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Abstract

Adversarial purification is a kind of defense technique that can defend various
unseen adversarial attacks without modifying the victim classifier. Existing meth-
ods often depend on external generative models or cooperation between auxiliary
functions and victim classifiers. However, retraining generative models, auxiliary
functions, or victim classifiers relies on the domain of the fine-tuned dataset and
is computation-consuming. In this work, we suppose that adversarial images are
outliers of the natural image manifold and the purification process can be consid-
ered as returning them to this manifold. Following this assumption, we present a
simple adversarial purification method without further training to purify adversarial
images, called ZeroPur. ZeroPur contains two steps: given an adversarial example,
Guided Shift obtains the shifted embedding of the adversarial example by the
guidance of its blurred counterparts; after that, Adaptive Projection constructs a
directional vector by this shifted embedding to provide momentum, projecting
adversarial images onto the manifold adaptively. ZeroPur is independent of exter-
nal models and requires no retraining of victim classifiers or auxiliary functions,
relying solely on victim classifiers themselves to achieve purification. Extensive
experiments on three datasets (CIFAR-10, CIFAR-100, and ImageNet-1K) using
various classifier architectures (ResNet, WideResNet) demonstrate that our method
achieves state-of-the-art robust performance. The code will be publicly available.

1 Introduction

Recent studies show that adding carefully crafted, imperceptible perturbations to natural examples
can easily fool deep neural networks (DNNs) to make wrong decisions [11, 42]. This potential
vulnerability underlying their remarkable performance raises a significant challenge for security-
critical applications. Thus, designing efficient adversarial defense techniques is necessary for real-
world applications in DNNs.

One kind of adversarial defense technique is adversarial training [23, 27, 28, 54], which involves
adversarial examples in the model training, enabling the model to adapt adversarial perturbations
empirically. However, these approaches typically require huge computational resources [37, 48] and
suffer from performance degradation [24] in the presence of unseen attacks that are not involved in
training. This limitation hinders the application of adversarial training in realistic scenarios.

Different from adversarial training, adversarial purification [29, 30, 38, 51] aims to remove adver-
sarial perturbations in adversarial examples. These methods do not require adversarial examples
in the model training and effectively defend against unseen attacks, making them more applica-
ble in real-world scenarios. However, the existing purification methods often depend on external
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Figure 1: An illustration of ZeroPur.

generative models [10, 40] or cooperation between external auxiliary functions and the victim classi-
fier [19, 29, 38]. Retraining generative models, parameterized auxiliary functions or the classifier
relying on the domain of the fine-tuned dataset is computationally demanding and restricts their
flexibility.

Inspired by the natural image manifold hypothesis, we suppose adversarial images are outliers of the
natural image manifold and the purification process is to return them to this manifold. We present
a simple adversarial purification method named ZeroPur, where "Zero" means our method does
not need to train any external models, parameterized auxiliary functions, and victim classifiers. As
illustrated in Fig. 1, given the adversarial image, ZeroPur comprises two stages, i.e., Guided Shift
(GS) and Adaptive Projection (AP), to purify the given image. In detail, GS guides adversarial
examples towards the blurred counterparts to target natural images on the manifold to obtain the
shifted embeddings. This is achieved by iteratively pulling the distance between adversarial examples
and a set of their blurred counterparts in the embedding space. Since the inherent limitations of the
low-quality embeddings from blurred counterparts, adversarial examples may not precisely return to
the target locations, but these blurred counterparts do provide a reasonable direction. After that, we
introduce AP to construct the directional vectors based on these shifted embeddings which provide
a reference direction of the movement of adversarial images. The adversarial images are projected
adaptively onto the manifold by projection maximization in this direction. Despite its simplicity,
ZeroPur consistently outperforms most state-of-the-art adversarial training and purification methods.

The main contributions of the current work are as follows:

• We analyze the relationship between adversarial attack and adversarial purification based on
the natural image manifold hypothesis, and show that a simple blurring operator can bring
adversarial examples that are out of the natural image manifold closer to the manifold.

• We present a succinct adversarial purification approach named ZeroPur including two stages:
Guided Shift and Adaptive Projection, which requires no retraining of external models,
parameterized functions, and the victim classifier.

• Extensive experiments demonstrate that the proposed approach outperforms most state-of-
the-art auxiliary-based adversarial purification methods and achieves competitive perfor-
mance compared to other external model-based purification methods.

2 Review of Literature

Adversarial training (AT). AT [23, 27, 28, 54] improves the robustness of DNNs by integrating
adversarial examples into the training data and reformulating the optimization objective. However,
the computational cost of adversarial training is significantly huge due to the necessity of repeatedly
performing backpropagation to craft adversarial examples. While recent works investigate reducing
the time cost of adversarial training, they are still restricted by issues such as low robust perfor-
mance [2, 37] and other unexpected results [2, 25] (i.e., catastrophic overfitting). Moreover, even if a
model is robust against a specific set of known attacks, it is still fragile against other unseen attacks
that were not involved in training [8, 20, 24].
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External model-based adversarial purification (EBP). Samangouei et al. [35] propose defense-
GAN, a generator that models the distribution of natural images, which enables the transformation
from adversarial examples to natural images. Song et al. [39] assume that adversarial examples pri-
marily reside in the low probability density region of the training distribution, and design PixelDefend
to approximate this distribution using the PixelCNN [44]. Recently, utilizing score-based models [51]
and diffusion models [30, 45] as purification models is introduced and shown to achieve significantly
improved robust performance. More recently, Lin et al. [26] propose a framework called AToP that
fine-tunes the purification model adversarially to integrate the benefits of both adversarial training
and adversarial purification. However, these works rely on external generative models, substantial
datasets (e.g., crafting adversarial examples) and computational resources.

