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Hypopharyngeal cancer is a disease that is associated with EGFR-mutated

lung adenocarcinoma. Here we utilized a bioinformatics approach to iden-

tify genetic commonalities between these two diseases. To this end, we

examined microarray datasets from GEO (Gene Expression Omnibus) to

identify differentially expressed genes, common genes, and hub genes

between the selected two diseases. Our analyses identified potential thera-

peutic molecules for the selected diseases based on 10 hub genes with the

highest interactions according to the degree topology method and the max-

imum clique centrality (MCC). These therapeutic molecules may have the

potential for simultaneous treatment of these diseases.

Abbreviations

CSV, comma-separated values; DE, differential expression; DEGs, differentially expressed genes; FDR, false discovery rate; GEO, Gene

Expression Omnibus; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; MCC, maximum clique centrality; miRNAs,

microRNAs; PPI, protein–protein interactions; SVG, scalable vector graphic; TF, transcription factor.
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Bioinformatics, which combines the capabilities of

computer science with biology, has expanded signifi-

cantly in recent years [1]. Several bioinformatics toolk-

its are leveraged to achieve the desired result for the

experiment. Bioinformatics can research the molecular

causes of sickness, describe the disease’s situation from

the gene’s nook, and reduce the amount of time and

money spent on the process by utilizing computer abil-

ities to narrow the scope of the investigation and

improve the quality of the results [1]. Two hundred

different cell types and 100 different cancers have

been found among the 100 trillion cells in the human

body [2].

The prognosis of tumors that originate from other

head & neck sites is better than that of hypopharyn-

geal cancer, a less frequent type of head & neck cancer

[3]. With only 15–30% of patients living for more than

5 years, hypopharyngeal carcinoma, which makes up

around 5% of all head & neck malignancies, has a

horrible prognosis [4,5]. Two common risk factors for

hypopharyngeal carcinoma are alcohol consumption

and smoking [6]. According to the American Cancer

Society, the human papillomavirus also causes hypo-

pharyngeal carcinoma.

The epidermal growth factor receptor gene is the

most commonly mutated gene in lung cancer (EGFR)

[7]. Lung squamous cell carcinoma (SCC), which has

an estimated frequency of 3% to 18%, is compara-

tively uncommon compared to lung adenocarcinoma

(1–10) [7]. Lung cancer, which comprises both small

and non-small cells, is the leading cause of

cancer-related death globally [8–11]. The world’s high-

est incidence and fatality rates are associated with the

most prevalent kinds of cancer [12]. Risk factors for

lung cancer include smoking, passive smoking, age,

gender, family history, chronic lung disease, chest

radiotherapy, diet, obesity, physical activity, alcohol

consumption, employment, education, and income

[13]. The human papillomavirus might potentially

increase the risk of developing lung cancer [14].

Head and neck cancers, as well as lung cancers, pose

significant challenges to global health [15]. Head and

neck cancer is among the most frequent malignancies

to migrate to the lungs [16–18]. Following bone and

soft-tissue sarcomas [19], recognized head–neck cancer

is the third most frequent reason for pulmonary mas-

tectomy. Ferlay et al. [20] reported in 2012 that there

were 686,000 new instances of head and neck cancer,

1,825,000 new cases of lung cancer, and a combined

mortality rate of 5% and 19%, respectively. Hypo-

pharyngeal cancer is a type of head and neck cancer

and EGFR-mutated lung adenocarcinoma is also one

form of lung cancer. Thus, we can claim that patients

with EGFR-mutated lung adenocarcinoma may have

the potential to develop hypopharyngeal cancer,

according to the preceding statistic. Also, hypopharyn-

geal cancer may potentially spread to lung adenocarci-

noma with EGFR mutation, and lung adenocarcinoma

with EGFR mutation may potentially metastasize to

hypopharyngeal cancer [21]. This article’s researchers

analyzed the general population’s lung metastases in

newly diagnosed hypopharyngeal cancer. According to

the Canadian Cancer Society, lung cancer may develop

if hypopharyngeal cancer progresses [22]. Therefore,

this concludes that they are related genetically because

they share genes. This set of shared genes is restrained

by regulatory interaction network pathways.

In this research, we aimed to look into common

DEGs (differentially expressed genes), hub genes, vari-

ous gene regulatory networks, and therapeutic mole-

cule for hypopharyngeal cancer and EGFR-mutated

lung adenocarcinoma using bioinformatics technology.

We used two datasets for EGFR-mutated lung ade-

nocarcinoma and hypopharyngeal cancer. Each of

these datasets have eight samples. The DEGs shared

by these two datasets were extracted using the R pro-

gramming language (Vienna, Austria). These widely

distributed DEGs help to identify GO terms, path-

ways, PPI networks, and TF-miRNA. Based on the

hub genes of patients with hypopharyngeal cancer and

EGFR-mutated lung adenocarcinoma who have these

two diseases concurrently, certain therapeutic com-

pounds are envisaged. Hypopharyngeal cancer and

EGFR-mutated lung adenocarcinoma can be associ-

ated with each other directly or indirectly. These dis-

eases have some common interrelated genes. Gene

regulatory interaction networks are developed by using

different types of bioinformatics tools. The PPI net-

work is visualized, and common drugs are developed

for the selected two associated diseases. A PPI net-

work describes the connections between proteins in a

biological system in the context of biological study.

The process of visualizing this network usually entails

producing a map or graphical depiction that shows the

connections and interactions between various proteins.

By illustrating these relationships graphically, scientists

can better understand the intricate biological mecha-

nisms involving proteins, and possibly pinpoint impor-

tant hubs or nodes in the network that are essential to

cellular operations or disease processes. Visualizing the

PPI network is, all things considered, a step towards

better understanding the complexities of molecular

interactions through the analysis of biological data.

Developing common drugs indicates the creation of

common medications for the selected diseases. In addi-

tion, designing one common drug for two associated

1167FEBS Open Bio 14 (2024) 1166–1191 ª 2024 The Authors. FEBS Open Bio published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

A. Bhattacharjya et al. Gene regulatory networks and therapeutic molecules

 22115463, 2024, 7, D
ow

nloaded from
 https://febs.onlinelibrary.w

iley.com
/doi/10.1002/2211-5463.13807, W

iley O
nline L

ibrary on [16/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



diseases decreases the amount of drug one should

absorb for the diseases separately.

There are some earlier works based on different dis-

eases using the various bioinformatics approaches as

follows [23]: Molecular biomarker identification to sug-

gest therapeutic targets for the creation of medicines to

treat esophageal cancer. The authors collected these

GSE93756, GSE94012, GSE104958, and GSE143822

datasets from the National Center for Biotechnology

Information’s (NCBI) Gene Expression Omnibus.

Using the R Language Limma Package, DEGs were

collected by applying the adjusted value < 0.05. After

that, DEGs’ GO and pathway enrichment analysis

was done. And PPI and clustering analysis were also

done based on the DEGs. Taz et al. [24] discussed idio-

pathic pulmonary fibrosis (IPF) people who have

SARS-CoV-2 infections who are genetically more likely

to develop IPF. The GEO NCBI database was used to

collect the GSE147507 and GSE35145 datasets. DEGs

for GSE35145 were retrieved using the GEO2R tool

that is included by default with the dataset in GEO,

while DEGs for GSE147507 were gathered using the R

programming language. Adjusted P-value < 0.05 and

log2-fold change (absolute) > 1.0 were used as the cut-

off criteria. Common genes for these two diseases were

used for gene set enrichment analysis, PPIs network

construction, hub gene searching and module examina-

tion, TF-miRNA identification, and candidate drug

suggestion [25]. Identification of the SARS-CoV-2 bio-

markers and pathways that complicate the condition in

patients with pulmonary arterial hypertension. The R

programming language’s limma and DESeq2 packages

were used to gather DEGs of GSE147507 for SARS-

CoV-2 infection in human lung epithelial cells. DEGs

of GSE117261 for PAH lung were found through the

GEO2R tool of the GEO NCBI database. Adjusted

P-value < 0.05 and log2-fold change (absolute) > 1.0

were used as the cutoff criteria. For the objective of

controlling the false discovery rate, the Benjamini–
Hochberg approach was used on both datasets. Com-

mon DEGs from these two datasets were used for fur-

ther analysis.

