

dent when there is a good fit between the hypoth-

esized model and the observed data. As the degree of

fit between hypothesized models and observed data

decreases, GFI and RMSEA behave less consistently

2 Earlier versions of EQS also incorrectly computed the

null model chi-square under GLS, thus affecting all incre-

mental indices.
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across estimation methods. Sugawara and MacCallum

have stated that the effect of estimation methods on fit

is tied closely to the nature of the weight matrices

used by the estimation methods. Ding, Velicer, and

Harlow (1995) found that all fit indices they studied,

except the TLI, were affected by estimation method.

Effects of Violation of Normality
and Independence

An issue related to the adequacy of fit indices that

has not been studied is the potential effect of violation

of assumptions underlying estimation methods, spe-

cifically, violation of distributional assumptions and

the effect of dependence of latent variates. The de-

pendence condition is one in which two or more vari-

ables are functionally related, even though their linear

correlations may be exactly zero. Of course, with nor-

mal data, a linear correlation of zero implies indepen-

dence. Nothing is known about the adequacy of fit

indices under conditions such as dependency among

common and unique latent variates, along with viola-

tions of multivariate normality, at various sample

sizes.

Study Questions and Performance Criteria

This study investigates several critical issues re-

lated to fit indices. First, the sensitivity of various

incremental and absolute-fit indices derived from ML,

GLS, and ADF estimation methods to underparam-

eterized model misspecification is investigated. Two

types of underparameterized model misspecification

are studied: simple misspecified models (i.e., models

with misspecified factor covariance[s]) and complex

misspecified models (i.e., models with misspecified

factor loadingfs]). Second, the stability of various fit

indices across ML, GLS, and ADF methods (i.e., the

effect of estimation method on fit indices) is studied.

Third, the performance of these fit indices, derived

from the ML, GLS, and ADF estimators under the

following three ways of violating theoretical condi-

tions, is examined: (a) Distributional assumptions are

violated, (b) assumed independence conditions are vi-

olated, and (c) asymptotic sample-size requirements

are violated. Our primary goals are to recommend fit

indices that perform the best overall and to identify

those that perform poorly. Good fit indices should be

(a) sensitive to model misspecification and (b) stable

across different estimation methods, sample sizes, and

distributions. Finally, attempts are also made to evalu-

ate the "rule of thumb" conventional cutoff criterion

for a given fit index (Bentler & Bonett, 1980), which

has been used in practice to evaluate the adequacy of

models.

Method

Two types of confirmatory factor models (called

simple model and complex model), each of which can

be expressed as x = A£ + e, were used to generate

measured variables x under various conditions on the

common factors £ and unique variates (errors) s. That

is, the vector of observed variables (xs) was a

weighted function of a common-factor vector (Q with

weights given by the factor-loading matrix, A, plus a

vector of error variates (e). The measured variables

for each model were generated by setting certain re-

strictions on the common factors and unique variates.

Several properties are noted in the usual application of

these types of factor analytic approaches. First, factors

are allowed to be correlated and have a covariance

matrix, 4>. Second, errors are uncorrelated with fac-

tors. Third, various error variates are uncorrelated and

have a diagonal covariance matrix, "V. Consequently,

the hypothesized model can be expressed as S = 2(9)

= A31 A' + 1P, and the elements of 6 are the unknown

parameters in A, 4>, and 1P.

Study Design

Simple and complex models are both confirmatory

factor analytic models based on 15 observed variables

with three common factors. Although many other

model types are possible, most models used in prac-

tice involve latent variables, and the confirmatory fac-

tor model is most representative of such models. For

example, variants of confirmatory factor models have

been the typically studied models in the new journal

Structural Equation Modeling, in the special section

on "Structural Equation Modeling in Clinical Re-

search" (Hoyle, 1994) published in the Journal of

Consulting and Clinical Psychology, and in the larger

models among the approximately two dozen modeling

articles published in the Journal of Personality and

Social Psychology (JPSP) during 1995. In practice,

correlations among factors may be replaced by hy-

pothesized paths, and correlated residuals may be

added. Such models also form the basis of many re-

cent simulation studies (e.g., Curran et al., 1996; Ding

et al., 1995; Marsh et al., 1996). It is important to

choose a number of variables that is not too small

(e.g., Hu et al., 1992) yet remains practical in the

context of a large simulation. We chose a number

larger than the median number of variables (9—10)
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used in JPSP's 1995 modeling studies but smaller

than many ambitious studies (e.g., Hoyle's special

section contains five studies with 24 or more vari-

ables). We also chose distributional conditions and

samples sizes to cover a wider range of practical rel-

evance. Figure 1 displays the structures of true-

population and misspecified models used in this

study.

The factor-loading matrix (transposed) A' for the

simple model had the structure shown at the top of the

page.

The structure of the factor-loading matrix (trans-

posed) A' for the complex model was as shown at the

bottom of the page.

For both the simple model and complex model,

variances of the factors were 1.0, and the covariances

among the three factors were 0.30,0.40, and 0.50. The

unique variances were taken as values that would

yield unit-variance measured variables under normal-

ity for the simple model. For the complex model, the

unique variances were taken as values that would

yield unit variance for most measured variables (ex-

cept for the 1st, 4th, and 9th observed variables in the

model) under normality. The unique variances for the

1st, 4th, and 9th observed variables were 0.51, 0.36,

and 0.36, respectively. In estimation, the factor load-

ing of the last indicator of each factor was fixed for

identification at 0.80, and the remaining nonzero pa-

rameters were free to be estimated.

Two hundred replications (samples) of a given

sample size were drawn from a known population

model in each of the seven distributional conditions as

defined by Hu et al. (1992). The first was a baseline

distributional condition involving normality, the next

three involved nonnormal variables that were inde-

pendently distributed when uncorrelated, and the final

three distributional conditions involved nonnormal vari-

ables that, although uncorrelated, remained dependent.

Distributional Condition 1. The factors and errors

and hence measured variables are multivariate nor-

mally distributed.