Auxiliary-based adversarial purification (ABP). In contrast to the above two approaches, ABP tends
to introduce an auxiliary function to cooperate with the classifier to purify adversarial images. Shi et al.
[38] propose a lightweight purification method SOAP, which uses self-supervised loss to realize online
purification. SOAP no longer depends on generative models but requires classifiers to incorporate the
corresponding auxiliary loss (self-supervised loss) in the training stage. To further reduce the time
cost of purification, recent works introduce parameterized auxiliary functions, allowing purification
to be accomplished through the exclusive training of these functions. Such auxiliary functions are
designed to be lightweight compared to classifiers so that they can significantly reduce the time cost.
For example, Mao et al. [29] introduce a two-layer network that estimates the contrastive features,
which can purify the adversarial images. Hwang et al. [19] propose AID-Purifier, an auxiliary
discriminator based on information maximization principles that can transform adversarial images
into natural images.

3 ZeroPur

3.1 Adversarial Purification in The Natural Image Manifold

Following the natural image manifold hypothesis [17], natural images are assumed to reside on a
specific manifold known as the natural image manifold. Given the classification loss function ℓ, the
learning process of DNNs finding optimal parameters θ can be formulated by:

min
θ

ℓ(f ◦ g(x+ δ∗), y; θ), (1)

where a natural image x is embedded by an embedding functionf(·) ∈ Rd and then assigned its
predicted label by a decision function g(·), and y ∈ R is its true label. Since the embedding space in
which f(x) is located can be considered as the common space of natural images associated with the
decision made by g, this space can be viewed as an approximation of natural image manifold M.
Therefore, this learning process can be regarded as an attempt to model the natural image manifold.

Adversarial attack crafts adversarial examples by optimizing the following objective:
max

∥δ∗∥≤ϵ
ℓ(f ◦ g(x+ δ∗), y), (2)

where ϵ is the maximal norm which defines the set of allowed perturbations for a given example x.
In most contexts, such as The Projected Gradient Descent (PGD) [28], δ∗ is approximated by the
local worst-cast δ.

We are starting with formulating the forward process of f . Suppose f : Rn → Rd is twice
differentiable, then the forward of f can be defined as:

f1...l(x) = f1 ◦ f2 ◦ ... ◦ fl(x) = fl(fl−1(f2...f1(x))), (3)

where fi typically refers to the output of the ith layer in the function f . Based on the Taylor series,
we have the following theorem:
Theorem 1 Suppose f : Rn → Rd is twice differentiable at point x. Let e1 = ∇f1(x)

T δ +
1
2δ

T∇2f1(x̄)δ, and there exists w1 ∈ [0, 1] such that x̄ = w1x+ (1− w1)(x+ δ), then we have
the forward of f :

f1...l(x+ δ) = f1...l(x) + el(δ), (4)

where el(δ) = ∇fl(f1...l−1(x))
T el−1(δ) +

1

2
el−1(δ)

T∇2f̄1...l−1(x)el−1(δ). (5)

where there exists wl ∈ [0, 1] such that f̄1...l−1(x) = wlf1...l−1(x)+(1−wl)(f1...l−1(x)+el−1(δ)).

3
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(a) Reversing adversarial property (b) Accuracy on different type of images

Figure 2: (a) An illustration of activation of crucial semantic features on CIFAR-10 and ImageNet-1K.
(b) Accuracy of different properties of images on three models, where the blurring operator is the
median filter. Left: AutoAttack results on CIFAR-10. Middle and Right: AutoAttack on ImageNet.

For notational simplicity, we denote f1...l(x) = f(x) and el(δ) = e(δ) when l is the last layer of
f . Theorem 1 describes how the perturbation δ is amplified layer by layer during the forward of
f so that the embedding of natural image x deviates manifold M and become the outlier, thereby
demonstrates the reason for the incorrect decision made by g:

g(f(x+ δ)) = g(f(x) + e(δ)) ̸= g(f(x)), (6)

where e(δ) can be viewed as the deviation distance from the natural image manifold.

By this formulation, adversarial purification can be naturally seen as the process of estimating e(δ)
in the embedding space, the approximation of the natural image manifold. This means the adversarial
embedding f(xadv) = f(x+ δ) can return the manifold along the same path −e(δ). While precise
estimation of e(δ) is challenging, it is fortunate that only an approximation, denoted as ẽ(δ) is
sufficient to move the adversarial embedding back within the manifold.

3.2 Guided Shift

Considering adversarial purification as an inverse process to adversarial attacks, we can emulate
Eq.(2) to formulate the optimization objective used to estimate ẽ(δ):

min
δpfy

ℓ(f ◦ g(xadv + δpfy), y) (7)

s.t. ∥δpfy∥ ≤ ϵpfy and e(δpfy) = −ẽ(δ) ≈ −e(δ), (8)

where δpfy and ϵpfy are defined to correspond to δ and ϵ in Eq.(2) to offset the perturbation. However,
even if ϵadv can be considered as a hyperparameter, the ground-truth label y is not accessible. External
model-based adversarial purification [17, 30, 35, 51] typically train a purification model to minimize
the global ℓpfy. Auxiliary function-based adversarial method [19, 29, 38] tend to design a suitable
ℓpfy to complete purification without relying on external generative models. They need to retrain
the classifier or parameterized auxiliary function to effectively cooperate in removing adversarial
perturbations, which means these methods all introduce parameters Θ in ℓpfy:

min
δpfy

ℓpfy(f(xadv + δpfy); Θ). (9)

