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Estimation of Mediated Effects in
Latent Variable Models

John F. Finch
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Texas A&M University

Stephen G. West and David P. MacKinnon
Department of Psychology
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A Monte Carlo approach was used to examine bias in the estimation of indirect effects
and their associated standard errors. In the simulation design, (a) sample size, (b) the
level of nonnormality characterizing the data, (c) the population values of the model
parameters, and (d) the type of estimator were systematically varied. Estimates of
model parameters were generally unaffected by either nonnormality or small sample
size. Under severely nonnormal conditions, normal theory maximum likelihood
estimates of the standard error of the mediated effect exhibited less bias (approxi-
mately 10% to 20% too small) compared to the standard errors of the structural
regression coefficients (20% to 45% too small). Asymptotically distribution free
standard errors of both the mediated effect and the structural parameters were
substantially affected by sample size, but not nonnormality. Robust standard errors
consistently yielded the most accurate estimates of sampling variability.

In structural equation models, causal relations among variables can be divided into
two types. Direct effects involve only direct connections between variables,
whereas indirect (mediated) effects are transmitted via one or more intervening
variables (Alwin & Hauser, 1975; Duncan, 1975). Consideration of both types of
effects is important both in theory testing research (e.g., Bentler & Speckart, 1981 ;
Fiske, Kenny, & Taylor, 1982) and applied research that attempts to explain the

Requests for reprints should be sent to John F. Finch, Department of Psychology, Texas A&M
University, College Station, TX 77843-4235. E-mail: jff@psyc.tamu.edu
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8 8 FINCH, WEST, MACKINNON

mechanisms through which treatment effects operate (MacKinnon, 1994; Mac-Kinnon
et al., 1991; West, Aiken, & Todd, 1993). The failure to consider both types of effects
can obscure the true nature of a causal process and lead to incorrect causal inferences.
Despite the importance of mediational analyses, which partition the total effect into
direct and indirect effects, few studies have formally tested mediated effects. This has
occurred even though several discussions in the psychological research literature have
highlighted the importance of mediational analysis (Baron & Kenny, 1986; James &
Brett, 1984; Judd & Kenny, 1981; MacKinnon & Dwyer, 1993).

The lack of attention to mediated effects may be due, in part, to the relatively
recent development of statistical procedures for testing mediation. Historically,
potential mediated effects were either ignored or were discussed without an explicit
test of statistical significance (MacKinnon & Dwyer, 1993). More recently, Sobel
( 1982,1986) developed a large sample test of mediation using the multivariate delta
method to derive the standard error of the indirect effect. The multivariate delta
standard error (Sobel 1982, 1986), however, is based on asymptotic statistical
theory and assumes multivariate normality of the observed variables (see Rice,
1988, pp. 142-147, for a general presentation of the delta method). Guidelines
concerning the minimum sample size required for application of the technique are
only now beginning to appear. Under multivariate normality, Stone and Sobel
( 1990) suggested that a sample size of at least 400 is required for accurate estimation
of the standard errors of mediated effects in large nonrecursive latent variable (LV)
models. For a manifest variable path model with six observed variables, Stone and
Sobel (1990) suggested a sample size of at least 200, although simulation studies
by MacKinnon and his colleagues (MacKinnon & Dwyer, 1993; MacKinnon,
Warsi, & Dwyer, 1995) suggested that the sample size requirements for some
manifest variable models may be more modest. Using a manifest variable model
with three observed variables and multivariate normal data, MacKinnon and Dwyer
(1993) examined the accuracy of several different formulas for estimating indirect
effect standard errors, including the multivariate delta method (Sobel, 1982). These
investigators found little bias and close agreement across estimation methods at
sample sizes as small as 50. Sample size requirements for the accurate estimation
of the standard errors of mediated effects in LV models are less well understood.
Furthermore, it remains to be determined whether indirect effect standard errors in
LV models are accurate in the presence of nonnormal data.

This study extends previous research by Mackinnon and his colleagues (MacK-
innon & Dwyer, 1993; MacKinnon et al., 1995) and Stone and Sobel (1990) in three
important respects. In this study, we examine indirect effect estimation in the
context of (a) nonnormally distributed data, (b) a LV model, and (c) multiple
methods of estimation. Many studies based on confirmatory factor models have
shown maximum likelihood (ML) standard errors to be negatively biased when the
data are nonnormal (see West, Finch, & Curran, 1995, for a review). To date, no
studies have explicitly examined bias in the standard errors of mediated effects in
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NONNORMALITY AND MEDIATION 8 9

LV models as a result of nonnormality and small sample size. Here, we compare
multiple methods of estimation and systematically vary characteristics of the model
and the data to determine the extent to which the estimated standard errors of
mediated effects are adversely affected.

ESTIMATING INDIRECT EFFECTS

Figure 1 illustrates a basic mediational model involving both a direct and an indirect
effect. In this model, the effect of the independent variable (r\ i) on the final outcome
variable (T|3) can be decomposed into a direct effect and an indirect effect through
a mediating variable (r|2). For the basic model presented in Figure 1, the value of
the indirect effect is estimated as bib2. For this model, Sobel's (1982, 1986)
asymptotic standard error1 of the indirect effect based on the multivariate delta

method is equal to ^bfo
b2

1The exact variance of the product of two independent random variables is discussed in several
mathematical statistics texts (e.g.. Rice, 1988), and for the b1b2 product this variance equals.