Distributional Conditions 2. Nonnormal factors

and errors, when uncorrelated, are independent, but

asymptotic robustness theory does not hold because

the covariances of common factors are not free pa-

rameters. The true excess kurtoses for the nonnormal

factor in the population are -1.0, 2.0, and 5.0. The

true excess kurtoses for the unique variates are -1.0,

0.5, 2.5,4.5,6.5, -1.0,1.0,3.0,5.0, 7.0, -0.5, 1.5,3.5,

5.5, and 7.5.

Distributional Condition 3. Nonnormal factors

and errors are independent but not multivariate nor-

mally distributed. The true kurtoses for the factors and

unique variates are identical to those in Distributional

Condition 2.

Distributional Condition 4. The errors and hence

the measured variables are not multivariate normally

distributed. The true kurtoses for the unique variates

are identical to those in Distributional Conditions 2

and 3, but the true kurtoses for the factors are set to

zero.

Distributional Condition 5. An elliptical distribu-

tion: Factors and errors are uncorrelated but depen-

dent on each other.

Distributional Condition 6. The errors and hence

the measured variables are not multivariate normally

distributed, and both factors and errors are uncorre-

lated but dependent on each other.

Distributional Condition 7. Nonnormal factors and

errors are uncorrelated but dependent on each other.

In Distributional Conditions 5-7, the factors and

error variates were divided by a random variable, z =

[X2(5)]1/2/V3, that was distributed independently of

the original common and unique factors. The division

was made so that the variances and covariances of the

factors remained unchanged but the kurtoses of the

factors and errors became modified. As a conse-

quence of this division, the factors and errors were

".70 .70 .75 .80 .80 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00"

.00 .00 .00 .70 .00 .70 .70

.70 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 ~|

.75 .80 .80 .00 .00 .00 .00 .00

.00 .70 .00 .70 .70 .75 .80 .80 J
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Figure I. Structures of (rue-population and misspecified models used in this study. Solid lines (except solid line e) represent

parameters that exist in the simple true-population model and both simple misspecified models, 1 and 2; dashed line a

represents the parameter that exists in the simple true-population model but was omitted from both simple misspecified models,

1 and 2; dashed line b represents the parameter that exists in the simple true-population model but was omitted from simple

Misspecified Model 2 only. Solid lines (including solid line e) and dashed lines (a and b) represent parameters that exist in the

complex true-population model and both complex misspecified models, 1 and 2; dashed and dotted line c represents the

parameter that exists in the complex true-population model but was omitted from both complex misspecified models, 1 and

2; dashed and dotted line d represents the parameter that exists in the complex true-population model but was omitted from

Complex Misspecified Model 2 only. V = observed variable.

uncorrelated but dependent on each other. Because of

the dependence, asymptotic robustness of normal-

theory statistics was not to be expected under Distri-

butional Conditions 5—7. To provide some idea about

the degree of nonnormahty of the factors and unique

variates in Distributional Conditions 5-7 after the di-

vision, the empirical univariate kurtoses of the latent

variables were computed across 5,000 x 200 =

1,000,000 observations. In Distributional Condition 5,

the empirical kurtoses for the factors were 5.1, 6.0,

and 5.5. The empirical kurtoses for the unique variates

were 4.9, 6.0, 4.7, 4.5, 4.9, 6.1, 5.7, 5.2, 4.3, 4.8, 5.9,

4.8, 5.1, 4.8, and 5.1. In Distributional Condition 6,

the empirical kurtoses for the factors were 5.1, 6.0,

and 5.5. The empirical kurtoses for the unique variates

were 2.6, 7.5, 10.4, 14.0, 19.3, 3.2, 9.5, 11.6, 15.1,

19.9, 4.4, 8.2, 14.2, 19.2, and 28.3. In Distributional

Condition 7, the empirical kurtoses for the factors

were 2.5, 18.0, and 2.14. The empirical kurtoses for

the unique variates were 2.6, 7.5, 10.4, 14.0, 19.3, 3.2,

9.5, 11.6, 15.1, 19.9, 4.4, 8.2, 14.2, 19.2, and 28.3.

Note that the empirical kurtoses for factors and unique

variates in Distributional Conditions 1-4 were very

close to the true kurtoses specified in these distribu-

tional conditions. By means of modified simulation

procedures in EQS (Bentler & Wu, 1995b) and SAS

program (SAS Institute, 1993), the various fit indices

based on ML, GLS, and ADF estimation methods

were computed hi each sample.3

Specification of Models and Procedure

For each type of model (i.e., simple or complex),

one true-population model and two misspecified mod-

els were used to examine the degree of sensitivity to

model misspecification of various fit indices.

True-population model. The performance of four

types of fit indices, derived from ML, GLS, and ADF

estimation methods, were examined under the above-

mentioned seven distributional conditions. A sample

size was drawn from the population, and the model

was estimated in that sample. The results were saved,

and the process was repeated for 200 replications.

This process was repeated for sample sizes 150, 250,

500, 1,000, 2,500, and 5,000. In all, there were 7

(distributions) x 6 (sample sizes) x 200 (replications)

= 8,400 samples. The fit indices based on ML, GLS,

and ADF methods were calculated for each of these

3 BL86, BL89, RNI, gamma hat, CAK, CK, Me, CN, and

RMSEA were computed by SAS programs.
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samples. This procedure was conducted for simple

and complex models separately.

Misspecified models. Although both underparam-

eterized and overparameterized models were consid-

ered as incorrectly specified models, our study only

examined the sensitivity of fit indices to underparam-

eterization. For a simple model, the covariances

among the three factors in the correctly specified

population model (true-population model) were non-

zero (see Figure 1). The covariance between Factors 1

and 2 (Covariance a in Figure 1) was fixed to zero for

Simple Misspecified Model 1. The covariances be-

tween Factors 1 and 2, as well as between Factors 1

and 3 (Covariances a and b) were fixed to zero for

Simple Misspecified Model 2. For a complex model,

three observed variables loaded on two factors in the

true-population model: (a) The first observed variable

loaded on Factors 1 and 3, (b) the fourth observed

variable loaded on Factors 1 and 2, and (c) the ninth

observed variables loaded on Factors 2 and 3 (see

Figure 1). Complex Misspecified Model 1, the first

observed variable loaded only on Factor 1 (Omitted

Path c), whereas the rest of the model specification

remained the same as the complex true-population

model. In Complex Misspecified Model 2, the first

and fourth observed variables loaded only on Factor

1: Omitted Paths c and d.

