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Abstract
Precision medicine is transforming psychiatric treatment by tailoring personalized 
healthcare interventions based on clinical, genetic, environmental, and lifestyle 
factors to optimize medication management. This study investigates how artificial 
intelligence (AI) and machine learning (ML) can address key challenges in 
integrating pharmacogenomics (PGx) into psychiatric care. In this integration, AI 
analyzes vast genomic datasets to identify genetic markers linked to psychiatric 
conditions. AI-driven models integrating genomic, clinical, and demographic data 
demonstrated high accuracy in predicting treatment outcomes for major depre-
ssive disorder and bipolar disorder. This study also examines the pressing chall-
enges and provides strategic directions for integrating AI and ML in genomic 
psychiatry, highlighting the importance of ethical considerations and the need for 
personalized treatment. Effective implementation of AI-driven clinical decision 
support systems within electronic health records is crucial for translating PGx into 
routine psychiatric care. Future research should focus on developing enhanced 
AI-driven predictive models, privacy-preserving data exchange, and robust 
informatics systems to optimize patient outcomes and advance precision medicine 
in psychiatry.
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Core Tip: This paper explores the convergence of precision medicine and artificial intelligence (AI) in psychiatric care, 
focusing on tailoring treatments to individuals' genetic backgrounds. It underscores the complexity of psychiatric disorders, 
attributed to varied genetic, environmental, and lifestyle factors, and the role of AI in navigating these challenges by 
analyzing large genomic datasets. Despite obstacles such as data privacy, computational requirements, and model general-
ization, the study highlights the necessity for ethical guidelines and regulatory frameworks for AI use in psychiatric genetics. 
Furthermore, it stresses the importance of interdisciplinary collaboration to effectively address the AI-related implementation 
challenges in precision medicine.
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INTRODUCTION
Precision medicine, characterized by the customization of healthcare interventions based on individual variability in 
genes, environment, and lifestyle, is revolutionizing various medical fields, including psychiatry, through improved 
informed clinical decision-making. Psychiatric disorders have complex etiology (both internal and external stressors) and 
heterogeneous clinical presentations that pose significant challenges to traditional treatment approaches[1,2]. Conven-
tional therapies for refractory psychiatric disorders often fail to achieve remission in most cases, mainly due to the 
extended period required to observe any therapeutic benefits and their significant societal cost[3,4]. Hence, a more 
comprehensive understanding of the physiological mechanisms underlying mental illness is needed. The advent of the 
genomic revolution, driven by landmark projects such as the Human Genome Project, has provided unprecedented 
opportunities to unravel the genetic underpinnings of psychiatric disorders[5]. In recent years, there has been a paradigm 
shift toward leveraging genomic insights to enhance the diagnosis and treatment of psychiatric disorders. This is 
exemplified by the increasing number of published articles in this field (Figure 1). Advancements in genomic research 
have elucidated the genetic architecture of psychiatric illnesses and treatment response in patients with psychiatric 
disorders, particularly by identifying candidate genes, including transporter and receptor genes, implicated in disease 
pathogenesis and determining the efficacy of therapeutic intervention[6]. Clinicians and researchers in academia and 
biotech industries devote time to the development of interventions related to personalized treatment[7-9]. These 
discoveries have paved the way for pharmacogenomic (PGx) approaches aimed at predicting individual drug treatment 
outcomes, thus showing the potential of personalized therapy.

Genomic psychiatric treatment focuses on using an individual's genome to diagnose and treat mental health 
conditions. Using gene profiles from PGx testing can improve outcomes of psychiatric conditions and reduced cost of care 
for patients with a prior history of inadequate clinical response[10,11]. Guidelines concerning the utilization of PGx tests 
to inform dosing of commonly prescribed antidepressants and antipsychotics were published in several respected data-
sharing consortia[12,13] and curated knowledge databases with comprehensive resources [e.g., Pharmacogenetics 
Knowledgebase (PharmGKB) and Sequence2Script] describing how genetic variations influence drug response[14,15]. 
Additionally, pharmacogenetics information approved by drug labels and testing agencies, such as the Food and Drug 
Administration (FDA) in the United States or the European Medicines Agency in Europe, is well documented in 
medication leaflets providing guidance for patients with a particular genotype/metabolizer phenotype taking related 
prescribed drugs. This information includes specific dosage recommendations, potential drug interactions, and guidance 
on the likelihood of therapeutic failure. Despite the considerable potential of genomic psychiatric treatment, its routine 
implementation into clinical practice remains largely unstandardized, inconsistent, and unregulated[16]. The key 
challenges associated with PGx testing for psychiatric medications include the identification of relevant genes and alleles, 
ensuring tests are accredited according to recognized standards, maximizing the clinical usefulness of PGx testing 
through careful interpretation and implementation of test results for medication selection, and ensuring that prescribing 
recommendations are supported by evidence-based guidelines [e.g., Clinical Pharmacogenetics Implementation 
Consortium (CPIC), Dutch Pharmacogenetics Working Group (DPWG), FDA, and Health Canada] to avoid potentially 
harmful outcomes associated with recommendations lacking sufficient clinical validity[17]. For example, of > 25 gene-
based drug dosing guidelines developed by expert committees and published in guideline sources, only 7 genes (
CYP2D6, CYP2C19, CYP2C9, HLA-A, HLA-B, POLG, and FKBP5) are associated with altered pharmacokinetics, efficacy, or 
adverse drug reactions for ≥ 1 psychiatric medications. Table 1 shows the 7 genes and 43 associated medications from 9 
drug classes with drug-gene interaction information from evidence-based guidelines. Each psychiatric drug is given a 
PharmGKB PGx tag based on the level of action required as stated in their medication label information. Laboratories 
performing PGx tests and providing report results for genes without an association or limited evidence on the drug-gene 
interaction require critical review and reliable tools to determine the analytic and clinical validity of their PGx test results. 
Other factors, including patient’s demographic (e.g., age, sex, and ethnicity), as well as clinical (e.g., drug history, 
associated comorbidity, and pregnancy) and lifestyle factors (e.g., patients’ weight, diet, and alcohol consumption), can 
influence individualized therapeutic recommendation and response to psychiatric medications. Web-based tools, such as 
the PharmGKB, drug bank and Drug.com, are readily accessible to provide direct interpretations of drugs, genotypes, 
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Table 1 Evidence based pharmacogenetic associations for psychiatric medications

Drug category Drug name Gene Genotype 
group

Pharmgkb top 
FDA label testing 
level

Available 
clinical 
guidelines

Major clinically relevant drug-gene 
interactions

Anti-dementia drugs Donepezil CYP2D6 UM or PM Actionable PGx No data May result in altered systemic concen-
trations

Anti-dementia drugs Galantamine CYP2D6 PM Informative PGx No data Results in higher drug exposure compared 
to NMs

