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Abstract

High throughput screening (HTS) is one of the leading techniques for hit identification in drug discov-
ery and is often done in two phases, primary and confirmatory. The resulting data is multi-fidelity,
with noisy primary screening data available on a large number of compounds and higher quality
confirmatory data on a low-to-moderate number of compounds. Existing computational pipelines
do not integrate primary and confirmatory screening data of individual HTS campaigns, resulting in
millions of potentially useful screening data points being unused in models of confirmatory bioactiv-
ity prediction. Furthermore, there is currently a lack of publicly available multi-fidelity bioactivity
benchmarks to support modelling real-world high-throughput screening data.

To address these challenges, we first compiled a public collection of 23 multi-fidelity HTS datasets
from PubChem for benchmarking, including more than 6.1 million data points. Additionally, we
assembled a private collection of 19 AstraZeneca HTS datasets, spanning more than 22.8 million data
points. We then designed and evaluated machine learning models to assess the improvements offered
by the integration of multi-fidelity data, including classical machine learning and novel deep learning
approaches, the latter based on graph neural networks. Jointly modelling primary and confirmatory
data led to a decrease of 12% in mean absolute error (MAE) and an increase of 152% in Pearson
R? on the public datasets, and a reduction of 17% in MAE coupled with an uplift of 46% in R? on
the AstraZeneca datasets (averaged across all evaluated methods). Furthermore, supplementing with
molecular embeddings produced by previously trained deep learning models led to improved metrics
for compounds that were not part of the primary screen, with up to double the baseline performance.
We conclude that joint modelling of multi-fidelity HT'S data improves predictive performance and
that deep learning enables the use of unique and highly desirable strategies such as leveraging signals
from multi-million scale datasets and transfer learning.

1 Introduction

High-throughput screening (HTS) consists of a set of largely-automated techniques to experimentally
determine relevant biochemical interactions for large collections of synthetic compounds. The origins of
HTS can be traced back to around three decades ago, when pharmaceutical companies started transi-
tioning from natural products screening of up to 10,000 compounds per week to synthetic compound
screening. The shift was enabled by progress in automated and parallel processing of microtitre plates,
as well as rapidly-expanding compound library sizes resulting from combinatorial chemistry. Its popu-
larity was also due to heightened interest in target-based drug discovery thanks to advances in molecular
biology and genomics [PWO07; Mof+17]. Initially, the brute-force approach of HTS, the presumed lack of
quality, and the early lack of successful commercial drugs were criticised. However, HTS technology has
matured enough to be widely accepted in industrial and academic settings, with a considerable number
of FDA-approved drugs originating from high-throughput screens. [Mac+11]. Perola reported that 19
out of 58 drugs approved between 1991 and 2008 were derived from HTS campaigns [Per10], while a
more recent analysis examined 66 clinical candidates reported in the Journal of Medicinal Chemistry
between 2016 and 2017, determining that 29% of compounds were based on hits generated by large ran-
dom compound library screening [BB18]. Recent estimates of modern compound libraries for some of
the largest pharmaceutical companies indicate sizes varying from 1.2 million to 4 million molecules, and
a throughput of more than 100,000 screened compounds per day for leading laboratories, on a variety of
assays [Vol+19]. Furthermore, there is evidence that a large and diverse chemical library, often achieved
through sharing of proprietary libraries, in combination with multiple, parallel screening approaches and
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cutting-edge laboratory techniques increased the success of AstraZeneca early-stage discovery projects,
measured in terms of successful transitions to lead optimisation [Mor+18].

With high-throughput screening now producing millions of drug-protein interactions per project, the
idea of a digital pipeline for data analysis and targeted compound generation has gained traction, es-
pecially when based on machine learning and modern ‘Big Data’ approaches. Applications of machine
learning for modelling structure-property relationships of therapeutic interest have been known for more
than two decades, coinciding with the time when molecular datasets were first becoming available and
machine learning algorithms were gaining popularity. Notable historical examples include the application
of Support Vector Machines [BGV92] (SVM) on public [Bur+01] and GlaxoSmithKline [TH03] data, as
well as Random Forest [Bre01] (RF) models [Sve+04] on public data, both algorithms representing the
state-of-the-art at the time. It is worth noting that this category of algorithms (referred to as ‘classical’
or ‘shallow’ models in this paper) is still competitive and widely used today. For example, a recent
review from Boehringer Ingelheim reported SVM and RF as the top performers on internal ADMET (ab-
sorption, distribution, metabolism, excretion, and toxicity) prediction tasks, and furthermore presented
mixed results regarding the benefit of increasing training set sizes, with 8 out of 23 datasets recording
negative effects on the predictive performance when using more data [ASB]. The debate of whether more
data is helpful for virtual screening, usually framed in the context of virtual docking, has still not been
settled [Cla20]. Bayer’s in silico ADMET platform currently uses a mix of classical and deep learning
strategies, emphasising that the classification performance is identical between established (SVM, RF)
models and modern artificial neural network architectures, but due to certain strengths of deep learning
such as scalability and multi-task learning, it is increasingly being used internally [G6+20]. Nonetheless,
classical algorithms are normally discussed and evaluated alongside the latest machine learning appli-
cations for molecular prediction, such as MoleculeNet [Wu+18] and ChemProp [Yan+19], and are even
used independently in novel directions [KSL20].

During the last decade, several deep learning developments added another dimension to chemical mod-
elling, accompanied by new expectations and hope. This accomplishment is mostly attributed to the
success of convolutional neural networks and more recently to graph neural networks (GNN) [Duv+15], a
framework that naturally accommodates the idea of a molecular graph, as well as other novel ideas such
as SchNet [Sch+17], which used continuous-filter convolutional layers to model quantum interactions in
molecules. In fields like computer vision, breakthroughs were only achieved after the development of
high-quality, large-scale datasets, enabling the objective comparison of different architectures. Mirroring
this approach, recent efforts led to an increased number of datasets and benchmarks dedicated to com-
putational chemistry, such as MoleculeNet, LIT-PCBA [TNJR20] and Atom3D [Tow+20]. Furthermore,
deep learning strategies such as few-shot learning [AT+17; Sta+21] and generative modelling [JBJ18]
have started to be adapted to computational chemistry with success. Perhaps the most well-known re-
cent example is the discovery of a broad-spectrum antibiotic that is structurally distant from conventional
anti-bacterial compounds [Sto420], named halicin, a breakthrough made possible by a directional mes-
sage passing deep learning architecture.

Successfully exploiting the large amount of high-throughput screening data that is generated in the
public and private domains is of great interest for the computational chemistry community. Notable
contributions to the field include constructing historical HTS fingerprints [Pet+12; Hel+16; Lau+19;
Stu+19] and attempting to directly solve the bioactivity classification problem with increasingly more
sophisticated deep learning architectures [Yan+19; Gur+20]. However, certain limitations are not yet
definitively addressed. In the case of HTS fingerprints, activity flags from hundreds of assays are assem-
bled in a per-compound activity vector (fingerprint), with several studies showing that they outperform
purely structural fingerprints in bioactivity prediction tasks. However, the strategy is inherently not
scalable, since adding a single new compound would require screening it in hundreds of different assays.
Furthermore, compounds might have problematically sparse representations and Laufkotter et al. report
that a hybrid approach involving the molecular structure is preferable for both predictive performance and
scaffold hopping capability [Lau+19]. On the other hand, tackling the bioactivity classification problem
has the major obstacle of a massive class imbalance, since few molecules have truly favourable interactions
with the protein target. Other recent advances focused on improving the brute-force approach of HTS
by iterative virtual screening, where machine learning is used to design the next subset of compounds to
be screened after screening an initial fraction of the library [Dre+21].

In this work, we propose and evaluate a methodology for exploiting large amounts of high-throughput
screening data for bioactivity prediction, focusing on the multi-fidelity aspect of HT'S. Most of the ex-
isting work reduces the task to a prediction problem with labels extracted from the highest-quality



measurements available (concentration or dose response). However, this approach discards intermediary
measurements, in particular millions of primary screening interactions (single dose), due to considerations
of noise and uncertainty regarding appropriate integration methods. We hypothesise that leveraging the
activity measured in the primary phase of HTS leads to more powerful quantitative structure-activity
relationship (QSAR) models. This idea is motivated by the vastly larger chemical space (up to 3 orders
of magnitude) covered in primary screens, and recent deep learning advances that are capable of learning
relationships beyond simple similarity of fragments or entire molecules.