Using the design parameters specified in either the

simple or complex true-population model, a sample

size was drawn from the population, and each of the

misspecified models was estimated in that sample.

That is, the data for a given sample size were gener-

ated based on the structure specified by a true-

population (correct) model, and then the goodness-of-

fit between a misspecified model and the generated

data was tested. For each misspecified model, there

were 7 (distributions) x 6 (sample sizes) x 200 (rep-

lications) = 8,400 samples. The fit indices based on

ML, GLS, and ADF methods were calculated for each

of these samples.

Results

The adequacy of the simulation procedure and the

characteristics specified in each distributional condi-

tion were verified by Hu et al. (1992), and thus are not

discussed here. The overall mean distances (OMDs)

between observed fit index values and the correspond-

ing expected fit index values for the true-population

models were calculated for each fit index and are

tabulated in Table 2.4 Separate correlation matrices

among fit indices derived from ML, GLS, and ADF

methods also were obtained, to determine empirically

which subset of fit indices might have similar char-

acteristics. Results are shown in Table 3. A series of

analyses of variance (ANOVAs) were conducted for

each fit index obtained for the simple and complex

models. The T|2s, indicating the proportion of variance

in each fit index accounted for by each predictor vari-

able or interaction term, are presented in Tables 4

through 9. Note that the tf reported in this article is

equivalent to R2 (Hays, 1988, p. 369) and was calcu-

lated by dividing the Type 3 sum of squares for a

given predictor or interaction term by the corrected

total sum of squares (i.e., corrected total variance).5 In

addition, a statistical summary of the mean value and

standard deviation of each fit index across the 200

replications and the empirical rejection frequency (for

all but CAK and CK) based on rules of thumb were

tabulated by distribution, sample size, and estimation

method. Tables for the statistical summary for all fit

indices are included in our technical report (Hu &

Rentier, 1997).

4 The overall coefficient of variation, which is defined as

the mean of a distribution divided by its standard deviation,

also was calculated for each fit index derived from ML,

GLS, and ADF estimation methods. The conclusions re-

garding the performance of fit indices based on the mean

distance and coefficients of variation were similar. How-

ever, the overall mean distance provided a much better in-

dex when compared across fit indices with different ex-

pected values (i.e., 0 and 1) for a true-population model and

thus is reported in this article.
5 We calculated tf values to determine the relative con-

tribution of each main effect and interaction term. Given the

very large sample size, significance tests would not be in-

formative. Although our mixed-model ANOVA designs in-

cluded a repeated measure (i.e., model misspecification or

estimation method), we always used the total variance as the

denominator in our calculations, so that all effects were in a

common metric and are therefore directly comparable. This

approach can underestimate the effect sizes for the repeated

measures effects in mixed-model designs (Dodd & Schultz,

1973), and alternative approaches have been suggested

(e.g., Dodd & Schultz, 1973; Dwyer, 1974; Kirk, 1995;

Vaughan & Corballis, 1969); however, these approaches

make comparison of between- and within-subjects estimates

difficult because they are in different metrics. In our study,

the error components were extremely small, and the sample

size was very large, so that any advantage of using one of

these alternative approaches would be negligible (see

Sechrest & Yeaton, 1982).
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Table 2litUlC £.

Overall Mean Distances Between Observed Fit-Index Values and the Corresponding True Values for Each Fit Inde.

Under Simple and Complex True-Population Models

Fit index

NFI
BL86

TLI
BL89

RNI

CFI
GFI
AGFI

Gamma hat

CAK
CK
Me
SRMR

RMSEA

ML

.058

.069

.035

.028

.029

.029

.054

.075

.026

.660

.681

.092

.038

.035

Simple model

GLS

.237

.284

.132

.102

.110

.106

.050

.069

.076

.585

.606

.059

.053

.028

ADF

.187

.223

.125

.101

.105

.105

.058

.079

.046

.869

.890

.156

.110

.047

ML

.047

.058

.029

.023

.023

.023

.052

.074

.025

.663

.687

.088

.035

.034

Complex model

GLS

.221

.281

.131

.096

.105

.101

.048

.069

.016

.591

.614

.057

.049

.028

ADF

.175

.216

.115

.090

.093

.093

.054

.077

.042
.832
.855
.141
.114
.045

Note. Mean distance = V{[2(observed fit-index value - true fit-index value)2]/(no. observed fit indexes)}. ML = maximum likelihood;
GLS = generalized least squares; ADF = asymptotic distribution-free method; NFI = normed fixed index; TLI = Tucker-Lewis Index
(1973); BL86 = fit index by Bollen (1986); BL89 = fit index by Bollen (1989); RNI = relative noncentrality index; CFI = comparative
fit index; GFI = goodness-of-fit index; AGFI = adjusted goodness-of-fit index; CAK = a rescaled version of Akaike's information criterion;
CK = cross-validation index; Me = McDonald's centrality index; CN = critical N; SRMR = standardized root-mean-square residual;
RMSEA = root-mean-square error of approximation. Smallest value in each column is italicized. CN methods were not applicable.

Overall Mean Distance

The OMDs between observed fit-index values and

the corresponding expected fit-index values for the

simple and complex true-population models were cal-

culated for each fit index derived from ML, GLS, and

ADF estimation methods. For example, the mean dis-

tance for ML-based NFI of the simple true-population

model was equal to the square root of {[2(observed

fit-index value - 1)2]/8,400}. The smaller the mean

distance, the better the fit index. The purpose for cal-

culating the OMD was to gauge how likely and how

much each fit index might depart from its true value

under a correct model. Theoretically, these fit indices

would equal their true values under correct models,

and thus any departure from their values would indi-

cate instability resulting from small sample size or

violation of other underlying assumptions. For ex-

ample, TLI or RNI would behave as a normed fit

index asymptotically, but it could fall outside the 0-1

range when sample size was small or other underlying

assumptions were violated. Thus, the OMD was a fair

criterion for comparing the performance of fit indices

under true-population (correct) models, although one

might argue that it was an unfair comparison because

the ranges of fit indices differ (in fact, this only occurs

under some unusual conditions such as small sample

size). Table 2 contains the OMDs between the ob-

served fit-index values and the corresponding ex-

pected fit-index values. Overall, the values of the ML-

based TLI, BL89, RNI, CFI, gamma hat, SRMR, and

RMSEA were much closer to their corresponding true

values than the other ML-based fit indices. The values of

the GLS- or ADF-based GFI, gamma hat, and RMSEA

as well as the GLS-based Me and SRMR also were

closer to their corresponding true values than the other

GLS- or ADF-based fit indices. The distances for

CAK and CK were always unacceptable.

