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Abstract
Many researchers have been devoted to finding the solutions (x,y,z) in the set of nonnegative integers, of
Diophantine equations of the type px +qy = z2, where the values and q are fixed. In this article, we demonstrate
that few singular Exponential Diophantine equations

E1 : 2x +7y = z2

E2 : 2x +41y = z2,

E3 : 2x +43y = z2,

E4 : 2x +23y = z2

E5 : 2x +31y = z2

has only a finite number of solutions in N ∪ {0}. The solution sets (x,y,z) of E1,E2,E3,E4 and E5 are
{(1,1,3),(3,0,3),(5,2,9)} {(3,0,3),(3,1,7),(7,1,13)},{(3,0,3)},{(3,0,3),(1,1,5)} and respectively.
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1. Introduction
Number Theory is a division of pure mathematics faithful
primarily to the revision of integers. The Diophantine inves-
tigation deals with an assortment of techniques for solving
Diophantine equations in multivariable’s and multi degrees.
A Diophantine equation is a polynomial equation that takes
only integer values. There are various forms of Diophantine
equations studied by different mathematicians [1−4,7,8] in
the last couple of decades. If a Diophantine equation has

variables happening as exponents, it is an exponential Dio-
phantine equation. For example the Ramanujan − Nagell
equation 2x−7 = x2 and the equation of the Fermat − Cata-
lan conjecture am +bn = ck.

For related papers, we list them as follows. In 2007,
Acu [1] proved that (3,0,3) and (2,1,3) are only two solutions
(x,y,z) for the Diophantine equation 2x +5y = z2 where x,y,
and z are non-negative integers. In 2011, Suvarnamani, Singta
and Chotchaisthit [5] proved that the two Diophantine equa-
tions 4x + 7y = z2 and 4x + 11y = z2 have no non - negative
integer solution. In 2012, Chotchaisthit [3] found all non -
negative integer solutions for the Diophantine equation of type
4x + py = z2 where p is a prime number.

2. Preliminaries
In this section, we use the factorizable technique and Catalan’s
Conjecture to establish the four lemmas.

Proposition 2.1 ([4]). (The Catalan’s conjecture) (3,2,2,3) is
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a unique solution (a,b,x,y) for the Diophantine equation ax−
by = 1 where a,b,x and y are integers with min{a,b,x,y} ≥ 2.

Lemma 2.2. The Diophantine equation 2x +1 = z2 has only
a unique solution (3,3) in N∪{0}.

Proof. Suppose that there are non - negative integers x and z
such that 2x + 1 = z2. If x = 0, z2 = 2, which is impossible.
Therefore, x ≥ 1. Thus, z2 = 2x +1 ≥ 21 +1 = 3. Then z ≥
4 Now, we think the equation z2− 2x = 1. By Proposition
2.1, we have only the solutions, x = 3 and z = 3. Hence,
the equation 2x + 1 = z2 has a unique solution (3,3) in N ∪
{0}.

Another Proof: The equation can be written as z2−1 =
43y. Then (z+1)(z−1) = 43y implies that (z+1)(z−1) =
43y−u ·43u which is equivalent to z+1 = 43y−u and z−1 =
43u. Thus it follows that 2 = 43y−u− 43u this implies that
2.1 = 43u

(
43y−2u−1

)
. Thus u = 0 is the only possible.

Therefore 2 = 43y−1 implies that 43y = 3. This is a contra-
diction. Therefore there is no non - negative integer solution
exists.

3. Main Results
Theorem 3.1. Prove that the number of triplets (x,y,z) of
non-negative integers such that 2x +7y = z2 are three.

