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A B S T R A C T

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection results in the development of a
highly contagious respiratory ailment known as new coronavirus disease (COVID-19). Despite the fact that
the prevalence of COVID-19 continues to rise, it is still unclear how people become infected with SARS-
CoV-2 and how patients with COVID-19 become so unwell. Detecting biomarkers for COVID-19 using
peripheral blood mononuclear cells (PBMCs) may aid in drug development and treatment. This research
aimed to find blood cell transcripts that represent levels of gene expression associated with COVID-19
progression. Through the development of a bioinformatics pipeline, two RNA-Seq transcriptomic datasets and
one microarray dataset were studied and discovered 102 significant differentially expressed genes (DEGs)
that were shared by three datasets derived from PBMCs. To identify the roles of these DEGs, we discovered
disease-gene association networks and signaling pathways, as well as we performed gene ontology (GO)
studies and identified hub protein. Identified significant gene ontology and molecular pathways improved
our understanding of the pathophysiology of COVID-19, and our identified blood-based hub proteins TPX2,
DLGAP5, NCAPG, CCNB1, KIF11, HJURP, AURKB, BUB1B, TTK, and TOP2A could be used for the development
of therapeutic intervention. In COVID-19 subjects, we discovered effective putative connections between
pathological processes in the transcripts blood cells, suggesting that blood cells could be used to diagnose
and monitor the disease’s initiation and progression as well as developing drug therapeutics.
1. Introduction

SARS coronavirus 2 (SARS-CoV-2) is a new encapsulated RNA beta-
coronavirus. The current coronavirus disease pandemic 2019 (COVID-
19) is a worldwide public health emergency announced by the World
Health Organization (WHO) and caused by the highly contagious severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Later, etiolog-
ical investigations and deep sequencing revealed that a novel extremely
infectious coronavirus, formally named SARS-CoV-2, was the causal
pathogen of the outbreak [1–3]. At the end of June 2021, over 182 mil-
lion cases of SARS-CoV-2 infection have been reported worldwide. After
its discovery in December 2019, COVID-19 has spread throughout the
world [4]. The widespread behavior of the virus has greatly influenced
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the death rate, proving it to be the most internecine global epidemic
of the twenty-first century. According to recent findings, SARS-CoV-2
infections do not impact all persons in the same manner, and that some
people are more susceptible than others, with symptoms ranging from
mild to severe, including a dry cough and sore throat, fever, and loss
of taste and smell, to more severe symptoms such as trouble breathing
or shortness of breath, necessitating the utilization of intensive care
hospital facilities and, in some cases, death [5].

Some COVID-19 individuals, on the other hand, become ill with
severe pneumonia symptoms and consequences, such as acute respi-
ratory distress syndrome (ARDS), pulmonary oedema, acute kidney
vailable online 29 December 2021
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damage, or multiple organ failure, relatively fast after exposure [6–
8]. COVID-19’s spread has had a significant effect on the number of
blood donors, blood supplies, and blood safety. SARS-CoV-2, a new
coronavirus that causes the respiratory disease COVID-19, has recently
spread rapidly. Unlike previous pandemic coronaviruses SARS and
MERS, which demonstrated symptom co-occurrence with infectious-
ness, asymptomatic human to human transmission remain a difficult
feature of the viral containment campaign [9,10]. An outbreak of pneu-
monia with an unclear cause emerged in early December 2019 [11].
Fever, dizziness, and cough were among the clinical symptoms, which
were close to those of viral pneumonia.

The presence of genetic and transcript levels in patient tissues will
aid in the detection of potential new biomarkers for identifying the
remarkably similar phenotypes seen in COVID-19 patients [12,13]. Ac-
tually, PBMCs are a diverse group of immune cells that act as a first line
defense against infections and disease-causing microorganisms. Jiang
et al. reported that a significant decrease in CD3+ T cells, CD4+ T cells,
CD8+ T cells and, natural killer cells in PBMCs indicates the severity
of COVID-19 patients compared to moderate patients [14]. Despite
the fact that the pathogenesis of COVID-19 is likely multifactorial,
the use of molecular methods to improve diagnosis and evaluation
of the disease has not yet produced conclusive results, prompting a
renewed focus on the search for early COVID-19 biomarkers in PBMCs.
According to Changfu Yao [15], single-cell RNA sequencing (scRNA-
seq) of PBMCs enables of in-depth analysis of transcriptional alterations
in immune cells of COVID-19 patients. The transcriptome data from
PBMCs infected with COVID-19 and CKD were analyzed in this study
that make more reliable on finding common DEGs between them [16].

The discovery of these molecular blood biomarkers could have a
significant effect on COVID-19 diagnosis, care, and treatment.

