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ABSTRACT

This paper assesses the performance of regularized generalized least squares (RGLS) and
reweighted least squares (RLS) methodologies in a confirmatory factor analysis model. Normal
theory maximum likelihood (ML) and GLS statistics are based on large sample statistical theory.
However, ML and GLS goodness-of-fit tests often make incorrect decisions on the true model,
when sample size is small. The novel methods RGLS and RLS aim to correct the over-rejection
by ML and under-rejection by GLS. Both methods outperform ML and GLS when samples are
small, yet no studies have compared their relative performance. A Monte Carlo simulation study
was carried out to examine the statistical performance of these two methods. We find that RLS
and RGLS have equivalent performance when N>70; whereas when N<70, RLS outperforms
RGLS. Both methods clearly outperform ML and GLS with N<400. Nonetheless, adopting mean
and variance adjusted test for non-normal data, RGLS slightly outperforms RLS. Power analyses
found that RLS generally showed small loss in power compared to ML and performed better than
RGLS.
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Based on the assumption of multivariate normality, maximum likelihood (ML) and generalized
least squares (GLS) methods provide the oldest and most widely used estimators and tests in
structural equation modeling (SEM) (Bollen 1989, Browne 1974, Hu et al. 1992, Joreskog 19609,
Lee 2007). The behavior of their statistics, especially the chi-square goodness-of-fit tests, is based
on asymptotic properties that require sample size to be very large. Simulation research has found
that small sample size N is the main contributor to failure of asymptotic theory, but large number
of variables p and/or parameters g, small number of indicator loadings per factor, and small ratio
of N to degrees of freedom df also contribute to spurious goodness-of-fit model rejections
(Arruda and Bentler 2017, Boomsma 1982, Moshagen 2012, Shi et al. 2018, Shi et al. 2019, Yuan
and Bentler 1999).

Two methods have recently been developed to correct the false model decision issue. Arruda
and Bentler (2017) proposed a regularized GLS (RGLS) that “regularizes” an ill-conditioned
sample covariance matrix. Simulations show that RGLS outperforms both ML and GLS across
varied sample sizes. Hayakawa (2019) rediscovered a methodology based on both ML and GLS,
Reweighted Least Squares (RLS), and showed that it similarly outperforms ML and GLS.
However, the comparative performance of RGLS and RLS at various sample sizes is unknown.
That is the focus of this paper. ML and GLS are included to provide a historic baseline.

This article proceeds as follows. First, we summarize ML and GLS estimation and tests. Next,
we give technical definitions of RGLS and RLS. Then, we introduce the data generation and Monte
Carlo simulation methodology to be used in normal and non-normal data. The fourth section
discusses simulation results. The fifth section is power analysis of different methods and their

robust variants, and a discussion follows.



Classical SEM Test Statistics: ML and GLS

Let x € {xy,....,xy} be a random sample with all x; identically and independently distributed
according to a multivariate normal distribution N [0, £]. A confirmatory factor model x = A§ +
€ is used to generate measured variable x under various conditions ona m X 1 vector of common
factors & and ap x 1 vector of unique measurement errors. In SEM, we further assume that X is a
matrix function of a vector of unknown population parameters @ (g X 1), with X = X(0). The
covariance structure of interest here is the confirmatory factor model £ = A®A" + W, where A is
a p X m matrix of factor loadings, ® = cov(§) and ¥ = cov (&). Assuming an identified model,
the elements of @ are the unknown free parameters in these matrices.

The sample covariance matrix, as usual, isS = YN, (x; — x)(x; — x)'/(N — 1), where the
sample meanis ¥ = YN ,(xy,....,%,)/N. The maximum likelihood estimator 8, is obtained at

the minimum of

Fi1,(8) = log|Z (8)] — log|S| + tr(S(6)™) — p, 1)

yielding the ML test statistic Ty;, = (N — 1)F,;,(0) (Joreskog, 1969). If the structural model is
correct and N is sufficiently large, T,,, can be referred to a )(j*_q distribution, where p* is the

number of nonduplicated elements of S. In small samples T,,; over-rejects the true model.