Chen et al. [26] employed bioinformatics analysis

to screen for and identify potential target genes

in head and neck cancer. The authors used the

dataset GSE58911 from GEO. An interactive web tool

called GEO2R, which is by default available on GEO,

was used to identify the DEGs. The cutoff criteria

were an adjusted P < 0.05 and a log fold-change (FC)

≥ 1 or ≤ �1. KEGG and GO enrichment analysis was

performed using the DEGs. Additionally, a PPI net-

work was constructed, and hub genes were identified

using the DEGs [27]. Bioinformatics analysis was used

to identify relevant HNSCC (head and neck squamous

cell carcinoma) genes from public databases. In this

research work, DEGs were deemed significant if their

logFC ≥ 1 or ≤ �1 and an adjusted P < 0.05. After

retrieving the DEGs, several analyses were conducted,

including GO, KEGG, PPI, DEG survival analyses,

verification of key genes via Oncomine, specimens, and

real-time PCR. Jin and Yang [28], using integrated

bioinformatics techniques, used the identification and

analysis of genes linked to head and neck squamous

cell carcinoma. GSE13601, GSE31056, and GSE30784

datasets from GEO were downloaded and analyzed

using the R language. To identify the DEGs from

three different datasets, P < 0.01 and |log(FC)| > 1

were chosen as the cutoff. Common genes of the three

different datasets were also identified by using the

Venn Diagram package in R language. Further analy-

sis (analysis of KEGG pathways and gene ontologies,

top modules and hub genes in a PPI network identifi-

cation, validation of hub gene relative mRNA expres-

sion levels, examining the hub genes’ protein levels in

the human protein atlas database, hub gene survival

analysis using the TCGA database, RNA extraction

and real-time quantitative PCR, and analysis of statis-

tics) was done based on the common DEGs [29]. By

using integrated bioinformatics analysis, hub genes

associated with the development of head and neck

squamous cell carcinoma were found. From TCGA

and GEO, the gene expression profiles for HNSCC

were retrieved. Using WGCNA, key coexpression

modules were identified, and DEGs were defined as

genes with the cutoff criteria of |logFC| ≥ 1.0 and adj.

P < 0.05. Functional analysis of interest genes, PPI

construction, and hub gene screening, validation of

hub gene expression patterns and prognostic values,

and validation of survival-related hub gene protein

expressions by the HPA database were also conducted

in this study [30]. Using TCGA and GEO datasets, a

study was conducted to identify potential biomarkers

and analyze survival data for head and neck squamous

cell carcinoma. Using R, the GSE6631 dataset for head

and neck squamous cell carcinoma was analyzed. Here,

adj. P < 0.05 was applied to differential gene screening

in order to control the number of false-positive results.

The heat and volcano maps were also constructed for

the corresponding DEGs. Enrichment analysis, PPI

analysis, hub genes survival analysis, key genes verifica-

tions, analysis of immunohistochemical, and finding

potential small molecules were also identified in this

study.

Tu et al. [31] used bioinformatics to investigate lung

adenocarcinoma prognostic biomarkers. There are

various datasets such as GSE31210, GSE32665,
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GSE32863, GSE43458, and GSE72094 datasets for

lung adenocarcinoma that were used in that study.

|log2FC| ≥ 1.5 and P < 0.05 were the cutoff criteria to

retrieve the DEGs from these datasets. Enrichment

analysis, finding and verifying the prognostic gene sig-

nature, interactive analysis of gene expression, analysis

of the prognostic model’s independence, and nomo-

gram construction were all conducted in an article

[32]. The use of bioinformatics to identify important

biomarkers in patients with lung adenocarcinoma. The

GSE10072 dataset from the GEO database was used

in that article. The adjusted P < 0.05 and |log2FC| ≥ 1

were the cutoff criteria to retrieve DEGs. All of these

steps, such as the analysis of KEGG pathways and

gene ontologies, the top five upregulated and top five

downregulated comparison, The top five downregu-

lated and top five upregulated stages of overall sur-

vival (OS), analysis of the PPI network and modules

were done here [33]. Microarray data analysis using

bioinformatics to find potential lung adenocarcinoma

biomarkers. The GEO database was used to download

the datasets (GSE118370, GSE32863, GSE85841, and

GSE43458) for lung adenocarcinoma. DEGs were

defined with |log2FoldChange| ≥ 1 and FDR < 0.05.

Analysis of GO and KEGG enrichment, analyzing

modules and building a ppi network, and analyses of

hub genes were examined here [34]. Using bioinformat-

ics analysis, elevated mRNA levels of the genes

AURKA, CDC20, and TPX2 are linked to a poor

prognosis for lung adenocarcinoma caused

by smoking. GSE31210, GSE32863, GSE40791,

GSE43458, and GSE75037 datasets from the GEO

database were analyzed. Using the cutoff criteria of

P < 0.05 and absolute fold change > 1.5, the DEGs

were retrieved. The functional enrichment analysis was

done for 58 DEGs. After that, the validation of data

and statistical analysis steps were performed in this

research work.

Microarray data exploration is among the most

well-known techniques used for extensive investiga-

tions of gene expression, and high-throughput technol-

ogies are becoming more and more important in the

field of biomedical research [35]. Researchers in genet-

ics can analyze gene expression simultaneously with

the help of microarray studies [36]. This research

attempts to discover the relationship between the

selected two diseases. GSE212398 for hypopharyngeal

cancer and GSE198672 for EGFR-mutated lung ade-

nocarcinoma datasets were used for the investigation.

The NCBI’s GEO database served as the source for

both dataset selections. Shared DEGs are collected

from those two datasets. Figure 1 presents the pro-

posed methodology’s flow diagram.

This work aimed to identify targeted therapeutic

molecules for these two diseases. Targeted therapy has

very often a remarkable effect against cancer. Drug

compounds can serve multiple purposes in cancer

treatment, including reducing the size of tumors before

surgery, removing any remaining cancer cells after sur-

gery, or, as a last resort, when other treatments are

ineffective or cancer recurs.

Our contributions are summarized as follows:

� To propose a bioinformatics framework for integra-

tively analyzing expression profiles of lung adenocar-

cinoma and hypopharyngeal cancer samples to find

commonly found biomarkers.

� To conduct detailed downstream analyses based on

commonly found biomarkers.

� Finally, propose some therapeutic agents for those

biomarkers via drug-target analyses.

Materials and methods

In this section we present the methodology of our experi-

ments. We introduced a process of designing gene superin-

tendent interaction networks, including PPI networks,

interactions between TFs and genes, Network regulating

gene-miRNA interactions, network of the gene–diseases for
hypopharyngeal cancer EGFR-mutated lung adenocarci-

noma, and suggested common drug compounds for these

two associated diseases.

The steps in the proposed methodology are described

below.