To help our investigation and motivate further research into this area, we first introduce a new col-
lection of 23 multi-fidelity HTS datasets, assembled and filtered from PubChem assay data, out of which
we examined a selection of 23 datasets, totalling more than 6.1 million unique interactions. This study
is further supported by a set of 19 in-house AstraZeneca multi-fidelity datasets that we assembled, to-
talling over 22.8 million unique interactions. We validate our hypothesis that the integration of different
data modalities is helpful by designing and evaluating a range of machine learning algorithms, including
random forests (RF), support vector machines (SVM), and a novel specifically designed variational au-
toencoder architecture with graph convolutional layers (Figure 1). Furthermore, we employed our deep
learning architecture to test the transfer learning potential, where previously-learnt molecular embed-
dings trained exclusively on primary screening data are leveraged by models of confirmatory data to
improve predictions. Importantly, transfer learning enables predictions for compounds lacking primary
screening measurements, as trained models can generate embeddings for previously unseen molecules.
Our study also aims to clarify some long-standing doubts by quantifying the benefits of deep learning for
improved high-throughput screening predictions and relating the size of the training datasets to model
performance.

2 Design and Implementation

2.1 Multi-fidelity datasets

In this work, we define a multi-fidelity HTS dataset as a molecular dataset with two different experimentally-
derived bioactivity measurements: single dose (SD) and dose response (DR). When referring to a multi-
fidelity dataset, the identifier of the DR dataset is written first, followed by the SD identifier and separated
by ', e.g. AID2382 — AID2098. We use the term primary and single dose interchangeably; similarly for
confirmatory and dose response.

The SD values are extracted from the primary screen, which evaluates a large library of compounds
for activity at a single concentration. Most compounds which are recognised as active in the pri-
mary screen are further examined in the confirmatory screen, where the activities at multiple dif-
ferent concentrations, for each compound, are summarised in a single ‘pXC50’ activity value, with
X € {I = inhibitory, E = effective, A = activity}. The compounds with both SD and DR activities
present represent a fraction of the entire compound library, as most candidates from the primary screen
are not advanced to the confirmatory stage. A third possibility is the presence of dose response activity
but lack of single dose for a set of compounds, which mostly occurs for hand-selected compounds believed
to possibly be active. This scenario is rarely encountered in the public domain, and usually with an
extremely small number of compounds. However, it is more common within industry, as detailed in our
experiments (Section 3.6). The three scenarios are summarised below (Table 1).

Table 1. Summary of the different settings encountered when working with multi-fidelity HTS data.
The presence and absence of a data type are symbolised by ‘v, respectively ‘X’. The fractions are

representative for both the public and private AstraZeneca data.

Scenario Single dose Dose response Fraction of data
Paired (SD, DR) v v < 0.01%

SD only v X > 99%

DR only X v < 0.001%

All molecular datasets are filtered for duplicates, stereoisomers, charged species, and large molecules
(Supplementary Information 1). Overall, the same preprocessing steps are applied to the public and
private AstraZeneca datasets, with any differences being presented in the following sections.
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Figure 1. (Top) A traditional workflow consists of a massive but noisy primary screen on a large
fraction of the available compound library, measuring the activity at a single concentration (single dose).
Compounds that are regarded as active are manually selected for a confirmatory screen, which measures
the activity at multiple different concentrations (dose response), usually summarised in a single number
such as the pIC50 (the term ‘pXC50’ includes other variations). Finally, the most active compounds
are manually selected for lead optimisation. (Middle, bottom) Our proposed multi-fidelity modelling
framework illustrated with 3 high-level steps. Firstly, the corresponding single dose (SD) and dose
response (DR) data are assembled into a multi-fidelity dataset. DR is only available for a fraction of the
entire dataset, hence some compounds are not available (‘N/A’). For step 2, a neural network is trained
on the large primary screen, modelling a large and diverse chemical space of activity. Finally, at step 3,
the molecular structure, supplemented with the representations learnt at step 2, is used train models of
confirmatory activity. Compounds that are reported active can be further explored experimentally.

2.1.1 Public datasets

We manually searched PubChem using relevant keywords' and selected assays that have SD and DR
measurements available. For some bioassays both modalities are available under the same assay identifier
(AID); however, the majority are reported as separate confirmatory screening assays. It is possible that
a single primary screening assay has multiple associated confirmatory assays, in which case we usually
select and count the individual (SD AID, DR AID) dataset pairs that arise towards the total number of
datasets. Primary screening information often includes replicate measurements, in which case they are
averaged to provide a single value. For DR, with the exception of the fluorescence polarisation datasets,
the readout values are transformed to the corresponding ‘pXC50’ unit. Overall, the collection shows
a pronounced amount of heterogeneity in terms of assay type, screening technologies, concentrations,
scoring metrics, protein targets, and scope, totalling 23 multi-fidelity datasets (each consists of paired
SD and DR data).

We summarised essential details such as the SD and DR measurement types, the number of compounds
in each screen, and the Pearson correlation coefficient for the existing paired (SD, DR) readouts for each
of the 23 datasets that we used in the main analysis (Table 2). The selection criteria for the datasets
included (1) diversity in the SD and DR types and sizes, as well as the assay format (biochemical,
cell-based), (2) SD/DR correlation, and (3) availability of at least 20 compounds with dose-response
readouts that are not associated with single-dose values. Each rule led to a different number of datasets:
based on the diversity criterion, 8 datasets were selected (independent of Pearson’s r), according to the
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Table 2. Summary of the 23 public multi-fidelity HTS datasets, including the PubChem AID, SD
and DR measurement types, size of the datasets (denoted by #), the Pearson correlation coefficient (r)
for the paired SD/DR measurements, and the associated p value. If the confirmatory data is available
separately, both AID columns are populated, otherwise the SD dataset includes the DR data. The
first 8 rows represent our starting set of public multi-fidelity data, the following 10 rows correspond to
the datasets with the highest SD/DR correlation, and the last 5 rows summarise datasets that were
added to support the transfer learning evaluation. The shortened words stand for: Inh., Inhibition; Act.,
Activation; Ind., Induction, FP, fluorescence polarisation.

DR AID SD AID SD type DR type # SD # DR r p value
1259350 1224905 Z-score FP 202,486 569 041 2.11x1072*
1259418 1259416  Act. pAC50 59,447 711 —0.37 1.97 x 10724

449756 435005 % change in signal LogAC50 289,447 1,811 0.25 3.59 x 10~27
- 449762 Inh. @25 pM IC50 311,910 1,754 0.20 6.04x10°1'8
—~ 1465 Fold Ind. @50 EC50 205,193 980 —0.14 1.72x107°
1259375 1259374 Inh. @2.6 uM LogIC50 614,427 348 0.10 6.89 x 1072
- 1949 Inh. @10pg/mL IC50 (pg/mL) 98,472 1,688 0.09 9.48 x 107%
1431 873 Inh. @Q5uM IC50 204,361 1,215 0.08 8.22x107°
—~ 504329 Inh. @12.5pm IC50 319,080 902 0.79 7.85 x 107192
- 1445 Inh. @30 M IC50 207,096 655 0.78 6.06 x 1037
624273 588549 Act. @12.48 pM pAC50 337,483 359 0.70 1.55 x 10~°*
624326 602261 Act. @15M IC50 343,811 985 0.68 1.03 x 107133
—~ 624330 Inh. @30 M IC50 324,979 1,570 0.66 2.30 x 107198
504941 488895  Act. pAC50 321,242 161 0.63 4.15x 10~
720512 652162 Act. @9.99 pm pAC50 264,972 109 0.62 9.55x 10~ '3
624474 624304 Inh. @21.8 pm IC50 345,553 1,327 0.58 1.43 x 10~121
493155 485273 Inh. @20 M IC50 314,791 973 0.58 3.80 x 10788
435010 2221  Act. LogEC50 280,006 1,797 0.56 1.27 x 10~49
463203 2650 Act. @10 M LogAC50 300,560 721 0.42 1.83 x 103!
1259420 1259416 Act. pAC50 59,447 174 —0.28 1.86 x 10~*
2382 2098 Act. Q7.5M EC50 287,633 2,239 024 1.29 x 1072
687027 652154 Act. @12.62 M pAC50 281,074 1,024 0.10 1.72x 103
504313 2732 Inh. @10pM IC50 208,123 855  —0.09 5.84 x 1073

second criterion, the top 10 datasets ranked by descending Pearson’s r (absolute value) were selected, and
finally based on the third criterion a total of 5 additional datasets qualified. The resulting heterogeneity
of the 23 datasets allows the quantification of predictive performance effects based on properties such as
the dataset size and the agreement between data types. For the 23 public datasets, the total number of
unique primary interactions is 6,122,146, with 22,927 unique dose-response interactions.