Sobel's (1982, 1986) variance based on the multivariate delta method

mits the typically negligible term.

FIGURE 1 Latent variable model used in simulations. Consistent with LISREL all-y notation,
latent constructs are denoted by T| and are enclosed in circles, manifest variables (fi) are enclosed
in boxes, errors in equations are denoted by Ç, and errors of measurement in the observed
variables are denoted by 8.
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9 0 FINCH, WEST, MACKINNON

STATISTICAL THEORY

Normal theory estimation procedures, notably ML and generalized least squares
(GLS), are currently the most widely used techniques for estimating the parameters
of LV structural equation models. Assuming a correctly specified model, ML and
GLS produce similar parameter estimates and standard errors in large samples. Both
procedures, however, operate under the assumption that the manifest variables are
multinormally distributed. Because real data often violate this assumption (Micceri,
1989), there has been growing interest in determining the robustness of normal
theory estimators. Studies examining bias in ML parameter estimates have shown
ML to be accurate at sample sizes of 100 under conditions of multivariate normality
(Boomsma, 1982) and to exhibit negligible bias even under marked nonnormality.
In contrast, simulation studies suggest that ML and GLS %2 test statistics are substan-
tially overestimated, and ML and GLS standard errors are substantially attenuated when
the data arc nonnormal (e.g., Harlow, 1985; see West et al., 1995, for a review).

Two different approaches are most frequently used by researchers attempting to
address these problems with normal theory estimation. The first approach is
Browne's (1982,1984) asymptotically distribution free (ADF) estimation method.
Browne has demonstrated that by using higher order moment information, a
distribution free estimator can be developed that possesses the same desirable
asymptotic properties as ML and GLS, but requires milder distributional assump-
tions. The ADF estimator, however, has been shown to be affected by both model
size and sample size (Hu, Bentler, & Kano, 1992; Muthén & Kaplan, 1992).
Because ADF estimation requires the storage and inversion of a p* x p* weight
matrix at each iteration (where p* represents the p{p + 1 ) / 2 nonredundant elements
in the covariance matrix of the p observed variables), moderate to large models
become computationally problematic. In addition, large sample sizes are required
to obtain stable estimates of the higher order elements contained in the ADF weight
matrix (see Appendix).

The second approach is to adjust the normal theory %2 and standard errors for
the presence of nonzero kurtosis. Although the normal theory %2 test statistic does
not follow the expected %2 distribution under conditions of nonnormality, this test
statistic may be corrected or rescaled to more closely approximate the referenced
X2 distribution (Browne, 1982, 1984). Satorra and Bentler (1988; Satorra, 1990,
1991) developed a variant of this rescaled test statistic that is currently implemented
in the EQS program (Bentler, 1989). This rescaled %2 test statistic appears to be less
sensitive to model size and sample size than the y^ produced by the ADF estimator
(Chou, Bentler, & Satorra, 1991; Hu et al., 1992). However, the adjustment
procedure is theoretically not as asymptotically efficient as the ADF estimator.

With respect to standard errors, a correction to normal theory standard errors in
the form of a robust covariance matrix of the parameter estimates has also been
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NONNORMALITY AND MEDIATION 9 1

proposed by Browne (1982, 1984) and a variant of this correction procedure
(Bentler, 1983;Bentler&Dijkstra, 1985;Satorra, 1990,1991) is currently available
in EQS. This robust covariance matrix, which allows for deviations from multinor-
mality in the manifest variables, may be employed in conjunction with normal
theory ML. Robust standard error estimates, which are theoretically valid in large
samples even in the presence of nonzero kurtosis, can be computed from this robust
matrix as the square root of the diagonal elements divided by n.

Studies comparing ML, ML-robust (ML-r), and ADF standard errors in confir-
matory factor analysis (CFA) models have shown ML standard errors to be accurate
when data are multinomial, but biased when the data are nonnormal (Chou et al.,
1991). ADF, by contrast, yields correct standard errors, but only at large sample
sizes (Hu et al., 1992; Yung & Bentler, 1994).

STUDY 1

Study 1 focuses on the robustness of ML and ADF parameter estimates of direct
and indirect effects and their associated standard errors varying (a) sample size, (b)
the population values for the model parameters, and (c) the degree of nonnormality
characterizing the data. In addition to normal theory ML standard errors, ML-r
standard errors were also examined to determine the range of nonnormality condi-
tions under which these standard errors are accurate.

Method

Model Specification

The model considered in this study was comprised of three latent factors with
three manifest indicators per factor (see Figure 1). Four sets of parameter values,
four sample sizes (150, 250,500, 1,000), and three distributional conditions were
considered. Following the precedent of Hu et al. (1992), 200 replications were run
in each of the 48 conditions.

The first distributional condition corresponded to the ideal situation in which all
measured variables were specified to be normally distributed in the population (all
univariate skewness and kurtosis2 coefficients equal to 0). The second and third
distributional conditions reflected moderate (skewness = 2 and kurtosis = 7) and

2Following the convention of a number of statistical software packages, the univariate kurtosis
coefficient in EQS is rescaled so that 0 corresponds to that of the normal distribution. Positive values
reflect leptokurtic distributions and negative values reflect platykurtic distributions.
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9 2 FINCH, WEST, MACKINNON

extreme (skewness = 3 and kurtosis = 21) departures from multinormality in the
population. Univariate frequency distributions (based on 10,000 observations)
corresponding to the three distributional conditions created in this study are
presented in Figure 2. These levels of skewness and kurtosis were chosen to
represent normal, moderately nonnormal, and severely nonnormal distributions
based on the examination of the distributions in several large community data sets.