There have been a number of studies that have identified biomark-
ers that could be utilized in risk stratification models to predict severe
and catastrophic outcomes COVID-19. It was discovered that biomark-
ers related to heart and muscle injuries, as well as lower enzymes,
were considerably higher in COVID-19 patients who were severely ill
or died [17]. IL-6 and IFN-𝛾 were found to be significantly elevated
nly in late stages of severe infection, implying cytokine storms are
he result of severe COVID-19 infection rather than the cause [18].
ao et al. demonstrated that D-dimer levels in PBMCs correlate with
isease severity, making it a reliable prognostic marker for in-hospital
ortality in COVID-19 cases [19]. The SARS outbreak showed that

ow platelet counts were also related to greater illness severity; they
ccurred in up to 55% of patients, and they were connected with an
ncreased risk of mortality [20].

More research into transcriptome analysis of coding and non-coding
lements, as well as convalescent blood samples from both severe and
ild COVID-19 cases, should help to identify molecular risk factors that

an be used to predict highly susceptible individuals for severe COVID-
9 infection, allowing for early intervention and customized treatment
ptions.

Several gene expression profiling studies in COVID-19 have been
onducted to characterize the association of the diseases. Because the
unctional relationship between gene products was not taken into con-
ideration, these findings were limited to the transcript level [15,16].
ntegrative studies within the network medicine framework are im-
ortant to understand the molecular mechanisms behind diseases and
o recognize crucial biomolecules since biological molecules interact
ith each other to carry out roles in biological processes in cells and

issues. An integrative strategy was employed to identify molecular
iomarker profiles for COVID-19 that are expressed under the same
enetic regulation in peripheral blood cells. This was accomplished
hrough the use of transcriptome analysis.

In this study, we used publicly available PBMCs datasets for compu-
ational and transcriptome analyses. This research focused on biomarker
ignatures at the transcriptional and translational (hub proteins and
2

ranscription factors (TFs)) levels, to better understand COVID-19
pathogenic pathways. Each dataset’s GO enrichment is done using a
Fisher exact test and Kolmogorov–Smirnov test based on gene counts
and gene ranks, respectively. DEGs has used genomics data to demon-
strate the essential GO terms of genetic interrelationship. The research
is significant because it is the largest comparative and transcriptomic
study ever conducted on SARS-CoV-2 infection responses in human
blood PBMC cells. The significance of the potential biomarkers that we
have been able to identify in terms of appropriate immune responses
has been demonstrated. Based on the transcriptomic analysis of SARS-
CoV-2, the following analyses attempt to identify cell informative
pathways. The genomic analysis was first used to identify genomic
differences in the effect of SARS-CoV-2 on Homosapiens. This genomic
level study will allow researchers to focus on SARS-CoV-2 and the major
risk factors in the future.

1.1. Materials and methods

There are seven major phases in this work’s overall approach. The
dataset for blood (PBMC) cells is obtained in the first step. This step
aims to make sure that the samples are taken from COVID-19. The
differentially expressed genes (DEGs) from each of the selected datasets
were determined in the second step of our analytical approach. In step
three, we look for common DEGs in the COVID-19 blood PBMCs cell
datasets. The next step was to conduct gene set enrichment analysis
to determine the biological significance of the DEGs discovered. We
concentrated on revealing protein–protein interaction networks in step
five. In step six, we found gene regulatory network (GRN) interactions.
The final stage of our investigation uncovered drug–molecule interac-
tions. We looked at three SARS-CoV-2 contaminated datasets in this
paper. The proposed workflow shows in Fig. 1. Each tissue group’s
preprocessing steps were completed independently.

We have considered the following points in selecting datasets for
this study:

(1) We removed duplicate samples that were included in multiple
datasets from our study.

(2) Blood (PBMC) cells are related in a lot of COVID-19 databases.
However, we only look at total samples that are either case or
control. Besides, tests from disease datasets that are unrelated to
the regulation have been excluded.

(3) Several datasets have been labeled with specifics related to
a specific diagnosis, with a particular emphasis on biological
interactions, but the results do not apply to the diagnosis and
are therefore inappropriate.

(4) Only human data was used and non-human datasets were dis-
carded.

(5) We count the number of Differentially Expressed Genes (DEGs)
with an absolute log fold change value greater than or equal to
1 and a 𝑝-value less than 0.05.

1.2. Details about datasets

We looked at two RNA-Seq transcriptomic datasets and one mi-
croarray dataset related to COVID-19. One came from a study of
PBMCs from SARS-CoV-2 patients at the Beijing Institute of Genomics
Genome Sequence Archive in BIG Data Center (https://bigd.big.ac.cn/),
P.R. China, with the data accession number CRA002390. Others, two
datasets GSE152418 and GSE164805, were assembled from the Gene
Expression Omnibus (GEO) database [21], where GSE152418 is an
RNA-Seq dataset, and GSE164805 is a microarray dataset.