2.1.2 AstraZeneca datasets

Similarly to the selection procedure for public assays described previously, historical AstraZeneca assays
were manually searched and selected when satisfying conditions such as having more than 1 million com-
pounds in the primary screen and multiple confirmatory screens available (usually referred to as dose
response rounds). Based on these criteria, we selected 14 unique SD datasets, each associated with at
least one DR dataset, for a total of 19 multi-fidelity datasets (Table 3). In this paper, each AstraZeneca
dataset is assigned an arbitrary identifier such as AZ-SD1 for single dose, AZ-DR-R1 for DR (regression),
and AZ-DR-C1 for DR (classification).

Differently from the public data, the emphasis is now on expanding the number of compounds screened
in both single dose and dose response, generally surpassing that of the public repositories by a factor
close to 6: the average number (+ standard deviation) of SD compounds for the 23 public datasets is



268,765 + 114,204, compared to 1,628,221 + 247,472 for the 19 AstraZeneca datasets, and 997 + 598
DR compounds for the public datasets compared to 5,419 + 3,328 for the AstraZeneca datasets. The
total number of unique primary interactions is 22,734,533, with 101,344 unique dose-response interactions.

The single primary screening scoring metric is the Z-Score, a normalisation method that represents the
number of standard deviations from the population mean, with all but two of the dose response datasets
using the pIC50, the others having only classification labels available. In the latter case, we adopted a
conservative approach and labelled all inconclusive or irregular measurements as inactive, thus binarising
the dataset (active or inactive). The raw HTS data was filtered using the same procedures described
in Supplementary Information 1. Overall, we assembled a collection of 14 single dose datasets with 18
associated dose response data tables, with an additional dataset (AZ-DR-R4 142R — AZ-SD4) where we
combined the DR measurements from two confirmatory screens (rounds) in a single multi-fidelity dataset
to assess the influence of more data in the experiments, resulting in 19 SD/DR multi-fidelity datasets.
The multi-fidelity datasets for the individual rounds are considered separate (AZ-DR-R4 1R — AZ-SD4,
respectively AZ-DR-R4 2R — AZ-SD4). For the classification datasets, the point-biserial correlation co-
efficient was computed between the Z-Score and the activity label in place of the Pearson correlation
coefficient.

Table 3. Summary of the AstraZeneca multi-fidelity datasets, including the SD and DR dataset names,
SD and DR measurement types, size of the datasets (denoted by #), the Pearson correlation coefficient (r)
for regression datasets or the point-biserial correlation coefficient (classification datasets) for the paired
SD/DR measurements, and the associated p value. If for the same primary screening data there are
multiple confirmatory screens available, each pair is represented through a different row in the table,
where the DR name reflects the screening round (R) used. A p value of 0 indicates that the value is
below the used machine precision, i.e. an extremely low value. Act., Activation.

DR name SD name SD type DR type # SD # DR r p value

AZ-DR-R1 AZ-SD1 1,700,745 6,522 —0.77 0
AZ-DR-R2 AZ-SD2 1,676,309 3,420 —0.72 0
AZ-DR-R3 AZ-SD3 1,970,086 9,654 —0.67 0
AZ-DR-R4 2R AZ-SD4 1,370,897 914 —0.66 9.71 x 10~'10
AZ-DR-R5 AZ-SD3 1,970,086 9,523 —0.66 0
AZ-DR-R6 AZ-SD5 1,360,029 3,467 —0.66 0
AZ-DR-R2 AZ-SD6 1,013,581 11,828 —0.64 0
AZ-DR-R4 142R  AZ-SD4 1,370,897 1,615 —0.62 3.77 x 107169
AZ-DR-R4 1R AZ-SD4 Z-Score pIC50 1,370,897 1,073 —0.58 1.14 x 10798
AZ-DR-R7 AZ-SD7 1,742,284 7,416 —0.53 0
AZ-DR-R8 AZ-SD7 1,742,284 6,909 —0.49 0
AZ-DR-R9 AZ-SDS8 1,753,721 10,091 —0.46 0
AZ-DR-R10 AZ-SD9 1,581,928 399  —0.33 8.61 x 10711
AZ-DR-R11 AZ-SD10 1,671,471 4,488 —0.30 1.05 x 10733
AZ-DR-R12 AZ-SD11 1,747,502 5642 —0.28 1.59 x 10797
AZ-DR-R13 AZ-SD11 1,747,502 4,698 —0.19 3.64 x 10738
AZ-DR-R14 AZ-SD12 1,962,638 6,511 —0.14 7.28 x 10718
AZ-SD13 AZ-DR-C1 , 1,482,258 4,901  —0.22 3.50 x 107°2
Z-Score Binary Act.
AZ-SD14 AZ-DR-C2 1,701,084 4,260 0.32 7.93 x 10~104

2.2 Machine learning strategy

Multi-fidelity data modelling is performed in dose response space, by splitting the DR datasets into train
(80%), validation (10%), and test (10%) sets, and incorporating SD data as described in the following
sections. Each dataset is split five times based on different random seeds. The models are trained on all
the resulting splits and the reported results aggregate the metrics from the corresponding models.



To validate our methodology, we evaluate three different classes of machine learning algorithms: ran-
dom forests (RF), support vector machines (SVM), and graph neural networks (GNN). The validation
set is used to guide the hyperparameter search for the RF and SVM models, and as part of an early
stopping mechanism for the deep learning models. The final results are reported on the test set. Ar-
chitectural details are provided (Supplementary Information 2), and all evaluated model configurations
are listed (Supplementary Information 3, Supplementary Tables 1 to 3), amounting to just under 20,000
different models.

2.2.1 Shallow models

The RF and SVM algorithms provided by the open-source scikit-learn Python library can be used for
both regression and classification tasks, requiring the input molecular structure to be pre-processed into
a vector representation. We consider two different input representations: (1) Morgan fingerprints, com-
puted using the open-source Python library RDKit with the function GetMorganFingerprintAsBitVect ()
and the parameters radius=3 (increased from the default of 2), nBits=2048 (default), and (2) a list
of physical-chemical (PhysChem) descriptors, using the complete list provided by RDKit and computed
with the function MolecularDescriptorCalculator (), totalling 208 PhysChem descriptors (as of March
2022).

In addition to the default scikit-learn hyperparameters for RF and SVM, we perform a hyperpa-
rameter search using GridSearchCV and negative mean squared error scoring to select the best models
from a search space that balances coverage with reasonable training times (Supplementary Information
2). The best model configuration according to the hyperparameter search for each dataset was selected
and used throughout the paper.

2.2.2 Deep learning models

We designed and implemented a novel deep learning architecture based on the variational graph autoen-
coder (VGAE). The VGAE is an unsupervised learning framework that exploits graph convolutional layers
to learn directly from the non-Euclidean graph structure and the associated node (and possibly edge)
features. As a member of the variational autoencoder family, the VGAE has an encoder that learns to
compress the molecular information into a low-dimensional latent space and a decoder that reconstructs
the original connectivity information. Here, the convolutions are used to learn and propagate atom-wise
representations according to the connectivity imposed by the bonds, which are then aggregated into a
single molecule-level representation or embedding (a fixed dimension vector) [Bro+21].

The resulting molecular representation can be further processed by a fully-connected neural network
outputting the prediction in dose response space using an appropriate supervised loss, in an end-to-
end fashion. Thus, the resulting model incorporates elements of unsupervised learning (compression-
decompression) while being guided by the experimental readouts, an architecture we refer to as a ‘guided
VGAE’. While this deep learning approach outputs bioactivity predictions, it also produces molecular
embeddings that can be used in downstream analyses independent of the original emitting models, for
example as additional input to both deep learning and classical methods such as RF and SVR.

Additional complexity is introduced by the choice of node (atom) aggregation functions that compute a
compressed, molecule-level representation. The existing literature proposes simple permutation-invariant
functions such as summation, mean, or maximum. In this work, we perform multi-fidelity integration
experiments with three aggregation functions: summation, mean, and a new data-driven neural aggrega-
tor that we introduce in order to make better use of the multi-million scale information that is available.
The neural aggregator is implemented as a fully-connected neural network that produces a molecule-level
embedding from the concatenated atom (node) features of each graph. The deep learning and neural
aggregator architectures are described in detail in Supplementary Information 2.