6000-r

500D-

4000

>uc
D 3000

2000

1000

-4.S -3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5

Standardized Value

4.5

Normal
Moderately Non-normal
Severely Non-normal

FIGURE 2 Univariate frequency distributions corresponding to the normal (skew = 0, kurtosis
= 0), moderately nonnormal (skew = 2, kurtosis = 7), and severely nonnormal (skew = 3, kurtosis
=21) distributional conditions created in Study 1. Each distribution was generated in EQS based
on 10,000 standardized observations. From "The Robustness of Test Statistics to Nonnormality
and Specification Error in Confirmatory Factor Analysis," by P. J. Curran, S. G. West, and J. F.
Finch, 1996, Psychological Methods, 1, pp. 16-29. Copyright 1996 by the American Psycho-
logical Association. Reprinted by permission of the publisher.
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NONNORMALITY AND MEDIATION 9 3

Specification 1. In the first model specification, the population values for
the factor loadings were uniform and moderately high (standardized loadings =
.70), whereas all error variances (6s) were specified to be .51. The population values
for the structural regression coefficients were specified to be ßi = .60, ß2= .20, and
ß3 = .12. In this specification, the magnitude of the direct effect of T|i (latent
exogenous variable) on T|3 (latent endogenous variable) was specified to be equal
to the magnitude of the indirect effect of r\ i on r|3 via T|2.

Specification 2. Specification 2 differed from Specification 1 only in that the
population values for the structural regression (path) coefficients were specified to
be ßi = .30, ß2 = .40, and ß3 = .12. The magnitude of the direct effect of T|i ont|3

was again specified equal the magnitude of the indirect effect of T) i on T|3 via T|2.

Specification 3. Specification 3 differed from Specifications 1 and 2 only in
that the population values for the structural regression coefficients were specified
to be ßj = .30, ß2 = .40, and ß3 = .36. In this specification, the magnitude of the
direct effect of r\ i on T|3 was specified to be three times as large as the indirect effect
ofT|i onî|3 viaT|2.

Specification 4. In Specification 4, the population values for the structural
regression coefficients were again specified to be ßi = .30, ß2 = .40, and ß3 = .36,
and the population values of the factor loadings were varied. Specifically, the
population value of the loading of the first manifest variable was specified as .40,
the second loading was specified as .60, and the third loading was specified as .80
for each of the three LVs.

Data Generation

When the simulation option in EQS is selected, the program generates raw data
with user-specified values of population skewness and kurtosis based on formulas
developed by Fleischman (1978) and using procedures described by Vale and
Maurelli (1983). EQS uses a random number generator based on work by Lewis,
Goodman, and Miller (1969). In this study, for each of the four model specifications,
the raw data were generated based on the covariance matrix implied by the model
parameters in the following manner. After specifying population values for the 21
free parameters in the three-factor model under investigation, the population
covariance matrix implied by these values was computed. This model-implied
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9 4 FINCH, WEST, MACKINNON

matrix was then used as the population covariance matrix, and simple random
samples of 150, 250,500, and 1,000 were drawn repeatedly by EQS based on this
population matrix.

Method of Evaluating the Results

To facilitate comparison across the different conditions in the design, relative
bias in the parameter estimates and their standard errors was computed. For each
model parameter in each of the 48 conditions, relative bias was computed by
subtracting the true parameter value from the mean of the 200 parameter estimates
computed by EQS and dividing this difference by the true value of the parameter.
Nonzero relative bias values indicated the degree to which parameter estimates
failed to approximate their true population values. In this study, an empirical
standard error was computed as the standard deviation of the set of 200 estimates
of a single parameter. For each model parameter, relative bias in the estimated
standard error was computed by subtracting the empirical standard error from the
mean of the 200 estimated standard errors computed by EQS and dividing this
difference by the empirical standard error.

Results

Parameter Estimates

For Specifications 1-4, negligible effects of sample size and nonnormality were
observed on relative bias in the structural coefficients and indirect effect estimates
for both ML or ADF estimation. In all four specifications, relative bias in the
parameter estimates ranged between -4% and +4%, seldom exceeding ±3%.

Standard Errors of Parameter Estimates

Normal theory ML. For Specifications 1-4, significant effects of nonnor-
mality on relative bias in the indirect effect standard errors were observed. Larger
sample sizes failed to result in any appreciable decrease in the relative bias of the
ML indirect effect standard errors. Table 1 presents the full results for Specification
1. Because the results for Specifications 2-4 were very similar to those for
Specification 1, they will not be reported later.