Antidepressants Amitriptyline CYP2C19 UM, IM or 
PM

No data CPIC, DPWG May result in altered conversion of 
tertiary amines to secondary amines

Antidepressants Amitriptyline CYP2D6 UM, IM or 
PM

Actionable PGx CPIC, DPWG May result in altered systemic concen-
trations

Antidepressants Bupropion CYP2D6 Testing required Potential drug-drug interaction

Antidepressants Citalopram CYP2C19 PM Actionable PGx CPIC, DPWG Results in higher drug exposure and 
higher risk of adverse reaction (QT 
prolongation) compared to NMs

Antidepressants Clomipramine CYP2C19 UM Actionable PGx CPIC, DPWG Results in decreased drug exposure and 
increased risk of ineffectiveness compared 
to NMs

Antidepressants Clomipramine CYP2D6 PM Actionable PGx CPIC, DPWG May result in altered systemic concen-
trations

Antidepressants Desvenlafaxine CYP2D6 PM Informative PGx CPIC No difference in plasma concentration 
from NMs

Antidepressants Doxepin CYP2C19 IM or PM Actionable PGx CPIC, DPWG Results in higher drug exposure compared 
to NMs

Antidepressants Doxepin CYP2D6 UM, IM or 
PM

Actionable PGx CPIC, DPWG May result in altered systemic concen-
trations

Antidepressants Duloxetine CYP2D6 PM Actionable PGx CPIC, DPWG Potential drug-drug Interaction. May 
result in higher drug exposure

Antidepressants Escitalopram CYP2C19 UM, IM or 
PM

Actionable PGx CPIC, DPWG May result in altered systemic concen-
trations

Antidepressants Fluvoxamine CYP2D6 PM Actionable PGx CPIC, DPWG Results in higher drug exposure compared 
to NMs

Antidepressants Imipramine CYP2C19 PM No data DPWG Results in higher drug exposure and 
higher risk of adverse reaction compared 
to NMs. Avoid use in PMs

Antidepressants Imipramine CYP2D6 UM, IM or 
PM

Actionable PGx CPIC, DPWG May result in altered systemic concen-
trations

Antidepressants Nortriptyline CYP2D6 UM, IM or 
PM

Actionable PGx CPIC, DPWG May result in altered systemic concen-
trations

Antidepressants Paroxetine CYP2D6 UM, IM or 
PM

Criteria Not Met CPIC, DPWG May result in altered systemic concen-
trations

Antidepressants Sertraline CYP2C19 PM No data CPIC, DPWG Results in higher drug exposure and 
higher risk of adverse reaction compared 
to NMs

Antidepressants Venlafaxine CYP2D6 PM Actionable PGx CPIC, DPWG Results in altered parent drug and 
metabolite concentrations

Antidepressants Vortioxetine CYP2D6 PM Actionable PGx CPIC Results in higher drug exposure compared 
to NMs

Antidepressants Amoxapine CYP2D6 UM, IM or 
PM

Actionable PGx No data May result in altered systemic concen-
trations

Antidepressants Desipramine CYP2D6 UM, IM or 
PM

Actionable PGx CPIC May result in altered systemic concen-
trations

Antidepressants Trimipramine CYP2D6 UM, IM or 
PM

Actionable PGx CPIC May result in altered systemic concen-
trations

*31: 01 CPIC, DPWG, Results in higher risk of adverse reaction Antiepileptics Carbamazepine HLA-A Actionable PGx
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positive CPNDS risk (severe skin reactions) compared to 
NMs

Antiepileptics Carbamazepine HLA-B *15: 02 
positive

Testing required CPIC, DPWG, 
CPNDS

Results in higher risk of adverse reaction 
risk (severe skin reactions) compared to 
NMs. Consider alternative therapies, or 
use only if potential benefits outweigh 
risks

Antiepileptics Lamotrigine HLA-B *15: 02 
positive

No data DPWG Results in higher risk of adverse reaction 
risk (lamotrigine-induced SJS/TEN). 
Avoid use in patients with *15: 02 positive 
allele

Antiepileptics Oxcarbazepine HLA-B *15: 02 
positive

Testing required CPIC, DPWG Results in increased risk of adverse 
reaction (severe skin reactions)

Antiepileptics Phenytoin CYP2C9 IM or PM Testing 
recommended

CPIC, DPWG May result in higher drug exposure and 
higher risk of adverse reaction (CNS 
toxicity) compared to NMs

Antiepileptics Phenytoin HLA-B *15: 02 
positive

Testing 
recommended

CPIC, DPWG May result in higher risk of adverse 
reaction (SJS/TEN) compared to NMs

Antiepileptics Valproic acid POLG A467T and 
W748S 
mutations

Testing required No data Results in increased risk of adverse 
reaction (acute liver failure and resultant 
deaths). The use is contraindicated in 
patients with POLG mutations

Antimigraine prepar-
ations

Clonidine CYP2D6 UM, IM or 
PM

No data DPWG No significant effect (No 
recommendation). Possible alternative for 
atomoxetine in variant CYP2D6 
metabolisers

Antipsychotics Aripiprazole CYP2D6 PM Actionable PGx DPWG Results in higher drug exposure compared 
to NMs and higher risk of adverse 
reaction

Antipsychotics Clozapine CYP2D6 PM Actionable PGx DPWG Results in higher drug exposure compared 
to NMs

Antipsychotics Haloperidol CYP2D6 UM or PM Actionable PGx DPWG Results in increased risk of adverse 
reaction In PMs and higher risk of 
reduced effectiveness In UMs

Antipsychotics Olanzapine CYP2D6 PM Informative PGx DPWG No significant effect (No 
recommendation)

Antipsychotics Paliperidone CYP2D6 PM Informative PGx No data No significant difference in exposure or 
clearance compared to NMs

Antipsychotics Perphenazine CYP2D6 PM Actionable PGx No data Results in higher drug exposure and 
higher risk of adverse reaction compared 
to NMs

Antipsychotics Pimozide CYP2D6 PM Testing required DPWG Results in higher drug exposure compared 
to NMs

Antipsychotics Quetiapine CYP3A4 PM No data DPWG Results in decreased conversion of 
systemic parent drug (quetiapine) to the 
active metabolite. Use alternative therapy

Antipsychotics Risperidone CYP2D6 UM, IM or 
PM

Informative PGx DPWG Results in altered parent drug and 
metabolite concentrations

Anxiolytics Clobazam CYP2C19 IM or PM Actionable PGx No data Results in increased active metabolite 
concentrations and increased risk of 
adverse reaction as compared to NMs

Anxiolytics Diazepam CYP2C19 PM Actionable PGx No data May result in altered systemic concen-
trations

Psycholeptics and 
psychoanaleptics in 
combination

Fluoxetine CYP2D6 PM Actionable PGx CPIC, DPWG Results in higher drug exposure compared 
to NMs

Psycholeptics and 
psychoanaleptics in 
combination

Fluoxetine FKBP5 PM Actionable PGx CPIC, DPWG Results in higher drug exposure compared 
to NMs

Psychostimulants, 
agents used for adhd 
and nootropics

Atomoxetine CYP2D6 PM Actionable PGx CPIC, DPWG Results in higher drug exposure and 
higher risk of adverse reaction compared 
to NMs
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Psychostimulants, 
agents used for adhd 
and nootropics

Modafinil CYP2D6 PM Actionable PGx No data May require dose modification when 
administered with medication 
metabolized by CYP2C19

NM: Normal metabolizer; UM: Ultra-rapid metabolizer; IM: Intermediate metabolizer; PM: Poor metabolizer; CPIC: Clinical pharmacogenetics 
implementation consortium; DPWG: Dutch pharmacogenetics working group; CPNDS: Canadian pharmacogenomics network for drug safety; SJS/TEN: 
Stevens-Johnson syndrome; TEN: Toxic epidermal necrolysis; PGx: Pharmacogenomic.