2.2.3 Experimental design

All the presented algorithms can be supplemented with the single dose data in different forms. Thus,
we distinguish between the base and augmented machine learning models. Each of the tested machine
learning models — RF, SVR, and the guided VGAE — can exist in the base or augmented forms. The
base models are trained using only molecular structural information, i.e. either Morgan fingerprints or
physical-chemical (PhysChem) descriptors for the shallow models (i.e. RF and SVR), or the molecular
graphs for the deep learning models. The goal of predicting the dose-response bioactivity values (pXC50)
or the confirmatory activity flag for classification datasets. This is in line with current industrial practices
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Figure 2. The proposed guided VGAE architecture presented diagrammatically. An SD model is first
trained with supervised SD information, end-to-end, to produce graph (molecule) embeddings z*. A
different model with the same architecture can then be trained to predict DR values, by concatenation
with either the SD embeddings or the SD labels (only one at a time). The Aggregator is either global
sum or mean pooling over the nodes, or a neural network. The symbol || denotes concatenation. The
models do not currently use bond (edge) features.

regarding high-throughput screening modelling, as only the highest-quality measurements (confirmatory)
are used; however, this also limits the training set sizes to typically under 10,000 compounds, motivating
the goal of integrating millions of related data points from primary screens. Consequently, the base
models act as the reference point for each dataset.

We explore two different methods to incorporate SD data. To represent the ’best case’ scenario for bene-
fitting from SD observations, we append the SD label directly to the input fingerprint or the molecule-level
embedding in the case of the VGAE (for the train, validation, and test sets). However, this necessitates
that the SD label is available for each compound of interest, in a similar fashion to the existing HTSFP
method.

To circumvent this limitation, we devise a further augmentation strategy. Its first step is to train a guided
VGAE model exclusively on the entirety of the primary screening data for a fixed number of epochs. The
trained models produce molecular embeddings (carrying the SD signal) that can be incorporated into a
separate model trained and evaluated in DR space. This integration is achieved by concatenating the SD
embedding with the fingerprint (RF, SVR) or internal representation (guided VGAE).

The main advantage behind the second augmentation strategy is the capability of the trained SD guided
VGAE to produce molecular embeddings for arbitrary compounds, i.e. compounds lacking primary
screening data for the particular protein target. We also emphasise that the learnt SD embeddings can
be, in theory, integrated in the same way into any machine learning algorithm. However, whether the



classical machine learning models can exploit the information produced by deep learning or not is a
question that needs to be answered. As for the other augmentation, the SD embeddings are added to the
train, validation, and test splits of each dataset.

A high-level representation of the deep learning pipeline and the two augmentations is illustrated in
Figure 2. Overall, we evaluate three model configurations: base, augmented with SD labels, and aug-
mented with SD embeddings, for each of the three machine learning frameworks we consider: random
forests, support vector machines and the guided VGAE. For each VGAE model we tested three possible
aggregators: sum, mean, and the novel neural aggregator. This translates to three SD deep learning mod-
els for each dataset, each producing SD molecular embeddings. Thus, each evaluated model (including
RF, SVM, and the guided VGAE) has three variations for the SD embeddings augmentation. Similarly,
the base and SD labels augmented deep learning models are also tested with all three aggregators. All
the possible configurations are listed in the Supplementary Information (Supplementary Tables 1 to 3).

2.2.4 Reported metrics

For the majority of datasets, the prediction target is a ‘pXC50’ score. Thus, for all regression datasets
we calculate the mean absolute error (MAE), the root mean squared error (RMSE), the maximum error,
and the coefficient of determination (R?) to measure the agreement between the real experimental values
and the model predictions for the test sets.

Although all metrics are useful and can provide unique insights into the performance of the models,
the coeflicient of determination was recently argued to be more informative than other alternatives (such
as the symmetric mean absolute percentage error — SMAPE) and more interpretable than metrics such
as the MAE and RMSE [CWJ21].

For the two binary classification datasets, we report the AUROC (area under the receiver operating
characteristic curve), a well understood and adopted classification metric, and the Matthews correlation
coefficient (MCC), which was also recently argued to be more informative and truthful than the accuracy
and F; score, by accurately summarising the confusion matrix information into a single number [CJ20].

3 Results

To compare the predictive performance of the base and augmented models, we first report the aggregated
test set results across three subgroups of datasets: (1) public (PubChem) regression, (2) AstraZeneca
regression, and (3) AstraZeneca classification, using the R* metric for regression tasks and the MCC
for classification (Figure 3, higher is better). Similar figures with MAE, RMSE, and maximum error for
regression and the AUROC for classification are also provided (Supplementary Information 5 to Supple-
mentary Information 7).

The general trends are followed by finer-grained, per-dataset summaries for a selection of AstraZeneca
regression datasets (Figure 4) and PubChem regression datasets (Figure 5). Individual figures for each
evaluated public and private dataset, with the same additional metrics as introduced previously are also
available (Supplementary Information 8 to Supplementary Information 10). We discussed the statistical
significance of certain dataset attributes such as the number of compounds in each dataset in Section 3.4,
the trends towards more active or inactive confirmatory predictions for models integrating single dose
data in Section 3.5, and the capability of the proposed methodology to generalise to compounds lacking
single-dose measurements in Section 3.6.

3.1 Augmenting with experimental single dose readouts improves prediction
performance

Starting the analysis with the SD labels augmentation (‘4 labels’ in Figure 3), firstly with the 23 public
PubChem datasets, we observed an increase in performance above the base (non-SD augmented) models,
on average, in R? from 0.241 to 0.374 for RF, from 0.247 to 0.367 for SVR, and from 0.167 to 0.307
for deep learning (using the sum aggregator). The results are coupled with decreases in MAE between
7% and 12% for the three ML algorithms (Supplementary Information 5). Large improvements are also
observed for the AstraZeneca regression tasks, with an uplift in R?, on average, from 0.461 to 0.591 for
RF, from 0.469 to 0.585 for SVR, and from 0.391 to 0.534 for deep learning (sum aggregator). The
corresponding improvements in MAE range from 15% to 18% (Supplementary Information 6).
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(b) Test R? for the 17 AstraZeneca regression datasets (averaged across the five random
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(c¢) Test MCC for the 2 AstraZeneca classification datasets (averaged across the five
random splits of each individual dataset).

Figure 3. The predictive performance across the 3 multi-fidelity groups is reported on the test sets, using the R?
for regression tasks and the MCC for classification tasks, combining metrics from each individual dataset including the
five different random splits and presented using box plots with quartiles. The model configurations are summarised in
Supplementary Tables 1 to 3. The panel titles denote the ML algorithm, including three different aggregation functions for
the VGAE (‘SUM’, ‘MEAN’, ‘NEURAL’) and the x-axis labels (‘base’, ‘+ labels’ and ‘+ embs’) the augmentations.
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For the two AstraZeneca classification datasets, the MCC improves, on average, from 0.269 to 0.362 for
RF, from 0.273 to 0.400 for SVC, and from 0.315 to 0.393 for deep learning (sum aggregator), with uplifts
in AUROC ranging from 6% to 11% (Supplementary Information 7).

Overall, the models augmented with primary screening data consistently outperform the baseline mod-
els. Out of the three dataset groups, the largest improvements are achieved for the public data, as the
non-augmented performance is relatively low compared to the in-house AstraZeneca datasets, and the
addition of single dose measurements can almost double the R

The two shallow algorithms, RF and SVR, are almost evenly matched, with RF outperforming SVR for
the two regression groups (PubChem and AstraZeneca), and SVC proving stronger on the AstraZeneca
classification tasks.

The proposed deep learning architecture achieves the highest relative improvement (%Rz) on the two
regression groups (PubChem and AstraZeneca), although the performance of the base models is lower
compared to RF and SVR. However, both the base and the SD labels augmented deep learning models
outperform their shallow counterparts on the AstraZeneca classification tasks. Out of the three evaluated
aggregation operators, the sum function proves to be consistently the best performing in the low-data
regime of the base and SD labels augmented models (the models are trained only on the molecules with
DR), with the mean and neural aggregators usually performing slightly worse, depending on the datasets.

3.2 Transfer learning with SD embeddings improves prediction performance

Continuing with the second augmentation strategy, we examine the three possible embedding types (‘embs
= SUM’, ‘embs = MEAN’, and ‘embs = NEURAL’ in Figure 3), evaluated with each ML algorithm. To
clarify, the SD and DR deep learning models are separate and can each use one of the three aggregation
choices, resulting in 9 possible configurations. The three embedding types are also used to augment the RF
and SVR models, corresponding to the last three entries in the ‘RF’ and ‘SVR’ panels in Figures 3a to 3c.

Firstly, we examined the training metrics for the SD deep learning models that produce the SD em-
beddings, after 150 epochs (Supplementary Table 4). When using neural aggregation, the training R?
increases by up to 10 times on certain datasets, generally at least doubling the value of the simpler
aggregators. Furthermore, we noticed a strong correlation (r = 0.74,p = 6.2 x 10~%) between the R?
achieved after training on the SD models and the SD/DR correlation (Supplementary Figure 1).