We discovered that the datasets we choose are appropriate for
our study when compared to other available datasets. We filtered
the datasets to select those with the least bias and noise for this
work. Case and control samples were included in the datasets. Then,
to approximate normality and minimize the effect of outliers, we

https://bigd.big.ac.cn/
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Fig. 1. The full workflow in this study. Gene expression datasets from COVID-19 matched control comparison studies of blood tissue were obtained from the Gene Expression
(GEO) repository. These datasets were analyzed to identify common differentially expressed genes (DEGs) among blood tissue. The significantly enriched pathways and Gene
Ontology (GO) terms were identified through enrichment analysis. Protein–protein interaction network was analyzed to identify hub proteins. Transcription Factor (TF)-target gene
interactions and RNA-seq target gene interactions were also studied to identify regulatory biomolecules.
applied a logarithmic transformation to all the blood cell datasets.
GREIN [22] was used to evaluate the RNA-seq data (GSE152418).
Many more articles were used GREIN [22] to evaluate their RNA-seq
dataset [23–25]. We used the GEO2R online tools to classify DEGs
from the PBMCs microarray GSE164805 dataset using linear models.
The 𝑝-values were modified using the Benjamini–Hochberg (BH) pro-
cedure [26–28]. The DEGs that differed among the three datasets were
taken into consideration for future investigation.

1.3. DEGs of COVID-19 immune responses in common with blood datasets

In human tissues affected by COVID-19, gene expression analysis
based on microarray and RNA-seq datasets can be a sensitive technique
for studying global gene expression and identifying plausible molecular
pathways that are activated, and this can be done with high sensitiv-
ity [29]. The transcriptome profile of diseased tissue was compared to
the transcriptome profile of control (non-diseased) tissues to generate
all of these microarrays and RNA-seq-based datasets. We can use this
information to find biomarker genes linked to COVID-19 progression.
In complex disease prognostic studies, achieving this can be difficult,
but it can lead to a method for making more accurate prognosis [30].
3

1.4. Gene ontology and molecular pathways are discovered by gene set
enrichment analysis

Gene Set Enrichment Analysis (GSEA) is a method for interpreting
gene expression data and functionally enriched GO terms on var-
ious conditions or disease states. We identified the cells signaling
pathways involving the DEGs found in blood PBMCs cell and then
determined which other genes may be involved in those pathways.
Due to hard-thresholding, a biological system may produce too few or
too many genes as statistically significant, which can vary from one
study to the next for a given set of genes. The GSEA method examines
data from gene sets that are based on prior biological knowledge,
such as gene pathways and gene expression profiles [31,32]. Gene
set enrichment analysis is a computational and statistical method for
determining whether a set of genes has statistical significance under
various biological conditions [33].

GO resources include structural and computational information for
gene product-based functions [34,35]. For gene product annotation, GO
is divided into three sections: molecular function, biological process,
and cellular component [36]. Signaling pathway analysis and gene
ontology analysis are also part of gene collection enrichment analysis.

The biological significance of the established DEGs is determined
through signaling pathways and ontology analysis. Enrichr was used to
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find signaling pathways and ontology concepts. The Enrichr (https://
amp.pharm.mssm.edu/Enrichr/) platform was used to collect GO terms
for current analysis. Enrichr is a web-based program that contains
massive gene sets made up of 102 libraries and runs genome-based
experiments [37].

In experimental biology labs, fundamental interactions within com-
plicated biological systems have frequently been organized into com-
putable pathway representations [38]. In the context of precision
medicine, databases may contain diverse representations of the same
biological pathway [38]. Also, pathways are frequently described at
various levels of detail, with a variety of data kinds and lack of
clearly defined boundaries [39]. The Kyoto Encyclopedia of Genes
and Genomes (KEGG) [40], Reactome [41], Wiki Pathways [42], and
BioCarta databases are used for cell informative pathway research. The
Enrichr framework is also used to apply the database performance.
We determined other genes may play a role in the cell signaling
pathways involving the DEGs found in the COVID-19 blood datasets
and then which other genes may play a role in those pathways. In
this enrichment study, we incorporated all of the DEGs discovered in
COVID-19 blood PBMC cells.

1.5. Protein–protein interaction network analysis

Using all common DEGs among COVID-19 blood PBMCs, we created
a protein–protein interaction (PPI) network using STRING (https://
string-db.org/) [43]. A standard pathway starts with an extracellular
signaling molecule that stimulates a specific receptor, triggering a series
of protein–protein or protein–small molecule interactions. The study of
protein interactions, which is regarded as the primary phase in drug
discovery and systems biology, yields significant knowledge about the
functions of proteins [44,45]. The advanced research of PPIs networks
determines the number of complex biological processes [46].