The normal-distribution GLS function (Browne, 1974) to be minimized is

Fgrs = 271 tr[{(S — Z2(0))V}?] 2)



where V is a consistent estimator of £~1. In practice, V. = §~1 . The GLS estimator 8 is ob-
tained at the minimum of (2), with associated GLS test statistic T;, = (N — 1)F;.5(8) similarly

referred to a)(g*_q distribution. T, s tends to under-reject the true model, especially with small N.

Improved Test Statistics: RGLS and RLS

Regularized GLS
Arruda and Bentler (2017) proposed that the poor performance of GLS might be due to bias in the
eigenvalues of S, specifically, their excess extremity (too large or too small) as compared to the
eigenvalues of X. The condition number (ratio of largest to smallest eigenvalue) of S is larger than
that of X and decreases monotonically with sample size (Yuan and Bentler 2016). Chi and Lange
(2014) proposed Maximum a Posteriori (MAP) estimation, which introduces a nuclear norm
penalty (CERNN) in the maximum likelihood framework. This function provides a simple non-
linear transformation of the sample eigenvalues thereby offering a reliable means of stabilizing
covariance estimation. The general idea of covariance estimation regularization is to extract the
eigenvalues from an ill-conditioned covariance matrix if not singular and regularize them
according to a quadratic function. Through this regularization scheme highest eigenvalues will be
pushed down, and lowest eigenvalues will be pulled up.

The method to do this is straightforward. For a given symmetric matrix S, it can be

decomposed into eigenvectors and eigenvalues through spectral decomposition.

S =QDQ’ (3)



As shown in equation 3, @ is an orthogonal matrix containing the eigenvectors of § , and D is a
diagonal matrix that contains the eigenvalues of S, diag(d,,---,d,). Structured estimation of
covariance matrices can be evaluated from two perspectives: generalized linear models and
regularization (Pourahmadi 2013). Regularized estimation of covariance matrices and their
inverses are based on a wide spectrum of structural assumptions, which has been a subject of
debate. Covariance matrix regularization schemes are subject specific. For example, banded
sample covariance matrices are suitable for time series and spatial data, in which the order of the
components is significant (Chi and Lange 2014, Huang et al. 2006, Rohde and Tsybakov 2011).
Chi and Lange (2014) do not assume any special prior structure; instead, they adopt the
rotationally-invariant estimators proposed by Stein (1975). As they point out, their main purpose
is to regularize the eigenvalue structure of the sample covariance matrix. Stein (1956) suggested

an alternative unstructured covariance matrix estimator in the form

T = Qdiag(ey, -, e,)Q’, (4)

where £ is a regularized estimation of covariance matrix with improved eigenvalue structure, and
e; is a shrunken estimate of d;. This method retains the same eigenvectors. The shrunken estimates
are obtained by adding a penalty function to a standard function to steer the estimated eigenvalues
toward the geometric mean of sample eigenvalues. In MAP (Chi and Lange 2014), this is done by

minimizing the objective function

f&) = 3 [El+ Str(SE™) + SallEll. + (1 - a)lIE.]. (5)



As shown in equation 5, the first two terms of which are the typical negative log-likelihood
function under normality. According to Chi and Lange (2014), the penalty is the term in brackets
and is an a-weighted linear combination of nuclear norms, here, simply trace norms. Intuitively,
the sums should be as small as possible. A is a penalty parameter. As A — 0, the solution
approaches the maximum likelihood solution, and eigenvalues will equal sample eigenvalues. As
A increases, the more aggressively the eigenvalues are shrunk toward the geometric mean.
Appropriately, as N— oo, the data will overwhelm the penalty, making it follow a standard chi-
square distribution.

The way to minimize the objective function (equation 5) involves the determinations of A and

a. Alpha (@) is a parameter that controls mixture between the trace and inverse trace penalties.

Chi and Lange (2014) proposed to compute itas &, = (1 + &2)_1, where d is the mean of the d;,
the eigenvalues of S. Arruda and Bentler (2017) showed that &, might be susceptible to extreme
sample eigenvalues, they chose to &, = (1 + d?)~* where d is the median of the d;. In their work,
Arruda and Bentler showed that @, generated smaller condition numbers, and in the subsequent
chi-square test, @z outperforms &,.. Therefore, in this study we only focus on @, and use it to
determine penalty parameter A.

