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SUMMARY

Macroscopic cortical networks are important for
cognitive function, but it remains challenging to
construct anatomically plausible individual struc-
tural connectomes from human neuroimaging. We
introduce a new technique for cortical network
mapping based on inter-regional similarity of multi-
ple morphometric parameters measured using
multimodal MRI. In three cohorts (two human,
one macaque), we find that the resulting morpho-
metric similarity networks (MSNs) have a complex
topological organization comprising modules and
high-degree hubs. Human MSN modules recapitu-
late known cortical cytoarchitectonic divisions,
and greater inter-regional morphometric similarity
was associated with stronger inter-regional co-
expression of genes enriched for neuronal terms.
Comparing macaque MSNs with tract-tracing data
confirmed that morphometric similarity was related
to axonal connectivity. Finally, variation in the
degree of human MSN nodes accounted for
about 40% of between-subject variability in IQ.
Morphometric similarity mapping provides a novel,
robust, and biologically plausible approach to
understanding how human cortical networks
underpin individual differences in psychological
functions.
INTRODUCTION

Despite decades of neuroscience research using MRI, there is

still a lack of validated and widely accessible tools for mapping

the large-scale network architecture of anatomically connected

regions in an individual human brain. There are currently two

standard approaches available for imaging anatomical connec-

tivity in humans: tractography from diffusion-weighted imaging

(DWI) and structural covariance network (SCN) analysis.

Diffusion-weighted tractography seeks to reconstruct the

trajectory of axonal tracts from the principal directions of the

diffusion of water molecules, which tend to move in parallel to

bundles of nerve fibers. This technique applies to data collected

from a single participant and is a powerful tool for elucidating

localized patterns of anatomical connectivity. However, it re-

mains challenging to use tractography to map connectivity be-

tween all brain regions because long-distance projections

(e.g., between bilaterally homologous areas of the cortex via

the corpus callosum) are systematically under-recovered (Dau-

guet et al., 2007; Donahue et al., 2016). Moreover, there is

growing concern that the statistical analysis of diffusion-

weighted data is compromised by head movement (Walker

et al., 2012) and by a large number of false-positive connections

(Maier-Hein et al., 2016; Thomas et al., 2014). Future improve-

ments seem likely to depend, in part, on advances in scanner

design and image acquisition methods, which may become

increasingly the domain of a few highly specialized centers

(Lerch et al., 2017).

Structural covariance analysis uses simpler measurements

to reconstruct whole-brain networks, but the neurobiological
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interpretation of SCNs is problematic, and, crucially, this method

typically depends on MRI data collected from a large number of

participants. The basic idea of structural covariance analysis is

simple: a single morphometric feature, like cortical thickness,

is measured at each region in multiple images. Then the covari-

ance (usually, in fact, the correlation) between regional estimates

of cortical thickness is estimated for each possible pair of re-

gions, resulting in a single SCN for the whole group (Alex-

ander-Bloch et al., 2013a). Despite the existence of methods

for generating SCNs in individual subjects (Batalle et al., 2013;

Kong et al., 2015; Li et al., 2017; Tijms et al., 2012), these tech-

niques have been restricted to the use ofmorphometric variables

available through standard structural T1-weighted (T1w) MRI

sequences.

Here we explore a different approach to human cortical

network mapping that leverages the growing capacity to extract

multiple different anatomical indices across multiple imaging

modalities (Lerch et al., 2017). Rather than estimating the inter-

regional correlation of a single macro-structural variable (like

cortical thickness or volume) measured in multiple individuals

(structural covariance analysis), we estimated the inter-regional

correlation of multiple macro- and micro-structural multimodal

MRI variables in a single individual (morphometric similarity

mapping). This novel strategy integrates three complementary

strands of research for the first time.

First, there is histological evidence from non-human primates

that axo-synaptic connectivity is stronger between micro-struc-

turally similar cortical regions than between cytoarchitectonically

distinct areas (Barbas, 2015; Goulas et al., 2016, 2017). Second,

there is encouraging evidence that conventional MRI sequences

can serve as proxy markers of cortical microstructure. Cortical

MRI metrics—such as magnetization transfer (MT), a marker of

myelination—show spatial gradients in humans (Glasser et al.,

2016) that align closely with known histological gradients in

non-human primates (Wagstyl et al., 2015). Third, there is

emerging evidence that structural properties of the human cor-

tex are more precisely estimated by combined analysis of

more than one MRI morphometric index at each region; e.g.,

cortical thickness and sulcal depth (Vandekar et al., 2016),

cortical thickness and myelination (Glasser and Van Essen,

2011;Whitaker et al., 2016), or cortical thickness and graymatter

volume (Sabuncu et al., 2016). On this basis, we predicted that

morphometric similarity mapping with multiple MRI morpho-

metric indices could provide a new way of estimating the linked

patterns of inter-regional histological similarity and anatomical

connectivity within an individual human brain.

First we demonstrated the feasibility of morphometric similar-

ity mapping and network analysis of multi-parameter MRI data

by estimating individual human brain structural network proper-

ties for each member of a cohort of healthy young people

(N = 296). Then we assessed the robustness of the methods

and results to variation in data acquisition and pre-processing

parameters and assessed replicability by analysis of a second,

independent humanMRI dataset (N = 124). To test the biological

validity of human MRI-based morphometric similarity mapping,

we focused on two hypotheses: that the edges between nodes

in each morphometric similarity network (MSN) linked cortical

areas of the same cytoarchitectonic class and that MSN edges
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linked nodes with high levels of co-expression of genes special-

ized for neuronal functions. We used MRI and tract-tracing data

of the macaque cortex to demonstrate the generalizability of the

methods to non-human species and to test a third key biological

hypothesis: that MSN edges link nodes that are directly anatom-

ically connected by an axonal projection fromone cortical area to

another. Finally, on the basis of these critical foundational steps,

we tested a fourth hypothesis: that inter-individual differences in

human MSNs are related to differences in intelligence (IQ).

RESULTS

Morphometric Similarity Matrices
To investigate the feasibility of morphometric similarity mapping,

we first analyzed MRI data on 10 morphometric variables

measured at each of 308 cortical regions in a primary cohort of

296 healthy young adults. These data were collected as part of

the Neuroscience in Psychiatry Network (NSPN) collaboration

between the University of Cambridge and University College

London (STAR Methods).

The morphometric similarity analysis pipeline (Figure 1) trans-

formed each individual’s set ofmultimodalMRI featuremaps into

a morphometric similarity matrix of pairwise inter-regional Pear-

son correlations of morphometric feature vectors. The strength

of association (morphometric similarity) between regions de-

cayed exponentially as a function of increasing anatomical

(Euclidean) distance between areas (median R2
Adjusted across

296 subjects = 0.05, range = 0.02–0.13, s = 0.02, all

p < 0.001). This was also the case in the sample mean MSN

(R2
Adjusted = 0.15, p < 0.001) (Figure S4A).

For each individual, we also estimated the morphometric sim-

ilarity of each region to the rest of the regions in the brain simply

by averaging the edge weights connecting it to all other nodes

(i.e., the average of the off-diagonal elements of a row or column

in the morphometric similarity matrix). Consistently across indi-

viduals, the regions with morphometric profiles more similar,

on average, to all other regions (i.e., high nodal similarity values)

were located in the frontal and temporal association cortex,

whereas regions with more distinctive morphometric profiles

compared, on average, with other regions (i.e., low nodal similar-

ity) were located in the occipital cortex (Figure 2A; Figure S1).

Nodal similarity in the sample mean MSN was also patterned

anatomically as in typical individual MSNs (Figure 2A; Figure S1),

with the highest nodal similarity concentrated in the frontal and

temporal cortex (Figure 2B).

We verified that MSN matrices were stable to the use of vary-

ing feature sets for calculation of inter-regional similarity by

calculating the correlation in edge strengths between the full

10-feature MSN and MSNs with one feature removed. Using

this leave-one-feature-out approach, we demonstrate high sta-

bility of the MSN edges between NSPN subjects’ 10-feature

MSNs and their leave-one-feature-out MSNs (Figure S6).

In light of known artefactual relationships between nodal size

and nodal connectivity strength in fMRI studies (Wang et al.,

2009), we conducted a series of analyses to quantify the poten-

tial contribution of nodal differences in size (surface area) to

nodal differences in morphometric similarity (degree). We

observed a weak correlation between nodal similarity and nodal



Figure 1. The MSN Processing Pipeline

(A) Multiple MRI parameters were available from

MRI and DWI data on each subject.

(B) All MRI data were mapped to the same cortical

parcellation template, which comprised 308 sub-

regions of the Desikan-Killiany atlas with approxi-

mately equal surface areas. 10 regional morpho-

metric features were estimated and normalized

to produce a 10 3 308 feature matrix for each

subject.

(C) The morphometric similarity between each

possible pair of regions was estimated by the

Pearson’s correlation between their morphometric

feature vectors to produce a 308 3 308 morpho-

metric similarity matrix.

(D) MSNs are binary graphs constructed by

thresholding the morphometric similarity matrix so

that the strongest (supra-threshold) edges are set

equal to 1 (and all others are set equal to 0). The

organization of MSNs can be visualized (from left

to right) in matrix format, in anatomical space, or in

a topological representation, where nodes are

located close to each other if they are connected

by an edge.

FA, fractional anisotropy; MD, mean diffusivity;

MT, magnetization transfer; GM, gray matter vol-

ume; SA, surface area; CT, cortical thickness; IC,

intrinsic (Gaussian) curvature; MC, mean curva-

ture; CI, curved index; FI, folding index.
density (person-level spatial correlations between density and

degree: mean r = 0.03, ranging from �0.20 to 0.13), calculated

as the number of distinct regions within 4 cm of the center of

mass of the given region. We observed a weak-moderate posi-

tive correlation between nodal size and nodal similarity that

was highly variable across individuals (person-level spatial cor-

relations between size and degree: mean r = 0.34, ranging

from�0.37 to 0.78) and nodes (node-level inter-individual corre-

lations between size and degree: mean r = 0.20, ranging from

�0.18 to 0.51). To test whether this positive size-degree relation-

ship generalizes to other parcellations, we regenerated MSNs
using a recently publishedmultimodal im-

aging parcellation (Glasser et al., 2016)

that proposes a biologically grounded di-

vision of the cortical sheet into 360 nodes

(symmetric, 180 per hemisphere) that

show a 3-fold greater variation in node

size relative to our parcellation. With this

parcellation, we observed lower correla-

tions between nodal size and nodal de-

gree across the cortex (sample mean

r = �0.05, range = �0.18-0.08) and

across individuals (node mean r = �0.18,

range =�0.56-0.13). Then, by calculating

morphometric similarity matrices using

our parcellation for each of 14 T1w scans

taken in short succession from a single

individual (MyConnectome Project; Pol-

drack et al., 2015), we established that

signal to noise in estimation of nodal de-
greedoes not increasewith nodal size (correlation betweennodal

size and median absolute deviation in nodal degree: r = 0.05,

p = 0.36).