Figure 1 Number of yearly publications. A: The number of google scholar articles featuring the keyword “Pharmacogenomics testing (MESH)”, “precision 
medicine”, artificial intelligence and ”Machine learning” ’ in the title or abstract (years 1980-2023); B: The number of in google scholar articles featuring the keyword 
“Pharmacogenomics testing (MESH)”,“precision medicine”, psychiatric treatment “, artificial intelligence and ”Machine learning” ’ in the title or abstract (years 1980-
2023).

and drug-disease or drug-food interactions and assist physicians and pharmacists in translating genotypes to reco-
mmendations and making informed decisions about prescribing psychiatric medications while considering the potential 
risks and benefits associated with each prescription. However, this procedure could be time-consuming and tedious 
when searching for and comparing more than one drug, requiring systems that will incorporate various data sources, as 
well as demographic, clinical, and lifestyle factors, to create a comprehensive treatment model aligning prescribing 
recommendations with evidence-based guidelines for each individual psychiatric patient.

Artificial intelligence (AI) and machine learning (ML) are two advanced computational techniques used extensively in 
analyzing large data volumes to identify patterns that can be used to make informed decisions about a patient's treatment
[18]. ML uses data and algorithms to train a model to make predictions or decisions. Both AI and ML enable machines to 
learn and improve their performance on a specific task, playing a pivotal role in advancing genomic psychiatry treatment, 
particularly within the realm of PGx testing. AI and ML are two broad but similar concepts that are often used inter-
changeably in this study.

OVERVIEW OF PRECISION MEDICINE AND APPLICATIONS FOR ENHANCED GENOMIC PSYCHIATRIC 
TREATMENT
Precision medicine is particularly important in psychiatry due to the complex and elusive nature of mental illnesses, 
which often defy traditional Diagnostic and Statistical Manual of Mental Disorders (DSM)-5 and ICD-10 categorical classi-
fication frameworks and exhibit extensive clinical heterogeneity. Unlike other fields where group-level analyses suffice, 
psychiatric disorders necessitate a personalized approach as conventional case-control designs often fail to account for 
individual-level brain abnormalities essential for accurate diagnosis and tailored treatment strategies[19,20]. Precision 
medicine aims to address psychiatric treatment selection by aligning individual disease characteristics with precise 
treatment approaches. Thus, clinicians can tailor treatments to specific patient groups by considering genetic, environ-
mental, and lifestyle factors.

The applications of PGx for selection and prescribing of psychiatric medications
Several innovative approaches have been explored to improve treatment selection. Pharmacogenetics stands out as a 
crucial tool for clinicians, allowing for tailored pharmacological treatment based on DNA analysis of polymorphisms 
within key gene sequences[18,21]. Various factors, including issues related to compliance and genetic variations, 
contribute to the absence of a positive response to initial psychiatric medication in a significant proportion of patients
[22]. Genetic modifications are estimated to account for a substantial portion of treatment response variability. 
Consequently, finding an effective medication through multiple trials can be time-consuming and frustrating for patients, 
leading to discontinuation of treatment and exacerbation of symptoms. Nine genes central to recent PGx investigations 
belong to three main categories: The cytochrome P450 family (CYP1A2, CYP2B6, CYP2C19, CYP2D6, CYP3A4, and 
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CYP3A5), genes related to the serotonergic pathway (SLC6A4 and HTR2A), and those associated with the dopaminergic 
pathway (DRD2), of which 3 have shown inconclusive evidence (DRD2, SLC6A4, and HTR2A). The cytochrome P450 
enzymes, responsible for drug metabolism, exhibit various phenotypes based on genetic polymorphisms, potentially 
influencing individual responses to psychotropic medications. Similarly, polymorphisms in serotonin transporter and 
receptor genes play a significant role in the pharmacodynamics of selective serotonin reuptake inhibitors (SSRIs). 
Additionally, variations in DRD2 can impact medication responses, particularly in the treatment of psychotic disorders. 
Computational models offer promising solutions to address the complexities of psychiatric treatment selection. For 
instance, the Antidepressant Response Prediction Network (ARPNet) utilizes a neural network incorporating various 
biomarkers and genetic factors to predict antidepressant response[23,24]. Genomic research also identified numerous 
genetic variants associated with antidepressant response and side effects. Understanding the influence of genetic 
variation on drug metabolism enzymes, such as cytochrome P450 enzymes (CYP2D6 and CYP2C19), offers opportunities 
for tailored treatment strategies based on individual genotypes. Moreover, polygenic risk-scoring frameworks integrating 
single nucleotide polymorphisms (SNPs) could revolutionize treatment selection by predicting outcomes ranging from 
treatment response to drug metabolism, potentially transforming psychiatric care. However, further validation and 
integration into clinical practice are necessary. Nevertheless, they represent significant strides toward personalized 
treatment considering individual genetic profiles, ultimately enhancing the efficacy and precision of psychiatric care.

The applications of precision medicine in selecting a psychiatric PGx testing panel
Accurate identification and prioritization of genetic variants play a crucial role in PGx testing. Until the advent of 
precision medicine, previous methods heavily relied on in-silico prediction of significant pharmacogenes affecting 
response to or involved in the metabolism of one or multiple drugs, leading to limited sensitivity and challenges in result 
interpretation. Thus, annotating each variant and providing evidence for prioritization is crucial to address this issue. 
Several pharmacogenes with acceptable evidence of association with response to psychiatric medication are listed based 
on CPIC, PharmGKB, and DPWG[25]. For instance, CYP2D6 enzyme (responsible for the metabolism of most psychiatric 
medications, including amitriptyline, aripiprazole, atomoxetine, clomipramine, desipramine, doxepin, fluvoxamine, and 
haloperidol) has several genetic variants leading to individual variations in drug response. These genetic variants, 
including gene deletion, gene duplications, and hybrid alleles comprising portions of CYP2D6 and CYP2D7, are 
categorized into tiers by the American College of Medical Genetics and Genomics genome interpretation guidelines based 
on functional characterization, allele frequency, availability of reference materials, and technical feasibility for clinical 
detection. Tier classification facilitates the management of psychiatric medications by aiding in the identification of 
individuals with different metabolizing capacities, which can be assessed using explainable AI techniques[26]. For 
instance, Tier 1 alleles with known functional effects and significant prevalence are crucial for guiding medication dosing 
and selection. Conversely, Tier 2 alleles, including hybrid alleles, are important in treatment decision-making, especially 
when considering potential interactions and side effects, despite being technically challenging to characterize. Thus, 
clinicians can integrate genetic information and tier classifications to optimize medication regimens tailored to individual 
patient profiles by leveraging precision medicine (which relies heavily on AI or ML algorithms to analyze large volumes 
of diverse data), ultimately enhancing treatment efficacy and safety in psychiatric care.