1.6. The establishment of a topological algorithm on the PPIs network, as
well as the identification of hub genes

Hub genes are genes that are strongly interconnected in a large-
scale complex PPIs network [47]. The PPI network is made up of genes,
edges, and their connections, with hub genes being the most entangled
nodes. The maximal clique centrality (MCC) topological algorithm
determines the hub genes for the current study. The MCC algorithm
is applied to the PPIs network through cytoHubba, a Cytoscape soft-
ware plugin (http://apps.cytoscape.org/apps/cytohubba). CytoHubba
is a Cytoscape plugin that consists of 11 topological algorithms for
ranking nodes in a particular network [48].

1.7. Analysis of TF–miRNA co-regulatory network

Transcription factors (TFs) bind to specific genes and regulate the
rate of transcription of genetic information; thus, they are critical for
molecular insights. The network repository was used to produce the
TF–miRNA co-regulatory network review [49]. We used the Network-
Analyst (https://www.networkanalyst.ca/) [50] platform to search the
JASPAR database [51] for topologically credible TFs connected to our
mutual DEGs. JASPAR is a freely accessible database of TF profiles
from different species belonging to six taxonomic groups [52]. The
co-regulatory network, which regulates DEGs at the transcriptional
levels, is used to identify the miRNAs and TFs. The network was
visualized using the NetworkAnalyst web-based framework. As the
need for gene expression-based datasets grow, NetworkAnalyst has
been used as a leading bioinformatics method for system-level data
understanding [53,54]. We used the Network repository’s TF-RNAseq
coregulatory interactions to find regulatory TFs that control DEGs of
interest at the transcriptional and post-transcriptional levels. The DEGs
4

shared by COVID-19 blood PBMC cells were used. In this study, DEGs
derived from COVID-19 patients’ peripheral blood cells were consid-
ered. The number of connections a node has with other nodes in the
network determines its degree. We consider 9 degrees in the TF–miRNA
network. Nodes with a higher degree are thought to be effective net-
work hubs [55,56]. Furthermore, the node sizes are important. Nodes
indicating genes that have strong connections with other differentially
expressed genes appear to be greater in size when compared to the
other nodes in the network [57]. We also discovered a network of
interactions between transcription factors (TFs) and DEGs.

1.8. The analysis of suggested drugs identifies protein–drug interactions

In this study, the common DEGs revealed in the interaction of
blood PBMC cells in COVID-19 were employed. We discovered protein–
drug interactions that may affect these genes. The DEGs discovered in
peripheral blood cells have been combined. To find potential drugs
for the treatment of COVID-19, NetworkAnalyst was used to search
the DrugBank database for protein–drug interactions [58]. A set of
protein–drug interactions was chosen based on statistical significance
thresholds for drug–protein interactions and the potential role of the
targeted protein in COVID-19 pathogenesis, and simulations were run
to analyze the binding affinities of identified drugs with their target
protein.

2. Results

To examine the genetic and transcriptomic interactions of the
COVID-19 with blood cells, we created a systematic and quantitative re-
search process. Much of the data was gathered from publicly accessible
sources.

2.1. Differential gene expression analysis identifies significant blood cells in
COVID-19

A sensitive tool for investigating global gene expression and finding
probable molecular pathways that are activated in human tissues im-
pacted by COVID-19 is gene expression analysis utilizing microarray
and RNA-seq datasets [59]. To better understand the transcriptional
effects of COVID-19 on blood PBMC cells, we used a strict cut-off
threshold of 𝑙𝑜𝑔𝑓𝑜𝑙𝑑𝑐ℎ𝑎𝑛𝑔𝑒 ≥ 1 and a 𝑝-value < 0.05 to find genes
that were differentially expressed compared to control patients. We
compared the upregulated and downregulated genes with the signifi-
cant upregulated and downregulated genes of blood cells in COVID-19
before moving on to other studies. We had 2621 DEGs after processing
CRA002390 with 1654 up-regulated genes and 967 down-regulated
genes. We also ran a comparison study to see the shared DEGs among
the COVID-19 blood PBMCs cell datasets. A total of 2514 DEGs were
discovered as a result of the analysis of GSE152418, with 2170 up-
regulated genes and 344 down-regulated genes. On the other hand,
after processing GSE164805, a total of 12,809 DEGs were discovered,
with 6,705 up-regulated genes and 6,104 down-regulated genes.

We can see the Ven diagram for upregulated common gene in
Fig. 2(C) and downregulated common gene in Fig. 2(D).