Morphometric Similarity Networks
We thresholded the individual morphometric similarity matrices

to generate binary graphs orMSNs. To characterize the topology

of these MSNs, we calculated binarized and weighted graph

metrics at a range of connection densities (2%, 3%, 4%, and

5%–40% in 5% increments) generated by thresholding the

morphometric similarity matrices to include varying percentages
Neuron 97, 231–247, January 3, 2018 233



Figure 2. Morphometric Similarity Matrices and Networks

(A and B) Spatial patterning of an individual (A) and group average (B) morphometric similarity matrix. For the individual and group matrix, the row means are

plotted on the cortical surface of the template brain, representing the average morphometric similarity (Pearson’s r) of each node. The color scale represents the

mean nodal similarity.

(C) Right, top: modular partitioning of the group average morphometric similarity network (MSN), thresholded at 10% connection density, using the Louvain

modularity algorithm. The g resolution parameter dictates the number of detected modules; g = 1 yielded four distinct spatially contiguous modules that

approximately correspond to the lobes of the brain. Left: topological representation of the group MSN, thresholded at 10% connection density, highlighting the

rich club of densely inter-connected hub nodes (opaque). The size of the nodes is scaled according to degree, and the thickness of the edges is scaled according

to edge weight. Right, bottom: the rich club nodes are shown in their anatomical location and colored according to modular affiliation.

See also Figures S1–S3.
of the most strongly positive edge weights or pairwise inter-

regional correlations (Figure S3A). At all connection densities

(Figure S2), the individual MSNs consistently demonstrated a

repertoire of complex topological features shared by diverse

naturally occurring networks (Barabási, 2016; Fornito et al.,

2016), including a fat-tailed (i.e., right or positively skewed)

degree distribution, implying the existence of hub nodes;

small-worldness (near-random path length or global efficiency

combined with greater-than-random clustering); and a commu-

nity structure comprising hierarchical modules and a rich club

(Figure 2).
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We next resolved the modular community structure of MSNs

by partitioning the sample mean MSN from coarse- to fine-

grained scales defined by the resolution parameter (g) of a

consensus (1,000 runs) Louvain modularity algorithm (Lancichi-

netti and Fortunato, 2012; Figure 2C; Figure S2C; STAR

Methods). At all scales of the modular hierarchy, the community

structure consists of bilaterally symmetric and spatially contig-

uous modules tiling the cortex in a pattern that respects

macro-structural features of the cortical sheet (Figure 2C). For

example, the 6-module solution subdivides the temporal module

of the 4-module solution into anterior, middle, and superior



(encompassing the insula) portions of temporal cortex (Fig-

ure S2C). These results are qualitatively consistent with a prior

study of the hierarchical patterning of the heritability of cortical

surface area (Chen et al., 2012), suggesting that the topological

community structure of morphometric similarity could arise,

at least in part, from genetic contributions to regional brain

morphology.

We also demonstrated another aspect of network community

structure—a core/periphery organization comprising a core of

highly interconnected hub nodes (a rich club). The rich club of

the sample mean MSN included hubs that were distributed

across all network modules (Figure 2C), as reported previously

for DWI networks (van den Heuvel and Sporns, 2011). Individual

MSNs typically demonstrated a similar community structure

(modules and rich club) to that of the sample mean MSN (Fig-

ure S2D). Moreover, rich club properties were detectable across

a range of MSN densities (Figure S5).

Consistency, Robustness, and Replicability of MSNs
First, we established that individual MSNs show moderate-high

consistency with the group average MSN, both in terms of the

average correlation between individual MSN edge weights and

the sample mean MSN edge weights (average r = 0.60, SD =

0.05, all p < 0.001) and the average correlation between individ-

ual MSN nodal similarities and the sample meanMSN nodal sim-

ilarities (average r = 0.66, SD = 0.10, all p < 0.001) (Figure 2;

Figure S1).

Second, we quantified the robustness of MSNs to methodo-

logical variations, including a reduction in the number of

morphometric features available for analysis (i.e., using only 5

T1-weighted features rather than all 10 features estimated in

the NSPN cohort) and construction of MSNs using MRI data

collected at lower magnetic field strength (1.5 T) in a second, in-

dependent cohort and pre-processed using different segmenta-

tion and parcellation tools.

We re-analyzed the NSPN cohort of 296 participants using a

reduced set of 5 morphometric features that can be derived

from any T1-weightedMRI scan: cortical thickness (CT), surface

area (SA), gray matter volume (GM), mean curvature (MC), and

intrinsic (Gaussian) curvature (IC). We found that the 5-feature

MSNs were very similar to the 10-feature MSNs; for example,

the sample mean edge weights and nodal similarities were

strongly correlated between the 5-feature and 10-feature

MSNs (r = 0.68, p < 0.001 and r = 0.91, p < 0.001, respectively).

However, the SD for edge weight and nodal similarity was

greater in the 5-feature MSNs (0.506 and 0.028, respectively)

than in the 10-feature MSNs (0.346 and 0.016, respectively)

(Figure S4B), indicating greater precision of MSN estimation

based on a larger number of parameters or features per regional

node.

To test replicability, we used identical methods to construct

MSNs from T1-weighted MRI data collected at 1.5 T field

strength from an independent cohort of 124 healthy participants

(NIHMRI Study of Normal Brain Development; Giedd et al., 1999,

2015). As shown in Figures S2 and S3, the 5-feature NIH MSNs

had a complex topology comparable with the 5- and 10-feature

MSNs from the NSPN cohort (i.e., small-worldness, hubs, modu-

larity, and a rich club). The SD of edge-wise and nodal similarity
statistics in the NIH 5-feature MSNs (0.431 and 0.028, respec-

tively) was approximately the same as the NSPN 5-feature

MSNs but greater than the SDs in the 10-feature MSNs

(Figure S4B).

Morphometric Similarity and Cortical Cytoarchitecture
To test the first biological hypothesis that regions connected by

an edge in aMSN aremore likely to belong to the same cytoarch-

itectonic class, we compared the anatomical distribution of

network edges with the histological classification of cortical

areas (Solari and Stoner, 2011; von Economo and Koskinas,

1925). Our adapted cytoarchitectonic parcellation of the human

cortex defines 7 spatially contiguous and bilaterally symmetric

cortical classes that are microscopically differentiated by

cortical lamination patterns (Figure 3A). At a nodal level of anal-

ysis, we explored the distribution of nodal similarity in the individ-

ual MSNs in relation to the cytoarchitectonic classification of

each node. Across subjects, there were significant differences

in mean nodal similarity between classes (repeated-measures

ANOVA, F(1, 2,077) = 796.5, p < 0.001). Cytoarchitectonic clas-

ses 1, 2, and 3 (corresponding tomotor and association cortices)

comprised cortical areas with a higher nodal similarity and de-

gree than cytoarchitectonic classes 4, 5, and 6 (mostly corre-

sponding to primary and secondary sensory cortical areas)

(Figure 3A). These results confirm that MSN hubs are predomi-

nantly located in motor and association cortical areas.

The cytoarchitectonic parcellation of the cortex also provided

a benchmark for triangulating the comparison between MSNs

and two other MRI-based networks measured in the same

NSPN cohort: the SCN based on inter-regional correlations of

a single feature (cortical thickness) measured across all 296 par-

ticipants and the sample mean DWI network based on tracto-

graphic reconstruction of white matter connections between

cortical areas (weighted by mean diffusivity) in each participant

(STAR Methods). To compare MSN, DWI, and SCN results, we

constructed a series of sparsely connected graphs (with connec-

tion density ranging from 0.5% to 5% in 0.5% increments) that

represented the most strongly connected edges in each of the

MRI networks and calculated the percentage of edges that

linked areas in the same cytoarchitectonic class. For the most

sparsely connected MSN (0.5% density), more than 90% of

edges connected areas in the same class, and this declined

monotonically as a function of increasing density so that about

60% of edges connected areas in the same class in the MSN

at 5%density. The SCN and DWI networks demonstrated similar

trends, but the percentage of intra-class connectivity was

consistently lower for both of these networks compared with

the MSN across all connection densities (Figure 3B). We

confirmed the clear separation between MSNs and both SCN

and DWI networks in terms of their overlap with cytoarchitec-

tonic classes by re-calculating network-specific overlap per-

centages across a range of network densities for each of 1,000

bootstrapped resamplings of the participant pool. Additional

analyses verified that the non-random relationship of MSN

architecture with cytoarchitectonic maps holds after controlling

for the effects of distance or spatial auto-correlation. Specif-

ically, we generated 1,000 pseudoparcellations of the cortical

sheet into 7 classes that conserved the spatial contiguity of the
Neuron 97, 231–247, January 3, 2018 235



Figure 3. Comparison of MSNs and Other MRI Networks to a Cytoarchitectonic Classification of the Cortex

(A) Average nodal similarity scores for individual MSNs within each of the cortical classes of von Economo and Koskinas (1925): 1 (agranular cortex, primary

motor), 2 (association cortex), 3 (association cortex), 4 (secondary sensory cortex), 5 (primary sensory cortex), 6 (limbic regions), and 7 (insular cortex). The

highest nodal similarity was consistently found in classes 1–3 (motor and association cortex)—areas with the most pyramidal neurons in supragranular layers of

the cortex.

(B) Proportion (percentage) of intra-class edges in the group MSN as a function of connection density (0.5%–10%, 0.5% intervals). The MSN has a higher

percentage of intra-class edges compared with the SCN and DWI networks at all densities, demonstrating the high correspondence of MSN topology with

cortical cytoarchitectonics. Shading represents results of intra-class overlap calculated in 1,000 bootstraps of our participant pool.

(C) Graphs of each of theMRI networks, thresholded at 1%density, with nodes and intra-class edges colored according to cytoarchitectonic class and inter-class

edges drawn in gray. The MSN shows the greatest connectivity between bilaterally symmetric cortical regions relative to the SCN and DWI networks. Lower and

upper bounds of the boxplots represent the 1st (25%) and 3rd (75%) quartiles, respectively. LH, left hemisphere; A, anterior; P, posterior; S, superior; I, inferior.