OVERVIEW OF AI AND ML TECHNIQUES IN PSYCHIATRIC TREATMENT
Although AI and ML are closely related concepts, the key difference between them is that AI encompasses other 
techniques, such as natural language processing, computer vision, robotics, and expert systems, in addition to ML 
(Figure 2).

ML techniques encompass various methods, such as random forest (RF), support vector machine (SVM), gradient 
boosting, and extreme gradient boosting. These methods can be employed to detect and evaluate genetic risk factors in 
individuals, particularly those susceptible to diseases. ML algorithms can be categorized into supervised, unsupervised, 
and reinforcement learning (Table 2), each serving different learning scenarios and tasks[27-29]. In supervised learning, 
the algorithm learns from labeled examples to train a model to predict future outcomes with high accuracy. Supervised 
learning algorithms, such as RF, SVM, and artificial neural networks, can assess databases of patients with psychiatric 
disorders to predict treatment responses and hospital readmission[27,30]. These algorithms aid clinicians in selecting 
personalized therapies by analyzing gene expression data and genetic variants associated with altered responses to 
psychiatric medication. Unsupervised learning techniques, unlike supervised learning, aim to unveil underlying patterns, 
relationships, or groupings inherent within the data. This approach is commonly utilized for exploratory data analysis, 
dimensionality reduction, and clustering tasks. It serves as a powerful tool for deriving insights from unlabeled datasets, 
enabling the extraction of meaningful information without prior guidance. Various algorithms are utilized in 
unsupervised learning, including k-means clustering, hierarchical clustering, principal component analysis, and auto-
encoders, assisting in identifying patterns and relationships within patient data and contributing to treatment planning 
and prognostic analyses[28,31]. Reinforcement learning algorithms, such as Q-learning and policy gradients, optimize 
treatment selection by maximizing cumulative rewards over time, particularly in diseases such as bipolar disorder in 
which predicting lithium treatment response is critical. A decision tree rule using ML methods, such as RF, decision trees, 
and elastic nets, can also be applied to forecast antidepressant treatment responses, featuring the multifaceted approach 
to individualized psychiatric care.
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Table 2 Machine learning category, underlying principles, methods, and application examples

Machine 
learning 
category

Description Machine learning 
techniques used Algorithm Uses Ref.

Supervised 
learning

Supervised learning algorithm learns 
from labelled examples to train a 
model to predict future outcomes 
with high accuracy

Random forests, 
support vector 
machines, artificial 
neural networks

Classification, 
regression, sequence 
labelling

Predict treatment responses 
based on genomic profiles, aid 
in therapy selection

Nasteski et al
[27]

Unsupervised 
learning

Unsupervised machine learning 
discerns patterns in unlabelled 
datasets to predict relationships and 
meaningful patterns

K-means clustering, 
principal component 
analysis

Clustering, 
dimensionality 
reduction

Identify patterns and 
relationships within patient 
data for treatment planning 
and prognostic analyses

Ghahramani
[28]

Reinforcement 
learning

Reinforcement learning integrates 
user feedback to refine decision-
making, enhancing the model's 
performance

Q-learning, Policy 
gradients

Sequential decision 
making

Optimize treatment selection 
by maximizing cumulative 
rewards over time

Sutton et al
[29]

Figure 2 Schematic of artificial intelligence as a superset of machine learning, ANFIS, ANN, MLR and PL are examples of machine 
learning models which are acronyms for adaptive neuro-fuzzy inference system, artificial neural network, multiple linear regression, and 
power law, respectively.

The applications of AI and ML for enhanced genomic psychiatric treatment
The main idea of utilizing AI and ML in the PGx approach to psychiatric treatment is to assist clinicians in selecting 
medications that offer optimal efficacy with minimal side effects. Past research demonstrated the utility of ML algorithms 
across a spectrum of psychiatric disorders, including Alzheimer's disease, autism, major depressive disorder (MDD), and 
schizophrenia. A critical analysis of AI applications revealed diverse methodologies employed for disease prediction, 
biomarker identification, genetic feature prioritization, and selection of psychiatric medication[10,11,32-35]. Studies 
utilized raw genomic data, including RNA sequencing (RNA-seq) and whole-genome sequencing (WGS/WES), in 
conjunction with ML algorithms to identify genetic variants associated with treatment response. For instance, a predictive 
model based on differential gene expression analysis was developed to classify male and female lithium responders using 
gene expression data from the Lithium Treatment-Moderate dose Use Study. The Linear Models for Microarray and 
RNA-Seq (limma) package in R was utilized to explore how specific genes linked to lithium response variability relate to 
psychiatric symptomatology in bipolar disorders. Results showed that genes RBPMS2 and LILRA5 effectively classified 
male lithium responders, while ABRACL, FHL3, and NBPF14 genes classified female lithium responders. The predictive 
models showed high sensitivity (96% for males and 92% for females) in identifying lithium responders based on pre-
treatment gene expression signatures[36].

Moreover, AI techniques for predicting drug responses in psychiatric treatments are still in their early stages due to 
limited human studies investigating predictive models for treatment evaluation. Both conventional AI methods and deep 
learning approaches have been employed to predict antidepressant responders using genetic analysis datasets and 
demographic and clinical information. In a comprehensive literature review focusing on ML and deep learning in PGx 
studies related to antidepressant treatment in MDD, researchers identified predictive genomic variants and biomarkers 
associated with antidepressant treatment outcomes. They introduced the concept of intermediate endophenotypes to 
quantify behavioral phenotypes, establishing potential connections between genes and behavior[16]. These endophen-
otypes represent quantitative biomarkers of brain activity acquired through neuroimaging, offering insights into neurobi-
ological changes related to psychiatric disorders and treatment.