Inspection of Table 1 reveals that, under multivariate normality, relative bias in
the indirect effect standard errors estimated via ML was negligible (M = 1.32%,
range = -6.76% to 9.27%). Using Kaplan's (1988) criterion of 10% relative bias
as representing potentially meaningful levels of bias, none of the estimates exceeds
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TABLE 1
Standard Errors and Percentage Bias of Estimates for Specification 1

Parameter

Normal

K K
D|O2

b l

1_
b 2

u
b 3

.1064

.1341

.1404

.1473

.1579

.2194

.1758

.2334
Moderately nonnormal

b,b2

b l

V.
b2

b 3

.1200

.1802

.2401

.2200

.1945

.2581

.1804

.2661
Severely nonnormal

b,b2

u
b i

b 2

y.
b 3

.1711

.1601

.2377

.2724

.2135

.2632

.2257

.2465

150

0.96%
-28.08%
-5.16%

-23.32%
2.30%

-29.48%
-9.47%

-36.17%

-6.49%
-26.30%
-34.82%
-31.93%
-17.71%
-30.90%

-9.46%
-32.06%

-23.42%
-27.86%
-48.92%
-32.39%
-34.60%
-18.92%
-25.38%
-33.56%

0.09%

-6.74%

6.56%

-11.12%

0.77%

-17.91%

-14.02%

-1.81%

-14.71%

-25.79%

-28.95%

-13.81%

.0848

.0815

.0982

.1191

.1400

.1312

.1345

.1317

.0903

.1016

.1353

.1469

.1398

.1721

.1386

.1566

.1103

.1099

.2130

.2247

.1774

.1653

.1570

.1809

250

-6.76%
-10.02%

2.19%
-21.10%
-12.67%
-11.61%

-7.80%
-16.43%

-8.06%
-16.44%
-24.53%
-18.51%
-10.45%
-20.93%

-9.01%
-17.42%

-21.44%
-22.93%
-51.70%
-38.65%
-29.39%
-19.97%
-19.04%
-26.61%

Sample

-8.31%

1.63%

-6.27%

-9.41%

-0.09%

-0.99%

-5.55%

-0.00%

-9.95%

-23.10%

-23.37%

-7.89%

Size

.0524

.0590

.0749

.0747

.0875

.0945

.0924

.0970

.0609

.0683

.0945

.1315

.1018

.1137

.0964

.1043

.0737

.0642

.1281

.1258

.1126

.1031

.1191

.1111

500

1.82%
-10.18%

-6.21%
-7.98%
-2.71%

-12.49%
-6.46%

-13.99%

-9.44%
-12.84%
-25.74%
-20.20%
-15.73%
-15.86%
-8.79%

-14.54%

-24.66%
-6.90%

-45.30%
-12.06%
-28.26%
-10.76%
-22.57%
-17.24%

1.11%

-6.06%

-3.49%

-6.82%

-0.83%

-0.30%

-10.04%

1.87%

-9.60%

-7.58%

-18.36%

-4.82%

.0341

.0387

.0495

.0479

.0558

.0622

.0570

.0555

.0435

.0387

.0720

.0592

.0747

.0581

.0733

.0590

.0494

.0487

.1031

.0684

.0835

.0660

.0777

.0678

1,000

9.27%
-4.70%

0.63%
1.81%
6.42%

-5.10%
-4.90%

5.22%

-6.23%
-4.38%

-31.72%
-4.67%

-21.54%
-3.71%
-8.34%
-2.32%

-22.03%
4.38%

-51.48%
-4.67%

-28.06%
-0.47%

-22.00%
-6.31%

3.33%

0.40%

1.17%

5.26%

-5.95%

-6.52%

-3.84%

-0.91%

-3.84%

-1 1.86%

-16.12%

-4.49%

Note. For each parameter at each sample size, the entries on the first line are, in order: the observed (empirical) standard error of the maximum likelihood (ML)
parameter estimate, the percentage relative bias in the mean ML standard error estimate, and the percentage relative bias in the mean ML-r standard error estimate.
The entries on the second line are, in order the observed (empirical) standard error and the asymptotically distribution free (ADF) parameter estimate and the percentage
relative bias in the mean ADF standard error estimate. All entries are based on 200 replications.
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9 6 FINCH, WEST, MACKINNON

this threshold. In contrast, under severe nonnormality, ML estimates of the standard
error of the indirect effect underestimated the empirical standard errors by an
average of 22.89% (range = -21.44% to -24.66%).

For purposes of comparison, Table 1 also presents the ML standard errors for
the three structural coefficients. Consistent with the results of previous Monte Carlo
research using CFA models, relative bias in the standard errors of the direct effect
structural coefficients was negligible under multivariate normality. These estimates
became increasingly negatively biased as the manifest variables became increas-
ingly nonnormal. Larger population values of the structural regression coefficients
also appeared to be associated with greater downward bias in the ML standard errors
under moderate and severe nonnormality.

Robust ML. ForML-r, weaker effects of nonnormality on the standard errors
were observed (see Table 1). With regard to the robust estimates of the standard
error of the indirect effect, there was minimal bias under normality (M = -0.95%,
range = -8.31% to +3.33%), which increased under severe nonnormality (M =
-9.53%, range = -3.84% to -14.71%). Under normality, the mean relative bias in
the robust standard errors of the structural regression coefficients was -2.91%
(range = -11.12% to +6.56%). Under severe nonnormality, the robust estimates of
the standard errors of the structural regression coefficients exhibited an average
relative bias of-15.51% across conditions. Weak effects of sample size were also
observed, with some decrease in relative bias associated with larger sample sizes.