236 Neuron 97, 231–247, January 3, 2018



classes as well as the relative proportion of cortex assigned to

each class. Across a range of MSN densities, the percentage

of MSN edges that overlapped with true cytoarchitectonic clas-

seswas greater than the distribution of these overlap values from

all 1,000 pseudoparcellations (Figure S5).

We observed that only about 60%of edges in the DWI network

connected areas of the same cytoarchitectonic class, even at the

sparsest connection density. This proportion decreased to about

30%when using a distance-dependent consistency thresholding

approach for group-level DWI network construction (Mi�si�c et al.,

2015; STAR Methods). The weaker coherence between DWI

network topology and cytoarchitectonic class compared with

MSN network topology appeared to involve the relative failure of

DWI tractography to recover inter-hemispheric connections be-

tween bilaterally symmetric areas belonging to the same class

(Figure 3C). To quantitatively address this hypothesis while con-

trolling for connection length, we compared a binarized group-

level DWI network with an equally dense binarized group-level

MSN network. We then used binomial (logistic) regression

analysis to model the presence versus absence of a detected

edge as a function of network type (MSN or DWI), connection

type (inter- versus intra-hemispheric), and connection length

(Euclidean distance deciles). This analysis detected significant ef-

fects on edge detection for network type (c2 = 107.328), connec-

tion type (c2 = 39.096), and distance (c2 = 13212.262) and the

interaction between network type, distance, and connection

type (c2 = 110.383). Visualizationof these relationships (FigureS5)

indicated that MSNs are more likely to detect inter-hemispheric

edges than DWI, that this difference is apparent across the full

range of connection lengths, and that this difference is more pro-

nounced for longer versus shorter inter-hemispheric connections.

Taken together, these comparative analyses demonstrate that

morphometric similarity can provide a closer approximation to

the histological similarity between two cortical regions than anal-

ysis of either cortical thickness covariance or DWI measures of

white matter connectivity.

Morphometric Similarity and Cortical Gene
Co-expression
We tested the second biological hypothesis, thatMSN edges link

areas with high levels of gene co-expression, using two gene

sets: the approximately complete human genome (20,737

genes) and a much smaller subset of 19 HSE (human supragra-

nular enriched) genes that are known to be specifically ex-

pressed in the supragranular layers (cortical lamina II and III) of

the human cortex (Zeng et al., 2012) that are characteristic of

the cytoarchitectonic classes (1–3) with higher nodal similarity

scores (Figure 4A). We mapped the whole-genome transcrip-

tional data on 6 adult human post-mortem brains (Hawrylycz

et al., 2012) into the same parcellation scheme that was used

to define the 308 nodes of the MSNs (STAR Methods). Then

we could estimate the inter-regional co-expression of gene tran-

scriptional profiles for each possible pair of nodes in the same

anatomical frame of reference as the MSNs.

There was a significant positive correlation between the edge

weights of the sample mean MSN and inter-regional co-expres-

sion of the whole genome (r = 0.33, p < 0.001), meaning that

cortical areas with high morphometric similarity also tended to
have high transcriptional similarity. This correlation was attenu-

ated, but remained statistically significant (r = 0.19, p < 0.001),

after accounting for shared distance effects on inter-regional

morphometric and transcriptomic similarity (STAR Methods).

To rank genes by the strength of their contribution to the

observed association between morphometric similarity and

whole-genome co-expression, we used a leave-one-out proced-

ure whereby the correlation between MSN edge weights and

gene co-expression was iteratively re-estimated after systemati-

cally removing each one of the genes in turn. This algorithm al-

lowed us to rank all 20,737 genes in terms of the difference their

exclusion from the analysismade to the estimated correlation be-

tween morphometric similarity and gene co-expression (see Ta-

ble S2 for the list of genes and their rankings). Gene ontology

(GO) enrichment analysis of this gene list revealed that high-

ranking genes, which made a stronger contribution to the

association betweenmorphometric and transcriptomic similarity,

were enriched for annotations related to neuronal structure and

signaling (Figure 4C). The HSE gene list of interest a priori

was also high-ranking, with a median rank that was within

the top decile of all genes (median HSE gene rank = 1,889/

20,737 = 9.1%) and significantly greater than the median

ranks of 10,000 random gene sets of equal size (n = 19, p <

0.0001). Moreover, the nodal similarity of the sample mean

MSN was positively correlated with regional gene expression

(r = 0.34, Pbootstrap = 0.0042) and regional co-expression

(r = 0.48, Pbootstrap = 0.01) of the HSE gene set (Figure 4B), and

HSE gene expression demonstrated the same distribution across

cytotarchitectonic areas as nodal morphometric similarity (Fig-

ure 4A). Specifically, expression of HSE genes was greater in cy-

toarchitectonic areas 1–3, where the hubs of theMSNs were also

concentrated. In a complementary analysis of phenotype enrich-

ment in mammalian gene knockout models (Smith and Eppig,

2012; STARMethods), we found that disruption in animal models

of high-ranking genes (i.e., those with positive leave-one-out

scores) was significantly associated with abnormal synaptic

transmission (p < 0.05, false discovery rate [FDR]-corrected).

Collectively, these results indicate that MSN topology is

aligned with spatial expression patterns of neuronally expressed

genes that are enriched within human cortical layers mediating

cortico-cortical connectivity and genes that are critical for

normal neuronal functions. We established that these conclu-

sions can be generalized across different assemblies of the Allen

Institute for Brain Sciences donor set by demonstrating that co-

expression network edge weights and associated gene rankings

were highly consistent across all 6 possible leave-one-donor-out

transcriptional networks (inter-network correlations: edge

weights, mean r = 0.79, range 0.63–0.90; gene rankings, mean

r = 0.76, range 0.63–0.91). Additionally, we used spatial permu-

tation methods to confirm that the observed alignment between

MSN and gene co-expression topology remained statistically

significant after controlling for spatial autocorrelation in gene

expression values (p < 0.0001; STAR Methods).

Morphometric Similarity (MRI) Compared with Tract-
Tracing Connectivity in the Macaque
To assess the generalizability of the MSN methodology to non-

human primate MRI datasets, and to test the third biological
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Figure 4. Topography of Regional HSEGene Expression and Co-expression and Gene Enrichment Results from the Leave-One-Out Analysis

with the Group Average MSN (NSPN)

(A) Average expression values for each of the 19 human supragranular enriched (HSE) genes within each of the seven classes of cytoarchitecture. Average

expression was highest in classes 1–3, similar to the distribution of nodal similarity for each of the individual 10-feature NSPN MSNs (Figure 3).

(B) Left hemisphere topography of nodal gene co-expression, calculated as the average co-expression (Pearson’s r) values, of the whole-genome and HSE-only

gene co-expression networks. The pattern of nodal similarity of the group average 10-feature NSPN MSN was similar to that of nodal co-expression of both the

whole-genome (r = 0.41, p < 0.001) and HSE-only networks (r = 0.48, p < 0.001).

(legend continued on next page)
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hypothesis that MSN edges indicate axonal connectivity be-

tween cortical areas, we analyzed a publicly available collection

of MRI data on a cohort of 31 juvenile rhesus macaque monkeys

(16 females; overall age range, 0.9–3.0 years) (Young et al.,

2017).We constructedMSNs for eachmonkey as described pre-

viously for each human participant (Figure 1) using 8 morpho-

metric features available from the T1-weighted, T2-weighted,

and DWI data on each animal. We defined 91 nodes of the ma-

caque cortex using a histologically defined and anatomical land-

mark-based parcellation (Markov et al., 2014) that has been used

previously to report retrograde axonal tract-tracing experiments

on 29 of the 91 nodes (Markov et al., 2014; Figure 5B).

Macaque MSNs demonstrated qualitatively the same suite of

complex topological properties as the human MSNs from both

the NSPN and NIH cohorts across a range of connection den-

sities (Figure 5A; Figure S3). There was a significant positive cor-

relation between the edge weights of the sample meanmacaque

MSN and the edge weights of the tract-tracing network (Pear-

son’s r = 0.34, p < 0.001) (Figures 5B and 5C). To test whether

this relationship varied as a function of MSN edge strength and

consistency across individuals, the correlation between MSN

and tract-tracing edge weights was estimated across a range

of MSN connection densities (10%–30%) and edge consis-

tencies across individuals (50%–100%). This analysis revealed

that edge weights of the individual MSNs, consistently evident

in the more sparsely connected graphs, were strongly correlated

with the anatomical connectivity weights derived from axonal

tract-tracing data (r = 0.36–0.90, median r = 0.58, 73% of corre-

lations p < 0.05, 34% of correlations Bonferroni-corrected p <

0.05) (Figure 5D). In line with prior studies of distance effects

on tract-tracing connectivity data (Goulas et al., 2017), we find

that the correlation between MSN and tract-tracing edge

weights reduces to 0.11 when including distance (exponential

decay function) as a covariate. Taken together, these findings

indicate that the morphometric similarity of two cortical regions

is directly related to the strength of monosynaptic axonal con-

nectivity between them in the context of known distance effects

on cortical organization.

Predicting Individual Differences in Human IQ from
Differences in Nodal Degree of MSNs
Having established the technical feasibility, robustness, and bio-

logical validity of morphometric similaritymapping, we leveraged

the ability of MSNs to represent whole-brain anatomical net-

works in a single human to investigate relationships between

inter-individual differences in brain network topology and inter-

individual differences in cognitive and behavioral traits.

We focused on general intelligence (IQ) as the cognitive trait of

interest given the broad relevance of IQ for adaptive function

(Davies et al., 2016; Hagenaars et al., 2016) and the wealth of
(C) Gene enrichment of the list of genes ranked by contribution to the edgewise

group average 10-feature NSPN MSN (r = 0.33, p < 0.001). Contribution for a gen

and the correlation when using a gene co-expression network without that given g

and synaptic transmission (biological process) as well as neuron and synapsemo

list was 1,889/20,737 and was significantly greater than the median rank of 10,0

between regional gene expression (and co-expression) and morphometric simila

cytoarchitecture and neural structure and communication. Lower and upper boun
prior research into biological substrates for IQ (Crossley et al.,

2013; Dehaene and Changeux, 2011; van den Heuvel et al.,

2009). High-degree hub nodes have been shown to be crucial

for the global efficiency of the connectome and to be preferen-

tially affected by clinical brain disorders associated with

cognitive impairment (Crossley et al., 2014). On this basis, we

predicted specifically that individual differences in verbal and

non-verbal IQ should be related to individual differences in nodal

degree.