Each dataset’s DEGs have been established, and a number of over-
lapping DEGs have been discovered. We can get the 87 upregulated
and 15 downregulated common genes after comparing GSE152418,
GSE164805, and CRA002390 their upregulated and downregulated
genes. We also created heat maps to display the relationship among the
overlapping DEGs. The heat map Fig. 2(A) represents the interaction
between genes from the perspective of 𝑝-value, while the heat map in
Fig. 2(B) shows the relationship between genes in terms of log fold
change values [29,37]. Changing the significance level of differentially
expressed gene products and the fold change cut-offs can reveal dif-
ferent results that imply different signaling pathways and functions
involved. Several statistical test like 𝑝-value have been widely used for

large sampling sizes (15,000 genes) which can influence the amount

https://amp.pharm.mssm.edu/Enrichr/
https://amp.pharm.mssm.edu/Enrichr/
https://amp.pharm.mssm.edu/Enrichr/
https://string-db.org/
https://string-db.org/
https://string-db.org/
http://apps.cytoscape.org/apps/cytohubba
https://www.networkanalyst.ca/
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Fig. 2. Genes that are shared between COVID-19 infected patient blood (PBMC) cells are discovered by comparison of analyses. (A) In COVID-19, a heat map of the log fold
change for the genes that are shared by all blood cells is depicted. (B) The heat map depicts the p-values for the genes that are shared by all of the blood cells in COVID-19.
(C) The number of upregulated common important genes of COVID-19 in relation to the blood (PBMC) cells is represented by a Venn diagram. (D) The number of downregulated
common important genes in COVID-19 as compared to blood (PBMC) cells is depicted in a Venn diagram. (E) The combined log-fold changes and p-values for the common genes
shared by all blood (PBMC) cells in the experiment are depicted in the bubble plot.
of false positive rate and may indicate little about the biology. On
the other hand, fold change allows for a more biologically meaningful
assessment but still has difficulties recognizing what is significant to
the organism [60]. Therefore, applying both criteria to generate heat
map may assist but not singly solve the microarray and high throughput
data analysis problem. For this reason, we applied together 𝑝-value
and logFC value to generate heat map for connecting biological and
statistical test and minimize background noises of DEGs. We created
We also show that the striking essence of the unique transcriptional
signature induced in blood PBMCs is visualized using bubble plots
shows in Fig. 2(E).

2.2. Pathway enrichment analysis of DEGs reveals shared biological func-
tion between blood PBMCs cells in COVID-19

The pathway enrichment test measures the importance of a group of
genes/proteins/molecules’ overlap with an annotated group of
genes/proteins/molecules known as apriori for their specific biologi-
cal role, namely pathways, to determine their functional relevance.
5

Following the discovery of specific DEGs associated with SARS-CoV-
2 infection profiles in blood PBMCs, a variety of databases (KEGG,
Reactome, Wiki, BioCarta, and GO) were used to classify GO words and
cell informative pathways. We discovered the cell signaling pathways
in COVID-19 that include DEGs found in blood cells and then looked for
other genes that could be involved in those pathways. We incorporated
all of the DEGs found in blood and lung cells, as well as COVID-19
immune response cells, in this enrichment study. Using three ontology
GO analysis databases, including GO Biological Process, GO Cellular
Component, and GO Molecular Function, we identified the top 20 GO
pathway from each database analysis of the common DEGs between
blood cells in COVID-19 [61]. As shown in Fig. 4(A, B, C) we combined
the ontology GO analysis from these databases and plotted the most
important pathways based on the 𝑝-value. Pathways with a higher
logarithmic 𝑝-value have a higher level of enrichment. Mitotic sister
chromatid segregation (GO: 0000070), spindle assembly checkpoint
(GO: 0071173), spindle pole (GO: 0000922) and kinase binding (GO:
0019900) were identified as the most significant GO pathway in our
research.
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Fig. 3. Here the pathway analysis of blood PBMCs cell on COVID-19. We consider the 𝑝-value for each term. (A) indicates the biocarta, (B) indicates the KEGG, (C) and (D)
indicates wiki & reactome Pathway analyses.

Fig. 4. Ontology analysis of blood PBMCs cell on COVID-19. We get top 20 term on depend of 𝑝-value. (A) GO Molecular Function, (B) GO Cellular Component, (C) GO Biological
Process.
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Fig. 5. Investigation of protein–protein interactions (PPI) in the vicinity of the proteins represented by the overlapping differentially expressed genes were carried out using a
comprehensive PPI database referred to as STRING, which was searched using NetworkAnalyst, and the results were analyzed. The proteins are represented by the nodes, while
the interactions between the proteins are represented by the edges.
In COVID-19 commonly enriched pathways against DEGs, we hy-
pothesized that such a pathway enrichment test would reveal mutual
biological functions of blood cells. An over-representation statistical
test for the DEGs was performed with 𝑝-values < 0.05 to obtain sig-
nificantly enriched pathways using KEGG pathways as known pathway
annotation. We also conducted Reactome and Wiki Pathways analyses
with the top significant genes between blood and lung cells in COVID-
19. The most significant signaling pathway were BTG family proteins,
cell cycle regulation, Cytosolic DNAsensing route, Tolllike receptor
signaling pathway, and Type II interferon signaling (IFNG) can all be
included for pathway analysis. Details were Shown in Fig. 3(A, B, C, D)
respectively Biocarta, KEGG, WiKi and Reactome pathway analyses.