Similarities in Performance of Fit Indices

Separate correlation matrices among fit indices de-

rived from ML, GLS, and ADF methods for simple

and complex models were obtained, to determine

which fit indices might behave similarly. Each corre-

lation matrix was calculated by collapsing across

sample sizes, distributions, and model misspecifica-

tions, to determine if fit indices derived from ML,

GLS, or ADF method for simple or complex models

behaved similarly along three major dimensions:

sample size, distribution, and model misspecification.

The resulting patterns of correlations were identical;
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thus, we further calculated separate overall correlation

matrices across simple and complex models for ML,

GLS, and ADF methods. Table 3 contains the corre-

lations. Inspection of the correlation matrix for the

ML-based fit indices revealed that there were two

major clusters of correlated fit indices. NFI, BL86,

GFI, AGFI, CAR, and CK were clustered with high

correlations. Another cluster of high intercorrelations

included TLI, BL89, RNI, CFI, Me, and RMSEA. CN

and SRMR were found to be least similar to the other

ML-based fit indices. The same pattern was observed

for the GLS-based fit indices. Finally, three clusters of

ADF-based fit indices were observed in the correla-

tion matrix. The first cluster included NFI, BL86,

TLI, BL89, RNI, and CFI. The second cluster in-

cluded CAK, CK, gamma hat, Me, and RMSEA. The

last cluster included GFI and AGFI. As with ML and

GLS, CN and SRMR seemed to be less similar to the

other ADF-based fit indices.

Sensitivity to Underparameterized Model
Misspeciflcation and Effects of Sample Size
and Distribution

Our preliminary analyses indicated that values of

most fit indices vary across different estimation meth-

ods; thus, we performed a series of ANOVAs sepa-

rately for fit indices based on ML, GLS, and ADF

methods, to determine if different patterns of effects

of model misspecification, sample size, and distribu-

tion existed among the three estimation methods. Spe-

cifically, to examine the potential additive or multi-

plicative effects of model misspecification (i.e.,

sensitivity to Underparameterized model misspecifica-

tion) to the effect of sample size and distribution on fit

indices, we performed a series of 6 x 7 x 3 (Sample

Size x Distribution x Model Misspecification)

ANOVAs on each of the ML-, GLS-, and ADF-based

fit indices. Separate analyses were performed for

simple and complex models, to determine if different

types of model misspecification (i.e., models with

misspecified factor covariancefs] and models with

misspecified factor loadings) exerted differential ef-

fects on fit indices derived from ML, GLS, and ADF

methods. The larger the amount of variance accounted

for by model misspecification and the smaller the

amount of variance accounted for by sample size and

distribution, the better the fit index was considered to

be. Tables 4 through 6 display the i\2 for each pre-

dictor variable and interaction term derived from the

ANOVA performed on each fit index.

Analyses for simple models. For the ML- and

GLS-based fit indices derived for simple models (see

Tables 4 and 5), an extremely large proportion of

variance in SRMR (rfs = .914 and .859, respec-

tively) and a moderate proportion of variance in TLI,

BL89, RNI, CFI, gamma hat, Me, and RMSEA were

accounted for by model misspecification (T|2s ranged

from .309 to .487). Inspection of the cell means sug-

gested that the mean values of these fit indices derived

from the two simple misspecified models were sub-

stantially different from those derived from the simple

true-population model. Thus, these fit indices, espe-

cially SRMR, were more sensitive to simple misspeci-

fied models than the rest of the other fit indices.

Model misspecification accounted for a substantial

amount of variance (tf = .608) in the ADF-based

SRMR and a moderate amount of variance (Ti2s

ranged from .389 to .516) in the ADF-based NFI,

BL86, TLI, BL89, RNI, and CFI; thus, these ADF-

based fit indices were more sensitive to simple mis-

specified models than the other fit indices (see Ta-

ble 6).

Furthermore, sample size accounted for a substan-

tial amount of variance (t\2s ranged from .605 to .882)

in the ML- and GLS-based NFI, BL86, GFI, AGFI,

CAK, and CK, after controlling for the effects of dis-

tribution, model misspecification, and their interac-

tion terms. Distribution accounted for a relatively

small proportion of variance in any of the ML- and

GLS-based indices. Sample size accounted for a large

proportion of variance (T)2s ranged from .674 to .877)

in the ADF-based gamma hat, CAK, CK, Me, and

RMSEA. Sample size also accounted for a moderate

proportion of variance (T|2s = .343) in the ADF-based

CN. Distribution exerted a moderate effect on the

ADF-based GFI and AGFI (r,2s = .373 and .382,

respectively). Also, a moderate interaction effect be-

tween sample size and model misspecification on the

ML-, GLS-, and ADF-based CN (T|2s ranged from

.340 to .390) indicated that the sample-size effect was

more substantial for the simple true-population model

than for the two complex misspecified models.