Research combining PGx and neuroimaging, especially for antidepressant outcomes in MDD, remains scarce. Studies 
such as the ARPNet employed traditional ML techniques (linear regression model) to identify key predictive features 
from patient data, achieving an 84% accuracy in recommending effective antidepressants[37]. The ARPNet model helped 
doctors prescribe the most suitable antidepressant for patients by identifying common features among patients and 
recognizing comparable treatment outcomes from previous patient records. Additionally, Pei et al[38] demonstrated that 
a neuroimaging PGx approach, combining functional magnetic resonance imaging (MRI) data with multi-omics data, 
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successfully predicted an early response to antidepressant treatment within the first two weeks. They initially identified 
key predictive variables using the SVM-recursive feature elimination model, including three SNPs (DRD5 rs1967550, 
HTR2C rs1801412, and TOR1A rs3842225) and six brain regions of interest in functional MRI data. Subsequently, an SVM 
algorithm was applied to achieve an 86% accuracy in predicting early-stage antidepressant treatment response[38].

Furthermore, deep learning architecture was applied in MDD to estimate individual-specific antidepressant response 
prediction. Lin et al[39] utilized a deep learning framework integrating diverse data types, including genetic (SNPs), 
demographic (marital status, age, and sex), and clinical datasets (baseline Hamilton Rating Scale for Depression, 
depressive episodes, and suicide attempt status), to capture complex interactions between biomarkers and antidepressant 
response using multi-layer feedforward neural networks (MFNNs). MFNN predictive models exhibited high accuracy, 
with the area under the receiver operating characteristic curve (AUC) of 0.82 for response and 0.81 for remission, 
respectively[39].

Despite these advancements, challenges persist, including limited human studies and the need for robust validation of 
predictive models in clinical settings. Furthermore, a comprehensive understanding of past research dynamics will 
inform future development trends in AI-driven genomic psychiatric treatment. Table 3, as well as the following cited 
resources, provide further insights into the utilization and performance of ML algorithms in diagnostic, prognostic, and 
treatment prediction contexts[40-46].

Another important application of AI techniques focused on assessing the significance of multiple pharmacokinetic 
genes in predicting blood levels of commonly used SSRIs while considering demographic factors such as age, sex, body 
weight, and genetic variations known to influence drug metabolism. Studies examined the effectiveness of a combin-
atorial PGx algorithm in predicting citalopram, escitalopram, and sertraline blood levels among patients in the Genomics 
Used to Improve DEpression Decisions (GUIDED) trial[10,11]. The combinatorial PGx test using a weighted assessment 
of three genes (CYP2C19, CYP2D6, and CYP3A4) outperformed single-gene approaches in predicting medication 
response by correlating pharmacokinetic assessments with medication blood levels. The combinatorial PGx algorithm 
predicted sertraline blood levels better than individual genes (CYP2C19 and CYP2B6) across multivariate analyses. 
Specifically, the observed F-statistic value of 33.3 indicated that the combinatorial PGx algorithm (approximately 2-7 
times larger than for individual genes) significantly contributes to explaining the variability in sertraline blood levels, 
suggesting its potential to optimize medication management in patients with MDD[10]. Similar findings were reported in 
a previous GUIDED trial with 191 MDD patients treated with citalopram/escitalopram. An evaluation of the predictive 
capacity of individual pharmacokinetic genes (CYP2C19, CYP2D6, and CYP3A4) and a comprehensive PGx test 
incorporating all three genes showed that the F-statistic for the combinatorial PGx test (when adjusted for age and 
smoking status) also exceeded that of individual genes by 1.7-2.9 times. When assessing both individual genes and the 
combinatorial test together, only the combinatorial PGx test retained significance, indicating its superiority in predicting 
citalopram/escitalopram blood levels compared to individual genes[11].

Applications of other AI methods for data-derived subgrouping of psychiatric patients
Patient stratification entails the intricate integration of diverse biomedical, demographic, and sociometric data to classify 
patients into subpopulations for clinical trial design and practice. Data mining of electronic health records (EHRs) was 
proposed as an efficient method to identify eligible patients for clinical trials based on relevance[47]. Studies involving 
EHR-linked DNA repositories demonstrated the utility of integrating PGx and sociometric data for predictive modeling 
to optimize dosage and reduce dosing errors. Healthcare providers and researchers can identify better treatment options 
by leveraging clinically available information for each psychiatric patient, such as age, gender, and education. In 2013, the 
FDA issued guidelines recommending the incorporation of PGx testing into early-phase clinical trials to identify specific 
populations, cohorts, and individuals who may require adjusted drug doses or titration intervals based on genetic factors 
influencing drug exposure, response, and adverse reactions[48].

The integration of AI methods for clinical data–based patient stratification and the development of proprietary ML 
algorithms to classify patients using both structured and unstructured data from EHRs is gaining traction in academic 
research, clinical practice, and pharmaceutical trials. Linking EHRs to genomic data in biobanks can address the critical 
need for large sample sizes in genetic research. Studies demonstrated that diagnostic algorithms with high positive 
predictive value can be derived from EHRs, especially when structured data are combined with text mining[49]. These 
algorithms facilitate semi-automated phenotyping for large-scale case-control studies. Additionally, the vast scale of EHR 
databases enables the identification of phenotypic subgroups and the development of algorithms for longitudinal risk 
prediction. EHR-derived genomic data are ideal for rapid replication of putative risk genes, studies of pleiotropy, invest-
igations of genetic networks, and PGx research. Ethnicity stratification can be performed at various levels by leveraging 
genomic data along with information from resources such as HapMap and the 1000 Genomes Project, enhancing patient 
categorization. However, EHR-based genomic characterization or phenotyping remains underutilized in psychiatric 
genomic research. Moreover, addressing the underlying issues is crucial for advancing precision psychiatry.

CHALLENGES IN PRECISION MEDICINE AND AI INTEGRATION IN PSYCHIATRY TREATMENT
Despite recognizable advancements, the integration of ML and AI into genomic psychiatric treatment presents several 
challenges, which are categorized in this study into conceptual and practical challenges. Conceptual challenges pertain to 
understanding the underlying mechanisms of mental illness, diagnostic ambiguity, treatment personalization, 
interpretability, clinical integration, lack of uniform guidance, and clinicians’ limited knowledge of genomics. Practical 
challenges relate to data quality, privacy, and algorithmic performance, as well as integration with precision medicine. 
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Table 3 Studies evaluating antidepressant drug response using machine learning predictive models

Psychiatric 
disorder

Machine 
learning 
method

Datatypes Dataset features Findings Ref.