We noticed an average increase in R? for the PubChem regression datasets from 0.241 to 0.287 for
RF, from 0.247 to 0.307 for SVR, and from 0.167 to 0.235 for deep learning (sum aggregator for the DR
model, neural aggregator for the SD model). The corresponding decreases in MAE range from 3% to
5% (Supplementary Information 5). For the AstraZeneca regression tasks, we noticed an increase, on
average, in R? from 0.461 to 0.519 for RF, from 0.469 to 0.543 for SVR, and from 0.391 to 0.483 for deep
learning (sum aggregator for DR, neural aggregator for SD). The improvements (decrease) in MAE are
between 5% and 10% (Supplementary Information 6). For the collection of two AstraZeneca classification
datasets, the MCC increased, on average, from 0.269 to 0.378 for RF, from 0.273 to 0.386 for SVC, and
from 0.315 to 0.412 for deep learning (sum aggregator for DR, neural aggregator for SD). The AUROC
registered increases in the range 8% — 10% (Supplementary Information 7).

The trends mirror those observed for the augmentation with single dose labels, namely consistent benefits
in predictive performance compared to the base models across RF, SVM, and the guided VGAE models,
although the effect is subtler for the majority of datasets. Importantly, we are able to show that the
RF and SVM architectures can successfully incorporate and exploit the molecular embeddings emitted
by separate deep learning models, a behaviour that was not immediately obvious as the three algorithms
(RF, SVM, deep learning) are fundamentally different.

Extending our previous observations regarding the effect of node aggregator functions within graph neural
networks, we can now conclude that the sum and mean operators are unable to capture the SD signal
from the multi-million scale primary screens. The models augmented with these two types of molecular
embedding generally perform the same, or even worse than the base models, across all evaluated ML
algorithms and especially for the deep learning models. In contrast, the embeddings produced with the
neural aggregator consistently outperformed the non-augmented models across the three ML strategies.

Interestingly, the models augmented with neural embeddings were the best performers on the AstraZeneca
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classification datasets (Figure 3¢, including the shallow models and the guided VGAE with sum aggre-
gation for the DR models), even compared to the SD labels augmentation. We also confirmed this on
a number of regression datasets such as AZ-DR-R7 — AZ-SD7 (Figure 4a) and AZ-DR-R8 — AZ-SD7
(Figure 4b). However, for the majority of the regression datasets, the highest performance is achieved by
the (augmented) shallow models.

3.3 Analysis of augmentation performance on a selection of datasets

To fully appreciate the benefits of multi-fidelity integration, we extend the analysis with a per-dataset
discussion. In particular, we highlight results for datasets that exhibit differences from the general trends
reported in the previous sections. To simplify the presentation, the configurations that produced poor
results were omitted (i.e. sum and mean aggregation for SD, neural aggregation for DR).

3.3.1 AstraZeneca datasets

On datasets such as AZ-DR-R7 — AZ-SD7 (Figure 4a), AZ-DR-R8 - AZ-SD7 (Figure 4b), and AZ-
DR-R9 — AZ-SD8 (Figure 4c), the best performing model in terms of R? is the SVR augmented with
neural SD embeddings (‘+ embs = NEURAL’). Other instances where the same configuration (SVR
augmented with SD neural embeddings) outperforms the others were noticed, e.g. on AZ-DR-R11 -
AZ-SD10 (Supplementary Figure 44d) and AZ-DR-R14 — AZ-SD12 (Supplementary Figure 38d).

The first three highlighted multi-fidelity datasets (Figures 4a to 4c) have a larger-than-average number of
pre-split DR data points (Table 3), with 7,416, 6,909, and 10,091 respectively, and SD/DR correlations
of r = 0.53, r = 0.49, and r = 0.46 respectively (absolute values), which are close to the average.

In contrast, AZ-DR-R2 — AZ-SD6 (Figure 4d) does not exhibit the same behaviour, despite being the
dataset with the largest amount of DR compounds (11,828) and higher SD/DR correlation than the first
three (0.64, absolute value). Still, the SD embeddings augmentation leads to improved R? compared to
the base models. In this particular case, the SD dataset (AZ-SD6) has only 1,013,581 data points, sig-
nificantly lower than the AstraZeneca average of 1,623,895 and representing the lowest in our collection.
Furthermore, the three multi-fidelity datasets illustrated in Figures 4a to 4c all have over 1.7 million SD
data points.

To offer a different perspective, we also visualised the two datasets with the highest SD/DR correla-
tion, AZ-DR-R1 — AZ-SD1 (Figure 4e) and AZ-DR-R2 — AZ-SD2 (Figure 4f), with r = 0.77, respectively
r = 0.72 (absolute value), and a DR compounds count of 6,522, respectively 3,420. For these two cases,
the uplift in R? is among the largest for the SD labels augmentation compared to the base models. For
AZ-DR-R1 — AZ-SD1, the achieved difference in R? between the SD labels augmentation and the base
models (AR?) for RF, SVR, and the guided VGAE models (sum aggregation) was of 0.216, 0.246, and
0.280, respectively. The corresponding decreases in MAE range between 29% and 32%. The augmen-
tation with neural embeddings is beneficial, albeit to a lesser extent, with improvements in R? ranging
from 16% to 29%, and decreases in MAE between 9% and 13%.

AZ-DR-R2 — AZ-SD2, the dataset with the second highest SD/DR correlation, sees smaller relative
improvements. However, as one of the datasets with the stronger base performances (R2 close to 0.7 for
RF and SVR), it is remarkable to see improvements of the illustrated extent for the augmentation with SD
labels (R* > 0.8 for SVR). AZ-DR-R3 — AZ-SD3, the third dataset in the SD/DR correlation hierarchy
(Supplementary Figure 39), has slightly less than 10,000 DR compounds and behaves similarly to previ-
ously observed trends, with relative improvements for the SD labels augmentation between 29% and 58%
in R?, coupled with decreases in MAE ranging between 26% and 33%. In contrast, the two datasets with
the lowest SD/DR correlation, AZ-DR-R14 — AZ-SD12 (Supplementary Figure 38d) and AZ-DR-R13 —
AZ-SD11 (Supplementary Figure 37d), only see limited improvements for both augmentation strategies,
generally under 10% in R?, on average.

3.3.2 Public PubChem datasets

All machine learning models are challenged by the public datasets, achieving a baseline performance that
is about two times lower in R?, on average, than the AstraZeneca regression datasets (Figure 3).

As before, the study of individual cases shows that several datasets diverge from the trends described
previously. One remarkable example is AID1445 (Figure 5a), the public dataset with the second-highest

12



DR =AZ-DR-R7 SD =AZ-SD7 DR =AZ-DR-8 SD=AZ-SD7
VGAE VGAE VGAE VGAE
agg = SUM agg = MEAN SVR agg = SUM agg = MEAN

RF
0.80

?r‘j ié Té i@ 0.75 i% - = L ﬁé

0.75

o 0.70 i % ? i ¢
0.70
065 M ?
ks |
0.60 R i 0.65
,
2 = 8 3 = 8 2 = 8 8 =2 g 3 = g 2 2 g 2 2 g w2 2
£ £ = g £ g g £ g 5§ & = £ £ = g £ g g £ g 5§ & =
vz vz + z + Z vz vz + z + Z
) n n ] I I n n
38 38 38 38 38 38 38 38
£ £ £ £ £ £ £ £
v £ ﬂl 0.' (7 v L 0)
+ + + + + +
Model Model
(a) AZ-DR-R7 — AZ-SD7 (R? on test set). (b) AZ-DR-R8 — AZ-SD7 (R? on test set).
DR =AZ-DR-R9 SD =AZ-SD8 DR =AZ-DR-R2 SD =AZ-SDé6
VGAE VGAE VGAE VGAE
RF SVR agg =SUM agg = MEAN RF SVR agg =SUM agg = MEAN
0.65 im = 06 - -
- '
0.60 oo - ¢ =
i 4 \ 05 o * . L
o E o 6 = -
@ 055 % = - -3
i . i 0.4
050 \
. 03 -
5 3 = 8 3 = 3 2 =z & 3 = g 8 = 8 2 =2 3 2 = 8 2 =2
4 8 5 4 8§ 5 8 8 5 i 8 5 8 2 5 s 5 3 s 8 5 s 5 3
+ Z + Z + Z + z + 2 + Z + Z + Z
] I I I} ) I I I
3 3 38 38 38 3 38 3
§ § 5 5 5 § 5 5
+ + + + + + +
Model Model
2
(¢) AZ-DR-R9 — AZ-SD8 (R* on test set). (d) AZ-DR-R2 — AZ-SD6 (R? on test set).
DR =AZ-DR-R1 SD =AZ-SD1 DR =AZ-DR-R2 SD =AZ-SD2
VGAE VGAE VGAE VGAE
RF SVR agg=SUM agg = MEAN RF SVR agg=SUM agg = MEAN
= =
= - 08 E =
= = . ' ‘ i <
0.6 . *
T
ra: - @ é If| ra: 0.7 ! | v 0 .
, = = &
0.4 = . 0.6 T T
=
L [ L [ R 05 g 2 [ g 2 - [
£ 3z £ £Egz £ 3¢ £ 3z £3:2 Egz £ 3¢
¥z Tz ¥z Tz ¥z Tz ¥z Tz
I I I 1] I L] I I
38 3 38 3 38 3 38 3
5 § 5 § 5 § 5 §
+ + + + + + + +
Model Model
(e) AZ-DR-R1 — AZ-SD1 (R? on test set). (f) AZ-DR-R2 — AZ-SD2 (R? on test set).