Analyses for complex models. For the ML- and

GLS-based fit indices derived for complex models

(see Tables 4 and 5), a relatively large proportion of

variance in TLI, BL89, RNI, CFI, gamma hat, Me,

and RMSEA (iri2s ranged from .699 to .766) was ac-

counted for by model misspecification. A moderate

amount of variance in ML- and GLS-based NFI and

BL86 and the ML-based GFI and AGFI (-r\2s ranged

from .454 to .549) was accounted for by model mis-

specification. Model misspecification accounted for a
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small-to-moderate amount of variance in the GLS-

based GFI and AGFI Cn2s = .331 and .320, respec-

tively). It accounted for a moderate to relatively large

amount of variance in the ML- and GLS-based SRMR

(T|2s = .653 and .588, respectively). Model misspeci-

fication accounted for a moderate to relatively large

amount of variance (f|2s ranged from 5.93 to .667) in

the ADF-based NFI, BL86, TLI, BL89, RNI, and CFI

(see Table 6). Overall, all types of fit indices (except

SRMR) seemed more sensitive in detecting the com-

plex misspecified models (i.e., models with misspeci-

fied factor loading[s]) than the simple misspecified

models (i.e., models with misspecified factor covari-

ance[s]).6 SRMR was more sensitive in detecting the

simple than the complex misspecified models, al-

though the ability to detect complex misspecified

models for the ML- and GLS-based SRMR remained

reasonably high.

Sample size accounted for a small-to-large propor-

tion of variance in the ML- and GLS-based NFI,

BL86, GFI, AGFI, CAK, and CK (ti2s ranged from

.293 to .792). Sample size also accounted for a sub-

stantial amount of variance in the ADF-based gamma

hat, CAK, CK, Me, and RMSEA (t)2s ranged from

.541 to .827). Distribution accounted only for a mod-

erate amount of variance in the ADF-based GFI and

AGFI (T|2s = .409 and .422, respectively). A moder-

ate interaction effect between sample size and model

misspecification on the ML-, GLS-, and ADF-based

CN (iq2s ranged from .352 to .401) also was observed,

indicating that the sample-size effect was more sub-

stantial for the complex true-population model than

for the two complex misspecified models.

Effects of Estimation Method, Distribution, and
Sample Size on Fit Indices

To determine the importance of the additive and

multiplicative effects of sample size, distribution, and

estimation method on fit indices, we conducted a se-

ries of ANOVAs on fit indices derived from each of

the simple and complex true-population models and

misspecified models. These analyses were performed

separately for simple and complex true-population

models and misspecified models, to determine if the

effect of estimation method after controlling for the

effects of sample size and distribution varied as a

function of model quality, as reported by Sugawara

and MacCallum (1993). The results for simple and

complex models were similar and hence are discussed

together. Tables 7 through 9 contain the proportion of

variance in each fit index accounted for by sample

size, distribution, estimation method, and various in-

teraction terms derived from each ANOVA. Note that

the smaller the effects of sample size, distribution, and

estimation method, the better was the fit index.

Analyses for simple and complex true-population

models. The 6 x 7 x 3 (Sample Size x Distribution

x Estimation Method) ANOVAs performed on the fit

indices derived for the two types of true-population

models revealed that sample size accounted for a sub-

stantial amount of variance in each of the following fit

indices (see Table 7): NFI, BL86, GFI, AGFI, CAK,

CK, and CN Cn2s ranged from .480 to .888). A small-

to-moderate amount of variance was observed also for

the other fit indices. The interaction between sample

size and estimation method accounted for relatively

small amounts of variance in NFI, BL86, TLI, BL89,

RNI, CFI, gamma hat, Me, and RMSEA (r(2s ranged

from .102 to .266). Inspection of cell means revealed

that NFI, BL86, TLI, BL89, RNI, and CFI behaved

differently across estimation methods at small sample

sizes, but they behaved consistently across estimation

methods at large sample sizes. Gamma hat, Me, and

RMSEA also behaved less consistently across estima-

tion methods at small sample sizes. In addition, dis-

tribution accounted for a relatively small proportion

of variance in TLI, BL89, RNI, CFI, GFI, AGFI, and

RMSEA (T|2s ranged from .116 to .160). Estimation

method accounted for a small proportion of variance

in NFI and BL86 (ifs ranged from .242 to .264).

Analysis for simple and complex misspecified mod-

els 1 and 2. A series of 6 x 7 x 3 (Sample Size x

Distribution x Estimation Method) ANOVAs were

conducted on the fit indices derived from the simple

and complex misspecified models. The results were

similar for all the misspecified models; however, the

effect of estimation method was slightly increased as

the degree of model misspecification increased (see

Tables 8 and 9). Sample size was found to account for

a relatively small proportion of variance in NFI and

BL86 On2s ranged from .144 to .206) and a moderate-

to-substantial amount of variance in GFI, AGFI,

gamma hat, CAK, CK, Me, CN, and RMSEA (T|2s

6 Results from a five-way ANOVA (Sample Size x Dis-

tribution x Model Misspecification x Estimation Method x

Model Type) revealed that there were moderate-to-

substantial interaction effects between model misspecifica-

tion and model type (simple vs. complex model) for all fit

indices but CN.
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ranged from .268 to .825) under simple misspecified

models 1 and 2, as well as complex misspecified

model 1. Sample size accounted only for a moderate-

to-large proportion of variance in CAK, CK, and CN

Oi2s ranged from .332 to .709) under complex mis-

specified model 2. A small proportion of variance in

GFI and AGFI also was accounted for by distribution

Ol2s ranged from .153 to .264). Estimation method

had a moderate-to-substantial effect on NFI, BL86,

TLI, BL89, RNI, CFI, and SRMR (ifs ranged from

.292 to .673) derived from simple and complex mis-

specified models. A relatively small estimation-

method effect (T|2s ranged from .226 to .263) was

observed for gamma hat, Me, and RMSEA derived

from complex misspecified model 2. Furthermore,

there were also relatively small-to-moderate interac-

tion effects between sample size and estimation

method (T|2s ranged from .222 to .345) on gamma hat,

Me, and RMSEA derived from simple and complex

misspecified models. Inspection of cell means re-

vealed that these three fit indices behaved less con-

sistently at small sample sizes than at large sample

sizes. Under the complex misspecified model 2, there

were a small distribution effect and a small interaction

effect between distribution and estimation method on

GFI and AGFI. Inspection of cell means suggested

that GFI and AGFI derived from complex misspeci-

fied model 2 behaved less consistently across estima-

tion methods under Distributional Conditions 1, 3,

and 4. Finally, inspection of Tables 7 through 9

yielded a systematic decrease in the magnitude of

estimation-method effect as a result of a decrease in

quality of models.7

Discussion

Our findings suggest that the performance of fit

indices is complex and that additional research with a

wider class of models and conditions is needed, to

provide final answers on the relative merits of many

of these indices. In spite of this complexity, there are

enough clear-cut results from this study to permit us

to make some very specific recommendations for

practice. We do this in a sequential manner, first mak-

ing suggestions about which indices not to use, then

concluding with suggestions about indices to use. A

good fit index should have a large model misspecifi-

cation effect accompanied with trivial effects of

sample size, distribution, and estimation method.