There are different methods to find the penalty parameter A based on covariance matrix
estimation, we followed the same strategy of Chi and Lange (2014) and chose A in the
unsupervised context. That is, we partition the observed data ¥ € R™*? into k disjoint sets, and
employ x-fold cross-validation, where often k = 10 (Pourahmadi 2013). We partition each data
set into training and validation sets. The covariance matrix is estimated based on the validation
sample. Subsequently, the estimated covariance matrix is evaluated according to the following

predictive negative log-likelihood of the estimated covariance matrix of the training set:



(=K _om -k, e, (1 oy [eC-0]!
(27,7, ) = Zindet £ + 2 tr(nkYkYk[ZA ] ) (6)

Where Y, denotes the kth subset, and n, denotes the number of its rows, and fﬁ_k) denotes the

estimate using all but the xth partition Y. During these processes, the estimation is based solely
on A, since we adopt the pre-determined &y at the value derived previously. We repeat the
procedure x times for each value of A that is auditioned, and an empirical average log-likelihood
is calculated. Eventually, a series of penalty parameter A = 0, -+, 4,4, are tested and an optimal

A is selected, which minimizes the average ¢, over the k folds as follows:

K

A 1 ~(—

A= argmin — Z {’k(Z)E k),Yk).
A€{0,...Amax} I =]

(7)

Following the abovementioned procedures, the optimal values of A and a will be selected and
incorporated into a quadratic equation (equation 8). The original eigenvalues d; will be shrunk in

conforming to the quadratic equation, and “regularized” eigenvalues e; will be produced.

e;= (=N + /N2 +42a[Nd; + 1(1 — @)])/24e. (8)

As shown in equation 8, the values under the square root are nonnegative, so that the covariance
matrix must be positive definite. The results are incorporated into equation 4, which derive a
regularized covariance matrix . Similar to Arruda and Bentler’s (2017), we used Chi and Lange’s

(2014) MAP function to shrink (move toward their median value) the eigenvalues of S and used



the resulting “regularized” sample covariance matrix, say 2, to replace the GLS weight matrix.
Hence, RGLS is simply GLS in (2) withV = £ . The associated test statistic is Txs.s, here denoted

Tg for simplicity. Arruda and Bentler showed that T outperforms T,,, and T.s, and produces

highly stable results across different sample sizes.

Reweighted least squares

Reweighted least squares is even simpler. The first step is to compute the ML estimator 8,,, and
the associated X,, . Then, also using (2), Tr.s = % tr{(§ — Zu1) f‘.,;,}}z. Hence, the estimator is

ML, but the GLS function (2) is evaluated with weight matrix V = ;1. Hayakawa (2019)
reported that RLS avoids the over-rejection problem of ML in the context of a confirmatory factor
model, a panel autoregressive model, and a cross-lagged panel model. Zheng and Bentler (2022)
also show that RLS outperforms ML and GLS in mean and covariance structure.

From a practical perspective, the test statistic Tk, s has been available in EQS for decades
(Bentler 2006) and in LISREL after Version 8.52 (Joreskog et al. 2001). RGLS and its test statistic
Ty are available in EQS 6.4. All computations and test statistics reported in this study were done
with the R package ‘lavaan’ (Rosseel 2012) along with original R code for computing the above

test statistics developed by, and available from, the senior author.

Data Generation and Simulation Design

In this study, the population follows a traditional confirmatory factor model

X; = A; + €, 9)



where X; = (X1, Xiz, ..., Xip)" is @ vector of p observations on person i in a population, and i =
1,2,...,N. Under the usual assumptions, this leads to the covariance structure £ = A®A’ + P.