2.3. Protein–protein interaction network analysis

The PPI network was created using the STRING [43] web-based
visualization resource, and the network is shown in Fig. 5. The figure
represents the signature genes’ participation and interaction in the
PPI network. From the standpoint of PPI, we may also observe the
relationship among the cell’s genes. The network has 68 nodes and 502
edges, according to our findings. The proteins are represented by the
nodes, and the interactions between the proteins are represented by the
edges.

2.4. Hub proteins were identified from protein–protein interaction analysis

To predict typical DEG interactions and adhesion pathways, we
examined the PPI network from STRING and visualized it in Cy-
toscape [62]. In a PPI network, the most interconnected nodes are
known as hub genes. We identified the top 10 DEGs as the most
influential genes based on the PPI network analysis in Cytoscape using
the Cytohubba plugin. TPX2, DLGAP5, NCAPG, CCNB1, KIF11, HJURP,
AURKB, BUB1B, TTK, and TOP2A are the hub genes. Hub proteins are
thought to be drug targets. These hub genes may be used as biomarkers,
which could contribute to new therapeutic approaches for the diseases
being studied. As a result of the PPI research, the hub proteins were dis-
covered. Using the degree steps, a protein–protein interaction network
was built using DEGs to expose the central protein, the so-called hub
proteins. These are potential biomarkers that could contribute to the
7

discovery of new COVID-19 therapeutic targets. Using a comprehensive
PPI database called STRING, queried via NetworkAnalyst, protein–
protein interactions (PPI) were performed around the proteins encoded
by the overlapped differentially expressed genes [63,64]. The proteins
are represented by the nodes, and the interactions between the proteins
are represented by the edges. The hub gene network was created
using the STRING web-based visualization resource, and it is depicted
in Fig. 6. The figure depicts the signature genes’ participation and
interaction in the PPI network. From the standpoint of PPI, we may
also observe the relationship among the cells.

2.5. Analysis of TF–miRNA co-regulatory network

A network-based method was used to unravel the regulatory TFs
and miRNAs of the hub protein or DEGs, and TFs–miRNA linkages net-
works were studied to uncover transcriptional and post-transcriptional
regulatory fingerprints of common DEGs. Fig. 7 depicts the interactions
between TFs and miRNA. When it comes to a degree it all comes down
to the number of connections the node has with other nodes in the
network. We consider 9 degrees in the TF–miRNA network. Nodes with
a higher degree are thought to be effective network hubs. Furthermore,
the node sizes are important. If we look at all of the nodes in the
network, the ones representing genes that have strong relationships
with other differentially expressed genes appear to be larger than the
others. In the TFs–miRNA network, the green color represents the TF
(i.e. TFAP2A, TFAP2C, E2F1, E2F2, E2F3, E2F4, EGR1, NFYA, MYC,
JUN, SP1, HNF4A, CTCF, TF53, USF1, MAX, MXI1, 23601) and the
blue color represents the miRNA (i.e. hsa-let-7i, has-let-7e, hsa-let-7a,
hsa-let-7b, hsa-let-7g, hsa-miR-98).

2.6. Candidate drugs are identified and evaluated

The goal was to identify possible medication candidates that could
affect COVID-19 while simultaneously exploring the protein–drug in-
teraction. The study of protein–drug interactions is crucial to com-
prehend the features required by sensitive receptors [65]. As a result
of the protein–drug interaction research, it was discovered that the
medication had an interaction with a hub protein. In Fig. 8 shows
the association of two therapeutic compounds, Glycine and Pyridoxal
phosphate, with the hub proteins of the GLDC, is demonstrated.
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Fig. 6. The Cytohubba plugin in Cytoscape was used to determine the hub genes in the PPI network by analyzing the PPI network. To obtain the hub genes, the Cytohubba plugin
was used in conjunction with the most recent MCC method. Here, the orange nodes indicate the highlighted top 10 hub genes and their interactions with other molecules..

Fig. 7. The TF–miRNA regulatory interaction network is a network of interrelated regulatory interactions. There are TF genes shown with green and miRNAs indicated with blue
in the network, and they are interacting..
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Fig. 8. Protein drug interaction for drug analysis. It is possible to see the interaction
between a hub protein and its drugs. The red circle GLDC indicates the hub protein
and the other two yellow square boxes indicate Glycine and Pyridoxal Phosphate are
possible drugs..