ADF. For ADF, practically significant effects of sample size, but not nonnor-
mality, were found on relative bias in the estimated standard error of the indirect
effect (see Table 1). The ADF estimator consistently became more accurate as
sample size increased. At n = 150, the ADF standard errors of the direct and
mediated effects had a mean bias of-29.86% (range = -18.92% to -36.17%) and
-27.41 % (range=-26.30% to -28.08%), respectively. Relative bias in the estimates
of the standard errors became negligible for structural regression coefficients (M=
-2.25%) and indirect effects (M = -1.57%) at n = 1,000.

Discussion

The results of Study 1 are consistent with existing CFA studies (e.g., Arminger &
Schoenberg, 1989; Chou et al., 1991 ; Curran, West, & Finch, in press) in illustrating
the adverse effects of nonnormality on the accuracy of significance tests in LV
models estimated using normal theory methods. Although these earlier results were
based exclusively on CFA models, this study found similar levels of bias in the
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NONNORMALITY AND MEDIATION 9 7

estimated standard errors of both the direct and indirect effect estimates in a LV
structural model.

In general, normal theory ML standard errors were too small when the normality
assumption was violated. By contrast, ADF standard error estimates were unaf-
fected by the distributional characteristics of the variables, but were substantially
negatively biased in small samples. The practical effect of negatively biased
standard errors would be rejection of the null hypothesis too frequently. Under
nonnormality, the robust standard errors performed much better at all sample sizes
in the present simulation. For all three methods of estimating standard errors, the
magnitude of the observed bias varied little across differing ratios of direct to
indirect effects. The pattern of bias in the standard errors of direct and indirect
effects was also not influenced by variation in the population values of the factor
loadings.

STUDY 2

The findings of Study 1 were all based on models in which the manifest variables
were identically distributed in the population. Study 2 extended the generality of
the findings by examining bias under conditions in which the degree of nonnormal-
ity differed across manifest variables. Based on an examination of several data sets
from large substance abuse and mental health studies, three distributional condi-
tions were constructed that approximated conditions observed in practice. The
population values of skewness and kurtosis specified in these distributional condi-
tions are described in Table 2. In the first distributional condition, the nine measured

TABLE 2
Population Skewness and Kurtosis Values for the Manifest
Variables in the Three Distributional Conditions in Study 2

Yl
Y2
Y3
Y4
Y5
Y6
Y7
Y8
Y9

Distributional
Condition I

Skewness

0.33
0.66
1.00
0.50
1.00
1.50
1.00
1.50
2.00

Kurtosis

1.00
2.00
3.00
1.50
3.00
4.50
3.00
4.50
6.00

Distributional
Condition 2

Skewness

1.00
1.50
2.00
1.00
2.00
3.00
0.75
1.50
2.25

Kurtosis

6.00
9.00

12.00
3.00
7.00

21.00
2.00
4.00

16.00

Distributional
Condition 3

Skewness

0.00
0.00
0.00
0.00
0.00
0.00
3.00
3.00
3.00

Kurtosis

0.00
0.00
0.00
0.00
0.00
0.00

21.00
21.00
21.00
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9 8 FINCH, WEST, MACKINNON

variables were mildly to moderately nonnormal, in the second distributional
condition the nine manifest variables were moderately to severely nonnormal, and
in the third distributional condition the measured indicators of the final outcome
construct were severely nonnormal, whereas the other six variables were normally
distributed.

Method

Model Specification

Like the models in Study 1, the model considered in Study 2 was comprised of
three latent factors with three manifest indicators per factor. The factor loadings
were again uniformly .70 and population values for the structural regression
coefficients were specified to be ßi = .30, ß2 = .40, and ß3 = .36. As before, four
sample sizes were considered: 150, 250, 500, and 1,000. In addition, the level of
nonnormality characterizing each manifest variable was systematically varied.
Because the distributions of the nine manifest variables differed within each
distributional condition, 400 replications were conducted for each combination of
sample size and distributional condition.

Results

Parameter Estimates

No practically significant effects of either sample size or nonnormality were
observed on relative bias in the structural coefficients or the indirect effect estimates
for either ML or ADF estimation. Relative bias in the parameter estimates for both
the direct and indirect effects ranged between -4% and +4%, seldom exceeding
±3%.

Standard Errors of Parameter Estimates

Under the first distributional condition, there were no appreciable effects of
sample size on the estimated standard errors of the indirect effect using normal
theory ML or ML-r (see Table 3). Bias in the indirect effect standard error estimates
was negligible, ranging from-3.37% to +0.91% (Af=-0.81%) for the ML estimates
and from -1.26% to +5.73% (M = 2.44%) for the ML-r estimates. Modest levels
of relative bias were found forthe normal theory ML standard errors of the structural
coefficients (M = -8.65%) and the corresponding ML-r standard errors (M =
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TABLE 3
Standard Errors and Percentage Bias of Estimates in Study 2