Based on our assumption in subsection 3.1 that adversarial images are outliers of the natural image
manifold and the purification process can be considered as returning them to this manifold, we aim to
design ℓpfy without Θ by allowing them to shift towards the manifold adaptively:

min
δpfy

ℓ⋆pfy(f(xadv + δpfy). (10)

We are starting to investigate whether a simple image transformation, such as color jitter, grayscale,
Gaussian blur, solarization, and equalization can shift adversarial images towards the natural image
manifold to improve classifier performance. We find that blurring adversarial examples can improve
the robust accuracy of victim classifiers. Additionally, as shown in Fig 2(a), the blur operation can
reactivate regions disrupted by adversarial images. This phenomenon suggests that a simple blurring
operator can bring adversarial examples closer to the manifold and reverse adversarial properties.
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Algorithm 1 Guided Shift
Input: Adversarial example xadv, iterations Tg,

step size η1, a classifier f , purification bound
ϵpfy, and the blurring operator blur(·).

Output: Guided result xg

1: Random start x0
g ← xadv + ε

2: for t = 0, 1, 2, ..., Tg − 1 do
3: x̃t

g ← blur(xt
g)

4: z ← f(xt
g), z̃ ← f(x̃t

g)

5: xt+1
g ← xt

g + η1 · sgn
(
∇xt

g
d(z, z̃)

)
6: xt+1

g ← Clip(xt+1
g ,−ϵpfy, ϵpfy)

7: xt+1
g ← Clip(xt+1

g , 0, 1)
8: end for
9: xg ← x

Tg
g

(a) Median filter (3 × 3) (a) Median filter (3 × 3)

(c) Gaussian blur ( 0.6) = (c) Gaussian blur ( 1.2) =

Figure 3: Details of GS on CIFAR-10.

Therefore, we can accumulate this reversion to guide the adversarial examples back towards the
manifold. For instance, we can pull the distance between adversarial examples and their blurred
counterparts in the embedding space, which allows adversarial examples to converge closer to the
natural image manifold. The distance of feature embeddings is defined by the Cosine Similarity:

d(zadv, z
′
adv) =

zadv · z′
adv

∥zadv∥∥z′
adv∥

, (11)

where zadv and z′
adv are the embeddings of adversarial examples and their blurred counterparts,

respectively. we can shift the adversarial example xadv by the gradient of Eq.(11):

x+
adv = xadv + η1 · ∇xadv

d(f(xadv), f(x
′
adv)). (12)

Controlling the magnitude of the blurring applied carefully is essential to prevent excessive blurring
that could render adversarial examples unrecognizable by the classifier. However, a small magnitude
is not sufficient to shift images to reverse the distortion caused by adversarial perturbations. We
therefore consider to move xadv by Eq.(12) with a small step size η1 iteratively. This process is
referred to as Guided Shift (GS). In each step of GS, we apply the same update rule:

xt+1
g = xt

g + η1 · ∇xt
g
d(f(xt

g), f(x̃
t
g)), (13)

x̃t+1
g = blur(xt+1

g ) (14)

where blur(·) is the blurring operator and x0
g := xadv, such as the median filter, Gaussian blur, and

so on. The workflow of GS is shown in Algorithm 1, where we use sgn(·) to regulate the step size.

To demonstrate the process of GS, we employ two blurring operators: the median filter and Gaussian
blur to compute the cosine similarity between single-step result xt

g of GS and the natural image
x (⋆-GS-N ), as well as between the blurred counterpart x̃t

g of xt
g and x (⋆-GS′-N ). As shown

in Fig. 3, in each step, the cosine similarity (⋆-GS-N ) is consistently smaller than the cosine
similarity ⋆-GS′-N . Furthermore, these cosine similarities consistently increase as GS progresses,
and adversarial examples are gradually getting closer to the natural image manifold guided by their
blurred counterparts.

3.3 Adaptive Projection

We also can observe an interesting phenomenon in Fig. 3. Regardless of the type of blurring operators,
dash lines (⋆-GS′-N ) and solid lines (⋆-GS-N ) tend to converge. Therefore, we can have the
following assumption:
Assumption 1 There is a limitation for Guided Shift in that the adversarial images can be guided by
their blurred counterparts only toward the manifold rather than fully back to the manifold. In other
words, this indicates that Guided Shift approximates a convex function.

Certainly, this limitation arises from the exceedingly blurred images whose embeddings cannot be
recognized correctly by the classifier. To fully return adversarial images to the manifold, we must
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Figure 4: Intutive explanation of AP in the context
of adversarial or natural xinit. PR: the perceptual
regularization (Eq.(20)).

Algorithm 2 Adaptive Projection
Input: Input image xinit, guided result xg, itera-

tions Tp, a classifier f , purification bound ϵpfy
, and candidate layers S.