Figure 4. A small selection of AstraZeneca regression datasets, with the machine learning models limited
to sum and mean aggregators for the DR models and neural aggregation for the SD models. The model
configurations are summarised in Supplementary Tables 1 to 3. Each figure summarises results from the
five different per-dataset random splits.

SD/DR correlation (r = 0.78) and where all base models performed poorly, with test R? scores of 0.149,
0.168, and 0.072 for RF, SVR, and deep learning, respectively. The SD labels augmentation increased the
R?, on average, to 0.686 for RF, to 0.671 for SVR, and to 0.666 for deep learning, with reductions in MAE,
on average, between 40% and 44% (Supplementary Figure 8a). Augmenting with neural SD embeddings
(sum aggregator for the DR models) was beneficial as well, the R? increasing, on average, to 0.462 for
RF, to 0.560 for SVR, and to 0.497 for deep learning, the decreases in MAE ranging between 17% and 27%.

Notably, despite the base deep learning models underperforming compared to their shallow counter-
parts, both augmented guided VGAE models match the corresponding RF and SVR models. The public
dataset with the highest correlation (r = 0.79), AID504329, also improves significantly, the augmenta-
tion with single dose labels leading to uplifts in R? between 65% and 98%, and MAE reductions in the
range 28% — 35% (Supplementary Figure 18a), while the second augmentation strategy (same aggregator

13



selection) produced increases in R? between 29% and 65%, with drops in MAE between 12% and 22%.
Here, although the augmented performance is similar to AID1445, the base performance is considerably
higher, resulting in smaller relative gains.
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Figure 5. A small selection of PubChem regression datasets, with the machine learning models limited
to sum and mean aggregators for the DR models and the neural aggregator for the SD models. The
model configurations are summarised in Supplementary Tables 1 to 3. Each figure summarises results
from the five different per-dataset random splits.

Similar but milder improvements can be observed for other datasets with high SD/DR correlation, such
as AID624273 — AID588549 (Figure 5¢) with » = 0.70. In addition, there are instances where augmenting
with neural embeddings outperforms the SD labels augmentation even on the public datasets, such as
AID2382 — AID2098 (Figure 5d) and AID1465 (Supplementary Figure 9).

Unfortunately, due to the limited amounts of data and low correlation for some public datasets, we
encountered assays with poor model performance across the board, including the base and augmented
configurations, such as AID1259375 — AID1259374, or AID1465 (Supplementary Figures 9 and 27). On
the datasets with extremely low SD/DR correlation (|r| < 0.10), such as AID504313 — AID2732, AID1949,
AID1431 — AIDS873, and AID687027 — AID652154 (Supplementary Figures 7, 10, 17 and 24), the aug-
mentation strategies led to either minimal changes or slightly worse performance.

3.4 Effects of SD/DR agreement and dataset sizes on performance

Currently, there is no definitive answer to the question of the ‘right’ amount of data for high-throughput
screening modelling. To investigate what factors affect the predictive performance of our models, we
used multiple linear regression models to explain the evaluation metrics (e.g. the RQ) in terms of dataset
attributes such as the SD/DR correlation, the number of SD molecules, and the number of DR molecules,
as well as a categorical variable indicating the type of augmentation used. For the models trained on the
public data, we observed statistically significant positive relationships between the R? and the SD/DR
correlation and number of DR molecules (p < 2 x 10716), as well as for the SD labels augmentation
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(p < 2 x 10716) and the SD embeddings augmentation (p = 1.31 x 107?), (Supplementary Table 5).
Although we did not observe a significant contribution to the R? from the number of SD molecules,
there are significant negative relationships between the other reported metrics (MAE, RMSE, maximum
error) and the number of SD molecules, as well as the number of DR molecules (Supplementary Tables 6
to 8). In comparison, for the AstraZeneca datasets all encountered terms are significant, for the R?
with p < 2 x 10716 (Supplementary Table 9), and for the MAE and RMSE with 2 x 10716 < p < 1078
(Supplementary Tables 10 and 11).

To relate dataset attributes specifically to the level of improvement induced by the inclusion of SD
data versus the non-augmented base models, we performed a number of analyses on the AR? between
both augmentations and the base models, for each machine learning algorithm. Firstly, we noticed that
the agreement between the SD and DR datasets (Pearson’s correlation coefficient) is strongly correlated
with the AR? metric. For the models operating on public data and augmented with SD labels, we ob-
served a correlation between the SD/DR correlation and the AR? of 7 = 0.88 for RF, of r = 0.91 for
SVR, and of » = 0.79 for deep learning, with p < 107> for each model (Supplementary Figures 49a
to 49¢). The models augmented with SD embeddings exhibited less pronounced correlation between the
SD/DR correlation and the AR?, with r = 0.75, p = 4 x 1075 for RF, r = 0.69, p = 2.5 x 10~* for SVR,
and r = 0.62, p = 0.00154 for deep learning (Supplementary Figures 49d to 49f). For the AstraZeneca
regression datasets, it was also possible to observe a statistically significant relationship between the two
variables when augmenting with SD labels, with » = 0.58, p = 0.01549 for RF, r = 0.55, p = 0.02259 for
SVR, and r = 0.63, p = 0.00662 for deep learning (Supplementary Figures 49g to 49i). The correlations
for the SD embeddings augmentation were not statistically significant, although the guided VGAE model
(Supplementary Figure 491) indicates a possible relationship (r = 0.43, p = 0.08373).

In isolation, dataset attributes such as the number of SD molecules and the number of DR molecules are
not coupled with the AR? (Supplementary Figures 50 and 51). However, multiple linear regression mod-
els with the AR? as the dependent variable show a positive statistically significant relationship for the
number of DR molecules in the PubChem deep learning models augmented with SD labels (p = 0.0179,
Supplementary Table 20), and a negative relationship in the AstraZeneca regression RF, SVR, and deep
learning models augmented with SD labels (p = 4.04 x 10~%, Supplementary Table 22, p = 4.43 x 1075,
Supplementary Table 24, and p = 0.0207, Supplementary Table 26, respectively). Furthermore, the
number of SD molecules is significant for the SD embeddings augmented deep learning models (positive
relationship, p = 0.0043, Supplementary Table 27).

One particularly interesting example is given by two of the AstraZeneca multi-fidelity datasets, AZ-
DR-R5 — AZ-SD3, with just under 2 million SD compounds, almost 10,000 DR compounds and an
SD/DR. correlation of r = 0.66, and AZ-DR-R2 — AZ-SD6, with just over 1 million SD compounds,
almost 12,000 DR compounds, and an SD/DR correlation of = 0.64 (Table 3). For these two datasets,
the SD/DR correlations are very close and the number of DR compounds is also on the same scale, the
only major difference being the number of SD compounds. For AZ-DR-R2 — AZ-SD6, only a modest
increase in AR? is observed for the models augmented with SD embeddings, considering RF, SVR, and
the guided VGAE, (AR? < 0.05), whereas for AZ-DR-R5 — AZ-SD3 the uplifts are several times higher,
at 0.11 < AR? < 0.18 (Supplementary Table 13). Furthermore, if we extend the analysis to AZ-DR-R6
— AZ-SD5, with almost 1.4 million SD compounds, 3.5K DR compounds, and an SD/DR correlation of
r = 0.66, the corresponding AR? values lie between the two other datasets, although this comparison
is not ideal as the number of DR compounds is lower than the other two. In contrast, for the three
multi-fidelity datasets with the same SD set but different DR sets: AZ-DR-R4 1R - AZ-SD4, AZ-DR-R4
2R - AZ-SD4, AZ-DR-R4 142R - AZ-SD4 (Table 3), the differences in AR? are minimal (Supplementary
Table 13).

3.5 Effect of the augmentation on confirmatory predictions

One of the most unique and valuable properties of the primary screening data is the vastness of the
explored chemical space, especially when compared to the dose response experiments which are reserved
for a fraction of the originally screened compound library. One aspect that was not explicitly investigated
thus far is the direction taken by the augmented predictions: are the predictions shifted towards the more
active or more inactive ends of the spectrum?