Summary tables and detailed description of various

sources of effects on fit indices are presented in our

technical report (Hu & Bentler, 1997).

Recommendations for the Selection of Fit

Indices in Practice

CAK and CK are not sensitive to model misspeci-

fication, estimation method, or distribution but are

extremely sensitive to sample size. We do not recom-

mend their use.

CN is not sensitive to model misspecification, es-

timation method, or distribution but is very sensitive

to sample size. We do not recommend its use.

NFI and BL86 are not sensitive to simple model

misspecification but are moderately sensitive to com-

plex model misspecification. Although a slight effect

of estimation method under true-population models

and a substantial estimation-method effect under mis-

specified models were observed for NFI and BL86,

they are not sensitive to distribution. ML- and GLS-

based NFI and BL86 are sensitive to sample sizes.

The ADF-based NFI and BL86 are less sensitive to

sample size, but they substantially underestimate true-

population values. We do not recommend their use.

GFI and AGFI are not sensitive to model misspeci-

fication and estimation method. ML- and GLS-based

GFI and AGFI are not sensitive to distribution but are

sensitive to sample size. ADF-based GFI and AGFI

are sensitive to distribution but are not sensitive to

sample size. We do not recommend their use.

TLI, BL89, RNI, and CFI are moderately sensitive

to simple model misspecification but are very sensi-

tive to complex model misspecification. They are not

influenced by estimation method under true-

population models but are substantially influenced by

estimation method under misspecified models. These

fit indices are less sensitive to distribution and sample

size. We recommend these fit indices be used in gen-

eral; however, ML-based TLI, BL89, RNI, and CFI

are more preferable when sample size is small (e.g., N

« 250), because the GLS- and ADF-based TLI,

BL89, RNI, and CFI underestimate their true-

population values and have much larger variances

than those based on ML at small sample size.

ML- and GLS-based gamma hat, Me, and RMSEA

are moderately sensitive to simple model misspecifi-

7 Four-way ANOVAs (Sample Size x Distribution x

Model Misspecification x Estimation Method) revealed that

there are substantial interaction effects between model mis-

specification and estimation method for Type 1, Type 2, and

Type 3 incremental fit indices and SRMR.
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cation and are very sensitive to complex model mis-

specification. These fit indices based on the ADF

method are less sensitive to both simple and complex

model misspecification. Estimation method exerts an

effect on gamma hat, Me, and RMSEA at small

sample sizes but exerts no effect at large sample sizes.

ML- and GLS-based gamma hat, Me, and RMSEA

are less sensitive to distribution and sample size. The

fit indices based on the ADF method are not sensitive

to distribution but are very sensitive to sample size.

ML- and GLS-based gamma hat, Me, and RMSEA

performed equally well, and we recommended their

use. However, we do not recommend that the ADF-

based gamma hat, Me, and RMSEA be used in prac-

tice.

Among all the fit indices studied, SRMR is most

sensitive to simple model misspecification and is

moderately sensitive to complex model misspecifica-

tion. SRMR is not sensitive to estimation method un-

der true-population models but is sensitive to estima-

tion method under misspecified models. SRMR is less

sensitive to distribution and sample size. At small

sample sizes, GLS-based SRMR has a slight tendency

to overestimate true-population values, and ADF-based

SRMR substantially overestimates true-population

values. We recommend the ML-, GLS-, and ADF-

based SRMR be used in general, but ML-based

SRMR is preferable when sample size is small (e.g., N

=s 250). The average absolute standardized residual

computed by EQS, not studied here, has an identical

rationale and should perform the same as SRMR.

On the basis of these results, with ML and GLS

methods, we recommend a two-index presentation

strategy for researchers. This would include definitely

using SRMR and supplementing this with one of the

following indices: TLI, BL89, RNI, CFI, gamma hat,

Me, or RMSEA. By using cutoff criteria for both

SRMR and one of the supplemented indices, research-

ers should be able to identify models with underpa-

rameterized factor covariance(s), underparameterized

factor loading(s), or a combination of both types of

underparameterization. These alternative indices per-

form interchangeably in all distributional conditions

(see Table 3) except when sample size is small (e.g.,

N fi 250). At small sample size, (a) the range of TLI

(or NNFI) tends to be large (e.g., Bentler, 1990); (b)

Me tends to depart substantially from its true-

population values; and (c) RMSEA tends to overreject

substantially true-population models. Therefore a cau-

tious interpretation of model acceptability based on

any of these three fit indices is recommended when

sample size is small. Note that Marsh et al. (1996)

have proposed a normed version of TLI, to reduce the

variance of TLI, and have suggested that the normed

version of TLI may be more preferable when sample

size is small.

With the ADF method, we recommend the definite

use of SRMR, supplemented with one of the follow-

ing indices: TLI, BL89, RNI, or CFI. However, we do

not recommend the use of any ADF-based fit indices

when sample size is small, because they depart sub-

stantially from their true-population values and tend

to overreject their true-population models (see also

Hu et al., 1992). Better results may be observed with

new approaches that attempt to improve ADF estima-

tion in small samples.8

Finally, most of the fit indices (except gamma hat,

Me, and RMSEA, which perform equally well under

ML and GLS methods) obtained from ML perform

much better (less likely to be influenced by various

sources of irrelevant effects and less likely to depart

from their true-population values) than those obtained

from GLS and ADF and should be preferred indica-

tors for model selection and evaluation.