Output: Adaptive result xp

1: Initialize x0
p ← xinit

2: Set step size η2 ← ϵpfy/Tp

3: for t = 0, 1, 2, ..., Tp − 1 do
4: for l ∈ S do
5: ∆ul

g ← fl(xg)− fl(xinit)

6: ∆ul
p ← fl(x

t
p)− fl(xinit)

7: L ← L+ (−∆ul
g ·∆ul

p)
8: end for
9: L ← λ1

∥S∥L+ λ2∥ϕ(xt
p − ϕ(xinit))∥2

10: xt+1
p ← xt

p − η2 · sgn(∇xt
p
L)

11: xt+1
p ← Clip(xt+1

p ,−ϵpfy, ϵpfy)
12: xt+1

p ← Clip(xt+1
p , 0, 1)

13: end for
14: xp ← x

Tp
p

overcome this limitation. A natural intuition is to allow current images to move adaptively instead of
being guided by blurred counterparts, which requires us to target a basic direction for current images.
Fortunately, the result of Guided Shift already provides this basic direction. Therefore, we propose
Adaptive Projection (AP) that can be defined as:

max
xp

λ1
1

∥S∥
∑
l∈S

Ll(xinit,xg,xp)− λ2∥ϕ(xp)− ϕ(xinit)∥2 s.t. ∥xp − xinit∥ ≤ δpfy, (15)

where S ⊆ L as a candidate in the set L = {l1, l2, ..., lm} of a m layers model f , ∥S∥ denotes the
number of elements of the set S. xinit represents the input image (i.e., xinit = xadv when the input
image is adversarial). For the lth layer of classifiers, the first term of Eq. (15) can be written as:

Ll(xinit,xg,xp) = −∆ul
p ·∆ul

g, (16)

where xp is the final result, ∆ul
p and ∆ul

g are two vectors of flattened feature maps defined as follow:

∆ul
p = fl(xp)− fl(xinit), ∆ul

g = fl(xg)− fl(xinit), (17)
where fl denoted as feature maps at layer l of the classifier, xp is initialized by xinit. Maximizing
Eq.(16) is equivalent to maximizing the projection of ul

p onto ul
g since ∥ul

g∥ is a constant. The
increase in projection implies that xp is not restricted by the blurred images to continue moving along
the direction of the result of GS, which allows xp move independently toward the natural image
manifold.

However, We typically do not know whether an image is adversarial in real-world applications (i.e.,
xinit = x when x is natural), repeatedly guiding images by blurred counterparts may cause natural
images to deviate from the manifold. As shown in Fig. 4, this deviation will be enhanced by AP.
Therefore, we introduce a perceptual regularization term in Eq.(15). Let F1 is the dynamic of Eq.(16):

F1 = ∇xp

1

∥S∥
∑
l∈S

Ll(xinit,xg,xp) , (18)

If there exists a momentum F2, such that:{
F1 > F2, xinit is adversarial,
F1 < F2 xinit is natural,

(19)

then maximizing Eq. (16) allows the result xp to locate in the natural image manifold. In this
work, the dynamic F2 can be computed by LPIPS distance [55]. The LPIPS distance d(x1,x2)

between images x1 and x2 is then defined as d(x1,x2) ≜ ∥ϕ(x1) − ϕ(x2)∥2. Let f̂(x) denote
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channel-normalized activations at the l-th layer of the classifier. Then, ϕ(x) ≜ ( f̂(x)√
w1h1

, ..., f̂(x)√
wmhm

),
where wl and hl are the width and height of activations of layer l, respectively.

Finally, the momentum F2 can be written as:

F2 = −λ2 · ∇xp
∥ϕ(xp)− ϕ(xinit)∥2. (20)

In contrast to the original LPIPS implementation, we do not require this distance to approximate
human perceptual judgments. Instead, we aim for the perceptual distance between xg and xinit based
on the classifier itself to be small. Hence, we can directly use d(xg,xinit) to evaluate the distance
from the perspective of the classifier. The workflow of AP is shown in Algorithm 2.

4 Experiments

Datasets and Metrics. Three benchmarks CIFAR-10 [22], CIFAR-100, and ImageNet-1K [9] are
considered to evaluate our method. We compare our method with the state-of-the-art adversarial
training methods reported in standard benchmark RobustBench [7] and other adversarial purification
methods [16, 17, 19, 26, 29, 30, 38, 41, 43, 45, 51]. In all experiments, we consider two metrics
to evaluate the performance of all methods: standard accuracy and robust accuracy. The standard
accuracy measures the performance of the defense method on natural images, while the robust
accuracy measures the performance on adversarial images.

Adversarial attacks and victim classifiers. We evaluate our methods with three attacks: AutoAt-
tack [6], DI2-FGSM [49], and BPDA [3]. AutoAttack is a powerful adaptive attack commonly used
in most defense studies. We also use DI2-FGSM to seek whether an attack robust to the blurring
operator can affect our method. Additionally, we consider BPDA to attack our purification module in
the worst-case scenario. These attacks will attack three victim classifiers including ResNet-18 [14],
ResNet-50, and WideResNet-28-10 [53].

Table 1: Standard and robust accuracy (%) against AutoAttack ℓ∞(ϵ = 8/255) in comparison with
AT & ABP methods. The first section corresponds to AT methods and the second to ABP methods. †
Since Hwang et al. [19] only reports the performance of WideResNet-34-10 in the original paper,
and the pre-trained parameterized auxiliary checkpoint has been removed, we use this result for
comparison.