We used the multivariate technique of partial least-squares

(PLS) regression to find the optimal low-dimensional relationship

between a set of predictor variables and response variables. In

our case, the (292 3 308) predictor variable matrix comprised

measurements of degree (calculated at 10%connection density)

at each of 308 nodes in each of 292 participants in the NSPN

cohort and the (292 3 2) response variable matrix comprised

t scores on the verbal (vocabulary) and nonverbal (matrix

reasoning) scales of the Wechsler abbreviated scale of intelli-

gence (WASI; Wechsler, 1999), standardized for age and gender

effects relative to a representative population and measured in

the same 292 participants (mean total IQ, 111; SD, 12; range,

76–137). Each of the variables (MSN degree and IQ) was re-

gressed on the potentially confounding effects of intracranial vol-

ume (estimated total intracranial volume [eTIV] in Freesurfer),

age, gender, and age 3 gender interaction, before the residuals

were used in the PLS analysis.

The first two components of the PLS explained about 40% of

the variance in IQ, and this goodness of fit was statistically signif-

icant by a nonparametric resampling procedure (p = 0.03) (Vértes

et al., 2016). These results maintained statistical significance

(p < 0.05) when the analysis was repeated for nodal degree

calculated across a range of MSN connection densities (10%–

25%).We focused our attention on the first two PLS components

(PLS1 and PLS2), which consistently explained about 25% and

15% of the variance in IQ, respectively (Figure 6).

The first PLS component was significantly positively correlated

with both IQ subscales, vocabulary (r=0.53,p<0.001) andmatrix

reasoning (r = 0.45, p < 0.001), as well as full-scale IQ (r = 0.61,

p < 0.001) (Figure 6B). The second PLS component was only

significantly positively correlated with matrix reasoning (r = 0.54,

p < 0.001) and full-scale IQ (r = 0.21, p < 0.001) but not vocabulary

(r = 0.08, p = 0.168) (Figure 6B). We ranked the 308 nodes of the

individualMSNsaccording to their bootstrapstandardizedweight

on each PLS component (Vértes et al., 2016). This analysis re-

vealed that the nodes that loaded strongly on PLS1 were located

predominantly in the left frontal and temporal cortical areas,

whereas nodes that loaded strongly on PLS2 were located pre-

dominantly in the bilateral occipital and frontal cortex. Nodal vari-

ation in PLS scores was not related to simple nodal differences in

size (correlationwith nodal surface area: PLS1 r=�0.01,p=0.77,
relationship between the whole-genome gene co-expression network and the

e was calculated as the difference between this empirical correlation (r = 0.33)

ene. This ranked list was enriched for genes related to potassium ion transport

rphology (cellular component). The median rank of the 19 HSE genes within this

00 random subsets of 19 genes (p < 0.0001). These results demonstrate a link

rity and further show that this relationship is driven by genes related to cortical

ds of the boxplots represent the 1st (25%) and 3rd (75%) quartiles, respectively.
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Figure 5. Comparison of Morphometric Similarity with Axonal Tract Tracing in the Macaque

(A and B) Top: the left hemisphere edges of the group average multimodal macaque MSN (A) and axonal tract tracing network (B), each thresholded at 20%

connection density. Nodes in both networks are sized according to degree, calculated as the average nodal degree across MSNs (at 66% connection density)

and, because of the effects of directionality, averaged nodal degree across both efferent and afferent connections in the tract-tracing network. Center: the 293

29 group average multimodal macaque MSN (A) and the connections of the tract tracing matrix (B). The 29 3 29 tract-tracing connectivity matrix is based on

retrograde injections in 29 regions of the macaque cerebral cortex (Markov et al., 2012) and is 66% dense. Connection weights are based on the extrinsic fraction

of labeled neurons (FLNe) and are plotted on a base 10 logarithmic scale. Diagonals in both networks are whited out.

(C) For the overlapping edges in the two matrices in (B), there was a significant positive correlation between the edges of the group macaque MSN and the edge

weights of the tract-tracing network (r = 0.34, p < 0.001).

(D) The correspondence between the edge weights of the group MSN and those of the tract tracing network. The group MSN was masked using a consensus

approach that incorporated the most common edges of the individual MSNs at varying connection densities (10%–30%). At each connection density and

(legend continued on next page)
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Figure 6. The Nodal Degree of MSNs Is Highly Predictive of Individual Differences in Intelligence.

(A and B) The first two components (PLS1 and PLS2) of a partial least-squares regression using individual MSN degree (at 10% connection density) explained

about 40% of the variance in vocabulary and matrix reasoning subscales of WASI IQ scores in 292 people. PLS1 was correlated with both vocabulary and matrix

reasoning (left) and with the degree or hubness of nodes in left-lateralized temporal and bilateral frontal cortical areas (center), related to language functioning

(right) (A). PLS2 was correlated specifically with matrix reasoning and degree or hubness of nodes in bilateral primary sensory cortical areas (center), specialized

for visual and sensorimotor processing (B).
PLS2 r=0.09,p=0.11). Finally, as a test for validationof observed

PLS maps using an orthogonal data modality, we used Neuro-

synth, a tool for meta-analysis of the large primary literature on

task-related fMRI (Yarkoni et al., 2011), to identify which cognitive

functions were co-localized with the cortical nodes strongly

weighted on PLS1 and PLS2. As expected, the PLS1 nodal score

map best converged with Neurosynth meta-analytic maps for

language-related functions. whereas the PLS2 nodal score map

best converged with Neurosynth meta-analytic maps enriched

for visual and memory functions (Figure 6).

Furthermore, we cross-validated our PLS findings by predict-

ing variance in IQ for 1,000 sets of 5 individuals held out from the

sample using the PLS model as defined with remaining individ-

uals. The mean proportion of total variance explained across
consensus threshold (determined by the proportion of subjects at a connection

tracing network were masked, and the edge weights were correlated. Genera

connection densities and consensus thresholds (median r = 0.58, range = 0.27–0.8

edges in the individual MSNs. Collectively, these results not only suggest a relation

(derived ex vivo) at the group level but also reveal a possible ‘‘core’’ set of as

anatomical connectivity.
these 1,000 hold-out sets aligned with the proportion of variance

explained in our full dataset (35.29%, SD = 19.82). Taken

together, these results support the inference that inter-individual

variability in MSN architecture shows a reproducible capacity to

predict a significant proportion of variance in IQ.

DISCUSSION

We have shown how multimodal MRI measurements of the hu-

man and non-human primate cortex can be used to estimate

the morphometric similarity between cortical areas and the topo-

logical properties of the anatomical connectome of a single brain.

This robust and replicable newmethodof brain structural network

analysis allowed us to test (and affirm) three key biological
density with supra-thresholded edges in common), the group MSN and tract-

lly, we observed a positive relationship in connectivity weights across MSN

2), with the highest correlations found using the strongest andmost consistent

ship betweenmorphometric similarity (derived in vivo) and axonal tract weights

sociations (measured in individual MSNs) that closely approximate physical
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hypotheses about the organization of individual mammalian

cortical networks. As theoretically predicted, we found evidence

that cortical areas connected by an edge inMSNswere cytoarch-

itectonically similar and axonally connected to each other and

had high levels of co-expression of genes specialized for

neuronal functions. These results substantiated the biological val-

idity of MSNs compared with other MRI- or DWI-based estimates

of the human connectome and motivated us to test (and affirm) a

fourth hypothesis: that individual differences in IQ are related to

individual differences in the hubness or nodal degree of cortical

nodes in human brain anatomical networks.

Like most spatially embedded real-life networks, including

other brain networks, MSNs had a complex topology (Barabási,

2016; Fornito et al., 2016). MSNs were binary graphs with a

small-world combination of high clustering and short path

length, some high-degree hub nodes with many connections

to the rest of the network, and a community structure comprising

modules and a rich club. This suite of topological properties was

robust to variation in species (human and macaque), the number

of morphometric features measured by MRI at each regional

node (5 or 10 human or 8 macaque MRI-derived parameters

per region), and the contrast between two independent human

volunteer samples (NSPN and NIH cohorts) differing in magnetic

field strength for MRI (1.5 T and 3 T) and pre-processing steps

like cortical parcellation.

This robust and replicable network phenotype or connectome,

derived from morphometric similarity mapping, is qualitatively

similar to connectomes previously described using comparable

graph theoretical metrics in many other neuroimaging and neuro-

science datasets. A well-rehearsed interpretation of the complex

topology of connectome organization is in terms of its supposed

advantages for sensory,motor, or cognitive function. Some topo-

logical features, such as clusters and modules, will favor segre-

gated processing of specific channels of information, whereas

other features, such as hubs and a rich club, will favor integrated

processing of all information (Bullmore and Sporns, 2012; Sporns

et al., 2004). This influential hypothesis, linking the topology of the

human connectome to the psychological capacities of the brain,

has some experimental support. The evidence is strongest for the

link between modular or clustered topologies and specialized

psychological or information processing functions (Fodor,

1983). At all scales of connectomics, from micro-scale analysis

of C. elegans and Drosophila to macro-scale analysis of human

MRI data (Meunier et al., 2010; Schröter et al., 2017), there is ev-

idence for topological modules of spatially co-localized (neuronal

or areal) nodes with specialized functions. The evidence is not yet

so strong for the link between integrative topological features,

such as hubs and a rich club, and global or generalized cognitive

functions (we return to this point later).

Morphometric Similarity and Anatomical Similarity
By aligning individual MSNs with the classical cytoarchitectonic

atlas of von Economo and Koskinas (1925), we demonstrated

a close correspondence between MSN topology and this histo-

logical classification of cortical areas. Morphometric similarity,

measured by MRI, was greater between regional nodes that

were histologically similar in the sense of belonging to the

same cytoarchitectonic class. This meant that sparse MSNs,
242 Neuron 97, 231–247, January 3, 2018
representing only a small percentage of the highest morpho-

metric similarity statistics, were dominated by intra-class edges

between regions. Correspondence between morphometric sim-

ilarity and cytoarchitectonic similarity is supportive of the biolog-

ical validity of the constituent MRI measurements. There is also

growing evidence that cytoarchitectonic similarity predicts

axonal connectivity between cortical areas, with greater proba-

bility of axonal connectivity between histologically similar areas

(Goulas et al., 2016, 2017). Thus, we reasoned that alignment

of network edges with cytoarchitectonic classes could provide

a triangulation point to compare MSNs with other MRI-based

methods of human connectomemapping. Because histological-

ly similar nodes are more likely to be axonally connected, then

any map of anatomical connectivity derived from MRI should

be dominated by intra-class edges.