Specifically, we take

7 .7 .75 .8 .8 0 0 0 O O O O O O O
A=|]0 0 0 O O .7 .7 .75 8.8 0 0 0 0 0}
o o o 0 o0 o0 o0 o0 o0 o0 .7 .7 .75 .8 .8
1
=3 1
4 5 1

We take the diagonal of X =I, so the unique variances are given by ¥ = I — diag(A®A"). This
population model, previously used by Hu et al. (1992), Huang and Bentler (2015), Arruda and
Bentler (2017), Jalal and Bentler (2018), and Zheng and Bentler (2022) was adopted to allow
comparison to previous research. Regarding methodology, sample size, and testing criteria, we
follow Arruda and Bentler (2017). With p =15, and 3 latent factors, there 33 free parameters, and
model tests have 87 degrees of freedom. Under the assumed y2, distribution, the expected value
of a test statistic is 87 and its expected standard deviation is \/2df ~ 13.19. In normal distribution,
&=P1/?Z; and e = P/?Z, where @/2p/? = @, P/2P1/2 = W, and both Z, and Z, followed
a standard normal distribution (0, 1).

The data generating process consists of two steps. For a given N, a sample §; is drawn from a
multivariate normal distribution with covariance matrix @, while the unique factors €; are drawn
from a multivariate normal distribution with covariance W. These are used to generate the observed
X; using (7). This procedure generates one normal sample from the population structure £ =

ADPA’ + P; this is repeated 1000 times. In each sample, the parameters are estimated, and various

9



statistics related to Ty, T¢rs, Tr, and Tg.s are computed. In addition, all this was repeated at
varied sample sizes from 50 to 100,000.

Performance of the various methods across the 1000 replications at each N is summarized and
presented below. Because RGLS aims to reduce the extremity of eigenvalues of £, as compared
to S, we first compute and present the condition numbers of those matrices. Then we summarize
results on the performance of the various test statistics, such as their means, biases, standard

deviations, and model rejection rates with a=.05 at various sample sizes.

Normal Data Results
Condition Numbers

In each sample, we computed the condition number, the ratio of largest to smallest eigenvalue.
The empirical averages of these condition numbers across 1,000 replications at each N is shown
in Table 1. Given that the population covariance matrix has a condition number of 15.35, at N =
100,000 we would expect the condition numbers of S and £ to be close to 15.35 on average. This
occurs, thus validating the simulation results. As N increases from 50 to 100,000, the mean
condition numbers of § monotonically decrease; as expected, eigenvalues are more extreme as N
decreases. In contrast, the mean condition numbers of £z are remarkably stable across N and are
always close to 15.35. RGLS regularization has achieved its objective.

The variability (standard deviations, SDs) of condition numbers across replications within a
given N also show, as expected, larger SDs with smaller Ns. However, these SDs vary widely from

.09 to 14.87 for S, but are much more stable with SDs of .08 to 2.71 for £j.

10



Table 1
Average Condition Number and Standard Deviations by Sample Size

Sample Size S Cond £ SCond SD £.SD
50 51.53 15.60 14.87 2.71
60 42.73 15.34 10.57 2.56
70 37.08 15.29 8.18 2.29
80 34.06 15.10 7.00 2.13
90 31.92 15.23 6.34 2.18
100 29.90 15.32 5.48 2.12
110 28.41 15.23 4.89 2.05
120 27.14 15.25 4.50 1.89
250 21.35 15.31 2.35 1.45
400 19.27 15.52 1.72 1.22
500 18.67 15.54 1.46 1.15
1000 17.29 15.60 0.99 0.80
2000 16.53 15.66 0.67 0.59
2500 16.36 15.66 0.57 0.54
5000 15.99 15.65 0.40 0.38
100,000 15.46 15.44 0.09 0.08

Performance of Test Statistics

Table 2 shows the mean values, across 1,000 replications of Ty, T¢Ls, Tr, and Tg.s at each
sample size. The expected mean test statistic for each estimation method is 87. The table also
shows the percent bias of each of these means. It is obvious that the mean T, is always too large
(positive bias), except at the largest sample sizes; the mean T is typically too small (negative
bias), except at the largest N. These results are consistent with previous simulation research, such
as Yuan and Bentler (1999) for ML results with smaller N, and normal theory condition 1 for ML
and GLS in Hu et al. (1992) for larger N. The mean T shows a small positive bias at the smallest