Require Training ResNet-18 WideResNet-28-10

Classifier Auxiliary Method Standard Robust Method Standard Robust
CIFAR-10

✓ ✗ (Gowal et al., 2021) 87.35 59.12 (Gowal et al., 2021) 87.50 63.99
✓ ✗ (Sehwag et al., 2021) 84.59 56.19 (Pang et al., 2022) 88.61 61.40
✓ ✗ (Rade et al., 2021) 89.02 58.17 (Xu et al., 2023) 93.69 65.62
✓ ✗ (Addepalli et al., 2022) 85.71 52.90 (Wang et al., 2023) 92.44 67.31
✓ ✗ (Shi et al., 2021) 84.07 66.62 (Shi et al., 2021) 91.89 68.56
✗ ✓ (Mao et al., 2021) - 58.20 (Mao et al., 2021) - 67.15
✗ ✓ (Hwang et al., 2023)† 87.02 56.63 (Hwang et al., 2023) 87.02 56.63
✗ ✗ GS 49.56 58.82 GS 50.24 59.68
✗ ✗ GS+AP (ZeroPur) 92.56 69.62 GS+AP (ZeroPur) 91.81 68.60

CIFAR-100

✓ ✗ (Rade et al., 2021) 61.50 29.50 (Pang et al., 2022) 63.66 31.67
✓ ✗ (Addepalli et al., 2022) 65.45 28.58 (Rebuffi et al., 2021) 62.41 33.03
✓ ✗ (Shi et al., 2021) 52.91 32.38 (Shi et al., 2021) 61.01 34.37
✗ ✓ (Mao et al., 2021) - 25.45 (Mao et al., 2021) - 33.16
✗ ✓ (Hwang et al., 2023) 64.73 32.86 (Hwang et al., 2023) 64.73 32.86
✗ ✗ GS 30.42 34.35 GS 26.56 32.06
✗ ✗ GS+AP (ZeroPur) 52.45 41.42 GS+AP (ZeroPur) 64.88 34.58

4.1 Quantitative Evaluation and Comparison

For adversarial defense, adversarial training (AT) involves adversarial examples in the classifier
training, and auxiliary-based purification (ABP) introduces an auxiliary function to cooperate with the
victim classifier. These methods do not rely on external generative models but still necessitate training
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auxiliary functions or retraining classifiers. External model-based purification (EBP) fine-tunes or
retrains an external generative model to remove adversarial perturbations in adversarial images. Since
the performance of EBP is ensured by the modeling capability of generative models, it typically
outperforms ABP. In this section, for a fair comparison, we will first compare our method with both
AT and ABP and then compare it with EBP. ’Require Training’ in Table 1, 2 and 3 denotes that the
methods require retraining external generative models or auxiliary functions or victim classifiers.

Comparison with AT & ABP. Table 1 reports the standard and robust accuracy against AutoAttack
ℓ∞ (ϵ = 8/255). ZeroPur achieves an approximate 10% increase in robust accuracy for ResNet-18,
and this improvement surpasses the performance of most other methods using WideResNet-28-10.
We also report the comparison on ImageNet1-K in Table 3, where ZeroPur improves robust accuracy
by 30% compared to AT and ABP methods. These results also demonstrate that AP can significantly
move adversarial images toward the natural image manifold. It is noteworthy to mention that our
method consistently presents better performance in small architectures such as ResNet-18 compared
to large architectures. This stems from the inclination of our method to ‘fine-tune’ adversarial images,
enabling them to approach natural images, whereas larger models often introduce more hindrances to
this process.

Comparison with EBP. Training an external generative model to model a transformation from
adversarial images to natural images can contribute to an outstanding purification method, but this
process is exceedingly computation-consuming. Table 2 and Table 3 report the comparison result
between ZeroPur and EBP. The robust accuracy achieved by ZeroPur† is only slightly lower than
DISCO (Ho et al., 2022) which involves training an external model on ImageNet. Therefore, adjusting
ZeroPur a little bit (see the first part of Subsection 4.2) can achieve comparable performance with
these EBP methods. Other detailed results are reported in Appendix A.4.

Table 2: Standard and robust accuracy (%)
against AutoAttack ℓ∞(ϵ = 8/255) on CIFAR-
10 in comparison with EBP methods.

Require Training WideResNet-28-10

Cls Ext Method Standard Robust

✗ ✓ (Sun et al., 2019) 82.22 67.92
✗ ✓ (Hill et al., 2020) 84.12 78.91
✗ ✓ (Yoon et al., 2021) 86.14 80.24
✗ ✓ (Ughini et al., 2022) - 59.57
✗ ✓ (Nie et al., 2022) 89.02 70.64
✗ ✓ (Ho et al., 2022) 89.26 85.56
✗ ✓ (Lin et al., 2024) 90.62 72.85
✗ ✗ ZeroPur 91.81 68.60
✗ ✗ ZeroPur † 85.02 82.76

Table 3: Standard and robust accuracy (%)
against AutoAttack ℓ∞(ϵ = 4/255) on
ImageNet-1K.

Training ResNet-50

Cls Aux Ext Method Standard Robust
Comparison with AT & ABP

✓ ✗ ✗ (Salman et al., 2020) 64.02 34.96
✓ ✗ ✗ (Wong et al., 2020) 55.62 26.24
✓ ✗ ✗ (Bai et al., 2021) 67.38 35.51
✗ ✓ ✗ (Mao et al., 2021) - 31.32
✗ ✗ ✗ ZeroPur 61.05 63.09

Comparison with EBP

✗ ✗ ✓ (Wang et al., 2022) 70.17 68.782

✗ ✗ ✓ (Nie et al., 2022) 67.79 40.93
✗ ✗ ✓ (Ho et al., 2022) 71.22 69.521

✗ ✗ ✗ ZeroPur 61.05 63.093

4.2 Discussion on ZeroPur

Evaluating ZeroPur on protecting the victim classifier trained with different data augmentation.
To further discuss the performance of ZeroPur, we consider three data augmentation strategies
(’Vanilla’, ‘Base’, ‘Strong’) to train victim classifiers (See Appendix A.2 for details). ‘Base’ is
the most common data augmentation in training classifiers. In the experiment, ZeroPur using a
median filter (3× 3 window size) is applied in ’Vanilla’ classifiers and Gaussian blur (σ = 1.2) in
‘Base’ and ’Strong’ classifiers. Table 4 reports the standard and robust accuracy of ZeroPur. We
can see that ’Strong’ data augmentation benefits our method. The reason is that such augmentations
enable the blurred counterparts to guide adversarial images toward the natural image manifold more
effectively, which contributes to precise adaptive projection. The performance of ZeroPur† in Table 2
also demonstrates this phenomenon.