We decided to experiment with the historical AstraZeneca datasets, as they provide the largest amount

of single dose interactions (> 1 million for every dataset). For each multi-fidelity AstraZeneca dataset, we
separated the compounds with a Z-Score around 0 (—0.5 < Z-Score < 0.5) from the SD dataset, termed
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Figure 6. Histograms for the guided VGAE, RF, and SVR, comparing the SD embeddings augmentation
to the base DR models models on a representative AstraZeneca multi-fidelity dataset (different scales on
the y-axis).

‘SD inactives’, with 610,129 4+ 80,370 compounds separated on average, and trained guided VGAE models
on the rest of the SD data points (by extension called ‘SD actives’) using exactly the same methodology
as presented previously. The trained ‘SD actives’ models were used to generate molecular embeddings for
both the ‘SD actives’ and ‘SD inactives’ sets, noting that the ‘SD inactives’ were not seen during train-
ing; in other words, every compound from the original SD dataset was associated with an SD molecular
embedding.

We repeated the evaluation procedure presented in Section 2.2.3 with the newly assembled data, focusing
only on comparing the SD embeddings augmentation strategy to the base (non-augmented) models. The
same five random splits of the DR data were used to train and validate DR models based on the guided
VGAE, RF, and SVR algorithms, with the important difference that the existing 10% test set was replaced
with a set of 10,000 diverse compounds selected from the ‘SD inactives’ sets for each dataset (Diverse
compounds selection, Supplementary Information 1). As these new sets do not contain compounds with
dose response measurements, it is only possible to compare the predicted pIC50 between the base and
augmented models. The SD embeddings augmentation shifts the distribution of the predictions towards
being inactive for the majority of datasets (Figure 6 and Supplementary Information 16). Furthermore,
the SD embeddings have a pronounced effect on the predictions despite being produced by models that
did not encounter the 10,000 molecules during training.

However, for a small number of datasets a few notable cases occurred, where the augmented models
(guided VGAE, and RF, SVR with FP and PC as the input representation) predicted higher pIC50 than
the base models; we report a selection of the top differences (Supplementary Table 28). A first obser-
vation is that the shallow models are generally more conservative in their predictions compared to the
deep learning counterparts, rarely exceeding a pIC50 of 6.0. In contrast, the augmented deep learning
models report high pIC50 values more often. However, on a non-trivial number of occasions the large
gaps between augmented and base are mirrored for the shallow models, for example in AZ-DR-R9 —
AZ-SD8, AZ-DR-R1 — AZ-SD1, and AZ-DR-R3 — AZ-SD3 to a lesser extent.

To help assess the quality of the predictions, we looked at the extreme pIC50 ranges for the models trained
and evaluated in Section 3.2, more specifically low activity compounds with pIC50 < 3.5 and high activity
compounds with pIC50 > 6.0, for each dataset where such compounds are available (Supplementary
File 2). For these activity subsets, we computed the MAE based on the test set ground truth values (the
R? is largely not statistically significant due to the low amount of samples). For the high activity subset,
the augmented VGAE models had lower MAE than their shallow counterparts for 8 out of 14 datasets,
and lower MAE than both the base and augmented shallow models for 7 out of 14 datasets. In contrast,
for the low activity subset, the augmented VGAE models had lower MAE than the augmented RF and
SVR models only for 4 out of 10 datasets, and lower MAE than both base and augmented shallow models
for 3 out of 10 datasets.

More specifically, for AZ-DR-R2 — AZ-SD2 and AZ-DR-R9 — AZ-SD8 the top model for the high ac-
tivity subset, according to the MAE on the test sets, is the base SVR FP, whereas for AZ-DR-R1 —
AZ-SD1 and AZ-DR-R3 — AZ-SD3 the top model is the guided VGAE augmented with the SD embed-
dings. We propose two methods to validate high-activity predictions of this kind. Firstly, by examining
compounds with high activity values reported by all models (deep learning, RF, and SVR), noting that
the shallow models might not be always capable of fully exploiting the SD embeddings. Hence, high base
activity values could also be considered. A few examples highlighted by this strategy are the 1st, 7th,
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Table 4. Summary of the available multi-fidelity HTS datasets with compounds that have confirmatory
screening information available but lack primary activity measurements, sorted by the number of such
compounds, denoted by ‘# DR (no SD)’. For the private AstraZeneca collection, one dataset lacking
primary data is evaluated in the context of 3 different trained DR models (AZ-DR-R4 — AZ-SD4), as
reported before, whereas for AZ-DR-R2 — AZ-SD6 two different DR datasets lacking SD data are available.

Type ]?Si&atsag‘;t SD dataset (fogg) 4#SD #DR SD/DRr
1259418 1259416 116 59447 711 —0.37
687027 652154 106 281,074 1,024 0.10
1259420 1259416 103 59447 174 —0.28
Public (AID) )
504313 9732 30 208123 855 —0.09
1463203 2650 27 300560 721 0.42
9382 2098 21 287.633 2239  —0.24
AZ-DR-R4 1R AZ-SD4 988 1370897 1073  —0.58
AZ-DR-R4 2R AZ-SD4 988 1370897 914 —0.66
Private (AZ) AZ-DR-R4 1+2R AZ-SD4 988 1370897 1615  —0.62
AZ-DR-R2 AZ-SD6 411 1013581 11,828  —0.64
AZ-DR-R2 AZ-SD6 201 1013581 11828  —0.64

11th, and 12th molecules listed for AZ-DR-R2 — AZ-SD2, the 1st, 4th, 6th, and 7th compounds for AZ-
DR-R9 — AZ-SD8 and the entries for AZ-DR-R1 — AZ-SD1 and AZ-DR-R3 — AZ-SD3 (Supplementary
Table 28).

A different approach consists of relating the molecules suggested by deep learning with other screened
compounds using similarity metrics such as the Tanimoto similarity. The compounds reported in this
paper (Supplementary Table 28) are either not similar to other molecules in the primary screen (low
Tanimoto similarity), or for the molecules with the highest similarity, which is still lower or equal to 0.8,
the related compound is inactive according to the primary screen annotation. Likewise, similarity with
compounds from the confirmatory screen is very low. The settings used for the similarity computation
were Morgan fingerprints with 2048 bits and a radius of 3 in RDKit. As such, if any of the suggested
molecules were experimentally validated as active, they would represent novel drug candidates that would
have otherwise been missed.

3.6 Predictions for compounds lacking single-dose measurements

One of the most challenging tasks in the multi-fidelity context is predicting confirmatory-level activity
for compounds lacking primary screening data, as this type of prediction relies on extrapolating single
dose information from the trained SD models. A further complication is the sparsity of compounds where
experimental confirmatory values are available but the corresponding single dose activity values are miss-
ing. From the entire search through PubChem, only 6 had more than 20 such compounds. Similarly, in
the private AstraZeneca collection, only 3 DR sets lacking SD readouts are currently available, two being
associated with the same SD dataset (Table 4).

In addition to the two augmentations presented so far, we also define a third possible augmentation,
combining aspects from both strategies. As the experimental SD values are not available, we ask the
trained SD models to produce single dose activity values, scalars that can be used with the existing
implementation in exactly the same way as real SD readouts. To evaluate the SD embeddings and the
(generated) SD labels on unseen molecules, the evaluation procedure was adjusted to train on the entirety
of the DR data for a fixed number of epochs (200), as opposed to splitting into multiple train, valida-
tion, and test sets as before. Instead, the set of DR compounds lacking SD values was used as the test set.

Generally, we observe that both augmentations improve the predictive performance, as measured by
the R?, with a certain level of variability depending on the dataset. In the best case scenario, both aug-
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mentations led to a severalfold improvement for RF and SVR (AZ-DR-R2 — AZ-SD6 set 1, Figure 7a), as
well as improvements for the guided VGAE models, and to doubling the performance of certain models on
several datasets (AZ-DR-R2 — AZ-SD6 set 2 in Figure 7b, AID2382 — AID2098 in Figure 7d, AID1259420
— ATD1259416 in Supplementary Figure 57f). Overall, the evaluation shows that the augmentations have
a positive effect on performance, with a small number of instances with minimal, no, or negative effects
(Supplementary Figures 56 and 57). Compared to the experimentally-derived SD values, the ones gener-
ated by machine learning appear more difficult to integrate successfully, in some cases even compared to
the SD embeddings. This behaviour appears to be limited to the RF and SVR models, and more often
for the PubChem data.