Other General Observations

The ability to discriminate well-fitting from badly

fitting models for the ML-, GLS-, and ADF-based

SRMR is substantially superior to that of any other fit

index under simple misspecified models, but it is

slightly less sensitive to complex model misspecifi-

cation than several above-mentioned fit indices. One

possible explanation for this finding is that the load-

ings of the observed indications on a given factor

become biased due to the misspecification of the co-

8 Under the ADF method, there was a substantial sample-

size effect on the three noncentrality-based absolute-fit in-

dices. Because these absolute-fit indices rely very heavily

on the quality of the ADF chi-square statistic and because

this statistic simply cannot be trusted at smaller sample sizes

(e.g., Bentler & Dudgeon, 1996; Hu et al., 1992), we are

optimistic that the finite sample improvements in the ADF

tests made, for example, by Yuan and Bender (1997) will

remove this performance problem in the near future. In

general, these indices also have good sensitivity to model

misspecification. This does break down with ADF estima-

tion, and it is possible that this breakdown also will be

prevented with the Yuan-Bentler ADF test. Future work

will have to evaluate this suggestion.
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variance between two factors and thus the average of

squared residuals is more likely to capture this type of

misspecification as a result of a greater number of

biased parameter estimates obtained. Our findings are

consistent with La Du and Tanaka's (1989) findings

that ML-based NFI is more sensitive to the underpa-

rameterized model misspecification than the ML- and

GLS-based GFI. However, in contrast to the results of

Maiti and Mukherjee (1991), we have found GFI to be

quite insensitive to various types of underparameter-

ized model misspecification. Because they found GFI

to be sensitive as their newly proposed indices of

structural closeness (ISC), we suspect that ISC also

would not have performed well in our study. How-

ever, ISC possesses, under some circumstances, an

excellent property of going to an extremely small

value under extreme misspecification, which they call

specificity. Certainly this feature, and the ISC indices,

require further evaluation under conditions of extreme

model misfit.

A major effort in prior research on fit indices has

been to examine sensitivity of fit indices to sample

size. Virtually all of this research has been conducted

under the true models (e.g., Anderson & Gerbing,

1984; Anderson et al., 1985; Bollen, 1986, 1989,

1990; Marsh et al., 1988). To test the generality of

previous findings, we examined the effect of sample

size on fit indices under both true-population and mis-

specified models. The means of the empirical sam-

pling distributions for Type 2 and Type 3 incremental

indices varied with sample size to a lesser extent than

was found for Type 1 incremental fit indices. In keep-

ing with the findings of Marsh et al. (1988), Type 1

incremental fit indices tended to underestimate their

asymptotic values and overreject true models at small

sample sizes. This was especially true for indices ob-

tained from GLS and ADF. Obviously, Type 1 incre-

mental indices are influenced by the badness of the

null model as well as the goodness of fit of the target

model. Among the absolute-fit indices, GFI, AGFI,

CAK, and CK derived from ML and GLS methods, as

well as CAK, CK, and the noncentrality-based abso-

lute-fit indices derived from the ADF method, were

substantially influenced by sample size. The quality

of models does not have a substantial effect on the

relationship between the sample size and the mean

values of most of the fit indices studied here (CN is

the only exception). The pattern of association be-

tween the mean values of all three types of fit indices

and sample size for the two misspecified models are

quite similar to that for the true-population model.

Our results on absolute indices are mixed. The Type 2

and Type 3 incremental fit indices and the noncen-

trality-based absolute-fit indices, in general, outper-

form the Type 1 incremental and the rest of the ab-

solute-fit indices. The underestimation of perfect fit

by the fit indices studied here, which is evident at the

smaller sample sizes, becomes trivially small at the

two largest sample sizes (i.e., 2,500 and 5,000). This

is consistent with the theoretically predicted asymp-

totic properties and has been noted previously in sev-

eral other studies (e.g., Bearden et al., 1982; Bentler,

1990; La Du & Tanaka, 1989).

Our findings on the effect of estimation method on

all three types of incremental fit indices are more

optimistic than those of Sugawara and MacCallum

(1993). Sugawara and MacCallum have reported that

values of incremental fit indices such as NFI, BL86,

BL89, and TLI varied substantially across estimation

methods and that this phenomenon held for both poor-

and well-fitting methods. However, our results indi-

cated that Type 2 and Type 3 incremental as well as

absolute-fit indices behave relatively consistently

across the three estimation methods under both types

of true-population models (especially when sample

size is relatively large), although Type 1 incremental

fit indices seem to behave less consistently across

estimation methods under both true-population and

misspecified models. These inconsistent findings may

be due to the differences in the range of sample sizes

and quality of models used in each of the studies, for

example, (a) small sample-size-to-model-size ratios

and (b) the use of good-fitting models instead of true-

population models by Sugawara and MacCallum.

Under both simple and complex misspecified mod-

els, all three types of incremental fit indices behave

less consistently across ML, GLS, and ADF methods.

These findings are consistent with those of Sugawara

and MacCallum (1993). Sugawara and MacCallum

have suggested that the effect of estimation methods

on fit is tied closely to the nature of the weight ma-

trices used by the methods. According to them, incre-

mental fit indices, which use the discrepancy function

value for the null model in their calculation, tend to

behave erratically across estimation methods, because

the discrepancy function values for a null model vary

as a function of the weight matrices defined in various

estimation methods. They also suggest that this phe-

nomenon will occur even for a model that is quite

consistent with the observed data. Our findings sug-

gest that their proposition cannot be generalized to

various situations (e.g., when there is dependence
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among latent variates or when a true-population

model is analyzed). For example, Type 2 and Type 3

incremental fit indices for the true-population model

behave consistently at moderate or large sample sizes

under the independence condition. It seems that when

more information is used for deriving a fit-index

value, the influence of weight matrices (and hence

estimation methods) on the performance of incremen-

tal fit indices (e.g.. Type 2 and Type 3 incremental fit

indices) decreases. This is evident from our findings

that Type 2 and Type 3 incremental fit indices behave

much more consistently across estimation methods

than Type 1 incremental fit indices. This is especially

true when the sample size is large, the model is cor-

rectly specified, and the conditions for asymptotic ro-

bustness theory are satisfied. In addition, estimation

method has no effect on GFI, AGFI, CAK, and CK

derived from simple and complex true-population and

misspecified models. Estimation method has no effect

on CN under simple models, but it exerts small effect

on CN under complex models when sample size is

small, especially when there is dependence among

latent variates. Estimation method has a relatively

small effect on SRMR under both simple and complex

true-population models, whereas it has a moderate-to-

large effect on SRMR under both types of misspeci-

fied models. Thus, Sugawara and MacCallum's sug-

gestion that nonincremental fit indices tend to behave

much more consistently across estimation than do in-

cremental fit indices is only partially supported, and

the differential performance among three types of in-

cremental fit indices need to be emphasized. Further-

more, the interaction effect between sample size and

estimation method on the noncentrality-based abso-

lute-fit indices (i.e., gamma hat, Me, and RMSEA)

seems to suggest that difference of weight matrices

used for various estimation methods by itself does not

provide sufficient rationale for explaining the incon-

sistent performance of various fit indices across esti-

mation methods. One of the plausible explanations to

this unexpected finding may be that the difference

between a sample test statistic 7" and its degrees of

freedom provides a biased estimate of the correspond-

ing population noncentrality parameter when sample

size is small.