Impact of perceptual regularization. The important of incorporating the perceptual regularization
in (Eq.(15)) is revealed by Fig. 5. We can see the robust accuracy of AP experiences a slight decrease
in (a) and (b), while the standard accuracy shows significant improvement in (c) and (d). This
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Table 4: Standard and robust accuracy (%) with
different classifiers trained with three levels of
data augmentation. We mark the best performance
among the three levels by bold value.

Accuracy ResNet-18 WRN-28-10

Vanilla Base Strong Vanilla Base Strong

CIFAR-10

Standard 82.04 92.56 90.05 91.22 91.81 85.02

Robust 59.38 69.62 83.84 59.16 68.60 82.76

CIFAR-100

Standard 55.45 52.45 67.11 64.89 64.88 66.39
Robust 30.42 41.42 50.66 30.81 34.58 50.25

(a) ResNet-18 (Robust) (b) ResNet-18 (Standard)

(c) WRN-28-10 (Robust) (d) WRN-28-10 (Standard)

Table 5: The ablation study on CIFAR-10 using
perceptual regularization.

phenomenon is observed in both ResNet-18 and WideResNet-28-10, indicating the effectiveness of
perceptual regularization in AP.

ZeroPur defense against adversarial attacks robust to blurring. ZeroPur utilizes the blurring
operator to return adversarial images to the natural image manifold. However, certain attacks, such as
DI2-FGSM [49], inherently withstand blurring operations. Indeed, they cannot be entirely immune
to ZeroPur. As shown in Table 6, replacing the blurring operator with TVM [13] leads to improved
purification. The robust accuracy against AutoAttack increases to 75.96% without training, which
outperforms the optimal performance of GS(Blur)+AP by 6.34%. This result also demonstrates that
our method can enhance any operator capable of destroying adversarial properties, not just blurring.

ZeroPur defense against attacks that bypass the purification module. The efficiency of purifi-
cation methods can be challenged by the BPDA attack that approximates gradients, bypassing the
purification module. Table 7 reports the performance of ZeroPur defense against BPDA attack, where
the victim classifiers are WideResNet-28-10 (WRN) and ResNet-18 (R18). We can see that the
robust accuracy of ZeroPur decreases, but it remains stable, which suggests that ZeroPur still offers
acceptable defense. Since the natural accuracy of ’Vanilla’ WRN on natural images is 71.50%, while
that of ’Vanilla’ R18 is 57.01%, which may result in an approximately 20% gap in evaluation on
BPDA (See Table 8 in Appendix A.2).

Table 6: Robust accuracy (%) against DI2-FGSM and Au-
toAttack on CIFAR-10 by blurring and TVM.

Method
DI2-FGSM AutoAttack

Vanilla Base Strong Vanilla Base Strong

GS (Blur) 35.77 40.96 66.66 54.37 58.82 79.36
GS (TVM) 38.08 46.79 45.93 56.25 67.81 68.48

GS (Blur) + AP 35.34 59.81 84.41 59.38 69.62 83.84
GS (TVM) + AP 50.51 65.98 66.74 61.75 75.96 78.98

Table 7: Robust accuracy (%) against
BPDA ℓ∞ (ϵ = 8/255) on CIFAR-10.

Model PGD-10 PGD-20 PGD-40

Vanilla WRN 50.61 50.71 50.54
R18 34.44 34.88 32.18

Base WRN 34.16 33.38 34.42
R18 39.88 39.90 39.48

Strong WRN 68.84 69.45 68.50
R18 70.65 70.45 70.43

5 Conclusion

We propose a succinct training-free method for adversarial purification, named ZeroPur. Our method
significantly outperforms previous state-of-the-art adversarial training and auxiliary-based purification
methods, while demonstrating comparability with external model-based purification methods. Despite
the improvements, ZeroPur has a major limitation: the absence of external models restricts our ability
to enhance defense against strong adaptive attacks. To overcome this challenge, it is necessary to
design a module that emulates recent works on purification by diffusion models capable of effectively
defending BPDA.
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A Appendix

A.1 Proofs

Theorem 1 Suppose f : Rn → Rd is twice differentiable at point x. Let e1 = ∇f1(x)
T δ +

1
2δ

T∇2f1(x̄)δ, and there exists w1 ∈ [0, 1] such that x̄ = w1x+ (1− w1)(x+ δ), then we have

12



the forward of f :

f1...l(x+ δ) = f1...l(x) + el(δ), (1)

where el(δ) = ∇fl(f1...l−1(x))
T el−1(δ) +

1

2
el−1(δ)

T∇2f̄1...l−1(x)el−1(δ). (2)

where there exists wl ∈ [0, 1] such that f̄1...l−1(x) = wlf1...l−1(x)+(1−wl)(f1...l−1(x)+el−1(δ)).