Ns, but the mean Tg,s shows virtually no bias — less than 1% at all but one sample size.
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Table 2

Mean Test Statistics and Bias by Sample Size

Sample Size  Tm % Bias Ters % Bias Tp % Bias Tris % Bias
50 101.435 16.592  76.332 -12.262 92915 6.799 87.584 0.671
60 99.846 14.766 79.105 -9.074 90.145 3.615 87.695 0.799
70 96.878 11.354 80.499 -7.472 88.280 1.472 87.780 0.897
80 95.914 10.246 81.099 -6.783 87.753 0.865 87.196  0.225
90 95.007 9.203 81.092 -6.791 87.050 0.058 87.653  0.751
100 94324 8.418 82.716 -4.924 87.678 0.779 87.595 0.684
110 92.811 6.679 82.764 -4.869 87.397 0.456 87.675 0.776
120 93.271 7.208 83.725 -3.765 87.779 0.895 87436  0.501
250 89.481 2.852 85451 -1.781 87.672 0.773 87.722  0.830
400 88.911 2.196 85.783 -1.398 87.266 0.306 87.675 0.776
500 88.627 1.870 85411 -1.827 87.534 0.614 87428 0.492
1000 87.817 0939 85938 -1.220 87.196 0.225 87.060  0.069
2000 87.041 0.048 86.034 -1.110 86.935 0.074 87.941 1.082
2500 86.623  0.433 86.293 -0.812 86.980 0.022 87.284  0.327
5000 87.195 0.224 86.413 -0.675 87.204 0.235 87.084 0.096

100,000 87.486  0.559 86.941 -0.067 87.037 0.043 87.376 0.432

Note: Target for bias calculations=87

Table 3 shows the SDs of the test statistics across replications within each sample size,
expected to be about 13.19. All methods’ SDs meet our expectations when N>400. The SDs of T
and Ty, are generally more stable than those of Ty,, and T¢,s. With smallest Ns, the SDs of Ty,

and T, s, and especially that of T at N=50, deviate from 13.19.
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Table 3

Standard Deviation of Test Statistics across Replications

Sample Size ThL Ters Tk TrLs
50 15.844 10.342 24.648 12.081
60 15.446 11.101 14.461 13.060
70 14.922 11.935 13.444 12.983
80 14.467 11.842 13.059 12.669
90 14.083 11.961 13.215 13.002
100 14.163 11.933 13.360 13.320
110 14.170 12.506 12.823 13.423
120 13.943 12.418 13.296 13.082
250 14.120 12.881 13.061 13.363
400 13.521 13.302 12.935 13.073
500 12.904 13.476 13.445 13.107
1000 13.297 13.046 13.009 13.470
2000 12.685 12.714 13.655 12.994
2500 12.665 13.380 13.810 13.165
5000 13.307 12.842 13.692 13.087
100,000 13.296 13.197 12.744 12.907

Note: Target standard deviation is 13.19.

Mean P-values and Empirical Rejection Rates

Next, we turn to performance of average p-values and empirical rejection frequencies. Since this
simulation was done under the null hypothesis, the distribution of p-values should be
approximately uniform with a mean of .5, and with the chosen significance level « = .05, the
expected empirical rejection rates of the correct model should be about .05.

Table 4 presents, for each sample size and for each statistic, the mean p-value across the 1,000
replications as well as the number and proportions of p-values less than .05. The average p-values
are given in the left part of the table. When N > 1,000, the mean p-values of all methods are close
to .5, while with N=50, mean p-values of ML and GLS deviate substantially from .5 in opposite
directions. The mean p-values of RGLS and RLS are marginally less than .5, with RLS being more
stable. The mean p-values of RGLS range from .421 to .507, while those of RLS vary from .483