We compared MSNs with two other MRI-based anatomical

networks estimated from the same sample—a single structural

covariance network and a set of individual diffusion tractography

networks. All three networks had qualitatively and quantitatively

similar complex topology, but they were not identical. In relation

to the benchmark of cytoarchitectonic classification, all net-

works were dominated by a high percentage of intra-class edges

when graphs were thresholded sparsely to include only the

strongest connections between regions. However, across all

connection densities considered, the percentage of intra-class

edges was greater for MSNs than for the SCN or DWI networks.

This indicates that edges in MSNs are more representative of

histologically similar pairs of regions, which are more likely to

be axonally connected to each other, than edges in the SCN or

DWI networks. One reason for the relatively poor performance

of DWI networks in aligning to cytoarchitectonic classes seems

likely to be the known difficulties in reconstructing interhemi-

spheric connections by tractography analysis of DWI data.

Although cytoarchitectonic classification is a well-established

and traditional way of assessing histological similarity between

cortical areas, more generally we can assess inter-areal similar-

ity in terms of any locally (spatially) expressed cellular or genomic

phenotype. Spatial patterns of gene expression in the mamma-

lian cortex are intimately tied to regional differences in cortical

layering and cell composition (Bernard et al., 2012; Hawrylycz

et al., 2012). Transcriptomic similarity or gene co-expression

was greater between regions of the mouse brain that were

known to be axonally connected by analysis of anterograde

tract-tracing data (Fulcher and Fornito, 2016). A functionally

specialized set of so-called HSE genes, which are overex-

pressed specifically in supragranular layers of the human asso-

ciation cortex (Zeng et al., 2012) and known to be important for

the formation of long-distance inter-areal axonal connectivity

(Hawrylycz et al., 2012), were more strongly co-expressed by

functionally connected brain regions (Krienen et al., 2016).

In this context, we predicted that morphometrically similar re-

gions should have high levels of gene co-expression in general

as well as high levels of HSE gene co-expression in particular.

Whole-genome analysis confirmed that co-expression was posi-

tively correlated with morphometric similarity, and the genes that

contributed most strongly to the overall association between

transcriptional and morphometric similarity were specialized

for neuronal functions. HSE genesweremost strongly expressed



in cytoarchitectonic classes 1–3, and HSE gene co-expression

was positively correlated with morphometric similarity and de-

gree or hubness of MSN nodes.

We have thus demonstrated that morphometric similarity is

strongly associated with cytoarchitectonic and genomic mea-

sures of histological similarity between cortical areas. To the

extent that histological (cytoarchitectonic or transcriptional) sim-

ilarity is coupled to axonal connectivity between cortical areas

(Fulcher and Fornito, 2016; Goulas et al., 2016, 2017), we can

therefore expect morphometric similarity measured by MRI to

be at least an approximate marker of axonal connectivity.

However, to verify this important interpretation more directly,

we generalized the MSN approach to analysis of whole-brain

connectomes in the macaque monkey.

We observed a strong positive relationship between the edge

weights of the macaque MSN and the edge weights of the tract-

tracing network, especially for themost consistently and strongly

weighted edges in the individual macaque MSNs. The strength

of association between tract-tracing andMSNswas comparable

in magnitude with previous reports of correspondence between

tract-tracing andDWI-based networks in themacaque (Donahue

et al., 2016; van den Heuvel et al., 2015). We note that the

macaque MRI data were collected at 3 T and provided only 8

morphometric variables per cortical region. It is predictable

from the human MRI datasets we analyzed that MSN metrics

(and their alignment with tract-tracing data) could be more pre-

cisely measured in future macaque MRI experiments at higher

field strength or using multi-parameter MRI sequences to sam-

ple the cortical micro-structure more comprehensively. More-

over, given the strong inter-hemispheric relationships captured

by the MSNs (Figure 3C), their alignment with tract-tracing con-

nectivity is likely under-estimated because of the lack of avail-

able bilateral (inter-hemispheric) datasets.

In short, the results of multiple experiments convergently sup-

ported all three hypotheses linking the topology of MSNs to both

the histological similarity and the axonal connectivity between

cortical areas. We consider that micro-structural MRI parame-

ters likely detect differences and similarities in the coupled

cytoarchitectonics and myeloarchitectonics of cortical areas.

In particular, morphometric similarity mapping identified strong

commonality of the MRI micro-structural profile of cytoarchitec-

tonic classes 1–3, where supragranular layers are enriched for

pyramidal neurons that send and receive long-distance axonal

projections from other cortical areas (Figures 3A and 4A).

We speculate that detection of regional differences in the repre-

sentation of supragranular layers may be especially important

for the capacity of morphometric similarity mapping to serve

as a proxy for histological similarity and axonal connectivity be-

tween cortical regions. Future studies involving higher-field

multi-parameter MRI in humans and primates, combined with

more fine-grained and quantitative histological data, will be

important in elucidating more precisely how different aspects

of cortical organization contribute to the morphometric similarity

between areas.

Methodological Considerations and Future Directions
The findings detailed above should be considered in light of

certain caveats and the need for further examination of MSNs
in future work. First, although we show that the basic architec-

ture of MSNs can be recovered across different image acquisi-

tion platforms, different image pre-processing steps, and

different sets of anatomical features per node, it will be important

to more comprehensively explore the full possible search space

defined by these three key methodological choices. Similarly, it

will be of value to systematically vary the definition, number,

and spatial patterning of nodes used for construction of cortical

MSNs and to develop methods for MSN analyses beyond the

cortex. Nodal definition presents an especially complex issue

for connectomics because maximizing the biological validity of

nodal definitions (Glasser et al., 2016) can result in a dramatic

variability in nodal size, which, in turn, can operate as a confound

in graph theoretical analysis. Second, our reported comparisons

between MSNs, SCNs, and DWI-based networks in alignment

with cytoarchitecture will need to be revisited as new techniques

are developed for in vivomeasurement of cortical thickness (Das

et al., 2009) and white matter connectivity (Fan et al., 2016;

Thomas et al., 2014). Third, the remarkable public maps of

gene expression in the human brain provided by the Allen Insti-

tute for Brain Science (AIBS) allowed us to begin assessing

the transcriptomic correlates of MSNs and pave the way for

future studies as available post-mortem gene expression data

expand with respect to inter-individual variation, spatiotemporal

comprehensiveness, and cellular resolution. Fourth, we have

considered a limited set of key graph-theoretical metrics in this

first presentation and analysis of MSNs. It will be valuable to pro-

file MSN topography with a more exhaustive set of metrics in

future work and harness these metrics to more fully characterize

the transcriptomic, microstructural, and behavioral correlates of

morphometric similarity.

MSNs and Intelligence
The availability of a new method for mapping the anatomical

connectome of a single human is likely to be helpful in under-

standing how its network topology relates to the cognitive or

psychological functions of the brain. As noted earlier, it is partic-

ularly important to understand more clearly how integrative ele-

ments of connectome topology, like hubs and a rich club, might

be linked to cognitive processing.

There is a body of theoretical and experimental work in sup-

port of the idea that higher-order, more effortful conscious pro-

cessing depends on a global workspace architecture that

coordinates neuronal activity across anatomically distributed

areas of the cortex (Baars, 1997; Dehaene and Changeux,

2011). Conceptually related work has highlighted the importance

of a multiple demand network of association cortical areas for

fluid intelligence (Duncan, 2010). In the language of graph theory,

this is compatible with the prediction that topologically integra-

tive features of the connectome, which ‘‘break modularity’’

(Dehaene and Naccache, 2001), should be important for intelli-

gent cognitive function, and there is already some evidence in

support of this prediction. For example, it has been shown that

higher IQ is negatively correlated with the characteristic path

length of fMRI and DWI networks (Li et al., 2009; van den Heuvel

et al., 2009), that performance of a cognitively demanding

working memory task is associated with greater topological effi-

ciency (shorter path length) of magnetoencephalography (MEG)
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networks (Kitzbichler et al., 2011), and that the rich club of inter-

connected hubs in a meta-analysis of task-related fMRI data is

co-activated by executive tasks demanding both cognition and

action (Crossley et al., 2013).

On this basis, we predicted that individual differences in IQ

should be related to inter-individual variability in the hubness

or degree of individual MSN nodes. We applied the multivariate,

dimension-reducing method of PLS to test the strength of asso-

ciation between the verbal and nonverbal IQ of 292 healthy par-

ticipants on one hand and the degree of 308 cortical nodes in

each of 292 individual MSNs on the other hand. Remarkably,

the first two PLS components collectively accounted for approx-

imately 40% of the total variance in IQ. The first PLS component

defined a set of cortical areas, functionally specialized for lan-

guage and located in left frontal and temporal cortex, where a

higher degree was strongly predictive of a higher verbal and

nonverbal IQ; the second PLS component defined a distinct

set of areas, functionally specialized for vision and memory,

where a higher degree was specifically predictive of a higher

nonverbal IQ. We speculate that the capacity of inter-individual

variation in MSN topology to predict inter-individual variation in

IQ may reflect the fact that MSNs simultaneously capture infor-

mation about multiple dimensions of brain organization with rele-

vance for cognitive function. In particular, the high-degree hubs

of the MSN are concentrated on association cortical areas that

have a high number of pyramidal neurons in supragranular layers

(Figures 3 and 4) that send and receive long-distance axonal

projections to other cortical areas (Figure 5). The MSN hubs

associated with higher IQ are thus expected to be important to

workspace theories (Dehaene and Changeux, 2011) that assign

higher-order cognitive functions to the coordinated activity of

large populations of globally distributed neurons.

The empirical relationships we report between MSN topology

and IQ directly support our fourth hypothesis, and they provide

some of the strongest evidence yet available in support of the

more general hypothesis that inter-individual differences in topo-

logically integrative features of the human brain connectome,

like high-degree hubs, are important for ‘‘higher-order’’ cognitive

functions (Deary et al., 2010; Saggar et al., 2015) that are theoret-

ically dependent on a global workspace architecture (Dehaene

and Changeux, 2011). Indeed, the strength of association be-

tween IQ and MSN nodal degree is large compared with many

prior studies reporting an association between IQ and other

structural MRI phenotypes (Reiss et al., 1996; Ritchie et al.,

2015; Toga and Thompson, 2005). We predict, on this basis,

that morphometric similarity mapping could provide a powerful

technical platform for measuring the anatomical connectome

in vivo and for understanding how the cognitive functions of

the human brain are related to its topologically complex

connectome.
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Batalle, D., Muñoz-Moreno, E., Figueras, F., Bargallo, N., Eixarch, E., and

Gratacos, E. (2013). Normalization of similarity-based individual brain net-

works from gray matter MRI and its association with neurodevelopment in in-

fants with intrauterine growth restriction. Neuroimage 83, 901–911.