Dataset selection

The NCBI (National Center for Biotechnology Information)

is an online platform from which we can collect many forms

of biological data in a variety of formats; these data are also

accessible in a variety of computer-readable formats. Data-

sets used in this research were gathered from the NCBI plat-

form’s GEO (Gene Expression Omnibus) database. The

GEO database for high-throughput gene expression analysis

can be accessed through the National Center for Biotechnol-

ogy Information platform [37]. RELA is dependent on

CD271 expression and stem-like features in hypopharyngeal

cancer, according to the dataset (GSE212398). The

dataset (GSE198672) contains EGFR-mutated lung adeno-

carcinomas that develop from preexisting tumor cells and

persist in a specialized stromal milieu as drug-tolerant per-

sisters after erlotinib treatment. The RNA sequence from

GSE198672 and GSE212398 was extracted using the

GPL10558 (Illumina [San Diego, CA, USA] HumanHT-12

V4.0 expression bead chip) and GPL20844 (Agilent-072363

[Santa Clara, CA, USA] SurePrint G3 Human GE v3 8x60K

Microarray 039494 [Feature Number Version]) platforms,
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respectively. The GSE212398 dataset is a subseries of the

GSE212399 dataset. For our investigation, we chose the

GSE212398 dataset because this dataset contains eight sam-

ples, including four samples for control and four samples for

KO. The GSE198672 dataset also has eight samples.

Differential expression analysis

Finding DEGs from these microarray datasets is the initial

step for this particular research. The GEOquery [38] R

package was used for retrieving gene expression datasets

for both diseases from the NCBI GEO [39] database. Next,

the limma [40] R package with empirical Bayes statistics

was used for differential expression (DE) analysis. The DE

output was formatted as a comma-separated values (CSV)

file containing information, including Gene Symbol, logFC,

P.value, and adjusted P.Val for the corresponding disease

dataset and collected. Both datasets FDRs were controlled

using the Benjamini–Hochberg [41] method. An adjusted P

< 0.05 and log2-fold change (absolute) > 1 are the cutoff

criteria for obtaining DEGs for both datasets. Using the

Venny tool [42], the shared DEGs between these two dis-

eases were visualized.

Enrichment analysis of shared DEGs

Enrichment of gene sets is the study of gene sets with con-

nected chromosomal locations, molecular activities, and

biological functions [43]. Gene Ontology (GO), which is

divided into the three categories of biological process,

molecular function, and cellular component, is used for

gene product annotation [44]. Understanding the molecular

activity, cellular function, and the location in a cell where

the genes perform their functions serves as the main foun-

dation for choosing GO keywords [24]. The Kyoto Ency-

clopedia of Genes and Genomes (KEGG) pathway, which

Fig. 1. Diagram representing the proposed methodology of the current research. For hypopharyngeal cancer and EGFR-mutated lung

adenocarcinoma, two datasets are used. Each dataset has eight samples. Using the R programming language, the DEGs (differentially

expressed genes) from those two datasets are retrieved. The VENNY tool is used to find out the common genes between these two

diseases. With the aid of these widespread DEGs, GO terms, pathways, PPI networks, TF-miRNA, and hub genes are identified. Functional

association, TF-gene, gene-miRNA, gene–disease, and some therapeutic compounds are anticipated based on the hub genes of individuals

with hypopharyngeal cancer and EGFR-mutated lung adenocarcinoma who have these two diseases concurrently.
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has a significant advantage over gene annotation, is fre-

quently used to study metabolic pathways [45]. For exten-

sive route analysis, databases from Reactome [46],

BioCarta [47], and WikiPathways [48] were used in addition

to the KEGG pathway.

TF-miRNA coregulatory network

To determine which transcription factors (TFs) bind with

shared DEGs in the regulatory regions, target gene rela-

tionships between TFs and TFs were examined [49]. MiR-

NAs that attempt to bind on a gene transcript to

negatively affect protein expression have been identified

using miRNAs target gene interactions [50]. The RegNet-

work repository [51] provided interactions for TF-miRNA

coregulatory interactions, which make it easier to identify

regulatory TFs and miRNAs that regulate DEGs of inter-

est during the transcriptional and post-transcriptional

phases [24]. Utilizing the NetworkAnalyst platform, we

constructed the TF-miRNA coregulatory network [52].

Researchers can browse complex datasets with the help of

NetworkAnalyst to find biological traits and functionalities

that can be used to generate useful biological hypothe-

ses [53]. The minimum network option was selected among

the different available formats to construct the TF-miRNA

coregulatory network.

PPI network

PPI activity is thought to be the main area of interest in

cellular biology research and is necessary for system biol-

ogy [54]. With the aid of cutting-edge research on PPI net-

works, the number of complex biological processes is

identified [55,56]. Proteins operate inside of cells through

interactions with other proteins, and information produced

by a PPI network aids in our understanding of how pro-

teins function [57]. Given to the STRING [58] database

(https://string-db.org/), shared DEGs of hypopharyngeal

cancer and EGFR-mutated lung adenocarcinoma are used

to create a PPI network and discover the genes that are

directly associated among the common genes. Some basic

settings are set on the STRING to get the desired result,

such as setting the network type as a full STRING net-

work, selecting the meaning of network edges by evidence,

also selecting active interaction sources by text mining,

experiments, databases, coexpression, neighborhood, gene

fusion, and co-occurrence. Interactive SVG (network is a

scalable vector graphic [SVG]; interactive) is selected for

network display mode in advanced settings. The informa-

tion provided by STRING is based on expected and experi-

mental interactions, and the interactions generated by the

web tool are characterized by 3D structures, supplementary

data, and evidence scores [59]. After constructing this PPI

network from STRING, this STRING PPI network was

further reconstructed in CYTOSCAPE to identify only the

interconnected genes and remove the disconnected genes

among those 32 shared genes. With the help of the

web-based NETWORKANALYST [52] software (https://www.

networkanalyst.ca/), identified directly interconnected genes

(from CYTOSCAPE PPIs network) were entered into InnateDB

[60] to design additional PPIs for interconnected genes.

Here, auto layout was selected in the layout option to build

this network.

Retrieving hub genes

Hub nodes are referred to be the highly connected nodes in

a large-scale PPI network [61]. The cytoHubba plugin for

the CYTOSCAPE program is used to locate hub nodes. The

user-friendly cytoHubba interface makes it the most popu-

lar hub identification plugin for CYTOSCAPE, and it comes

with 11 topological analysis methods [62]. Among the 11

topological methods on CytoHubba, the degree method

and the maximum clique centrality (MCC) were chosen to

identify the hub genes. In the degree topology method, the

degree is counted according to the number of interactions

among the genes. Higher interacted genes from the given

input genes are easily identified. The gene has the highest

number of degree scores ranking as the top among all

genes. The most important candidate genes among the

shared DEGs, which may be crucial in physiological regu-

latory functions, were found using the maximal clique cen-

trality (MCC), which demonstrated better accuracy in

predicting critical proteins in the PPI network.

The MCC technique was found to be the most efficient

way to locate hub nodes in a PPI network [63]. Also, the

authors of the article [64] mentioned that the most efficient

technique for identifying hub nodes was thought to be the

MCC algorithm. So, these two methods (the degree topol-

ogy method, one of the most popular topological methods

[65] and the MCC, the most efficient method among the

available 11 methods [62]) that were chosen to identify hub

genes out of the 11 available.

Functional association network

A bioinformatics program called GeneMANIA displays

functional association information, genetic relationships,

pathways, and coexpression for a given set of input data [66].

Gene sets’ functions can be predicted with the aid of Gene-

MANia [67]. The percentage of coexpression, physical inter-

actions, predicted, pathway, colocalization, shared protein

domains, and genetic interactions for the given input genes

are easily identified through the functional association net-

work. Physical interactions between two or more proteins

can produce binary interactions and complex proteins [68].

Genes are associated in gene coexpression networks, which

are transcription factor-transcription factor association net-

works that are typically presented as undirected graphs [69].