Parameter ISO

Distribution 1: Moderate, heterogenous nonnormality
.0627

b ' b 2 .0774
, .1310
b l .1573

.1305
"2 .1690
. .1323
b} .1602

Distribution 2: Severe, 1

b b - 0 6 9 7
b ' b 2 .0821

.1416
"' .1782

.1497
"2 .1668

.1498
0 3 .1909

Distribution 3: Outcoms
.0639

b ' b 2 .0862
.1207

b l .1535
.1433

"2 .1763
.1527

b j .1510

-1.07%
-28.46%
-10.24%
-31.21%
-7.97%

-30.73%
-9.03%

-30.81%
heterogenous i

-7.86%
-23.67%
-17.16%
-33.28%
-19.49%
-25.60%
-17.62%
-32.56%

-1.26%

-9.12%

-4.81%

-3.76%

nonnormality
-1.06%

-12.61%

-12.33%

-10.61%

: severely nonnormal
-34.61%
-44.94%

-2.35%
-30.09%
-55.11%
-32.67%
-47.23%
-38.22%

-33.06%

-4.00%

-52.51%

-42.01%

.0493

.0517

.1017

.1065

.0991

.1160

.0999

.1135

.0520

.0543

.1086

.1116

.1121

.1239

.1135

.1167

.0536

.0434

.0867

.1008

.1168

.0998

.1003

.1052

250

-3.37%
-16.88%
-10.96%
-19.10%
-7.88%

-21.29%
-5.75%

-22.11%

-7.72%
-11.73%
-17.23%
-16.06%
-18.35%
-20.18%
-17.67%
-16.22%

-11.74%
-10.98%

-4.73%
-16.39%
-21.34%
-18.74%
-17.67%
-27.16%

Sample

-0.0%

-8.65%

-3.48%

2.88%

0.08%

-10.97%

-9.64%

-5.88%

-8.27%

-4.05%

-14.18%

2.33%

Size

.0319

.0324

.0677

.0713

.0723

.0739

.0685

.0763

.0368

.0333

.0730

.0705

.0848

.0814

.0737

.0793

.0314

.0306

.0645

.0726

.0716

.0640

.0691

.0736

500

0.91%
-0.84%
-6.62%

-10.88%
-12.65%
-7.69%
-5.63%

-13.38%

-12.47%
0.20%

-13.91%
-5.64%

-24.71%
-12.31%
-10.87%
-11.93%

-2.35%
-3.29%
-1.87%

-14.84%
-11.41%
-1.17%
-5.95%

-16.16%

5.30%

-4.21%

-6.54%

-3.09%

-0.81%

-4.48%

-13.19%

-4.04%

-7.02%

-2.41%

-0.99%

7.12%

.0224

.0229

.0460

.0483

.0524

.0519

.0513

.0492

.0237

.0238

.0521

.0534

.0514

.0546

.0511

.0517

.0234

.0211

.0456

.0447

.0520

.0523

.0538

.0488

1,000

0.31%
1.31%

-2.94%
-4.98%

-13.78%
-3.35%

-10.29%
-5.31%

-5.18%
2.88%

-14.57%
-9.56%

-12.66%
-4.44%
-9.88%
-2.66%

-4.06%
-2.24%
-1.64%
-2.10%

-13.19%
-9.94%

-14.82%
-6.32%

5.73%

0.54%

-6.82%

-0.15%

8.16%

-3.91%

1.89%

6.65%

1.48%

-1.78%

-0.57%

-1.66%

Note. For each parameter at each sample size, the entries on the first line are, in order: the observed (empirical) standard error of the maximum likelihood (ML)
parameter estimate, the percentage relative bias in the mean ML standard error estimate, and the percentage relative bias in the mean ML-r standard error estimate.
The entries on the second line are, in order: the observed (empirical) standard error of the asymptotically distribution free (ADF) parameter estimate and the percentage
relative bias in the mean ADF standard error estimate. All entries are based on 400 replications.
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1 0 0 FINCH, WEST, MACKINNON

-3.93%). Relative bias in the ADF standard errors decreased with increasing sample
size, ranging from approximately -30% at n = 150 to approximately - 3 % at n =
1,000.

Under the second distributional condition, no consistent effects of sample size
were observed for normal theory ML estimates of the standard error of the indirect
effect. Normal theory ML estimates of the standard errors of the structural regres-
sion coefficients were negatively biased by approximately 10% to 20% at all sample
sizes. For ML-r, estimates of the standard errors of the structural coefficients
showed a general tendency to become more accurate with increasing sample size.
For ADF, the magnitude of bias in the direct and indirect effects was similar to that
observed in the first distributional condition.

Under the third distributional condition, there were large effects of nonnormality
on the ML and ML-r standard errors of both b2 and b3 at n = 150. These effects
tended to decrease as sample size became larger. By comparison, the standard error
of the path from the exogenous construct (r|i) to the mediator construct (TI2), both
of which had normally distributed indicator variables, was essentially unbiased at
all sample sizes. Recall that only the outcome construct in this distributional
condition had dramatically nonnormally distributed indicator variables. Like the
bias observed in the standard errors of hi and b3, the standard error of the indirect
effect estimated via ML exhibited substantial negative bias (-34.61%) at n = 150.
This bias decreased to -4.06% at n = 1,000. As can be seen in Table 3, the magnitude
of ADF bias in the direct and indirect effects was very similar to that observed in
distributional conditions one and two. With ADF, there were appreciable effects of
sample size on the standard errors of the structural regression coefficients.