Proof By a first-order Taylor series, we have:

f(x) = f(x0) +∇f(x0)
T (x− x0) +

1

2
(x− x0)

T∇2f(x̄)(x− x0). (3)

There exists w ∈ [0, 1] such that x̄ = wx+ (1− w)x0. for the forward of an adversarial example
x+ δ in the first layer f1, we have:

f1(x+ δ) = f1(x) +∇f1(x)
T δ +

1

2
δT∇2f1(x̄)δ︸ ︷︷ ︸

e1(δ)

. (4)

Plugging f2 into Eq.(4), we also have:

f1,2(x+ δ) = f2(f1(x+ δ)) = f2(f1(x) + e1(δ)) (5)

= f2(f1(x))︸ ︷︷ ︸
f1,2(x)

+∇f2(f1(x))
T e1(δ) +

1

2
e1(δ)

T∇2f̄1(x)e1(δ)︸ ︷︷ ︸
e2(δ)

. (6)

when x+ δ is forward through the l-th layer, we have Theorem 1. □

A.2 Implementation Details of Classifiers

Our experiments on CIFAR-10 and CIFAR-100 included ResNet-18 and WideResNet-28-10 trained
on three different data augmentation strategies ‘Vanilla’, ‘Base’, and ‘Strong’. Table 8 shows the
training settings and natural accuracy. ‘Base’ is the most common data augmentation used by
adversarial training methods and adversarial purification methods for better natural accuracy.

Victim Classifier Case Trained On Natural Accuracy (%)

ReCrop. ColorJ. GrayS. GauBlur. Solar. Equal. HorFlip. CIFAR-10 CIFAR-100

ResNet-18 Vanilla 83.80 57.01
Base ✓ ✓ 93.10 71.58

Strong ✓ ✓ ✓ ✓ ✓ ✓ ✓ 91.08 68.52

WRN-28-10 Vanilla 91.34 71.50
Base ✓ ✓ 93.83 74.95

Strong ✓ ✓ ✓ ✓ ✓ ✓ ✓ 91.09 67.52

Table 8: The adopted data augmentation and natural accuracy (%) of victim classifiers. The enumer-
ated data augmentation are, in order, ResizeCrop, ColorJitter, Grayscale, Solarization, Equalization,
and HorizontalFlip.

All classifiers were trained with the SGD optimizer with a cosine decay learning rate schedule and
a linear warm-up period of 10 epochs. The weight decay is 5.0× 10−4 and the momentum is 0.9.
The initial learning rate is set to 0.1. Classifiers were trained for 120 epochs on 4 Tesla V100 GPUs,
where the batch size is 512 per GPU for ResNet-18 and 128 per GPU for WideResNet-28-10.

A.3 Implementation Details of Adversarial Attacks

AutoAttack [6]. We use AutoAttack to compare with the start-of-the-art methods. The robust
classifier for adversarial training methods provided by RobustBench [7] benchmark available at
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https://robustbench.github.io. The code for adversarial purification methods is provided by their
respective papers.

There are two versions of AutoAttack: (i) the STANDARD including AGPD-CE, AGPD-T, FAB-T,
and Square, and (ii) the RAND version including APGD-CE and APGD-DLR. Considering that most
of the adversarial purifications choose the RAND version, all the performance in this work we report
is also in the RAND version. Code is available at https://github.com/fra31/auto-attack.

DI2-FGSM [49]. DI2-FGSM crafts adversarial examples by applying various transforma-
tions, enhancing their robustness against blurring operations. We use this attack to eval-
uate ZeroPur in Section 4.2, implemented by torchattacks [21]. Code is available at
https://github.com/Harry24k/adversarial-attacks-pytorch.

BPDA [3]. We use BPDA, approximating the gradient of the purifier module (ZeroPur) as 1 during
the backward pass. The 10, 20, and 40 iterations are applied in our experiment. Other settings are the
same as those used in PGD Attack.

A.4 More Experimental Results

In Table 9 and Table 10, we compare our method with AT, ABP, and EBP methods on CIFAR-10
against ℓ∞(ϵ = 8/255) and ℓ2(ϵ = 0.5) threat model, detailing training requirements for each method.
We also report the performance of ZeroPur when victim classifiers use strong data augmentation
(ZeroPur†). Comparing all methods, ZeroPur always achieves the second-best performance. However,
when comparing ABP methods, ZeroPur achieves optimal performance.

Table 9: Standard and robust accuracy (%) against AutoAttack ℓ∞(ϵ = 8/255) on CIFAR-10 in
comparison with three types methods, obtained by different classifier architectures.

Defense Type Method Training Architecture Standard Acc Robust Acc

AT

(Gowal et al., 2021) Classifier ResNet-18 87.35 59.12
(Gowal et al., 2021) Classifier WRN-28-10 87.50 63.99

(Sehwag et al., 2021) Classifier ResNet-18 84.59 56.19
(Rade et al., 2021) Classifier ResNet-18 89.02 58.17

(Addepalli et al., 2022) Classifier ResNet-18 85.71 82.90
(Pang et al., 2022) Classifier WRN-28-10 88.61 61.40
(Xu et al., 2023) Classifier WRN-28-10 93.69 65.62

(Wang et al., 2023) Classifier WRN-28-10 92.44 67.31

EBP

(Sun et al., 2019) STL WRN-28-10 82.22 67.92
(Hill et al., 2020) EBM+LD WRN-28-10 84.12 78.91

(Yoon et al., 2021) DSM+LD WRN-28-10 86.14 80.24
(Ughini et al., 2022) DeepFill [52] WRN-28-10 - 59.57