Unlike most coexpression networks, which are undirected
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graphs, this network showed a close relationship between

two genes [70]. In studies on protein–protein interactions,

two genes are connected if they are found to interact. These

ligand-based protein networks, which foresee the ability of

nearby proteins to bind connected substances indirectly,

may be used to enhance genetically orientated gene net-

works, which foretell the significance of a procedure or a dis-

ease [71]. Using a data analysis technique called gene

coexpression analysis, it is possible to find groupings of

genes that have comparable expression patterns under vari-

ous conditions [72]. The link between the genes’ functions is

referred to as genetic interaction [73]. The top 10 hub genes

were used to demonstrate a functional network from Gene-

Mania [74].

TF-gene interactions

By analyzing the TF-gene interaction using the discovered

10 hub genes, one may determine the impact of TF on

functional pathways and gene expression levels [75]. Users

can do a meta-analysis and analyze gene expression for

numerous species with the use of NETWORKANALYST [52].

The control of gene transcription as well as the establish-

ment of cellular identity and activity are assumed to

depend on transcriptional factors (TFs), the TF (transfer-

rin) gene-producing proteins [76]. The TF-gene interaction

investigates how TF affects functional pathways and levels

of gene expression [77]. Finding the important TF-gene

interactions is crucial for comprehending the roles of pleio-

tropic global regulators [78]. Through direct or indirect

interactions with other TFs, specific TFs help regulate the

expression of a variety of target genes [76]. To control life

activities, several transcription factors interact [79]. The 10

hub genes are utilized to evaluate the impact of TF on the

functional pathways and expression levels of the genes

through TF-gene interaction analysis. To find TF-gene

interactions with well-known genes, researchers use the NET-

WORKANALYST platform [52]. NETWORKANALYST includes

activities that are typical of network topologies and can be

used to analyze biological modules [80]. The NETWORKANA-

LYST platform’s ChEA [81] database inspired the network

built for the TF-gene interaction network [24].

Gene-miRNA interactions

By analyzing the Gene-miRNA interaction using the dis-

covered 10 hub genes, one may determine the impact of TF

on functional pathways and gene expression levels by base-

pairing with their target mRNAs, microRNAs, a class of

brief, noncoding RNA molecules with a length of 21–25
nucleotides, regulate the expression of genes, primarily by

silencing or downregulating the target genes [82]. Natural

single-stranded tiny RNA molecules known as microRNAs

control the expression of genes by attaching to certain

mRNAs and either starting the translation of the target

mRNA or starting the destruction of the target mRNA

[83]. Small noncoding RNAs known as microRNAs (miR-

NAs) were discovered to promote mRNA degradation or

prevent post-transcriptional translation [83]. Evidence is

mounting that miRNAs have a role in carcinogenesis and

cancer metastasis [84]. More and more varieties and uses

for small noncoding RNAs are being discovered. This

implies that there may be regulatory mechanisms that are

far more complex than those now employed in the analysis

and creation of gene regulatory networks. Finding new

therapeutic targets can benefit from the analysis of inter-

pathway regulatory factors. Since noncoding miRNAs are

important for activating pathways, their activity is crucial

in this regulatory environment. In the control of

transcriptome processes, microRNAs are crucial [85].

For many biological processes in both plants and animals,

post-transcriptional mediators of gene expression such as

microRNAs are crucial [86]. To fully comprehend the miR-

NA’s biological function, it is crucial to pinpoint the genes

that it regulates [73]. MiRNAs can be retrieved by using

the TarBase database. TarBase is a comprehensive reposi-

tory of animal microRNA targets supported by experimen-

tal data. The database is also functionally connected to

several other helpful resources, including GO and the

UCSC Genome Browser. TarBase provides a rich dataset

from which to evaluate characteristics of miRNA targeting

that will be helpful for the upcoming generation of target

prediction tools. TarBase reveals substantially more empiri-

cally supported targets than even recent evaluations indi-

cate [87]. The network of gene-miRNA interactions is

created using the web-based tool TarBase under Networ-

kAnalyst for those 10 hub genes (JUN, ERBB2, HLA-

DMB, HBEGF, HLA-B, HLA-DRA, DUSP5, ARHGDIB,

MUC4, CLEC2D).

Gene–disease interactions

Gene–disease interactions network focuses mostly on the

most recent understanding of human genetic illnesses,

including complex, Mendelian, and ecological diseases [88].

Gene–disease interactions network helps to identify those

diseases that can occur due to the input genes. This net-

work helps us to identify the risk factors that should be

cured by therapeutic molecules. Gene–disease interactions

network focuses primarily on the most recent knowledge of

complex and ecological diseases, as well as other human

genetic ailments [89]. DisGeNET is a sizable database of

gene–disease interactions that combines information from

several sources and covers a range of biological traits

linked to diseases [88]. The hub genes were linked to related

diseases and their chronic states by the network analysis of

gene–disease correlations. DisGeNET [88] is a large data-

base of gene–disease interactions that incorporates links

from several sources and covers a variety of biological fea-

tures associated with illnesses [49]. The investigation of
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gene–disease correlations using NetworkAnalyst identified

associated diseases and their chronic conditions with the

hub genes (JUN, ERBB2, HLA-DMB, HBEGF, HLA-B,

HLA-DRA, DUSP5, ARHGDIB, MUC4, CLEC2D) [53].

Therapeutic molecule suggestion for selected

diseases

Therapeutic molecule suggestion is the pointer step of this

research. DSigDB is used for drug suggestion. Users can

access the DSigDB database via the Enrichr platform

(https://amp.pharm.mssm.edu/Enrichr/) [24]. Enrichr is

mostly used as an enrichment analysis tool, which offers

substantial graphical data on the combined functions of the

input genes [90]. There are 19,531 genes, 22,527 gene sets,

and 17,389 unique chemicals in DSigDB [91]. A new gene

set resource called Drug Signatures Database (DSigDB)

connects medicines and compounds with their target

genes. To forecast drugs, DSigDB largely employs gene

expression-based datasets, and each group of genes is seen

as being targeted when taking a molecule into account [91].

Results

Differential expression analysis identifies

common DEGs between hypopharyngeal cancer

and EGFR-mutated lung adenocarcinoma

We found 605 identical DEGs for hypopharyngeal

cancer (GSE212398) and 1062 identical DEGs for

EGFR-mutated lung adenocarcinoma (GSE198672) by

using the R programming language. Among those

identical DEGS, 32 common genes were identified

between hypopharyngeal cancer and EGFR-mutated

lung adenocarcinoma through the Venny tool. The

Venn diagram of shared DEGs between the two dis-

eases is shown in Fig. 2.

Enrichment of functional pathways and gene

ontology terms

The analysis of gene set enrichment was performed

using the online tool Enrichr [24]. Many databases,

including the GO Consortium [92], Reactome [46],

KEGG [93], WikiPathways [94], and BioCarta [47]

were used by Taz et al. [25] to find GO keywords and

cell-informing pathways. The GO database was used

to find the biological process, molecular function, and

cellular components. Analysis of biological process,

molecular function, and cellular component data

revealed notable involvement in peptide antigen assem-

bly with the MHC protein complex, ErbB-3 class

receptor binding, and MHC protein complex in shared

DEGs, respectively. MAPK family signaling cascades,

allograft rejection, allograft rejection, and the D4-GDI

signaling pathway were highly enriched among all

identified when Reactome, KEGG, WikiPathways, and

BioCarta databases were used, respectively. Table 1

shows the top five biological terms, cellular terms, and

molecular terms and Table 2 shows the top five path-

ways from Reactome, KEGG, WikiPathways, and

BioCarta with correspondent P-value and genes. Top

10 GO terms concomitant to biological process, molec-

ular function, and cellular component pinpointing

entrenched on the combined score is in Fig. 3, and

also based on a combined score, the top 10 pathways

from Reactome, KEGG, WikiPathways, and BioCarta

are mentioned in Fig. 4. To get the combination score,

multiply the z score, which represents the deviation

from the predicted rank, by the log of the P-value

from Fisher’s exact test. The ‘combined scores’

for Figs. 3 and 4 are automatically calculated in the

Enrichr platform. In the biological process, peptide

antigen assembly with MHC protein complex

(GO:0002501) indicates ‘Peptide attachment to an

MHC protein complex’s antigen-binding groove [95].’