to .498.
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Table 4

Simulation Results on P-values and Empirical Rejection Rates

Average P-values Rejection Rates
Sample Size ML GLS RGLS RLS ML GLS RGLS RLS
50 0.242 0.739 0.421 0.483 0.284 0.003 0.118 0.031
60 0.264 0.675 0.442 0.486 0.252 0.006 0.084 0.051
70 0.311 0.640 0.475 0.483 0.177 0.009 0.058 0.048
80 0.322 0.629 0.487 0.494 0.174 0.010 0.064 0.045
90 0.337 0.628 0.502 0.485 0.151 0.011 0.053 0.050
100 0.353 0.592 0.487 0.487 0.137 0.010 0.059 0.063
110 0.385 0.595 0.494 0.484 0.116 0.025 0.051 0.058
120 0.370 0.573 0.506 0.488 0.119 0.029 0.061 0.056
250 0.450 0.534 0.486 0.484 0.076 0.034 0.050 0.060
400 0.460 0.524 0.497 0.485 0.073 0.042 0.053 0.056
500 0.464 0.534 0.507 0.492 0.059 0.041 0.062 0.054
1000 0.480 0.525 0.496 0.498 0.055 0.045 0.054 0.056
2000 0.497 0.520 0.503 0.482 0.039 0.033 0.059 0.054
2500 0.506 0.519 0.504 0.494 0.039 0.047 0.063 0.055
5000 0.490 0.511 0.501 0.498 0.050 0.041 0.050 0.046
100,000 0.493 0.505 0.493 0.490 0.064 0.059 0.038 0.039

The rejection rates out of 1000 replications are shown on the right of Table 4. The results reveal
that the empirical rejection rates are excessively large at the smallest of sample sizes for ML; while
GLS over-accepts the null hypothesis, with rejection rates <.01 when N<100. When N=500, there
rejection rates are more reasonable for all methods. The RGLS empirical rejection rates are close
to the nominal level, ranging from .038 to .118, but a bit too large at N<70. In contrast, the RLS

empirical rejection rates are very stable across N, ranging from .031 to .063.

RLS and RGLS in Non-Normal Data

Non-normally distributed data are ubiquitous in real world data analysis, and goodness-of-fit tests
which work in normal data may not work equally well in non-normal data. In this section, we will
evaluate the performances of RLS and RGLS in the context of non-normal data distributions. We

use three different distributional conditions: a normal distribution, an elliptical distribution, and a

14



skewed distribution. Data generation procedure of normal distribution is the same as what we have
discussed in the previous section, where x is simulated from a confirmatory factor analysis (CFA)
based on x = A¢ + &, and the population covariance matrix is £ = APA’ + ¥. In the elliptical
distribution condition (symmetric distributions with heavy tails), & = r®*/2Z;, and & = r¥*/2Z,
with r ~ (3/x3) /2, & = cov(§) and ¥ = cov(g). In the skewed distribution condition, & =
r®/2Z; and ¢ = r¥/2Z, where Z; ~ standardized (x%). For each condition, we simulated 1,000
samples. This method of generating elliptical and skewed distributions has been used by Hu et al.
(1992), Yuan and Bentler (1998), and Du and Bentler (2022). The descriptive statistics about skew
and kurtosis of the variables are include in Table Al in Appendix.

In this study, we propose to examine three robust test statistics: the scaled test, the adjusted

test, and the adjusted test with a df correction on ML, RLS and RGLS. These robust tests are

defined as
TML = %TML (10)
Tor = Z—;TML (11)
T = 2T (12)

2

In equation 10, T,,,, is referred to a chi-square distribution with df degrees of freedom. In these
equations, d, = tr(UF) , and &, =tr[(UN?] . U=W-WG (GWGGW , W=

3D, E @)D, & = G(By). and G(Byy)= 200 B = (V = D)7 B, (5 — (st = 9’

and s = N~1 YN . s;. Satorraand Bentler (1988) proposed scaling the test statistics Tsg = Ty /k,
where k = tr(UT)/df is a scaling factor that corrects Ty, so that the sampling distribution of T
at least matches the first moment of the nominal chi-square distribution. The scaling factor k is an

estimate of the average of the nonzero eigenvalues of UT. Tong and Bentler (2013) find that when
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N < df, equation 10 will not be a correct formula because there will not be the same number of
eigenvalues that match the degrees of freedom. Moreover, Satorra and Bentler (1994) proposed
adjusting the test statistic Ty, so that the resulting statistic has the same mean and variance as the