(Nie et al., 2022) DDPM [18] WRN-28-10 89.02 70.64
(Nie et al., 2022) DDPM [18] WRN-70-16 90.07 71.29
(Ho et al., 2022) LIIF [5] WRN-28-10 89.26 85.56
(Lin et al., 2024) MAE [15] WRN-28-10 90.62 72.85
(Lin et al., 2024) MAE [15] WRN-70-16 91.99 76.37

ABP

(Shi et al., 2021) Classifier ResNet-18 84.07 66.62
(Shi et al., 2021) Classifier WRN-28-10 91.89 68.56
(Mao et al., 2021) Auxiliary branch ResNet-18 - 58.20
(Mao et al., 2021) Auxiliary branch WRN-28-10 - 67.15

(Hwang et al., 2023) Auxiliary branch WRN-34-10 87.02 56.63
ZeroPur N/A ResNet-18 92.56 69.62
ZeroPur† N/A ResNet-18 90.05 83.84
ZeroPur N/A WRN-28-10 91.81 68.60
ZeroPur† N/A WRN-28-10 85.02 82.76
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Table 10: Standard and robust accuracy (%) against AutoAttack ℓ2(ϵ = 0.5) on CIFAR-10 in
comparison with three types methods, obtained by different classifier architectures.

Defense Type Method Training Architecture Standard Acc Robust Acc

AT

(Rebuffi et al., 2021) Classifier ResNet-18 90.33 75.86
(Sehwag et al., 2021) Classifier ResNet-18 89.76 74.41
(Wang et al., 2023) Classifier WRN-28-10 95.16 83.68

(Rebuffi et al., 2021) Classifier WRN-28-10 91.79 78.80
(Sehwag et al., 2021) Classifier WRN-34-10 90.93 77.24

EBP

(Sun et al., 2019) STL WRN-28-10 82.22 74.33
(Ughini et al., 2022) DeepFill [52] WRN-28-10 - 45.12

(Nie et al., 2022) DDPM [18] WRN-28-10 91.03 78.58
(Nie et al., 2022) DDPM [18] WRN-70-16 92.68 80.60
(Ho et al., 2022) LIIF [5] WRN-28-10 89.26 88.47
(Lin et al., 2024) MAE [15] WRN-28-10 90.62 80.47
(Lin et al., 2024) MAE [15] WRN-70-16 91.99 81.35

ABP

ZeroPur N/A ResNet-18 80.14 78.10
ZeroPur† N/A ResNet-18 90.77 86.56
ZeroPur N/A WRN-28-10 72.38 72.12
ZeroPur† N/A WRN-28-10 81.52 86.61

Table 11: Robust accuracy (%) against AutoAttack ℓ∞(ϵ = 8/255) on CIFAR-10, obtained by
different blurring operators in Guided Shift.

Operator Level
ResNet-18 WRN-28-10

Vanilla Base Strong Vanilla Base Strong

Median
3× 3 59.38 72.27 60.74 59.16 67.56 70.01
5× 5 34.17 64.81 44.63 39.81 58.41 50.49
7× 7 27.25 54.41 34.68 28.94 48.26 40.58

Gaussian
σ = 0.6 38.82 65.43 64.92 53.21 58.31 73.79
σ = 1.2 26.20 69.62 83.84 27.97 68.60 82.76
σ = 1.8 20.45 60.67 67.89 26.82 59.91 78.82

Table 11 and Table 12 report the robust accuracy and standard accuracy of ZeroPur using different
blur operators in GS. We use 5 different blurring operators including median filters with windows
size 3 × 3, 5 × 5, and 7 × 7 and Gaussian blurring kernel with σ = 0.6, 1.2, and 1.8. The results
show that if victim classifiers are not trained on strong data augmentation, low-quality embeddings
of images from excessive blurring will hinder ZeroPur’s ability to move adversarial images. On the
contrary, the victim classifiers trained on strong data augmentation can recognize these embeddings,
enabling ZeroPur to provide precise movement direction.

We provide visual examples in Fig. 5 to illustrate several results and the visualization of this process,
where diff_Ia_Ib = abs(Ia−Ib) represents the difference between the two images. The resemblance
between diff_gs_nat and diff_adv_nat outlines suggests that Guided Shift can effectively reverse
the adversarial perturbation at a coarse level. Furthermore, the close correspondence in detail between
diff_adv_nat and diff_ap_nat demonstrates the precise approximation of this perturbation by
Adaptive Projection. diff_ap_adv quantifies the distance of the adversarial image moved by
ZeroPur.
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Table 12: Standard accuracy (%) on CIFAR-10, obtained by different blurring operators in Guided
Shift.

Operator Level
ResNet-18 WRN-28-10

Vanilla Base Strong Vanilla Base Strong

Median
3× 3 82.04 92.34 90.90 91.22 91.81 90.65
5× 5 83.73 91.87 90.92 91.06 91.34 88.97
7× 7 83.66 91.56 90.87 90.97 90.34 87.70

Gaussian
σ = 0.6 83.57 91.64 90.72 91.09 90.02 90.68
σ = 1.2 83.63 92.56 90.05 91.14 91.81 85.02
σ = 1.8 83.69 92.36 90.79 51.26 35.95 80.27
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(b) Examples purified by GS + AP

Figure 5: Visual examples of ZeroPur against ℓ∞ threat model (ϵ = 4/255) on ImageNet-1K. The
central two columns depict the results of GS and AP, while the red label denotes error prediction
and the green label denotes correct prediction. diff_Ia_Ib = abs(Ia − Ib) represents the difference
between the two images.
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