The interferon-gamma-mediated signaling pathway

(GO:0060333) means the cascade of molecular signals

that begins when interferon-gamma binds to its recep-

tor on a target cell’s surface and ends with the control

of a cell’s transcription, among other downstream cel-

lular processes. The only type II interferon so far dis-

covered is interferon-gamma. The antigen processing

and presentation of exogenous peptide antigen via

MHC class II (GO:0019886) is the process by which

an MHC class II protein complex collaborates with an

antigen-presenting cell to express a peptide antigen of

external origin on the cell surface. Typically, but not

always, a complete protein is used to digest the peptide

Fig. 2. Venn diagram of shared DEGs. Thirty-two common genes

were found between HC and EGFR-mutated LC. Common DEGs

were 2% among 1667 DEGs.
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antigen. The negative regulation of reproductive pro-

cesses (GO:2000242) indicates any procedure that

slows down, prevents, or lessens the number of times,

how often, or how much the reproductive process

occurs. The antigen processing and presentation of

peptide antigen via MHC class II (GO:0002495) is the

process by which an MHC class II protein complex

collaborates with an antigen-presenting cell to express

Table 1. Biological terms, cellular terms, and molecular terms with correspondent P-values and genes.

Type Term P-value Genes

GO Biological

Process

Peptide antigen assembly with MHC protein complex (GO:0002501) 3.71E-05 HLA-DMB;HLA-DRA

Interferon-gamma-mediated signaling pathway (GO:0060333) 1.74E-04 HLA-DRB4;HLA-B;HLA-DRA

Antigen processing and presentation of exogenous peptide antigen

via MHC class II (GO:0019886)

5.10E-04 HLA-DMB; HLA-DRB4; HLA-DRA

Negative regulation of reproductive process (GO:2000242) 5.11E-04 ARHGDIB;NKX3-1

Antigen processing and presentation of peptide antigen via MHC

class II (GO:0002495)

5.41E-04 HLA-DMB; HLA-DRB4; HLA-DRA

GO Cellular

Component

MHC protein complex (GO:0042611) 4.16E-06 HLA-DMB;HLA-B;HLA-DRA

Endosome membrane (GO:0010008) 1.12E-05 HLA-DMB;HLA-DRB4;ERBB2;HLA-B;

HLA-DRA;RHOD

Luminal side of endoplasmic reticulum membrane (GO:0098553) 1.19E-05 HLA-DRB4;HLA-B;HLA-DRA

Integral component of luminal side of endoplasmic reticulum

membrane (GO:0071556)

1.19E-05 HLA-DRB4;HLA-B;HLA-DRA

Cytoplasmic vesicle membrane (GO:0030659) 2.70E-05 HLA-DRB4;ERBB2;HLA-B;HLA-DRA;

RHOD;HBEGF

GO Molecular

Function

ErbB-3 class receptor binding (GO:0043125) 0.007975 ERBB2

MHC class II protein complex binding (GO:0023026) 3.32E-04 HLA-DMB;HLA-DRA

Phosphatidic acid transfer activity (GO:1990050) 0.011148 PITPNC1

CCR6 chemokine receptor binding (GO:0031731) 0.011148 DEFB1

Oxidoreductase activity, acting on NAD(P)H, heme protein as

acceptor (GO:0016653)

0.012731 CYB5R2

Table 2. Five pathways from Reactome, KEGG, WikiPathways, and BioCarta and with correspondent P-values and genes.

Database Pathway P-value Genes

Reactome MAPK family signaling cascades R-HSA-5683057 1.39E-04 DUSP5;JUN;ERBB2;PEA15;HBEGF

ERBB2 activates PTK6 Signaling R-HSA-8847993 1.91E-04 ERBB2;HBEGF

GRB2 events in ERBB2 signaling R-HSA-1963640 2.57E-04 ERBB2;HBEGF

ERBB2 regulates cell motility R-HSA-6785631 2.57E-04 ERBB2;HBEGF

PI3K events in ERBB2 Signaling R-HSA-1963642 2.93E-04 ERBB2;HBEGF

KEGG Allograft rejection 3.83E-07 HLA-DMB;HLA-DRB4;HLA-B;HLA-DRA

Staphylococcus aureus infection 3.96E-07 HLA-DMB;HLA-DRB4;KRT16;

HLA-DRA;DEFB1

Graft-versus-host disease 5.79E-07 HLA-DMB;HLA-DRB4;HLA-B;HLA-DRA

Type I diabetes mellitus 6.37E-07 HLA-DRB4;HLA-B;HLA-DRA

Human T-cell leukemia virus 1 infection 1.15E-06 JUN;EGR2;HLA-DMB;HLA-DRB4;

HLA-B;HLA-DRA

WikiPathway Allograft rejection WP2328 3.85E-04 HLA-DMB;HLA-B;HLA-DRA

ErbB signaling pathway WP673 4.11E-04 JUN;ERBB2;HBEGF

Extracellular vesicle-mediated signaling in recipient cells WP2870 0.001049058 TSPAN8;ERBB2

Ebola virus pathway on host WP4217 0.001134032 HLA-DMB;HLA-B;HLA-DRA

Bladder cancer WP2828 0.001862402 ERBB2;HBEGF

BioCarta D4-GDI signaling pathway Homo sapiens h d4gdiPathway 3.71E-05 JUN;ARHGDIB

T-cell receptor signaling pathway Homo sapiens h tcrPathway 0.003493127 JUN;HLA-DRA

TSP-1 induced apoptosis in microvascular endothelial cell Homo

sapiens h tsp1Pathway

0.011147938 JUN

Pertussis toxin-insensitive CCR5 signaling in macrophage Homo

sapiens h Ccr5Pathway

0.014310901 JUN

antigen processing and presentation Homo sapiens h mhcPathway 0.01903698 HLA-DRA
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a peptide antigen on the cell surface. Usually, but not

always, the protein in its whole serves as the source of

the peptide antigen. In cellular components, the MHC

protein complex (GO:0042611) is an MHC class II

beta chain or an invariant beta2-microglobulin chain,

along with or without a bound peptide, lipid, or

Fig. 3. Top 10 GO terms concomitant to biological process, molecular function, and cellular component pinpointing entrenched on the

combined score (the log of the P-value from Fisher’s exact test and multiplying that by the z-score of the deviation from the expected rank).
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Fig. 4. Top 10 pathways from (A) Reactome, (B) KEGG, (C) WikiPathways, and (D) BioCarta pinpointing entrenched on the combined score