Bipolar 
disorder

Decision tree, 
random forest

Gene expression RBPMS2, LILRA5 (male 
responders); ABRACL, FHL3, 
NBPF14 (female responders)

Predicted lithium responders in bipolar 
patients with AUC = 0.92

Eugene et al
[36]

Major 
depressive 
disorder

ARPNet 
model-linear 
regression

SNPs, DNA 
methylation, 
demographic

Neuroimaging biomarkers, Genetic 
variants, DNA methylation, 
demographic information

Predicted the most effective antidepressant 
with 84% accuracy

Chang et al[37]

Major 
depressive 
disorder

Deep learning-
MFNNs

SNPs, 
demographic, 
clinical

Genome-wide associations, marital 
status, age, sex, suicide attempt 
status, baseline hamilton rating scale 
for depression score, depressive 
episodes

Conducted GWAS to identify SNP associ-
ations with antidepressant treatment 
response and remission. MFNN models 
achieved high accuracy (AUC = 0.82 for 
response, AUC = 0.81 for remission).

Lin et al[39]

Major 
depressive 
disorder

Tree-based 
ensemble 
structure

Clinical, 
demographic

Clinical variables (patients with 
depression from STAR*D)

Predicted clinical antidepressant remission 
with 59% accuracy

Chekroud et al
[40]

Major 
depressive 
disorder

Elastic net Clinical, 
demographic

Clinical variables: Patients with 
major depressive disorder 
(GENDEN participants)

Forecasted antidepressant response with 
AUC = 0.72

Iniesta et al[41]

Treatment-
resistant 
depression

Random forest SNPs, clinical SNP (rs6265 (BDNF gene), rs6313 
(HTR2A gene), rs7430 (PPP3CC 
gene), Clinical variable - 
Melancholia

Predicted antidepressant treatment 
outcome with 25% accuracy

Kautzky et al
[42]

Major 
depressive 
disorder

SVM, decision 
trees

SNPs rs2036270 SNP (RARB gene), 
rs7037011 SNP (LOC105375971 
gene)

Estimated antidepressant treatment 
response with 52% accuracy

Maciukiewicz 
et al[43]

Bipolar 
disorder

Random forest Clinical Clinical variables (patients with 
bipolar disorder treated primarily 
with lithium)

Predicted responders for lithium treatment 
outcome with AUC = 0.8

Nunes et al[44]

Late-life 
depression 

Alternating 
decision tree

Clinical, 
demographic

Mini-mental status examination 
scores, age, structural imaging

Predicted antidepressant treatment 
response with 89% accuracy

Patel et al[45]

Major 
depressive 
disorder

Random forest SNPs SNPs (rs5743467, rs2741130, 
rs2702877, rs696692, rs17137566, 
rs10516436)

Predicted antidepressant therapy response 
with AUC > 0.7 and accuracy > 69%

Athreya et al
[46]

AUC: Area under the receiver operating characteristic curve; SNP: Single nucleotide polymorphism.

Addressing these challenges requires interdisciplinary collaboration, methodological innovation, and a nuanced 
understanding of the complexities of mental health and genomic data (Figure 3).

Conceptual challenges
Limited understanding of the physiology of mental illness and diagnostic ambiguity: A fundamental challenge in 
precision psychiatry is the need for a more comprehensive understanding of the physiological mechanisms underlying 
mental illness. Research shows that a particular drug or psychotherapy might work well for one subgroup of patients but 
not for another subgroup with the same diagnosis[16,50]. Without a thorough grasp of these underlying mechanisms, the 
development of accurate predictive models and personalized treatment strategies remains elusive. The current standard 
for diagnosing and treating mental disorders, the DSM developed by the American Psychiatric Association, heavily relies 
on clinicians' observations, behavioral symptoms, and patient reports, all of which can vary greatly[51,52]. Therefore, 
developing objective neurobiological markers for mental disorders is crucial, considering their diversity and co-
occurrence with other conditions that have gradual, long-term effects over 2-4 weeks. For instance, depression 
assessments based on the DSM inquire about physiological activity. While serotonin regulation may directly impact 
symptoms such as psychomotor retardation, it may have minimal effects on feelings of guilt. Many other mental 
disorders present as spectrums with overlapping symptoms. Variability in symptoms across demographics and genetic 
factors complicates standardized approaches to diagnosis and treatment. Identifying biomarkers or genetic variants 
associated with specific disorders can be difficult due to the heterogeneity of symptoms and genetic factors. This 
discrepancy highlights the need to identify subgroups with predictable treatment responses, requiring innovative 
statistical and scientific methods.

Unstandardized PGx testing and interpretation with lack of uniform guidance: One major challenge in psychiatric 
genomics is the complexity of genotyping, particularly in pharmacogenetic testing involving genes such as CYP2D6 and 
CYP2C19, which are linked with the highest number of drugs (Table 1) for which PGx guidelines suggest modifications to 
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Figure 3 Example of clinical pharmacogenetics implementation consortium point of care clinical decision support for an antidepressant 
with multiple gene interactions.

medical treatment[53]. Identifying clinically significant variants poses challenges due to differences in variant analysis 
among laboratories, requiring clear reporting of investigated SNPs[54-56]. Additionally, the conversion of SNPs into 
variant alleles and assigning activity scores for predicting metabolic phenotypes presents difficulties in clinical 
interpretation, hindering clinicians' ability to translate genetic test results into practical decisions[57]. Next-generation 
sequencing offers advantages in detecting rare variants, but its implementation in clinical settings is challenging in 
assigning clinical relevance to newly identified variants[13,57]. Technical complexities, such as gene deletions, multiplic-
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ations, and hybrid alleles, further complicate accurate genotyping, necessitating harmonization efforts. Inconsistent 
guidelines and standards for pharmacogenetic testing hampers the development of effective ML models and contribute to 
uncertainty in treatment decisions. Gaps in understanding and clinician awareness of genetic complexities, such as those 
associated with CYP2D6, further exacerbate challenges in analysis and interpretation. PGx test results can be difficult to 
interpret, particularly when multiple genes influence drug therapy or when unusual genetic variations are present. 
Ensuring that clinicians can accurately interpret and apply these results in the context of individual patient care is crucial 
but challenging, especially given the time constraints and intellectual demands of clinical practice.

Treatment personalization: The multifactorial nature of mental disorders and the described variability in treatment 
outcomes pose a major challenge to identifying biomarkers or genetic predictors of treatment response. Genomic 
psychiatry, centered on personalized treatment, seeks to move away from the "one size fits all" (implementing uniform 
strategies regardless of individual or community differences) or piecemeal approach (addressing specific issues with 
tailored interventions, potentially overlooking broader systemic factors) and instead tailors therapies to individual 
patients[58]. However, it is important to recognize that individuality in healthcare is constantly evolving and shaped by 
advances in biomedicine and our understanding of genetics. Tailoring treatment solely based on patients' genetic and 
clinical profiles may prove inefficient. A critical challenge in psychiatric treatment lies in considering factors such as race 
and lifestyle during treatment planning. This approach not only focuses on treating existing conditions but also 
emphasizes disease prevention by identifying and addressing risk factors early. Furthermore, previous research primarily 
focused on the collective effects of neurobiology, overlooking individual brain abnormalities crucial for personalized 
medicine development. Additionally, many psychiatric disorders can present across multiple dimensions, with high rates 
of co-occurrence indicating different symptom patterns resulting from shared risk factors and potentially similar 
underlying disease mechanisms[19,20]. This high level of comorbidity adds complexity to efforts aimed at understanding 
and effectively treating psychiatric disorders.