chi-square distribution. Hence, in equation 12 T,,, is referred to as a chi-square distribution with

df' degrees of freedom, and df’ =

Q)l)
N Y

Recently Hayakawa (2019) introduced a new adjusted test with a correction, 7., , as shown in
equation 12, which is referred to as a chi-square distribution with df’ degrees of freedom. In T,
the unbiased estimator is d@,, which was proposed by Srivastava et al. (2014) and Himeno and
Yamada (2014). Du and Bentler (2022) also proposed to use the same unbiased asymptotic
distribution free (ADF) estimator @, in the study of robust test statistics. This new a, is different
from that of equation 11 in that s; is defined as

si =0+ QY%y,
where s; = vech {(x; —%)(x; — %)’} , Eu;)) =0, E(s)) =0, var (s;)) = Q, w; = UY?s;
E(w;) = UY?¢, and wvar(w;) = UY2QUY2 . Therefore, Hayakawa (2019) proposed a new

correction of unbiased estimator as in the adjusted test as follows:

1
N(N-1)(N-2)(N-3)

{(N=2)(N = Dtr((¥Y'Y)*) = N(N — Dtr((D)?) + [tr(Y'V)]?},

A~

where ¥ = (1, Yz, .., ), D = diag(iys, o, Yiyn),vi = Wi =W, =+ T, ;.

The robust tests in equations 10, 11, and 12 are based on T,,,. In the following analyses, we
replace T,,;, with the corresponding test statistics of RLS and RGLS, Ty, s and Tx. Specifically, for
the scaled test, we denote the ML, RLS and RGLS as Ty,;, Trys and T. Similarly, we use Ty,
TrLs and Ty to indicate the adjusted tests of ML, RLS and RGLS. For their corresponding adjusted

tests with a correction, we denote them as T, TS, ¢ and T&.
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Non-normal Data Test Results

The evaluation of the test statistics is based on empirical type | error rates. The results reported in
Table 5 are empirical Type I error rates x1000 with a = 0.05 across all tests. Based on criteria in
Bradley (1978), the acceptable empirical Type | error rates (i.e., 0.025 to 0.075) are in bold font.

Table 5
Type | error rates X 1000 with @ = 0.05

Normal Distrubution

Scaled test Adjusted test Adjusted test with a correction
N T Trrs Tr Tar Tars Tr Tncu_ TLs TE
50 376 129 352 50 67 52 390 153 78
80 196 86 122 59 105 53 209 102 43
100 160 89 59 39 104 23 147 83 57
200 104 56 50 25 54 27 99 62 45
300 81 70 34 37 47 27 90 50 39
400 51 74 69 51 59 35 82 54 45
500 73 55 37 43 44 26 49 35 37
800 56 52 45 52 26 25 54 62 45
1,000 70 68 59 74 12 42 47 38 48
2,000 54 50 50 69 45 72 62 41 57
5,000 36 52 48 63 71 83 54 56 61
Elliptical Distrubution
Scaled test Adjusted test Adjusted test with a correction
N Tus Tars Tr s Tars Ta Tg, TEs Tg
50 458 154 17 18 4 0 446 112 7
80 220 102 17 9 7 0 234 91 16
100 186 82 20 7 3 0 213 82 27
200 134 71 14 6 5 0 120 75 26
300 103 62 14 11 10 6 81 74 33
400 72 66 53 10 9 4 86 71 45
500 84 63 33 39 18 12 79 69 39
800 64 73 46 14 28 13 60 65 45
1,000 70 58 52 45 29 34 55 79 42
2,000 72 67 56 25 32 41 75 67 39
5,000 56 71 40 54 45 43 74 46 63
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Skewed Distrubution

Scaled test Adjusted test ) Adjusted test with a correction
N T Tas Ty Ty Tus Tk Thie Teis Tg
50 244 146 166 8 8 0 469 97 62
80 191 108 122 11 9 2 280 78 58
100 184 100 116 8 L 0 205 65 69
200 125 84 85 7 3 0 164 66 52
300 107 30 83 5 11 2 117 63 50
400 63 91 82 17 9 6 90 49 62
500 78 90 82 8 8 0 83 77 58
800 80 59 75 15 6 4 42 75 55
1,000 62 62 74 21 17 6 71 71 55
2,000 56 55 69 7 28 36 66 64 61
5,000 68 70 75 39 43 21 23 49 55

Note: The acceptable empirical Type I error rates x1000 (i.e., 25 to 75) are in bold font.