(the log of the P-value from Fisher’s exact test and multiplying that by the z-score of the deviation from the expected rank).
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polysaccharide antigen, makes up a transmembrane pro-

tein complex. The endosome membrane (GO:0010008)

indicates a lipid bilayer that envelops an endosome. The

luminal side of the endoplasmic reticulum membrane

(GO:0098553) indicates the leaflet-shaped side of the

plasma membrane that is facing the lumen. The integral

component of the luminal side of the endoplasmic reticu-

lum membrane (GO:0071556) indicates a portion of the

endoplasmic reticulum membrane made up of gene prod-

ucts that can only pass through the membrane’s luminal

side. The cytoplasmic vesicle membrane (GO:0030659) is a

cytoplasmic vesicle’s protective lipid bilayer. In molecular

function, ErbB-3 class receptor binding (GO:0043125)

indicates ErbB-3/HER3 protein-tyrosine kinase receptor

binding. The MHC class II protein complex binding

(GO:0023026) is the main histocompatibility complex

of class II. The phosphatidic acid transfer activity

(GO:1990050) means phosphatidic acid is taken out of a

membrane or a monolayer lipid particle, transported

through the aqueous phase while being sheltered in a

hydrophobic pocket, and then brought to a membrane or

lipid particle that will accept it. Phosphatidic acid is a type

of glycophospholipid that typically has a phosphate group

attached to carbon-3, an unsaturated fatty acid attached

to carbon-2, and a saturated fatty acid attached to

carbon-1. The CCR6 chemokine receptor binding

(GO:0031731) is chemokine CCR6 receptor binding. The

oxidoreductase activity, acting on NAD(P)H, heme pro-

tein as acceptor (GO:0016653) indicates an oxidation–
reduction (redox) reaction that uses NADH or NADPH

as a hydrogen or electron donor to reduce a heme protein

is catalyzed.

TF-miRNA coregulatory network construction

To comprehend how TF and miRNA regulate with

shared DEGs, a TF-miRNA coregulatory network was

developed. Common DEGs (GRAMD3, SYNGR1,

CMTM7, HLA-DMB, HLA-DRB4, CLEC2D,

CCNB1IP1, HLA-DRA, DEFB1, ERBB2, MUC4,

LOC145837, RPS24, RHOD, HBEGF, ARHGDIB,

PITPNC1, PEA15, KRT16, GJB3, JUN, FHL2,

CYB5R2, HLA-B, EGR2, HERC6, DUSP5, HBA2,

CHST15, NKX3-1, LBH, TSPAN8) were utilized to cre-

ate the network of TF-miRNA coregulators. Thirty-two

common genes were given as the ‘Gene Input List’ in

NETWORKANALYST. Then ‘H.sapiens (human)’ and ‘Offi-

cial Gene Symbol’ were chosen for ‘Specify organism’

and ‘Set ID type’ attributes correspondingly. After

uploading this information, TF-miRNA coregulatory

interactions were selected from the gene regulatory

interaction. The literature-curated regulatory interac-

tion information was collected from the RegNetwork

repository. After selecting the minimum network from

the network tools option, the TF-miRNA coregulatory

network was constructed. Background as white and lay-

out as circular bi/tripartite were chosen to better visual-

ize the network. Also, opacity, thickness, color, label,

and size were customized from edge and node options.

Red color for TF, green-black highlighted for seeds, and

blue for miRNA were chosen from The Global Node

Styles. The network shown in Fig. 5 comes with 93

nodes, 223 edges, and 28 seeds.

PPI network

The network of protein–protein interactions was built

using the STRING. Interconnected genes and discon-

nected genes are easily differentiated from this in

Fig. 6. This network was further evoked to cytoscape

for better visualization. This PPI network, shown in

Fig. 7, contains only 17 connected genes. Another PPI

network was contrived by IMEx Interactome of Net-

workAnalyst using the corresponding connected genes

to understand the infection state by those correspond-

ing genes. This network is shown in Fig. 8, contains

972 nodes, 1110 edges, and 16 seeds. These 16 seeds

are those 17 interconnected genes except ‘CLEC2D.’

These 16 seeds have a higher degree of interaction with

the protein. As ‘CLEC2D’ had no significant interac-

tions in the network, so, the IMEx interactome auto-

matically removed ‘CLEC2D’ as the network seed.

Pinpointing hub genes

For this research, the top 10 hub genes were taken,

because these top 10 hub genes are considered to be

the most responsible genes among all. If these 10 hub

genes are cured by a therapeutic molecule, then all

other affected genes may have the possibility to

recover as well, as these hub genes have interaction

with other genes. Ten hub genes had been pinpointed

from the reconstructed PPI network, as shown in

Fig. 7 of Cytoscape using the degree topology and the

MCC method. Tables 3 and 4 show the top 10 hub

genes according to the degree topology method and

the MCC method, respectively. The JUN has the high-

est interaction among the retrieved 10 hub genes. The

same hub genes were retrieved using two different

methods, the degree topology method and the MCC

method. JUN and CLEC2D have the highest and low-

est scores, respectively, in both methods. Seeing that

from the TF-gene interactions network and the gene-

miRNA network, the hub genes with score 1 have con-

tributed to those networks. miRNAs are discovered to

promote mRNA degradation or prevent post-
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transcriptional translation, understanding the functions

of pleiotropic global regulators requires identifying the

significant TF-gene interactions. After that, two net-

works were drawn through the CYTOSCAPE. The grid

layout was chosen to extract Figs. 9 and 10.

Functional association network

The 10 hub genes were used in the GeneMania Func-

tional Network. Figure 11 helped us to predict how

certain gene sets will behave. Utilizing a massive col-

lection of functional association data, GeneMANIA

discovers additional genes that are connected to a set

of input genes. Protein and genetic relationships, path-

ways, coexpression, colocalization, and protein domain

similarity are all examples of association data. Gene-

MANIA can be used to discover new components of a

pathway or complex, discover extra genes that

may have escaped existing screens, or discover novel

genes that have a particular function, such as protein

Fig. 5. Visualization of TF-miRNA coregulatory network through NetworkAnalyst. Green-black highlighted nodes indicate seeds, red

diamond-shaped nodes for TF, and blue box-shaped nodes for miRNA.
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kinases. If the input gene list has five or more genes,

GeneMANIA uses the ‘assigned based on query gene’

technique to assign weights to enhance connectivity

between all of the given input genes. To maximize the

interaction between genes on a given list and minimize

the interaction with genes not on a given list, the

weights are automatically selected using linear regres-

sion. As our input gene list had more than five genes

(10 hub genes), this default method was done here.

This network has 30 nodes and displays functional

keywords such as shared protein domains, coexpres-

sion, physical interactions, predicted, pathways, and

genetic interactions [96] and also shows the percentage

of the functional keywords for our interested gene set.

In all, 36.76% coexpression, 31.14% physical interac-

tions, 15.88% predicted, 6.48% pathway, 4.72% colo-

calization, 4.51% shared protein domains and 0.50%

genetic interactions were found in the functional asso-

ciation network. A higher level of coexpression

(36.76%) between the transcripts associated with the

two selected diseases and a consistent 31.14% physical

interaction. This implies a more pronounced connec-

tion at the genetic and molecular levels between the

diseases. The acknowledgment of these strong associa-

tions is then used to support the idea that it is rela-

tively straightforward to customize or modify a generic

medication to effectively treat both distinct illnesses.

The thesis here is that a single medicine can target a

shared biological basis, shared by the two diseases

because of the significant coexpression and physical

interaction between the genes and proteins linked to

them. It might be easier to create a drug that treats

both illnesses at once because of their similar

foundation.