Discussion

The results of this study illustrate the adverse effects of nonnormality on the
accuracy of significance tests in LV models estimated using normal theory ML. As
found in previous CFA studies, normal theory ML estimates of the standard errors
tended to be substantially negatively biased when the normality assumption was
violated. ADF estimated standard errors of these coefficients also tended to be
markedly negatively biased when the sample size was 500 or less. The ML-r
standard errors of both the direct and indirect effects were comparable to those
obtained using normal theory ML under conditions of multivariate normality.
However, the ML-r standard errors provided more accurate estimates of sampling
variability than the normal theory standard errors as nonnormality increased. The
ML-r standard errors were also more accurate than the ADF standard errors under
all distributional conditions at the smaller sample sizes (i.e., n = 150, n = 250)
considered in this study.

The results of Study 2 suggest that when the distributions of the measured
variables differ markedly, the pattern of nonnormality can influence the magnitude
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NONNORMALITY AND MEDIATION 101

of bias in the estimated standard errors. In the third distributional condition in Study
2, the two standard errors that were most dramatically biased were those associated
with the structural coefficients b2 and b3 (see Figure 1). Both of these coefficients
reflected effects on the outcome construct (T|3), which in the third distributional
condition had dramatically nonnormally distributed indicator variables. By com-
parison, the standard error of the path from the exogenous construct to the mediator
construct, both of which had normally distributed indicator variables, was essen-
tially unbiased at all sample sizes.

The general pattern of bias observed for the estimated standard error of the
mediated effect was similar to that observed for the direct effects. Although Stone
and Sobel ( 1990) suggested that a sample size of at least 400 is required for accurate
estimation of the variance of indirect effects in LV models, the results of this study
suggest that bias in the standard error of the indirect effect is negligible even at the
smallest sample sizes examined when multivariate normality is present. This
replicates the findings of MacKinnon and Dwyer (1993) and MacKinnon et al.
(1995) for manifest variable models. The results also suggest that the estimated
standard error of the indirect effect is generally more robust to nonnormality than
the standard error of the direct effect. Using ML, bias in the former was typically
negligible under mild to moderate violations of the multinormality assumption. The
worst ML bias in the indirect effect standard error estimates (approximately -25%)
occurred under severely nonnormal conditions (in Study 1) and when the outcome
construct was measured with severely nonnormal variables in small samples (in
Study 2).

In this study, the relative bias in the estimated standard error of the mediated
effect was typically smaller than the bias in the standard errors of the constituent
effects of which it was comprised. One explanation for this result is that estimates
of the structural paths are included in the formula for the standard error of the
indirect effect. Nonnormality does not affect these constituent parameter estimates,
reducing the overall impact of nonnormality on the standard error of the indirect
effect.

The minimal distributional assumptions on which the ADF method is based
should make it the method of choice for models with nonnormally distributed
variables. Although ADF yielded accurate estimated standard errors at the largest
sample size considered (n = 1,000), the ADF standard errors exhibited substantial
negative bias at smaller sample sizes. To understand the small sample breakdown
of ADF, it is useful to compare ADF and normal theory approaches to estimation.

ADF and normal theory standard errors both require the estimation of a weight
matrix; however, the elements of the ADF weight matrix are based on the compu-
tation of fourth-order moments. Normal theory ML and GLS, by contrast, employ
a weight matrix comprised of elements that can be expressed as products of more
stable second-order moments. Because the estimates of the elements in the ADF
and normal theory weight matrices will reflect the sampling variability of the terms
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1 0 2 FINCH, WEST, MACKINNON

of which they are comprised, their variability could be expected to differ. Under
multivariate normality, the elements of the ADF weight matrix converge in prob-
ability to products of second-order moments as n —> °°. Consequently, ADF
estimators and normal theory GLS estimators are asymptotically equivalent under
normality assumptions. In small samples, however, the variability of the ADF
weight matrix elements is likely substantially larger than the variability of elements
calculated using either ML or GLS. This is because stable estimates of the higher
order moments used in ADF require large sample sizes. An appreciable reduction
in sampling variability is attained when the weight matrix elements can be ex-
pressed as a function of more stable second-order moments, as is the case with
normal theory ML and GLS estimators under multivariate normality. These differ-
ences in the sampling variability of the weight matrix elements would explain the
relatively poor performance of the ADF estimator that was observed in this study
under normality at sample sizes below 500 (see also Yung & Bentler, 1994).

The reason for the superior performance of the robust standard errors over the
ADF standard errors may also be due to differences in the stability of the weight
matrices employed by the two methods. The calculation of standard errors in both
estimation methods involves the computation of a weight matrix of fourth-order
moments. However, the robust standard errors employ this matrix directly, whereas
ADF standard errors require also that this fourth-order moment matrix be stored
and inverted. The variability of the ADF inverse estimated weight matrix is likely
excessive in small to moderate samples and there may be accuracy problems
associated with its computation. Because inversion of the fourth-order moment
matrix is not required under the robust approach, robust standard errors would be
expected to exhibit less small sample instability.

LIMITATIONS

Although this study evaluated the empirical behavior of parameter estimates under
a range of distributional conditions, generalizations from the findings of Monte
Carlo studies are limited by practical considerations related to the design of the
simulation. In this study, only four combinations of parameter values and four
sample sizes were considered. The six distributional conditions created represent
only a tiny fraction of the universe of multivariate distributions. Nonetheless, care
was taken to choose realistic values of the parameters and distributions investigated,
at least in the context of community research in which the authors have their greatest
experience.