Bernard, A., Lubbers, L.S., Tanis, K.Q., Luo, R., Podtelezhnikov, A.A., Finney,

E.M., McWhorter, M.M., Serikawa, K., Lemon, T., Morgan, R., et al. (2012).

Transcriptional architecture of the primate neocortex. Neuron 73, 1083–1099.

Bethlehem, R.A.I., Romero-Garcia, R., Mak, E., Bullmore, E.T., and Baron-

Cohen, S. (2017). Structural covariance networks in children with autism or

ADHD. Cereb. Cortex 27, 4267–4276.

Bullmore, E., and Sporns, O. (2012). The economy of brain network organiza-

tion. Nat. Rev. Neurosci. 13, 336–349.

Chen, C.H., Gutierrez, E.D., Thompson, W., Panizzon, M.S., Jernigan, T.L.,

Eyler, L.T., Fennema-Notestine, C., Jak, A.J., Neale, M.C., Franz, C.E., et al.

(2012). Hierarchical genetic organization of human cortical surface area.

Science 335, 1634–1636.
Chen, E.Y., Tan, C.M., Kou, Y., Duan, Q.,Wang, Z., Meirelles, G.V., Clark, N.R.,

and Ma’ayan, A. (2013). Enrichr: interactive and collaborative HTML5 gene list

enrichment analysis tool. BMC Bioinformatics 14, 128.

Colizza, V., Flammini, A., Serrano, M.A., and Vespignani, A. (2006). Detecting

rich-club ordering in complex networks. Nat. Phys. 2, 110–115.

Cox, R.W. (1996). AFNI: software for analysis and visualization of functional

magnetic resonance neuroimages. Comput. Biomed. Res. 29, 162–173.
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Kitzbichler, M.G., Wagstyl, K., Fonagy, P., Dolan, R.J., Jones, P.B., et al.;

NSPN Consortium (2016). Gene transcription profiles associated with inter-

modular hubs and connection distance in human functional magnetic reso-

nance imaging networks. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, 371.

von Economo, C.F., and Koskinas, G.N. (1925). Die cytoarchitektonik der hirn-

rinde des erwachsenen menschen (J. Springer).

Wagstyl, K., Ronan, L., Goodyer, I.M., and Fletcher, P.C. (2015). Cortical thick-

ness gradients in structural hierarchies. Neuroimage 111, 241–250.

Walker, L., Gozzi, M., Lenroot, R., Thurm, A., Behseta, B., Swedo, S., and

Pierpaoli, C. (2012). Diffusion tensor imaging in young children with autism:

biological effects and potential confounds. Biol. Psychiatry 72, 1043–1051.

Wang, J., Wang, L., Zang, Y., Yang, H., Tang, H., Gong, Q., Chen, Z., Zhu, C.,

and He, Y. (2009). Parcellation-dependent small-world brain functional net-

works: a resting-state fMRI study. Hum. Brain Mapp. 30, 1511–1523.

Watts, D.J., and Strogatz, S.H. (1998). Collective dynamics of ‘small-world’

networks. Nature 393, 440–442.

Wechsler, D. (1999). Manual for the Wechsler abbreviated intelligence scale

(WASI) (The Psychological Corporation).

Weiskopf, N., Suckling, J., Williams, G., Correia, M.M., Inkster, B., Tait, R., Ooi,

C., Bullmore, E.T., and Lutti, A. (2013). Quantitative multi-parameter mapping

of R1, PD(*), MT, and R2(*) at 3T: a multi-center validation. Front. Neurosci.

7, 95.
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Enrichr Chen et al., 2013; Kuleshov et al., 2016 http://amp.pharm.mssm.edu/Enrichr/

REViGO Supek et al., 2011 http://revigo.irb.hr/

BrainNet Viewer Xia et al., 2013 https://www.nitrc.org/projects/bnv/

Neurosynth Yarkoni et al., 2011 http://neurosynth.org
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Questions and requests regarding the resources detailed in this manuscript should be directed to the Lead Contact, Jakob Seidlitz

(jakob.seidlitz@nih.gov).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study design – primary NSPN cohort
Subjects were recruited as a part of the Neuroscience in Psychiatry Network (NSPN) study of normative adolescent development.

A subgroup of 300 adolescents and young adults aged 14-24 years was assembled by stratified sampling from 5 temporally contig-

uous strata. Participants were excluded if they were currently being treated for a psychiatric disorder or for drug or alcohol

dependence; had a current or past history of neurological disorders or trauma including epilepsy, or head injury causing loss of con-

sciousness; had a learning disability requiring specialist educational support and/or medical treatment; or had a safety contraindi-

cation for MRI. Participants provided informed written consent for each aspect of the study and parental consent was obtained

for those aged 14-15 years. The study was ethically approved by the National Research Ethics Service and was conducted in accor-

dance with NHS research governance standards.

Study design – secondary NIH cohort
To test the reliability and replicability of morphometric similarity, we constructed MSNs in an independent cohort of human subjects,

using different image analysis software for the processing pipeline, a different areal parcellation, and a more limited set of
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morphometric features (n = 5). The sample consists of 124 typically developing subjects (49 females, mean age = 12.55, s = 4.27,

range = 5.59-25.13; 65 males, mean age = 13.40, s = 4.52, range = 5.77-32.04) sampled from the National Institutes of Health

(NIH) longitudinal study of normative brain development (Giedd et al., 1999, 2015)

Study design – macaque monkey cohort
We additionally constructed MSNs using an independent cohort of 31 healthy young rhesus macaques (13 females; mean age =

1.7 years, range = 0.9 to 3.0 years), whose MRI data were collected as part of the UNC-UW longitudinal study at the University of

North Carolina and the University of Wisconsin (Young et al., 2017). Animals were included if they had T1-weighted, T2-weighted

and DWI data available at more than one time point. Prior to scanning, each animal was anaesthetised following the protocol

from Young et al. (2017). All animal procedures were conducted in compliance with the Institutional Animal Care and Use Committee

(IACUC) and the National Institutes of Health Guide for the Care and Use of Laboratory Animals.

METHOD DETAILS

MRI data acquisition – primary NSPN cohort
The anatomical MRI data were acquired using the multi-parametric mapping (MPM) sequence (Weiskopf et al., 2013) implemented

on three identical 3T whole-body MRI systems (Magnetom TIM Trio, Siemens Healthcare, Erlangen, Germany; VB17 software

version), two located in Cambridge and one in London, operating with the standard 32-channel radio-frequency (RF) receive head

coil and RF body coil for transmission. Between-site reliability of all MRI procedures was satisfactorily assessed by a pilot study

of 5 healthy volunteers scanned at each site (Weiskopf et al., 2013). The between-site bias was less than 3%, and the between-

site coefficient of variation was less than 8%, for both the longitudinal relaxation rate (R1 = 1/T1) and MT parameters (Weiskopf

et al., 2013). R1 andMTwere quantified inMATLAB (TheMathWorks Inc., Natick, MA, USA) using SPM8 (www.fil.ion.ucl.ac.uk/spm).

Diffusion weighted imaging (DWI) data were collected in the same scanning session as the MPM data. A High-Angular Resolution

Diffusion-Weighted Image (HARDI) was acquired using a single-shot echo planar imaging sequence consisting of 63 gradient direc-

tions with a b-value = 1000 mm/s2 along with 5 unweighted B0 images. This protocol used 70 consecutive axial slices of thickness

2 mm (FOV = 192 3 192 mm, TE = 90 ms, TR = 8700 ms) resulting in a voxel size of 2.0 mm isotropic.

Human MRI data pre-processing
We used Freesurfer v5.3.0 software for the data pre-processing pipeline (Fischl, 2012; http://surfer.nmr.mgh.harvard.edu). Briefly,

the cortical surface for each participant was reconstructed from their R1 image by the following steps: skull stripping (Ségonne

et al., 2004), segmentation of cortical gray and white matter (Dale et al., 1999), separation of the two hemispheres and subcortical

structures (Dale et al., 1999; Fischl et al., 2002; Fischl et al., 2004); and finally construction of smooth representation of the gray/white

interface and the pial surface (Fischl et al., 1999). The DWI volumes were aligned to the R1 image for each subject. After quality con-

trol, 3 participants had to be excluded from the analyses due to movement artifacts which prevented accurate surface reconstruc-

tions, and 1 due to errors in their DWI volume reconstruction, leaving N = 296 (148males and 148 females) for the final cohort used for

the imaging analyses in this paper.

Quality control of the reconstructed cortical surfaces for each subject was carried out by six independent members of the NSPN

Consortium (Supplemental Material). The segmentation was edited by adding control points in Freesurfer, re-processed to obtain the

surface reconstructions, and checked again. In addition, the raw reconstructed R1, MT, and DWI volumes were visually inspected for

motion artifacts by JS.

Human MRI cortical parcellation
To define the set of nodes, the 68 cortical regions in the Desikan-Killiany atlas (Desikan et al., 2006) were sub-parcellated into 308

spatially contiguous regions, of approximately equal size (�5 cm2), using a backtracking algorithm as described previously (Romero-

Garcia et al., 2012). This parcellation was generated once on the surface of the Freesurfer standard anatomical template (fsaverage),

and subsequently transformed to each individual subject’s surface. Each subject’s surface parcellation was then interpolated and

expanded to their respective R1, MT, and B0 (DWI) volumes.