Fig. 6. Protein–protein interaction network through string.
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Association of the TF-gene

The TF-gene association network was fabricated to

understand the transcription factor produced by the

interested gene set. It was contrived using NetworkAna-

lyst. Hub genes (JUN, ERBB2, HLA-DMB, HBEGF,

HLA-B, HLA-DRA, DUSP5, ARHGDIB, MUC4,

CLEC2D) were used to build a TF-gene interaction net-

work. Ten hub genes were given as the ‘Gene Input List’

in NetworkAnalyst. Then ‘H.sapiens (human)’ and

‘Official Gene Symbol’ were chosen for ‘Specify organ-

ism’ and ‘Set ID type’ attributes correspondingly. By

uploading that information, TF-gene interactions were

selected from the gene regulatory interaction. From the

available three options (ENCODE, JASPAR, and

ChEA) ChEA was selected to draw this network. The

ChEA database is a transcription factor that targets a

database inferred from integrating literature curated

Chip-X data. After proceeding further, the network is

constructed via the ChEA database. Background as

white and layout as circular bi/tripartite were chosen to

better visualize the network. Also, opacity, thickness,

color, label, and size were customized from edge and

node options. Red color for TF-gene and green with the

black highlight for seeds were selected from the global

node styles for better visualization of this network.

There are 119 nodes, 226 edges, and 10 seeds in the TF-

gene network, as shown in Fig. 12. In our constructed

TF-gene interaction, JUN is regulated by 60 TFs, the 47

TFs that control DUSP5, 24 TFs for HBEGF, and 24

TFs for ERBB2, and HLA-DMB, HLA-B, HLA-DRA,

ARHGDIB, MUC4, CLEC2D are regulated by 13 TFs,

7 TFs,8 TFs,19 TFs,12 TFs, and 13 TFs respectively.

Gene-miRNA interactions

Using NetworkAnalyst, the same hub genes (JUN,

ERBB2, HLA-DMB, HBEGF, HLA-B, HLA-DRA,

DUSP5, ARHGDIB, MUC4, CLEC2D) were used as

input to display the gene-miRNA interaction network.

The network as shown in Fig. 13 comes with 271

nodes, 401 edges, and 10 seeds. The gene-miRNA

interaction network shows miRNAs originated from

those 10 hub genes. JUN is regulated by 118 miRNAs.

The 96 miRNAs that control DUSP5, 43 miRNAs,

and 47 miRNAs, respectively, control ERBB2 and

HLA-B.

Fig. 7. PPIs network through CYTOSCAPE

using the directly interconnected genes.

1180 FEBS Open Bio 14 (2024) 1166–1191 ª 2024 The Authors. FEBS Open Bio published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

Gene regulatory networks and therapeutic molecules A. Bhattacharjya et al.

 22115463, 2024, 7, D
ow

nloaded from
 https://febs.onlinelibrary.w

iley.com
/doi/10.1002/2211-5463.13807, W

iley O
nline L

ibrary on [16/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Interactions of gene–disease

DisGeNET database under NetworkAnalyst was used

to demonstrate the gene–disease association network.

Hub genes (JUN, ERBB2, HLA-DMB, HBEGF,

HLA-B, HLA-DRA, DUSP5, ARHGDIB, MUC4,

CLEC2D) were also used to construct a gene–disease
association network. DisGeNET database under Net-

workAnalyst was used here to build the gene–disease
correlations network. Ten hub genes were given as

‘Gene Input List’ in NETWORKANALYST. Then ‘H.sapiens

(human)’ and ‘Official Gene Symbol’ were chosen for

‘Specify organism’ and ‘Set ID type’ attributes

correspondingly. By uploading that information, gene–
disease associations were selected from diseases, drugs

& chemicals. A gene–disease association database has

information about gene–disease associations that have

been curated by the literature gathered from the Dis-

GeNET database that only applies to human data.

After proceeding further, the network is constructed

via the DisGeNET database. The network contains

three subnetworks. Each subnetwork contains the

genes with their associated disease. This network is

divided into three subnetworks because each subnet-

work has no common associated diseases and contains

Fig. 8. PPIs network obtained through IMeX intercome of InnateDB database contains 972 nodes, 1110 edges, and 16 seeds.
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its corresponding diseases individually. SubNetwork1

contains 117 nodes, 118 edges, and five seeds, and

Subnetwork2 contains 12 nodes, 11 edges, one seed,

and Subnetwork3 contains four nodes, three edges,

and one seed. The network as shown in Fig. 14 has

133 nodes, 132 edges, and seven seeds in total.

Common drug suggestion

Those 10 hub genes (JUN, ERBB2, HLA-DMB,

HBEGF, HLA-B, HLA-DRA, DUSP5, ARHGDIB,

MUC4, CLEC2D) by the degree topology method and

the MCC were used to recommend common drugs for

the selected two diseases. These 10 genes are the most

responsible genes of all. From the gene–disease associ-

ation network, it is clear that the 10 hub genes are also

responsible for some new diseases. That means some

new diseases will occur due to those affected genes.

Thus, these most affected genes must be cured by ther-

apeutic molecules. Ten hub genes were used to recom-

mend common drugs for the selected two diseases.

These 10 hub genes are considered to be the most

responsible among all genes. Thus, these 10 hub genes

must be cured by any molecules. When any molecule

is used to cure these hub genes, it also affects other

connected genes with those hub genes. Ten hub genes

were given as input in the Enrichr platform. From the

available options, the DiseasesDrugs option was cho-

sen. Our suggested drugs were retrieved from the

DSigDB database under the DiseaseDrugs option in

the Enrichr platform. Table 5 shows some predicated

drug compounds for hypopharyngeal cancer and

EGFR-mutated lung adenocarcinoma patients who

have these two diseases simultaneously. Here, eight

well-known therapeutic molecules were suggested from

the DSigDB database. We suggest these eight common

drugs based on the number of hub genes cured.

Discussion

A dangerous constituent of hypopharyngeal cancer is

lung adenocarcinoma with EGFR mutation, which are

reported to have some associations with each other.

Therefore, we hypothesized that this association is due

Table 3. The 10 hub genes, ordered by degree of importance.

Name Score

JUN 6

ERBB2 4

HLA-DMB 3

HBEGF 2

HLA-B 2

HLA-DRA 2

DUSP5 2

ARHGDIB 2

MUC4 1

CLEC2D 1

Table 4. The 10 hub genes, ordered by MCC (maximal clique

centrality) method.

Name Score

JUN 7

ERBB2 5

HLA-DMB 3

HBEGF 2

HLA-B 2

HLA-DRA 2

DUSP5 2

ARHGDIB 2

MUC4 1

CLEC2D 1

Fig. 9. The top 10 hub genes network according to the degree

topology method through CYTOSCAPE.

Fig. 10. The top 10 hub genes network accordance with the

maximal clique centrality (MCC) method through CYTOSCAPE.
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to some common genes/proteins as drivers. To do the

investigation, microarray datasets were collected

accordingly, followed by differential expression analysis

with the Benjamini–Hochberg FDR approach. Com-

mon DEGs from the two datasets were then gathered

once the differentially expressed genes had been found

from the dataset. The threshold for FDR was chosen as

<0.05, as it is quite common in statistical hypothesis test-

ing the relevant literature. While we use a stringent

FDR < 0.05 cutoff to retrieve DEGs, a substantially

large number of common genes were retrieved. If we

apply stringent FDR (i.e., <0.10), the necessary (false-

positive) genes have been also used to deduct. If

important genes are mistakenly excluded from the anal-

ysis, it can lead to inaccurate identification of differen-

tially expressed genes between conditions. These

deducted genes can also affect the entire downstream

analysis pipeline with false-positive results. This may

result in erroneous drug prediction, which was very cru-

cial for our aim, as we wanted to find out the targeted

molecules for two different diseases. So, we have to find

out the most effective responsible genes rather than

retrieving a large number of common genes. Thirty-two

genes (GRAMD3, SYNGR1, CMTM7, HLA-DMB,

HLA-DRB4, CLEC2D, CCNB1IP1, HLA-DRA,

DEFB1, ERBB2, MUC4, LOC145837, RPS24, RHOD,

Fig. 11. Functional association network through GENEMANIA. 36.76% coexpression, 31.14% physical interactions, 15.88% predicted, 6.48%

pathway, 4.72% colocalization, 4.51% shared protein domains and 0.50% genetic interactions are found here.
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HBEGF, ARHGDIB, PITPNC1, PEA15, KRT16,

GJB3, JUN, FHL2, CYB5R2, HLA-B, EGR2, HERC6,

DUSP5, HBA2, CHST15, NKX3-1, LBH, TSPAN8)

are common in hypopharyngeal cancer and EGFR-

mutated lung adenocarcinoma. Further analysis was

done by using these common DEGs.