Proof. Let x,y, and z be non-negative integers such that 2x +
7y = z2. ByLemma 2.2, we have x ≥ 1. Now, we divide the
number y into two cases.
Case (i): If y = 0. By Lemma 2.2 , we have x = 3 and
z = 3. Therefore the solution to the Diophantine equation E1
is (3,0,3).
Case (ii): If y = 1, then z will be odd. This implies z2 ≡
1(mod 4). So 2x ≡ 2(mod 4). It is only possible that the case
is x = 1. From the Diophantine equation E1, we obtain z = 3.
Finally, we conclude that the solution to this particular case is
(1,1,3).
Case (iii): Suppose y > 1, Now z will be odd. Then, z2 ≡
1(mod 4). This implies that 7y ≡ 1(mod 4). Thus, y is even.
Let y = 2k, where k ∈ N. Then z2− 72k = 2x implies that(
z+7k

)(
z−7k

)
= 2x which equivalent is to

(
z+7k

)
= 2x−u

and
(
z−7k

)
= 2u. Thus, it follows that 2

(
7k
)
= 2x−u−2u =

2u
(
2x−2u−1

)
which implies 2 = 2u and 2x−2u− 1 = 7k, its

only possible u = 1. It gives 7k = 2x−2u−1. As k ∈ N, then
x−2u≥ 3. By Proportion 2.1, we have k = 1. Therefore, the
only possible x− 2u = 3. Hence x = 5 as u = 1, therefore
z = 9 and y = 2. We conclude that which only a suitable
solution is (5,2,9).

Theorem 3.2. The number of non - negative integral solutions
to the Diophantine equation E3 : 2x + 43y = z2 is only one
solution.

Proof. Let x,y and z be non − negative integers such that
2x + 43y = z2. Suppose y = 0 then the equation becomes
2x + 1 = z2. By Lemma 2.2, (3,3) is the unique solution.

Thus when y = 0,(3,0,3) is the non − negative integral so-
lution for the Diophantine equation 2x +43y = z2· Now, we
divide x into three cases.
Case (i): If x = 0. By Lemma 2.4, there is no non - negative
integral solution exist for the equation E3 : 2x +43y = z2.
Case (ii): If x = 1. Then E3 : 2x + 43y = z2 becomes 43y =
z2 − 2. Then y must be odd. Take y = 2k + 1. Then the
equation becomes 432k+1 = z2− 2 implies that 43

(
432k

)
=

(z+
√

2)(z−
√

2). This is not possible. Therefore, when
x = 1, there is no solution exists for E3.
Case (iii): If x > 1. In this case 2x ≡ 0(mod 4). Also z2 ≡ 1(
mod 4). This implies that 43y ≡ 1(mod 4). Therefore y must
be even. Take y = 2k,k = 1,2, . . . Now the equation be-
comes z2− 432k = 2x implies that

(
z+43k

)(
z−43k

)
=

2x−u · 2u implies
(
z+43k

)
= 2x−u and

(
z−43k

)
= 2u. It

follows that 2
(
43k

)
= 2u

(
2x−2u−1

)
·u = 1 is the only pos-

sible value. Thus 43k = 2x−2 − 1. Since k > 0,2x−2 ≥ 44
implies that x ≥ 8 By Proposition 2.1,k must be equal to 1.
Therefore 2x−2 = 44. This is a contradiction to x is a non -
negative integer. Thus we conclude that (3,0,3) is a unique
solution for the Diophantine equation E3. Pictorial represen-
tation of the equation 2x +43y = z2

Theorem 3.3. The number of non negative integral solutions
to the Diophantine equation E4 : 2x +23y = z2 is only two.

Proof. We will divide the number x into three cases.
Case (i): If x = 0. Then, 1+23y = z2. If y = 0, then z2 = 2.
It is not possible. Therefore y≥ 1.z2 = 1+23y ≥ 24⇒ z≥ 5.
By Proposition 2.1,y must be equal to 1. z2 = 24 Since z
is non - negative integer, it is impossible. Therefore, when
x = 0, there is no such solution exists for 2x +23y = z2.
Case (ii): If x = 1. Then 2+ 23y = z2. Since z is odd z2 ≡
1(mod 4). This implies 23y ≡ 3(mod 4). Therefore y must be
odd. Take y = 2k+1.2+232k+1 = z2. z2−2 = 232k+1 · z2−
2 = 23

(
232k

)
. When k = 0,z2−2 = 23⇒ z2 = 25⇒ z = 5

k = 0⇒ y = 1. Therefore (1,1,5) is the solution for 2x+23y =
z2. When k 6= 0 z2−2 = 23

(
232k

)
is not possible. Therefore,

when x = 1,(1,1,5) is the only solution for 2x +23y = z2.
Case (iii): If x > 1. Since > 1,2x ≡ 0(mod4). Since z2 ≡
1(mod 4),23y ≡ 1(mod 4) This gives y must be even y = 2k.