EHR customization and implementation efforts: As research progresses, new gene-drug interactions and PGx 
relationships continue to emerge with the expanding volume of PGx clinical knowledge. Keeping up with this rapidly 
evolving knowledge base and incorporating it into EHR systems in a timely manner poses a significant challenge[59,60]. 
Integrating PGx clinical decision support (CDS) into EHRs often requires customization and significant implementation 
efforts at the institutional level. Institutions must organize relevant medication and genomic knowledge, define clinical 
workflows, and develop alert texts tailored to their specific needs and contexts. This customization can be resource-
intensive and require collaboration across multiple departments and stakeholders within the healthcare organization. 
Test results from years ago might still impact drug selection and dosing decisions in the future. Managing and recalling 
these historical results within the context of ongoing patient care workflows is challenging, especially considering the 
potential for changes in clinical guidelines and therapeutic options for psychiatric medication over time[61,62]. CPIC, 
established in 2009, offers clinical practice guidelines facilitating the translation of genetic laboratory test outcomes into 
practical drug prescription decisions. These guidelines adhere closely to the IOM’s Standards for Developing 
Trustworthy Clinical Practice. CPIC members possess diverse expertise in pharmacogenetics, with many actively 
involved in clinical PGx implementation. CPIC emphasizes the importance of a curated and machine-readable pharmaco-
genetics database suitable for integration into EHRs with CDS, recognizing the necessity of adopting pharmacogenetics 
into routine clinical care. In 2013, CPIC formed the CPIC Informatics Working Group to support guideline adoption in 
clinical electronic environments. Starting with HLA-B genotype and abacavir use, the CPIC systematically incorporates 
implementation resources into all guidelines, intending to make them applicable across various EHR systems. Currently, 
there are over 24 psychiatric medications with clinical guideline recommendations of which 14 drugs (amitriptyline and 
CYP2D6, CYP2C19; atomoxetine and CYP2D6; carbamazepine and HLA-A, HLA-B; citalopram/escitalopram and 
CYP2C19; fosphenytoin/phenytoin and CYP2C9, HLA-B; nortriptyline and CYP2D6; oxcarbazepine and HLA-B; 
paroxetine and CYP2D6; sertraline and CYP2B6; CYP2C19, vortioxetine and CYP2D6; fluvoxamine and CYP2D6; 
venlafaxine and CYP2D6) have pre- and post-CDS alert text and CDS flow chart indicating the need for a PGx test for a 
specific genotype before drug administration[13,62-65]. CPIC also provides guidelines for managing drugs with multiple 
gene interactions (Figure 4). ML-powered CDS systems integrated into EHRs can provide real-time guidance to clinicians 
at the point of care. These systems can alert providers to potential drug-gene or drug-drug interactions, recommend 
alternative medications or dosages based on a patient's genetic profile, and facilitate informed decision-making regarding 
pharmacotherapy. Additionally, AI algorithms can generate clinically applicable precision medicine tools at the bedside 
by leveraging big data from biobanks and EHRs, optimizing diagnosis, therapeutic intervention, and prognosis[66].

Ethical considerations and data privacy concerns: Applications of ML in psychiatry face ethical challenges similar to 
those in other areas of medicine and computer science. In this study, the challenges of genomic psychiatry treatment are 
categorized into two main issues regarding privacy in PGx testing and ML applications in psychiatric treatment. PGx 
testing requires the establishment of extensive genomic databases to facilitate the development of predictive models for 
drug response. These databases, containing sensitive genetic information possibly linkable to genetic diseases or predis-
positions, present unique privacy challenges compared to conventional medical data. Concerns arise regarding data 
security, unauthorized access, and a potential breach of confidentiality due to the aggregation of vast genomic data[67]. 
The European legal framework emphasizes the right to privacy and the duty of confidentiality for sensitive genetic data. 
Strict legal protection, including consent requirements and limitations on data disclosure, is essential to safeguard patient 
privacy and prevent unauthorized use of genetic information[68]. Despite efforts to technically enhance data confiden-
tiality, genetic databases may remain vulnerable. The potential for individual identification from medically relevant 
genomic sequences stored in databases also raises concerns. Rigorous adherence to strict guidelines and legal protections 
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Figure 4 Challenges with Genomic psychiatric treatment and prospects for artificial intelligence integration. 1See Pre-Test Alert tab for pre-test 
alert examples. 2Additional actions may include ordering a PGx test, preventing the clinician form ordering the medication, or allowing the clinician to cancel out the 
alert. 3Priority test result is defined as a genetic test that necessitates a change in drug, drug dose or drug monitoring. 4See Post-Test Alert tab for post-test alert 
examples. Blue color indicates further action may be required.

is imperative to mitigate confidentiality risks and ensure ethical conduct in PGx studies[69].
Another paramount ethical and social challenge of PGx testing is ensuring adequate protection against potential 

discrimination based on predictive medical information. Ethical considerations, such as informed consent, data 
protection, and safeguarding patient autonomy, demand careful attention. Additionally, effectively translating PGx 
evidence into clinical practice is needed to ensure equitable access across diverse populations[70].

The integration of ML into genomic psychiatry presents several challenges with ethical implications, including issues 
such as responsibility in decision-making, avoiding the dehumanization of patients, respecting clinicians' judgment, and 
ensuring transparency and fairness in algorithmic decision-making. As ML programs become integrated into clinical 
practice, physicians and ML tools are envisioned as collaborative "teammates" in treatment selection. However, 
determining who holds authority and ethical responsibility over the decisions made poses a significant question[71]. A 
competent human agent (especially a clinician) is required to review and ultimately assume final responsibility for the 
suggestions made by ML, as only humans possess consciousness and empathy, a comprehensive understanding of the 
contextual environment. Second, a risk of dehumanization exists as ML may overlook the patient's subjective experience
[72]. While ML can incorporate various psychological, environmental, and social variables, allowing patients the 
opportunity to fully express their concerns is essential, ensuring accurate diagnosis, improving health outcomes, and 
maintaining humane care. Third, decision-making complexities can arise, with non-experts possibly relying too heavily 
on protocols and overlooking tacit knowledge possessed by experienced clinicians[73]. Respecting clinicians' judgment 
and not disempowering them are crucial. Additionally, clinicians might become overly reliant on ML outcomes, partic-
ularly in complex cases, risking the loss of clinical judgment. However, training clinicians in ML applications can mitigate 
this risk. Transparency in ML algorithms is vital to ensure understanding and trust among human teammates, reducing 
resistance and empowering patients. Furthermore, there is a concern about bias in training datasets, potentially leading to 
erroneous predictions for underrepresented groups. Few retrospective studies conducted for heart failure and type I and 
II diabetes incorporated adequate external validation procedures[74-76]. However, prospective studies assessing the 
clinical feasibility and effectiveness of predictive models are scarce[77,78]. Some studies in mental disorders, including 
bipolar disorder, obtained predictive models above chance but without validation in independent samples, limiting their 
clinical applicability[17]. Stricter guidelines and legal protections are necessary to address these privacy concerns and 
ensure ethical conduct. Overall, addressing these challenges requires a comprehensive approach involving ethical, legal, 
and technical considerations to maintain patient confidentiality and autonomy in genomic psychiatry.