To discover GO terms and pathways, an analysis of

gene set enrichment was performed. The PPI network

is the most notable part for detecting interconnected

genes, disconnected genes, and hub genes identifica-

tion. HLA-B, JUN, ERBB2, RPS24, FHL2, HLA-

DRA, KRT16, HBA2, EGR2, ARHGDIB, HLA-

DMB, CLEC2D, MUC4, RHOD, HBEGF, GJB3,

DUSP5 were pinpointed as directly interconnected

genes and JUN, ERBB2, HLA-DMB, HBEGF, HLA-

B, HLA-DRA, DUSP5, ARHGDIB, MUC4,

CLEC2D were spotted as hub genes according to the

degree method and the MCC.

MicroRNAs are gene-silencing factors. Common

genes were used for retrieving their corresponding

miRNAs and TFs. Thirty-two miRNAs and 33 TFs

were produced for the targeted gene set. The network

has 93 nodes, 223 edges, and 28 seeds. The miRNA

has-miR-27a has five, which is the highest interaction

Fig. 12. Visualization of TF-gene association network through NETWORKANALYST. Red diamond-shaped nodes indicate TF-gene and green-black

highlighted circle-shaped nodes for seeds.
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among all the miRNAs and the MAX TF gene has

eight, which is also the highest interaction among all

TFs in TF-miRNA coregulatory network.

A TF-gene network was contrived by 10 hub genes

of hypopharyngeal cancer and EGFR-mutated lung

adenocarcinoma. TFs are the promoter genes that are

responsible for transcription. The control of gene

expression is carried out by particular genes that inter-

act with TF genes, which act as reactors for this con-

trol. JUN has an elevated interconnection among all

the networks in our study. Another gene-miRNA net-

work was analyzed for those hub genes that were iden-

tified earlier in the PPI network. miRNAs that can

regulate gene expression by slowing down mRNA syn-

thesis [97]. To know the miRNAs produced for those

10 hub genes, a gene-miRNA network was fabricated.

In our investigation, 261 miRNAs are produced for

those 10 hub genes. The gene–disease association net-

work was constructed for the same hub genes. To

know the risk genes among them, which can be a

cause for other associated diseases. If these risk genes

can’t be cured by any molecules, then these associated

diseases can occur in the near future.

Note, in this study we collected the protein–protein
interaction information from the STRING database.

In this database, PPI information is defined based on

various types of gene/protein association evidence,

e.g., known interactions (curated databases, experi-

mentally verified interactions), predicted interactions

(gene neighborhood, gene fusion, gene co-occurrences),

and other types of associations (text-mining, coexpres-

sion, protein homology). Therefore, we argue that the

Fig. 13. Visualization of gene-miRNA network through NETWORKANALYST. Green-black highlighted nodes indicate 17 seeds and blue box-shaped

nodes for miRNA, edges connect the genes and miRNAs.
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PPI information used in our study is substantially

comprehensive, i.e., covering not only protein–protein
association but also functional association (indirectly),

and TF-gene interaction. However, for gene-miRNA

and gene–disease interaction, the STRING database

is not evidence of such types of evidence. However,

for our future work we aim to augment those

types of gene/protein associations (gene-miRNA and

Fig. 14. Gene–disease network is divided into three subnetworks. Subnetwork1 represents genes (HLA-B, DUSP5, ARHGDIB, JUN,

HBEGF) and their corresponding associated diseases, Subnetwork2 acts for HLA-DRA genes with its associated diseases and Subnetwork3

focuses on the MUC4 gene with its correspondent genes. Here, green-black highlighted nodes for seeds and red box-shaped nodes for

associated diseases.

Table 5. EGFR-mutated lung adenocarcinoma patients and those with hypopharyngeal cancer: predicated drugs.

Drug’s name Adjusted P-value Genes

Retinoic acid CTD 00006918 0.007990864 DUSP5;JUN;ERBB2; ARHGDIB;HLA-B;HLA-DRA;MUC4;HBEGF

Arsenenous acid CTD 00000922 0.010633891 JUN;ERBB2;ARHGDIB; HLA-B;HBEGF

TERT-BUTYL HYDROPEROXIDE CTD 00007349 0.012283126 DUSP5;JUN;ERBB2; HLA-B;HBEGF

Carbamazepine CTD 00005574 0.007027547 JUN;ERBB2;HLA-B;HBEGF

Etoposide CTD 00005948 0.007027547 JUN;ERBB2;ARHGDIB; HBEGF

Tonzonium bromide PC3 UP 0.007027547 DUSP5;JUN;HBEGF

NVP-TAE684 CTD 00004657 0.007027547 ERBB2;HBEGF

Prostaglandin J2 CTD 00001744 0.007027547 JUN;ARHGDIB
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gene–disease) along with STRING PPI, to form an

integrated network, upon which we will conduct fur-

ther downstream analysis.

Finally, drug molecules based on the 10 hub genes

were recommended. These 10 genes are considered the

most affected and responsible genes among all. If we

cure these genes with any therapeutic molecules, other

genes that are connected to these 10 genes will be also

cured by the same therapeutic molecules. If these 10

genes are not cured by molecules, other associated dis-

eases can occur due to these genes. From our sug-

gested eight drugs, the retinoic acid CTD 00006918

can affect eight hub genes among the 10 hub genes.

Patients having both diseases (hypopharyngeal cancer

and EGFR-mutated lung adenocarcinoma) concur-

rently may have a higher possibility of cure by using

our suggested drug compounds. Our suggested drugs

may have the potential for the treatment of these two

diseases, but this requires experimental validation and

further testing. If some related illnesses are found with

hypopharyngeal cancer and EGFR-mutated lung ade-

nocarcinoma, then future research in this area aims to

create a single generic drug to treat some related ill-

nesses, offering a fresh perspective.

Conclusion

This study mentioned that the selected two diseases may

have the possibility to metastasize to one another. Ana-

lyzing any disease means analyzing the disease genes.

The constructed PPI networks displayed all the directly

associated genes, general genes, and a channel that

ensures the route to a general remedy map. The Cyto-

hubba module was used to identify 10 hub genes using

the degree topology approach and the MCC. Only those

genes that are interconnected with each other and have

a higher interaction among all were taken for this

research purpose. If we can recover the directly affected,

higher interconnected genes of a disease, we can get rid

of those selected diseases (hypopharyngeal cancer and

EGFR-mutated lung adenocarcinoma). The next step is

to employ GeneMania to develop a new network for the

32 shared genes to learn more about their physical inter-

actions, shared protein domains, shared pathways, and

genetic interactions. TF-gene, gene-miRNA, and gene–
disease association networks were designed by using the

same 10 hub genes. After analyzing those networks,

some well-known therapeutic molecules were suggested

for hypopharyngeal cancer and EGFR-mutated lung

adenocarcinoma by using the 10 hub genes as input. A

common drug for selected two associated diseases aims

to reduce the amount of drug one should use and also

reduce cost. Future research in this area aims to create a

single generic drug to treat several related illnesses,

offering a fresh perspective.
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