Estimation of regional morphometric features
A feature matrix consisting of 10 morphometric features measured at each of 308 brain regions was estimated from the combined

MPM and DWI data available for each subject (Figure 1A). Surface- and volume-based features were extracted using the respective

version of the regional parcellation. For the surface-based features, regional values were estimated for cortical thickness (CT), sur-

face area (SA), intrinsic curvature (IC), mean curvature (MC), curvature index (CI), and folding index (FI). For the volume-based fea-

tures, regional values were estimated for the diffusion metrics (fractional anisotropy – FA, and mean diffusivity – MD) as well as gray

matter volume (GM) and magnetization transfer (MT). The regional MT values were estimated at 70% cortical depth (Whitaker

et al., 2016).
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Estimation of MSNs
Each of the MRI feature vectors in each region of each individual image were normalized (z-scored) and then the Pearson product-

moment correlation coefficient (r) was estimated for each possible regional pair of MRI feature vectors (see Figures 1B and 1C). The

resultant zero-centered distributions of the correlationmatrices arise from the pre-processing step involving normalization of features

across nodes within each brain, before network construction. These pairwise measures of morphometric similarity were compiled to

form a morphometric similarity matrix which was thresholded to construct weighted and binary graphs of arbitrary connection den-

sity, also known asmorphometric similarity networks (MSNs). Explicitly, MSNswere thresholded such that inter-regional correlations

less than the threshold value were set to 0, and supra-threshold edges maintained their values (for weighted) or were set to 1 (for

binary), in the corresponding elements of the individual MSNs. To create a group level MSN, we averaged the individual morpho-

metric similarity matrices and then thresholded the mean similarity matrix.

Structural covariance network construction
Cortical thickness (CT) of each of the 308 regions in the 296 subjects was used as the morphometric feature for constructing the

structural covariance network (SCN), as in Whitaker et al. (2016). This entailed estimating the set of correlations between cortical

thickness of each possible pair of regions, over all participants, resulting in a single inter-regional CT correlation matrix which was

thresholded to generate a binary graph representation of the whole-sample structural covariance network.

DWI network construction
The entire DWI image analysis pipeline was performed in AFNI, a freely availableMRI andDWI analysis software suite (Cox, 1996). For

each subject, DWI image volumes were de-obliqued and co-registered to the B0 volume to account for head movement. The 6 prin-

cipal direction tensors were then estimated from the DWI image volume using the 3dDWItoDT command. Probabilistic tractography

for the 308 brain regionswas performed using the 3dTrackID command, alongwith tensor uncertainty estimates from 3dDWUncert to

increase robustness (Taylor et al., 2012; Taylor and Saad, 2013). An asymmetric connectivity matrix was estimated for each of the 296

subjects, where each element represents the average mean diffusivity (MD) along the axonal tracts connecting two regions. We

chose the measure for estimating tract weights that maximized the proportion of intra-class edges defined by a prior cytoarchitec-

tonic classification (Figure 3).

Inter- versus intra-hemispheric effects on edge detection by DWI versus morphometric similarity mapping required construction

of a binarised group-average DWI network for comparison with the binarised group-average MSN. To achieve a binarised

DWI network, we used a consensus averaging approach (Mi�si�c et al., 2015), generating a 9% dense group average DWI network,

still using mean diffusivity (MD) along the tracts as the measure of connection weight. We then binarised this network, and thresh-

olded the group average MSN to match the connection density of this consensus DWI network. This consensus average group

DWI network was also used to provide an alternative test for the overlap between cortical DWI networks and cytoarchitectonic

classes.

Digitisation of a cytoarchitectonic atlas
To test the correspondence betweenmorphometric similarity and cytoarchitecture, we used an independentmodular decomposition

depicting the five typical laminar patterns of the cortex as proposed by von Economo and Koskinas (1925). We manually assigned

nodes in our n = 308 parcellation to one of the five cortical classes (Solari and Stoner, 2011), and, in addition, the insula and cingulate

cortex were partitioned into separate classes to reflect their distinct cytoarchitectonic profiles, thus producing seven distinct mod-

ules (Vértes et al., 2016; Whitaker et al., 2016).

To assess the spatial overlap between morphometric similarity and cytoarchitecture, 1000 pseudo-random communities were

created by iteratively permuting the module labels associated to pairs of nodes located at the same distance from each module’s

centroid. This procedure randomly shifts the position of the modules along the cortex without splitting apart the components of

themodule (Bethlehem et al., 2017). The resulting null distribution of community partitions preserves the number and size ofmodules,

as well as the spatial contiguity of the empirical community partition.

Brain gene co-expression estimation
To account for the redundancy of the cRNA hybridization probes, which contained expression levels for overlapping genes,

expression values for the same gene were averaged across probes. Probes with unmatched genes were excluded, leaving

20,737 genes from 3,702 samples. Because of the symmetric gene expression values between hemispheres (Pletikos et al.,

2014), the AIBS dataset only contains data from both hemispheres for two subjects. Thus, because the right hemisphere was un-

der-sampled, we performed all analyses on the left hemisphere (n = 152 regions). We mapped the gene expression values of each

subject to the fsaverage (MNI305) volumetric template space (assigning samples to the nearest centroid of the left hemisphere

(n = 152 regions) of our parcellation) using the individual AIBS subjects’ T1-weighted volumes (Vértes et al., 2016; Whitaker

et al., 2016). For the two subjects with right hemisphere data, we first reflected the right hemisphere samples’ coordinates and

then performed the mapping.

Themedian regional expression was estimated for each gene across participants (N = 6) and then each gene’s regional valueswere

normalized (z-scored), resulting in a 152 3 20,737 matrix of the genome-wide expression data for the 152 regions of the left
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hemisphere. The 1523 152 gene co-expression matrix (i.e., the upper-left quadrant of the group MSN) contained pairwise Pearson

correlations, whichwere computed for each of the left hemisphere regions, representing the intra-hemispheric gene co-expression of

two left hemisphere regions across the 20,737 genes. This network, along with the set of regional expression values, was used for

comparison to the corresponding left hemisphere of the group MSN.

TheHuman Supragranular Enriched (HSE) gene set contains 19 genes that were found to be primarily expressed in the upper layers

(II/III) of human cortex: BEND5,C1QL2,CACNA1E,COL24A1,COL6A1,CRYM, KCNC3, KCNH4, LGALS1,MFGE8,NEFH, PRSS12,

SCN3B, SCN4B, SNCG, SV2C, SYT2, TPBG and VAMP1 (Zeng et al., 2012). The inter-areal co-expression of HSE genes has been

related to the emergence of cortico-cortical connectivity in humans (Krienen et al., 2016; Zeng et al., 2012). We therefore created a

gene co-expression network using only the HSE genes.

Gene ontology enrichment analysis was performed using GOrilla (Eden et al., 2007; Eden et al., 2009) and visualized using REViGO

(Supek et al., 2011), and, in addition, replicated using Enrichr (Chen et al., 2013; Kuleshov et al., 2016).

MRI data acquisition – secondary NIH cohort
Subjects were scanned on a 1.5T GE Signa scanner (axial slice = 1.5 mm, TE = 5 ms, TR = 24 ms, flip angle = 45�, matrix = 256 3

2563 124, FOV = 24 cm) using a spoiled-gradient recalled echo (3D-SPGR) imaging sequence (Giedd et al., 1999). The T1-weighted

scans were processed using the Montreal Neurological Institute’s CIVET pipeline (v1.1.10; Ad-Dab’bagh et al., 2006). Due to the lack

of MT, DWI, or T2-weighted imaging, only (gray matter) morphometric features derived from the T1-weighted scans were estimated

(CT, SA, GM, MC, IC). GM values were estimated using the T1w volumes of each subject. Vertex-wise CT and SA values were esti-

mated using the resultant pial surface reconstructions from CIVET, while MC and IC metrics of these surfaces were estimated using

the freely available Caret software package (Van Essen et al., 2001). The down-sampling of these surface meshes (�80,000 vertices

permesh) into 360 regionswas performed (Alexander-Bloch et al., 2013b), where the vertex-wise estimates of the featureswere aver-

aged (for CT, MC, and IC) or summed (for SA) within a given region in the parcellation. The surface parcellation was projected to the

volume for extraction of regional GM for each subject.

For quality control, the CIVET output—tissue segmentation and surface reconstructions—for each subject was visually inspected

bymultiple independent raters (including JS) for accuracy of processing using a 5-level coding system (i.e., 1 = accurate). Only scans

scoring a 1 after coding were used in the analyses presented in this paper.

MRI data acquisition – macaque monkey cohort
T1-weighted (TR = 8.684 ms, TE = 3.652 ms, FOV = 140 3 140 mm, flip angle = 12�, matrix = 256 3 256, thickness = 0.8 mm,

gap = �0.4 mm, voxel resolution = 0.55 3 0.55 3 0.8 mm3) and T2-weighted (TR = 2500 ms, TE = 87 ms, FOV = 154 3 154 mm,

flip angle = 90�, matrix = 2563 256, thickness = 0.6mm, gap = 0mm, voxel resolution = 0.63 0.63 0.6mm3), and diffusion-weighted

images (120 gradient directions, TR = 8000 ms, TE = 65.7 ms, FOV = 16.7 mm, matrix = 128 3 128, thickness = 2.6 mm, voxel res-

olution = 0.65 3 0.65 3 1.3 mm3) were acquired using a GE MR750 3T scanner with an 8-channel human brain array coil (Young

et al., 2017).

The same 5 morphometric features used to construct the NIH human MSNs were estimated for the macaque data using an auto-

mated analysis pipeline (Seidlitz et al., 2017), which combines tools from AFNI as well as from the freely available Advanced Normal-

ization Tools (ANTs) software package (Avants et al., 2011; http://stnava.github.io/ANTs/). Additionally, we estimated MD and FA

from the DWI scans, as well as the T1w/T2w ratio (after resampling the T2w scans to match the resolution of the T1w scans) (Glasser

and Van Essen, 2011), generating a total of 8 regional morphometric features for each subject. For cross-species comparison of the

network properties, and for comparison to retrograde viral tract tracing data, we used the 91-region left hemisphere cortical parcel-

lation from Markov et al. (2014). The individual 91 3 91 region left hemisphere MSNs were averaged to create a group average ma-

caque MSN.

Although initial quality control of the raw data was performed on this dataset in Young et al. (2017), visual assessment of the raw

reconstructed volumes (T1w, T2w, and DWI) was also performed by JS. In addition, after processing (described above), the results of

image registrations, tissue segmentations, and regional parcellations for each subject were inspected.