The quality of models (degrees of model misspeci-

fication) seems to be related to the inconsistent per-

formance of all fit indices, although this relationship

is much less substantial for GFI, AGFI, CAK, and

CK. In general, they tend to perform less consistently

across estimation methods under the misspecified

models than under the true-population model. All the

fit indices behave more consistently across estimation

methods under the true-population model than under

the two misspecified models. In keeping with Suga-

wara and MacCallum's (1993) findings, the extent of

consistent performance across estimation methods for

the absolute-fit indices depends on the quality of mod-

els. One relevant and interesting question is how the

extent of model misspecification may affect the per-

formance of the noncentrality-based Type 3 incre-

mental and absolute-fit indices. As suggested, a test

statistic T can be approximated in large samples by

the noncentral x2 (df, X) distribution with true or not

extremely misspecified models and distributional as-

sumptions. It is likely that the degree of model mis-

specification will influence the performance of these

noncentrality-based fit indices more than it will affect

the other types of fit indices because of the violation

of assumption underlying the noncentrality-based fit

indices (i.e., they may not be distributed as a noncen-

tral chi-square variate under extremely misspecified

models). Future research needs to further address this

issue.

The only important remaining issue is the cutoff

value for these indices. Considering any model with a

fit index above .9 as acceptable (Bentler & Bonett,

1980), and one with an index below this value as

unacceptable, we have evaluated the rejection rates

for most of the fit indices, except CAK, CK, CN,

SRMR, and RMSEA. A cutoff value of 200 was used

for CN (cf., Hoelter, 1983). A cutoff value of .05 was

used for SRMR and RMSEA. Steiger (1989), Browne

and Mels (1990), and Browne and Cudeck (1993)

have recommended that values of RMSEA less than

.05 be considered as indicative of close fit. Browne

and Cudeck have also suggested that values in the

range of .05 to .08 indicate fair fit and that values

greater than .10 indicate poor fit. MacCallum,

Browne, and Sugawara (1996) consider values in the

range of .08 to .10 to indicate mediocre fit.

Although it is difficult to designate a specific cutoff

value for each fit index because it does not work

equally well with various types of fit indices, sample

sizes, estimators, or distributions, our results suggest a

cutoff value close to .95 for the ML-based TLI, BL89,

CFI, RNI, and gamma hat; a cutoff value close to .90

for Me; a cutoff value close to .08 for SRMR; and a

cutoff value close to .06 for RMSEA, before one can

conclude that there is a relatively good fit between the

hypothesized model and the observed data. Further-

more, the proposed two-index presentation strategy
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(i.e., the use of the ML-based SRMR, supplemented

by either TLI, BL89, RNI, CH, gamma hat, Me, or

RMSEA) and the proposed cutoff values for the rec-

ommended fit indices are required to reject reasonable

proportions of various types of true-population and

misspecified models. Finally, the ML-based TLI, Me,

and RMSEA tend to overreject true-population mod-

els at small sample sizes (N =£ 250), and are less

preferable when sample size is small. Note that dif-

ferent cutoff values under various conditions (e.g.,

various sample sizes) are required for GLS- and ADF-

based fit indices and, hence, no cutoff values for GLS-

and ADF-based fit indices are recommended here. We

present a detailed discussion on the selection of cutoff

values for the ML-based fit indices elsewhere (Hu &

Bentler, 1997, 1999).

Conclusion

Our study has several strengths. First, a wide vari-

ety of fit indices, including several new indices such

as gamma hat, Me, and RMSEA, were evaluated un-

der various conditions, such as estimation method,

distribution, and sample size, often encountered in

practice. Second, we studied performance of fit indi-

ces under various types of correct and misspecified

models. However, there are also limitations to this

study. Although a misspecified model has often been

defined by a nonzero noncentrality parameter (e.g.,

MacCallum et al., 1996; Satorra & Saris, 1985), the

rationale for model selection or misspecification re-

mains a weak link in any simulation study, in the

absence of consensus on the definition of model mis-

specification or systematic study of models in the lit-

erature and their likely misspecification. In our view,

parsimony is a separate issue, and we did not evaluate

the performance of fit indices against this criterion.

Some fit indices include penalty functions for nonpar-

simonious models (e.g., AGFI, TLI, CAK, CK,

RMSEA), whereas others do not (e.g., NFI, GFI, and

CFI). Finally, our study examined the performance of

fit indices only under correct and underparameterized

confirmatory factor models. Further work should be

performed to explore the limits of generalizability in

various ways, for example, across types of structural

models and overparameterized models.

On the basis of the findings from previous studies

and our Monte Carlo study, we identified several criti-

cal factors that may influence the adequacy of perfor-

mance of fit indices. These factors include the degree

of sensitivity to model misspecification, sample size,

assumptions regarding the independence of latent

variates, and estimation methods. Violation of multi-

variate normality assumption alone seems to exert less

impact on the performance of fit indices. Like chi-

square statistics, fit indices are measures of the overall

model fit, but it is likely that one may acquire a very

good overall fit of the model while one or more areas

of local misspecification may remain. Thus, although

our discussion has been focused on the issues regard-

ing overall fit indices, consideration of other aspects

such as the adequacy and interpretability of parameter

estimates, model complexity, and many other issues

remains critical in deciding on the validity of a model.
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