2x +232k = z2

z2−232k = 2x(
z+23k

)(
z−23k

)
= 2x−u ·2u

⇒ 2
(

23k
)
= 2x−u−2u

⇒ 2
(

23k
)
= 2u (2x−2u−1

)
Here u = 1 is the only possible value. Then 23k = 2x−2−
1.2x−2−23k = 1. When k = 0.2x−2 = 1+230.2x−2⇒ x−2=
1⇒ x = 3.k = 0⇒ y = 0. Therefore, 23 +230 = z2⇒ z2 =
9⇒ z = 3. Therefore (3,0,3) is the solution. Assume k ≥ 1.
Then 2x−2 = 1+ 23k ≥ 24. Therefore by Catalan’s conjec-
ture, k must be equal to 1.2x−2 = 24 which is not possible.
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Therefore, If x > 1,(3,0,3) is the only solutions for E4. Thus
(3,0,3) and (1,1,5) are the only solutions for E4 Pictorial rep-
resentation of the equation 2x +23y = z2 :

Theorem 3.4. The number of non negative integral solutions
to the Diophantine equation E5 : 2x +31y = z2 is only two.

Proof. We divide the value of x into three cases.
Case (i): If x = 0. Then 1+31y = z2 has no non − negative
integer solution. For, y = 0,z2 = 2 is impossible. Therefore,
y ≥ 1 ie., z2 ≥ 32⇒ z ≥ 5. By Catalan’s conjecture, y must
be equal to 1. y = 1⇒ z2 = 32. This is also impossible.
Therefore, when x= 0, there exists no non− negative solution
for 2x +31y = z2.
Case (ii): If, x = 1. Then, 2+ 31y = z2. Since z2 ≡ 1(mod
4),31y ≡ 3(mod 4)⇒ y is odd.⇒ y = 2k+1.z2 = 2+312k+1

⇒ z2−2 = 31
(
312k

)
. When k = 0,z2 = 33 which is absurd.

When, k 6= 0.z2− 2 = 31
(
312k

)
is not possible. Thus when

x = 1, we cannot find any solution for 2x +31y = z2.
Case (iii): If, x > 1. When x > 1,2x ≡ 0(mod 4). We know
that, z2 ≡ 1( mod 4). This, gives 31y ≡ 1(mod 4) y must be
even integer. y = 2k. Therefore,
mu z2−312k = 2x

(
z+31k

)(
z−31k

)
= 2x−u ·2u⇒ 2

(
31k

)
=

2u
(
2x−2u−1

)
2 = 2u, and 31k = 2x−2u − 1. Here u = 1 is

only possible. u = 1,31k = 2x−2− 1.2x−2− 31k = 1 when
k = 0,2x−2 = 2⇒ x = 3.

Therefore (3,0,3) is the solution. Therefore let us assume
that k ≥ 1.2x−2 ≥ 32⇒ x ≥ 7. Therefore by the Catalan’s
conjecture, k must be equal to 1. Therefore 2x−2 − 31 =
1.2x−2 = 32 = 25⇒ x = 7. k = 1⇒ y = 2 2x +31y = z2⇒
27 + 312 = z2 ⇒ 128+ 961 = z2 ⇒ 1089 = z2 ⇒ z = 33.
Therefore (7,2,33) is the solution. Thus (3,0,3) and (7,2,33)
are the only solutions for 2x +31y = z2. Pictorial representa-
tion of the equation 2x +31y = z2:

Figure 1

4. Conclusion
We note in our results that 2 is an even prime number and
7− 2 = 5. Let p be an odd prime number. We may ask for

the set of all solutions (x,y,z) for the Diophantine equation
px +(p+n)y = z2 where x,y, and z are non-negative integers.
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