Three limitations of this study are worthy of note. First, this study examined a
relatively simple indirect effects model. The question of whether similar results
would be obtained with more complex indirect paths involving multiple mediators
has not been addressed and represents a topic for further research. Second, we did
not address the situation in which indicator variables are skewed in opposite
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NONNORMALITY AND MEDIATION 1 0 3

directions. Although rare in our experience (assuming that indicator variables have
all been recoded to be oriented in the same direction), this situation may be
theoretically important. Olsson (1979) reported the worst bias in CFA parameter
estimates and the most dramatic inflation in % when indicator variables had only
a small number of scale points and were skewed in opposite directions. It is possible
that the relatively negligible bias in parameter estimates observed in this simulation
might have been much more dramatic had distributional conditions involving
oppositely skewed indicators been included in the simulation design. On the other
hand, this problem appears to be far less serious when variables are measured with
more rather than fewer scale points. Third, the present simulations examined only
distributions involving positive values of kurtosis. Statistical theory has indicated
that the bias in ML or GLS standard errors may be particularly marked when
kurtosis is negative. However, the research to date investigating the effects of such
distributions with CFA models (Chou et al., 1991; Hu et al., 1992) is largely
consistent with the results of this study.

CONCLUSION

The results of this study replicate and extend the results of previous studies
examining the impact of nonnormality and sample size on parameter estimation in
structural equation models. When measured variables have skewness and kurtosis
that differs from that of a normal distribution, the standard errors generated by
normal theory ML and GLS are likely to be too small. The accuracy of ML and
GLS parameter estimates, in contrast, is generally unaffected by departures from
multinormality. In this study, indirect effect standard errors showed less bias than
direct effect standard errors under nonnormality. In addition, the magnitude of bias
in the standard errors of structural coefficients depended on the degree of distribu-
tional misspecification of the indicators of each factor. Standard error estimates for
structural coefficients relating factors with normally distributed indicators re-
mained unbiased.
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APPENDIX

All current methods of estimating the parameters of structural equation models
involve minimizing a fitting function. For GLS and ML, the expression for the
fitting function F is commonly written as

(1)

In this expression, tr denotes the trace of the expression in parentheses, S is the
covariance matrix of the p measured variables obtained from a random sample of
size N = (n + 1), 0 is a vector of free parameters to be estimated, Z(8) is the
model-implied covariance matrix, and V is ap x p weight matrix. For GLS, S is
used to estimate V; in the ML approach, X(9) is used to estimate V. Under the
conditions of multivariate normality and a properly specified model, GLS and ML
estimates are asymptotically equivalent.

Following Browne (1982, 1984), the ADF fitting function can be expressed as

where s is a column vector of the p* = (p)(p + 1) 12 nonredundant elements of S,
a(6) is the corresponding same-order vector of Z(9), the model-implied covariance
matrix, and 9 is a t x 1 vector of free parameters. Values of 0 are selected so as to
minimize the sum of the weighted squared deviations of s from a(0). The optimal
weight matrix, W, is a p* x p* covariance matrix of sample covariances. This
covariance matrix of s is a matrix with typical element equal to

where the fourth-order element, a^u, is equal to E(Xi - \ii)(Xj - Hj)Ä - HkX î - Hi),
and ay and au are the population covariances of Xi with Xj and Xk with X\,
respectively. In practice, sy is used to estimate Oy, and ]ii is estimated by the sample
mean. If the variables are normally distributed, the asymptotic covariance between
Jij and su can be expressed as

ACOVfo. skl) = AT'faikOj, -c^) (4)

Under multinormality, the optimal weight matrix W in Equation 2 consists of
products of covariances. Minimization of Equation 2 using Equation 4 to compute

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

] 
at

 1
4:

46
 2

8 
Se

pt
em

be
r 

20
15

 



NONNORMALITY AND MEDIATION 1 0 7

each of the elements in W results in GLS estimates. Thus, GLS can be seen to be
a special case of the ADF approach.

To calculate the asymptotic standard errors, let D be ap* x t matrix of derivatives
of a with respect to 6. Let W be a p* x p* optimal weight matrix, with elements
defined by the estimation method employed. Standard errors can be obtained by
inverting the information matrix 1(8) = (D'W"1D).

The weight matrix W used in ML and GLS is the covariance matrix of s
computed under the assumption of multinormality. This normal theory weight
matrix can be expressed as

W = 2K'[Z®Z]K (5)

where Z is the population covariance matrix and K is a p2 x p* transition matrix
that reduces the p2 x p2 matrix in brackets to the appropriate p* x p* order (i.e., the
effects of redundancy caused by the symmetry of S are eliminated). In the normal
theory ML approach, Z(0) is used to estimate Z, whereas estimation of Z using S
yields normal theory GLS estimates. The covariance matrix of the parameter
estimators is obtained from (D'W~1D)"1 x /f'; normal theory standard errors are
given by the square root of the diagonal elements.

The W matrix used in ADF is a "distribution free" covariance matrix of the
sample covariances. The elements of this fourth-order multivariate product moment
matrix are given by Equation 3.

The robust approach to the computation of ML standard errors employs the
matrix

(DTVML"'D)-' (D'WMIT'WADFWML-'D) (D'AYM^'D)"1 (6)

Multiplication of this matrix by ri~l yields the robust covariance matrix of the ML
estimator. Robust standard errors can be obtained as the square root of the diagonal
elements.
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