3. Discussion

COVID-19 has been shown to affect a variety of body systems,
though it is debatable if it specifically affects the blood cells, therefore
influences human behavior. Furthermore, previous analysis indicates
that a portion of gene expression in PBMCs is associated with gene
expression of COVID-19. Changfu Yao claims that [15], single-cell RNA
sequencing (scRNA-seq) of PBMCs permits in-depth study of transcrip-
tional changes in COVID-19 patients’ immune cells. Another study
looked at the transcriptome data from COVID-19 infected PBMC and
CKD patients to see if there were any similar DEGs between them [16].
The lack of COVID-19 biomarkers in the peripheral blood has prompted
attempts to find much-needed methods for the early detection of this
debilitating disease.

Gene expression-based biological information can be discovered
using large-scale microarray datasets. By contributing to the rapidly
growing genome sequencing field, high-throughput sequencing has had
a significant impact on biomedical research. SARS-CoV has already
been subjected to high-throughput sequencing-based analysis, which
has yielded impressive gene expression results [66–68].

To find possible biomarker candidates, we studied two gene ex-
pression datasets from the COVID-19 patients’ peripheral blood. The
discovery of peripheral biomarkers can also shed light on the molecular
mechanisms of COVID-19 and allow for treatment monitoring. Tran-
scriptomics analysis (via RNA-seq and microarray) is widely used to
find candidate biomarkers for a variety of diseases. The three transcrip-
tomic datasets of PBMCs blood tissues shared their DEGs, according to
our study. We can get the 87 upregulated and 15 downregulated com-
mon genes after comparing GSE152418, GSE164805, and CRA002390
their upregulated and downregulated genes. Gene over-representation
analysis and gene ontology (GO) analysis were performed on mutu-
ally dysregulated DEGs among blood cells, referred to as core DEGs
in COVID-19. The enriched pathways by the established DEGs were
then identified using pathway enrichment analysis, which included
mitotic sister chromatid segregation (GO: 0000070), spindle pole (GO:
0000922) and kinase binding (GO: 0019900). In recent two studies,
Chen et al. identified mitotic sister chromatid segregation and spindle
pole GO pathway through integrative analysis in Hepatitis B virus-
associated hepatocellular carcinoma [69] and mitotic sister chromatid
segregation was identified in glioblastoma multiforme diseases [70].

Toll like receptor signaling pathway and Type II interferon signaling
were the most potential pathway identified in our study. The SARS-
CoV-2 spike protein S1 subunit activates TLR4 signaling to induce
pro-inflammatory responses [71] and to increase ACE2 cell surface ex-
pression protein which facilitating the viral entry into the host cell [72].
The activated TLR4 causes the host’s lung to react aggressively, result-
ing in a cytokine storm, building up secretions and impeding oxygena-
tion of the blood, and attacking the body with the immune system,
which leads to numerous organ failure [73].

TLR4 signaling in macrophages may therefore be a viable target
in COVID-19 patients for the control of excessive inflammation. Khan-
mohammadi and Rezaei (2021) suggested that, in the early phases of
the condition, TLRs might be a viable target to manage infection and
production of SARS-CoV-2 vaccine [74].

Several studies conducted on human and animal models have re-
vealed that interferon type 1 and 3 signaling are associated with
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SARS-CoV-2 infection, and also suggest that dysregulated interferon
signaling is a frequent molecular mechanism that develop the COVID-
19 infection [75–77]. It is surprisingly said that type 2 interferon
was identified in our study also would be used as a therapeutic tar-
get of SARS-COV-2 infection which was not previously identified in
SARS-COV-2 development confirmed by literature analysis.

We also discovered dysregulated central hub proteins including
TPX2, DLGAP5, NCAPG, CCNB1, KIF11, HJURP, AURKB, BUB1B, TTK,
and TOP2A that govern many cellular processes using protein–protein
interaction networks [78–80]. These hub proteins are thought to be im-
portant players in the disease’s mechanisms. Among them, the Aurora
Kinase B (AURKB) protein is effective for Hydrodynamic Analysis and
Protein Interactions of the Chromosomal Passenger Complex [77]. Kim
and Shin (2021) demonstrated that SARS-CoV-2 has been identified as
DEGs in Caco-2 cells of the Aurora Kinase B (AURKB) and the Aurora
Kinase A (AURKA) proteins [77]. The Aurora A Kinase (AURKA) is
activated by TPX2 and contributes to cell cycle progression regulation.
The overexpression of TPX2 improved the proliferative, invasive and
migrating abilities of prostate cancer cells [81]. A recent study also
suggesting that TPX2 genes may be useful targets for both the diagnosis
and prognosis of hepatocellular carcinoma (HCC) patients who have
been infected with HVB (hepatitis B virus) [82]. Auwul et al. found
PLK1, AURKB, AURKA, CDK1, CDC20, KIF11, CCNB1, KIF2C, DTL and
CDC6 hub genes which were serve as a potential biomarker of PBMCs
in COVID-19 datasets that support our findings [83]. Y. Song et al. iden-
tified several hub genes including DLGAP5, TOP2A, AURKA, AURKB,
and CCNA2 from lung adenocarcinoma cell. In clinical samples, qRT-
PCR confirmed the presence of these hub genes which could serve as a
therapeutic target for molecular cancer therapy [84].