AZ-DR-R2 (no SD) set 1 AZ-DR-R2 (no SD) set 2
DR =AZ-DR-R2 SD=AZ-SD6 DR=AZ-DR-R2 SD=AZ-SD6
VGAE VGAE VGAE VGAE VGAE VGAE
RF SVR agg = SUM agg=MEAN  agg=NEURAL RF SVR agg = SUM agg=MEAN  agg =NEURAL
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Figure 7. Evaluation results (RQ) for a selection of datasets that have experimentally derived DR values
but lacking the associated SD activity. The ‘+ labels’ augmentation makes use of SD labels generated
by the trained SD models. The bold title refers to the set of data that was used for the evaluation (as

a test set), whereas the secondary title refers to the DR and SD paired datasets that were used to train
the ML models (no random splits).

4 Discussion

In this study, we proposed multi-fidelity HTS integration strategies built on a foundation of established
and novel machine learning algorithms, with the goal of improving bioactivity predictions in confirmatory
space. We demonstrated the benefits of leveraging primary screening data on a diverse selection of public
and private datasets, with test set prediction improvements ranging between 25% and 85%, on average,
depending on the specific algorithm and augmentation. On particular datasets, the integration of primary
screening data enabled up to x5 uplifts in predictive performance. Overall, we delivered strategies that
can be applied to existing and upcoming HTS campaigns and that can generalise to unseen molecules,
with the potential to highlight relevant compounds that would be missed by existing methods.

From a high-level perspective, we first validated two related hypotheses: (1) the primary screening data

can be integrated into various machine learning algorithms and (2) the primary screening data has a
positive effect on the predictive performance in confirmatory space.
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4.1 Multi-fidelity integration with machine learning

To validate the two premises, we proposed two different augmentation strategies which enable the use of
primary data in a fixed-dimension vector representation, a convenient format for most machine learning
approaches, including classical and deep learning.

Directly including the SD measurements (first augmentation) led to considerable gains on the majority
of datasets. The second augmentation strategy, which integrates molecular embeddings learnt by deep
learning models, led to similar, but generally slightly lower improvements. However, we encountered
several datasets where the SD embeddings augmentation proved to be the most successful in improving
performance. This suggests that the learnt embeddings have the potential to be more useful than the SD
values themselves for certain datasets.

Furthermore, we were able to establish that neural aggregation is the most effective option when a
large amount of data is available, with the standard operators (such as sum or mean) still being prefer-
able in low-data regimes. For HTS applications, this translates to neural aggregation when training on
SD data, and one of the simpler functions when training on DR data.

On a practical note, we delivered techniques addressing two realistic HTS modelling scenarios: (1)
improving confirmatory predictions when single dose measurements are available, and (2) generating
high-quality predictions for new compounds that were not part of primary or confirmatory screens.

Regarding point (1), we concluded that augmenting the DR models with experimental SD readouts
is largely beneficial. Since primary screens are often performed on a multi-million scale, this translates to
better confirmatory predictions for millions of compounds that would be too expensive to screen in the
high-quality confirmatory assays. Furthermore, we suggest that in future HT'S campaigns, all compounds
of interest, for example from manual selection procedures or for historical reasons, are included in the
primary screen. This step is likely to be inexpensive, but is expected to contribute to the prediction
quality.

Point (2) refers to an even more challenging scenario, where the molecules in question do not pos-
sess experimentally-determined bioactivity values. Thus, predictions are generated by previously trained
models on related SD and DR data. Although the augmentation strategies did not universally increase
performance, we did encounter significant gains on several datasets, including two-fold uplifts. While this
scenario remains less explored due to the lower amount of appropriate evaluation data, the demonstrated
promise of the augmentations should motivate real-world use and the development of more comprehensive
HTS assays and benchmarks.

4.2 Impact of the data size and quality

To explain the variability seen in the amount of performance gained by multi-fidelity integration, we
sought to link the reported metrics to several dataset characteristics, which included SD/DR correlation,
the size of the SD dataset, and the size of the DR dataset. In this process, we aimed to answer classic
questions surrounding the computational chemistry space since the rise of Big Data, more specifically if
more data is (always) helpful.

We first remarked that the uplift granted by the SD labels augmentation increases almost linearly with
the agreement between SD and DR for the public PubChem datasets. The effect was strong enough to be
observable even in isolation (without including other dataset attributes), and suggests that the quality
of the measurements, more specifically in the primary screen, is the deciding factor for successful compu-
tational modelling of multi-fidelity HT'S data. The relationship is less pronounced for the AstraZeneca
data, likely due to the larger role played by the amount of data for both modalities.

Furthermore, for the AstraZeneca regression datasets (all larger than 1 million data points) we examined
the metrics (RZ) after fully training the SD models. We noticed a strong positive relationship (Pearson’s
correlation coefficient) between the training set R? and the aforementioned SD/DR correlation between
the two data modalities. This relationship suggests that the SD datasets that are not in agreement with
the DR counterpart are noisy, reflected in the challenge posed to the deep learning models. In contrast,
the SD datasets that are highly correlated with the DR measurements are easier to model and lead to
more informative and helpful embeddings.
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Our analysis revealed that the number of SD compounds and the number of DR compounds were
statistically significant in explaining the reported performance metrics, as well as the uplifts (ARQ).
Larger primary screens were significantly associated with the uplifts seen for the deep learning mod-
els using the embeddings augmentation on AstraZeneca data. In a case by case analysis looking at
embeddings-augmented models on AstraZeneca datasets with similar profiles but vastly different number
of SD compounds, we observed that the largest uplifts correspond to the largest primary screens. For this
comparison, all dataset attributes except the number of SD compounds are very similar and could be con-
sidered fixed, leading us to theorise that the large difference in the primary screen size explains the uplifts.

Similar situations can be encountered for public datasets, for example AID493155 — AID485273, A1D624474
— AID624304, and AID435010 — AID2221 (Supplementary Table 15). The largest uplifts for the models

augmented with SD embeddings are seen on the dataset with the largest number of SD compounds out of

the three. Additionally, the models augmented with SD labels for the three highlighted datasets, which

do not depend on the number of SD compounds, perform very closely, especially for RF and SVR. This

indicates that the number of SD molecules is an important factor for the models augmented with SD

embeddings.

The size of the confirmatory screen was also significant in explaining the uplifts for certain RF, SVR, and
deep learning models on the public and especially AstraZeneca data. In particular, having more DR data
is associated with lower uplifts on the AstraZeneca datasets, and with higher uplifts for the deep learning
models on PubChem datasets. One possible explanation for the former is that models with more DR
training data have less space to improve since they already cover a larger chemical space. Another effect
to take into consideration is the train/validation/test split ratio, which is kept constant for all evaluated
datasets. It may be more difficult to achieve uplifts on the largest DR test sets (more than ten times
larger than the smallest, for example AZ-DR-R10 — AZ-SD9 with 399 pre-split DR compounds versus
AZ-DR-R2 — AZ-SD6 with 11,828), as they are more likely to contain compound classes and structures
not seen during training.

Overall, these observations indicate that the deep learning models are more sensitive to the amount
of data in the primary and confirmatory screens, possibly coupled with making better use of previously
learnt molecular embeddings compared to RF and SVR. Generally, high amounts of SD and DR data,
as well as good SD/DR correlation are required for the effective integration of SD data using learnt
embeddings. For the public data, the relatively small size of the SD datasets and the low variability in
the number of SD compounds between public datasets may considerably reduce the observable effect of
more data.

4.3 Effects of incorporating a larger chemical space

For the majority of HTS experiments we expect only a very limited amount of molecules to truly interact
favourably with the protein target. As successfully integrating the primary screening information should
provide a global overview of the tested chemical space, we argue that the augmented models will produce
more conservative bioactivity predictions, leading to more predicted inactives on the whole.

Indeed, the models augmented with the SD embeddings led to lower pIC50 predictions for the ma-
jority of AstraZeneca datasets, thus lowering the risk of reporting false positives. For a few datasets, we
noticed that the augmented models also reported high activity for a small number of molecules with low
base activity scores. This behaviour was mostly observed for the deep learning models. In our analysis,
we established that for the most active predictions the deep learning models are at least as accurate as RF
or SVR, while the classical algorithms are better suited for low-activity predictions. This is encouraging
as deep learning predictions could translate to new promising compounds that would not be discovered
by classical algorithms.

For AZ-DR-R2 — AZ-SD2, our analysis led to 39 compounds with largely increased predicted activ-
ity from the diverse set of 10,000 compounds (12 reproduced in Supplementary Table 28). Extrapolating
these trends to an entire primary screen of 1 to 2 million compounds indicates that our method allows
the selection of a few hundred or thousand molecules for a supplementary confirmatory round. Based on
these observations, we hypothesise that using the suggested filtering strategies as a cost-effective selection
step is a beneficial addition to live HTS assays, providing possible leads from compounds which otherwise
might have been missed by manual inspection or existing techniques.
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