MACAQUE TRACT TRACING DATA

Connectivity of the group MSN was evaluated against tract tracing connectivity data from Markov et al. (2012) (downloaded from

core-nets.org). Whereas DWI tractography is an in vivo non-invasive indirect approximation of white matter connectivity, ‘‘gold stan-

dard’’ anatomical tract tracing is an invasive ex vivo method of measuring directed connectivity. In retrograde tracing, a tracer

(typically a dye, molecule, or radioactively tagged amino acid) is injected and physically travels along the axonal projection from

its termination site (i.e., site of injection) to the soma from which the axon originates. The measure of connectivity is reliant upon

the labeling of neurons in the areas of interest. Markov et al. (2012) generated an index of connectivity called the extrinsic fraction

of labeled neurons (FLNe). FLNe was calculated as the number of labeled neurons at the target site that exist above and beyond

the fraction of labeled neurons of that site relative to the entire brain and labeled neurons intrinsic to that site (Markov et al.,
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2012). Thus, this retrograde tract tracing dataset is a weighted and directed 293 91 matrix (i.e., 29 injection points), where the 293

29 subgraph of the matrix contains all possible connections between those injection sites.

The distribution of edge weights from the tract tracing network follows a logarithmic distribution, thus we transformed the edge

weights by the base 10 logarithm function for our analyses. We used the 29 3 29 subgraph of the total 29 3 91 connectivity matrix

(Figure 5B). For comparison with the tract tracing data, the 913 91 macaque MSNs were matched to the same 293 29 dimensions.

QUANTIFICATION AND STATISTICAL ANALYSIS

Relational analyses
Weused correlation coefficients as themeasure of comparison between the edgeweights and nodal statistics of theMSNs. Although

we report the Pearson correlation coefficients in the main text, we acknowledge that in some cases the distributions of the variables

of comparison violated the assumptions of normality made when using the Pearson correlation. As such, we also report these results

using the Spearman rank correlation coefficient, which can be found in Table S1.

Graph theoretic analyses
For each of the individual MSNs (and comparable SCN and DWI networks), a series of graphs was constructed and analyzed over a

range of connection densities (2%, 3%, 4%, and 5%–40%, 5% intervals), using both weighted and binarised approaches. Summary

statistics for theMSNs, as well as for random networks with the same number of nodes and edges, are reported using the 11 arbitrary

thresholds.

The following graph metrics were calculated in MATLAB using the Brain Connectivity Toolbox, a freely available graph analysis

software package (Rubinov and Sporns, 2010), as well as in R (http://www.r-project.org/) using the igraph package (Csardi and

Nepusz, 2006). Graph visualization was performed using Rstudio (https://www.rstudio.com/), Python (Python Software Foundation;

https://www.python.org/), Gephi (Bastian et al., 2009), as well as BrainNet Viewer (Xia et al., 2013) (https://www.nitrc.org/projects/

bnv/).

The degree, k, of a graph describes the total number of edges of each node. The clustering coefficient,C, of node i is the ratio of the

number of i’s neighbors that are connected to each other with a single edge. As such, the clustering coefficient across an entire graph

is the average of the clustering coefficients over all nodes, defined as:

C=
1

n

X
i˛N

Ci =
1

n

X
i˛N

2ti
kiðki � 1Þ; (1)

where ki are the neighbors of node i and ki(ki – 1) is the number of possible edges between ki (Watts and Strogatz, 1998). The char-

acteristic path length represents the mean of shortest paths between all pairs of nodes in a network (Watts and Strogatz, 1998),

defined as:

L=
1

n

X
i˛N

Li =
1

n

X
i˛N

X
j˛N;jsi

dij

n� 1
; (2)

where Li is the mean distance between node i and every other node. Global efficiency is the inverse of the characteristic path length.

The small-world coefficient of a network (Humphries and Gurney, 2008) is defined as:

S=
C=Crand

L=Lrand

; (3)

where (C/Crand) is the ratio of the average clustering coefficient between the empirical network and average values from a set of cor-

responding randomized networks with preserved degree distribution, and (L/Lrand) is the ratio of characteristic path lengths of the

empirical network and the set of randomnetworks. In this study, 1 randomnetwork per participant was generated. As such, a network

is generally considered small world when S > 1.

Modularity (Q) is a measure of network segregation, by which nodes are subdivided into communities, or modules, to maximize

intra-community edge strength in comparison to a random network null model (Girvan and Newman, 2002; Newman, 2004). It is

defined as:

Q=
1

l

X
i;j˛N

�
aij � kikj

l

�
dmi ;mj

; (4)

wheremi andmj are themodules containing nodes i and j, respectively. Ifmi =mj,(i.e., nodes i and j are members of the samemodule)

then dmi,mj = 1, but if mi s mj, (i.e., nodes i and j are members of different modules), then dmi,mj = 0. In order to detect a stable

consensus community structure, this modularity decomposition algorithm was applied 1000 times (Garcia et al., 2017). A consensus

matrix was created defining each element as the number of times that each node had been classified to the samemodule. Finally, the
e5 Neuron 97, 231–247.e1–e7, January 3, 2018

http://www.r-project.org/
https://www.rstudio.com/
https://www.python.org/
https://www.nitrc.org/projects/bnv/
https://www.nitrc.org/projects/bnv/


consensus matrix was used as an input for the community algorithm. The resulting output represented a stable modular structure of

the original network (Kwak et al., 2009). We report the modules using the group average NSPN MSN at 10% connection density.

The rich club coefficient is a property of complex networks and measures the amount of inter-connectedness between hubs of

a network (Colizza et al., 2006; van den Heuvel and Sporns, 2011), calculated at varying degree cut-offs. The normalized rich club

coefficient (F) is the ratio of the rich club coefficient of the empirical network (i.e., the MSNs) relative to that of a random network.

Thus, the nodes greater than or equal to the degree cut-off at which F > 1 denotes membership to the rich club.

Spatial permutation testing
To statistically test the relationship between gene expression and MSN topology, spatial permutation testing was implemented as in

Vá�sa et al. (2017). We first obtained the coordinates of each of our 308 regions on the Freesurfer spherical projection of the parcel-

lation (using the fsaverage brain surface). Then these coordinates were rotated about the three principal axes at three randomly

generated angles, qx, qy and qz ˛ [0, 2p), using the following rotation matrices:

RxðqÞ=
2
4 1 0 0
0 cosðqÞ �sinðqÞ
0 sinðqÞ cosðqÞ

3
5 RyðqÞ=

2
4 cosðqÞ 0 sinðqÞ

0 1 0
�sinðqÞ 0 cosðqÞ

3
5 RzðqÞ=

2
4 cosðqÞ �sinðqÞ 0
sinðqÞ cosðqÞ 0
0 0 1

3
5 (5)

Given the separate hemisphere projections onto the surface, the rotation was applied to both hemispheres. To preserve hemispheric

symmetry, the same random angles were applied to both hemispheres, with the caveat that the sign of the angles was flipped for the

rotations around the y and z axes (i.e., qy = -qyL and qzR = -qzL but qxL = qxR).

Following rotation of the sphere, coordinates of the rotated regions were matched to coordinates of the initial regions, using

Euclidean distance and proceeding in a descending order of average Euclidean distance between pairs of regions on the rotated

and unrotated spheres (i.e.: starting with the rotated region that is furthest away, on average, from the unrotated regions). Thematch-

ing then provides a mapping from the set of regions to itself, that allows any regional measure to be permuted while controlling for

spatial contiguity and hemispheric symmetry.

Partial least-squares analysis
We assessed the relationship between individual differences in IQ and individual differences in nodal degree of each of 308 regions in

each of 292 individual MSNs using the multivariate method of partial least-squares (PLS) regression, as in Whitaker et al. (2016) and

Vértes et al. (2016). This dimensionality reduction technique seeks to find the latent variables or PLS components whichmaximize the

correlation between a set of collinear predictor variables and a set of response variables. Here, normalized scores on the vocabulary

and matrix reasoning subscales of the Wechsler Abbreviated Scale of Intelligence (WASI) test (Wechsler, 1999) were used as

response variables and degree centrality of each node in individual MSNs thresholded at arbitrary connection density were used

as predictor variables. We used MSN degree so that only high strength edges were included in the analysis, and so that the robust-

ness of this PLSmethod could be tested across a range of MSN densities. Four subjects were excluded due to unavailability of WASI

IQ data (N = 292). Bootstrapping (resampling with replacement of the 292 individual subjects) was used to estimate the error on the

PLS weights for each node so that the nodes could be ranked based on their contribution to each PLS component (Vértes

et al., 2016).

DATA AND SOFTWARE AVAILABILITY

Gene expression
We used the freely available Allen Institute of Brain Sciences (AIBS) transciptomic dataset (http://human.brain-map.org/) to estimate

gene expression for each region and gene co-expression between each pair of regions. This dataset comprises post-mortem sam-

ples collected from 6 adult male donors (H0351.1009, H0351.1016, H0351.1015, H0351.2002, H0351.1012, H0351.2001; 3 Cauca-

sian, 2 African-American, 1 Hispanic; mean age = 42.5 years). For a detailed description on themethods of whole genomemicroarray

analysis at multiple regional locations, see the AIBS technical white paper (http://human.brain-map.org).

Macaque tract tracing
Full details of the macaque tract tracing dataset used in this paper can be found in Markov et al. (2012). The mapping of connections

was performed across multiple sites and subjects to form the single cortical connectivity matrix. This tract tracing connectivity matrix

and corresponding digital atlas (M132) can be downloaded from core-nets.org.

Macaque MRI dataset
Full details of the UNC-Wisconsin Neurodevelopmental Rhesus Database – a longitudinal multimodal macaque neuroimaging data-

set – can be found in Young et al. (2017). Additionally, the data are freely available to the research community (https://data.kitware.

com/#collection/54b582c38d777f4362aa9cb3).
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NIMH macaque template
Full details on the NIMH Macaque Template (NMT) and corresponding automated processing tools can be found in Seidlitz et al.

(2017). The high-resolution NMT represents an average macaque brain, generated from 31 young adult rhesus macaques using

an unbiased iterative diffeomorphic registration method from the ANTs software package. Corresponding tissue segmentation,

3D surfaces, and scripts are freely available for download (https://github.com/jms290/NMT).

MyConnectome MRI dataset
The MyConnectome project contains MRI, DWI, fMRI, cognitive, and physiological data from a single individual, mapped during

multiple sessions over the course of a year (Poldrack et al., 2015). The data are freely available for download (http://

myconnectome.org/wp/).

NSPN dataset
Data for this specific paper (for the primary NSPN cohort) has been uploaded to the Cambridge Data Repository (https://doi.org/10.

17863/CAM.17102) and password protected. Our participants did not give informed consent for their measures to be made publicly

available, and it is possible that they could be identified from this data set. Access to the data supporting the analyses presented in

this paper will be made available to researchers with a reasonable request to openNSPN@medschl.cam.ac.uk.
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