Regulatory biomolecules are being investigated more and more as
possible biomarkers for serious illnesses like neurodegenerative dis-
eases. Multiple differentially expressed genes were identified during
infection, suggesting that they could be used as disease biomarkers
for SARS-CoV-2 viral infections. Proteins like these can play a role
in the development and progression of COVID-19. DEGs, as well as
TFs and miRNAs, were discovered to have a substantial effect on gene
expression at the transcriptional and post-transcriptional stages. These
DEGs was next analyzed in further depth to determine whether any
regulatory factors, such as transcription factors (TFs), were present that
could influence DEG levels in COVID-19 affected tissues.

Eventually, the potential medicine was discovered utilizing the
signature gene reversal technique according to Auwul et al. and Fagone
et al. studies [85,86]. Among them, Glycine is an important non-
essential amino acid, which is to be investigated as a positive mit-
igator in COVID-19 patients for cell damage and proinflammatory
storms [87]. The medication Pyridoxal supplementation may poten-
tially alleviate the symptoms COVID-19 by reducing both the immuno-
logical suppression causing viral spread as well as the pathological
hypersecretion of inflammatory cytokines [88–90]. We recommended
sending these candidate medications for prospective use in COVID-19
therapy for biological and clinical testing.

For COVID-19 diagnostic development, PBMC gene expression anal-
ysis can play a putative role. Our findings indicate that the evolution of
emerging diseases can be observed and analyzed using bioinformatics
techniques, as it allows for the development of a better understanding
of different cells. Understanding comorbidity associations is gaining
popularity among scientists because it can reveal new information
about disease causes as well as potential therapeutic strategic goals.
This study highlights the significance of using advanced bioinformatics
and system biology to uncover possible disease interactions and drug
development opportunities. The research also focused on the examina-
tion of the gene expression in PBMC in order to learn about the possible
use of the discovered hubs proteins for COVID-19 diagnostics, then we
chose to classify the bioinformatics method which has been frequently
utilized.
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Although, some limitations of the study should be acknowledged
because the results of this study rely on only bioinformatics analysis
where biomedical analysis in the wet lab is mandatory for better con-
firmation. For this reason, possible caution should be considered during
the interpretation of data analysis. In addition, PBMCs gene expression
in COVID-19 was reversed in the transcriptomic analysis to identify
potential drugs, but lung tissues are the primary organs affected by
SARS-CoV-2. Besides, the transcriptomic results were obtained in our
study for a small number of samples infected with SARS-CoV-2 while a
greater number of samples will result in a substantial number of con-
cordant genes. Despite the importance of the current systems biology
study of COVID-19 gene expression to identify putative biomarkers, we
propose wet-lab experimentation to confirm these candidates through
in vivo analysis to develop them as new biomarkers in COVID-19
disease progression.

4. Conclusion

In this research, we looked at the transcriptomics of blood PBMCs
cells to find DEGs that were shared among the three datasets. These
common DEGs were added to the investigation of protein–protein
interactions in the context of pathway analysis, transcription factors,
and miRNA. RNA-seq and microarray data from blood cells and found
102 DEGs. Toll like receptor, type II interferon signaling pathway,
mitotic sister chromatid segregation, spindle pole and kinase binding
were most significant molecular and gene ontology pathway involved
in COVID-19 pathogenesis. The 10 hub genes including TPX2, DLGAP5,
NCAPG, CCNB1, KIF11, HJURP, AURKB, BUB1B, TTK, and TOP2A
were identified from the PPI networks of these 102 DEGs. Several TFs
(TFAP2A, E2F1, NFYA, MYC, JUN, SP1, TF53, USF1, and MAX) and
the miRNA (let-7i, let-7e, let-7a, let-7b, and miR-98) were identified
as putative transcriptional and post-transcriptional regulators of the
DEGs. We have found two potential drugs Glycine and Pyridoxal which
target the biomarkers that we discovered for COVID-19 pathogenesis.
Several TFs and miRNAs were identified as putative transcriptional
and post-transcriptional regulators of the DEGs that we identified.
These results add to our knowledge of COVID-19’s relationship with
these blood response genes and demonstrate how the infection could
be investigated for other diseases. Although, the results of this study
rely on only bioinformatics analysis where biomedical analysis in the
wet lab is mandatory for better confirmation. Besides, the samples of
SARS-CoV-2 were collected at different times and the sample number
is lower. We now recommended a more rigorous validation of this
identifying biomarkers through in wet lab experiments for a therapeutic
intervention to identify in COVID-19 pathogenesis.
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