Practical challenges
Challenges of sample size used in ML: The effectiveness of ML models hinges significantly on the size and quality of the 
datasets used for training. While large datasets offer numerous benefits, including enhanced model training, improved 
generalization, and better performance, working with small datasets poses several challenges that can hinder the model's 
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effectiveness and generalization ability[79,80]. One significant challenge associated with small datasets is limited sample 
size restricting the number of available training samples. With fewer examples to learn from, the model may not capture 
complex patterns and relationships present in the data, leading to suboptimal performance. In psychiatric treatment, 
small sample sizes in pharmacogenetic studies resulted in contradictory findings, hindering implementation due to the 
lack of prescriber confidence and interpretive skills[81,82]. Moreover, small datasets often exhibit higher variability that 
can result in overfitting; hence, the model learns to fit the training data too closely, capturing noise or idiosyncrasies 
specific to the limited samples[83]. Furthermore, small datasets may lack sufficient representation of all possible 
variations or classes present in the real-world scenario, leading to biased or incomplete learning. This limitation can 
restrict the model's ability to accurately generalize in unseen instances. Additionally, small datasets may not provide 
enough instances of events or classes in scenarios where rare events or imbalanced class distributions exist, making it 
challenging for the model to effectively learn their characteristics and make accurate predictions[84]. Enhanced prediction 
accuracy is also determined by the amount and quality of data. Mere dataset size does not assure superior outcomes; 
rather, the caliber and relevance of data, encompassing issues of noise, bias, and diversity, considerably influence overall 
model performance. Thus, meticulous attention to data quality, alongside quantity, is essential[85,86].

Bias risk in reporting performance of ML methods and performance variability: Bias in ML, also referred to as 
algorithmic bias or AI bias, arises when an algorithm generates outcomes exhibiting systematic prejudice because of 
flawed assumptions within the ML process. Biases inherent in data and algorithms can lead to unfair or inaccurate 
predictions, particularly in sensitive domains, such as healthcare. ML methods are employed to make predictions in 
psychiatry from genotypes. The performance of these ML methods is highly varied, with different ranges of AUC, which 
utilizes probability to assess how effectively a model distinguishes between classes[87]. In a study in which 63 complete 
texts were evaluated from a pool of 652 abstracts, information was gathered for 77 models across 13 studies. The 
performance of ML techniques varied considerably (AUC: 0.48-0.95) and showed discrepancies among schizophrenia 
(AUC: 0.54-0.95), bipolar disorder (AUC: 0.48-0.65), autism (AUC: 0.52-0.81), and anorexia (AUC: 0.62-0.69). This 
variability is likely attributed to the substantial risk of bias identified in study designs and analysis of the reported 
outcomes. Factors such as predictor selection, hyperparameter exploration, validation methodology, and exposure to the 
test set during training were common contributors to the elevated risk of bias in the analysis. Variability in the 
performance of ML models across different studies and datasets hinders their reliability and generalizability to diverse 
populations.

SUMMARY AND FUTURE DIRECTIONS
Global optimism toward the integration of AI and ML into genomic psychiatry is driven by several key factors. First, the 
expanding knowledge base of PGx and personalized medicine, combined with the growing need for data preprocessing 
from diverse sources, necessitates the need for psychiatrists to incorporate AI into patient assessments for guiding 
diagnoses and treatment strategies. Second, understanding the neural underpinnings of human cognition and behavior 
requires effective analysis of both inter- and intra-individual variability. The emergence of advanced Explainable AI tools 
shows promise in deciphering complex neural behaviors, providing unbiased risk diagnoses, and offering personalized 
medicine recommendations. Modern ML capabilities extend beyond predicting treatment outcomes. They now include 
explaining predictions and addressing questions about why specific outcomes are chosen, their reliability, potential 
failures, and reasons for incorrect predictions. Third, the concept of genomic data exchange, allowing selective sharing of 
sensitive genomic or phenotypic data, necessitates secure handling of vast amounts of sensitive data. Conventional data 
management systems often cannot securely handle large quantities of sensitive data[17]. In response to this challenge, 
innovative systems managing information on patient outcomes, enhancing real-time communication on the significance 
of test results between patients and doctors, and providing AI assistance on personalized medication must be developed. 
To guide future research, desirable recommendations include the development of enhanced AI-driven predictive models 
leveraging multi-omics data and advanced ML techniques. Privacy-preserving techniques for genomic data exchange 
should be enhanced to enable selective sharing of sensitive genomic and phenotypic data. Two prominent techniques in 
this domain, differential privacy (DP) and federated learning (FL), offer unique approaches to safeguarding sensitive 
information while enabling effective data analysis[88]. DP, a cornerstone of privacy-preserving ML, operates by injecting 
noise into datasets, thereby obscuring individual identities while retaining overall data utility. On the other hand, FL 
revolutionizes the traditional paradigm of centralized data processing by allowing multiple parties to collaboratively 
train ML models without sharing raw data. This decentralized approach mitigates privacy concerns associated with data 
aggregation and facilitates seamless collaboration among institutions.

Designing innovative informatics systems is required to manage patient outcomes, facilitate real-time patient-doctor 
communication, and offer AI assistance for personalized medication recommendations. Implementing PGx CDS within 
EHRs is crucial for integrating PGx into routine psychiatric care. This integration enables the curation and dissemination 
of patient-specific PGx data at the point of care, facilitating optimal drug therapy based on genetic profiles. Efficient 
integration of PGx CDS into EHRs addresses challenges related to expanding PGx knowledge and complex interpretation 
of results. Furthermore, introducing risk-scoring systems based on comprehensive data integration (clinical, genomic, 
demographic, and drug interactions) can enhance medication safety and personalize prescriptions. Clinicians can make 
informed decisions to minimize adverse reactions and optimize patient outcomes by leveraging AI and ML for risk 
assessment and clinical decision-making, refined through iterative analysis.
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CONCLUSION
In summary, the integration of PGx into routine psychiatric care through EHRs is pivotal for advancing precision 
medicine. Utilizing informatics, especially CDS within EHRs, is critical for this integration. Efficient implementation of 
such technologies can address challenges related to the expanding volume of PGx knowledge and the complexity of 
result interpretation, ultimately enhancing patient care and outcomes.
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