Table 5 shows that in normal distribution, and when sample size is small, Ty, TrLs, and Tg
start to experience more empirical Type | errors. The explanation is that when sample size is
smaller than 100, & becomes an inefficient estimator for var(s;), because it contains the fourth-
order moments (Hayakawa 2019). Nonetheless, when sample size is larger, their empirical Type |
error rates increasingly become closer to the nominal level (i.e., 0.05). In normal distribution case,
TrLs, and T have similar performances. In the adjusted test, the empirical Type | error rates of
Ty, and Tr, s are close to nominal level, while T} is consistently deviated from it. In the adjusted
test with a correction, the empirical Type | error rates of both T, and T, are inflated when
sample size is smaller 100. In contrast, TS delivers the most consistent Type | error rates that are
within the acceptable range from 25 to 75.

In non-normal cases, both elliptical and skewed distributions, T, , Tr.s and T have good
performances in empirical Type | error rates when N>500, whereas they tend to increasingly over-
reject the null hypothesis as sample size becomes smaller and inflate the Type | error rates. T has
an interesting behavior in the scaled test. T tends to over-reject the null hypothesis when sample

sizes are smaller than 100 in both normal and skewed distributions, whereas it tends to under-reject
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the null hypothesis and deflate the Type I error rates in elliptical distribution case. In the adjusted
test, all these robust test statistics tend to deflate the Type | error rates. This indicates that in real
data analysis, the adjusted test seems to be biased towards the null hypothesis, making it the least
ideal robust test of all that we have examined in this study. As for the adjusted test with a correction,
TE,s and TS outperform T, in both elliptical and skewed distribution cases, because they both
reduce the Type | error bias when sample sizes are smaller than 400. By and large, 75, avoids
over-rejection problem unless the sample sizes are less than100 in both normal and non-normal
distribution cases. Whereas T§ is advantaged over T, in delivering the acceptable empirical
Type | error rates in normal and non-normal distribution cases, which are negligibly deviated

from .05, especially when sample sizes become smaller than 100.

Power Analysis

To better examine the performances of ML, RLS and RGLS, we need to compare the performances
in which the models are misspecified, and examine which method is better to handle Type Il error.
If a test statistic requires smaller sample size to reject models with misspecification, then the power
of that test is stronger. The power analysis requires that £ # X(0 ). This is done in two ways:
Modifying our population model; and modifying our analysis model.

Condition 1 consists of a modified population model and the original analysis model. In the
population model we added two extra parameters to the original population model. We connect
the second factor with the first manifest variable and the third factor with the sixth manifest
variable and set the factor loadings at the values of .2 and .3 respectively. Thus, the new factor

loading matrix is defined as:
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For condition 2, we modified the original analysis model as indicated in Figure 1 by creating
an extra path connecting F» to X4 and holding the correlation between F, and Fs fixed. Under this
condition it has a larger misspecification, thus we expect smaller sample sizes to reject the model.

The samples are simulated from the original population model.

Figure 1
Diagram of the misspecified analysis model
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In both conditions, 1,000 replicated samples were drawn from a population with covariance
structure. Because the hypothesized models are incorrect, we expect to reject them, and the
rejection rate shows an estimate of the power of the test under these model misspecifications. The
mean p-value and rejection rate for each replicated sample are computed. Table 6 reports mean p-
values and rejection rates of regular Ty, Tr.s, and Tg in normal distribution. Table 7 reports that
scaled test, adjusted test, and adjusted test with a correction of ML, RLS and RGLS in both normal

and non-normal cases.

20



Table 6
Power analysis in normal distribution

Normal Distribution
Condition 1 Condition 2
ML Tis Tx Thay Tris Tq
N P-value Rejrate P-value Rejrate P-value Rejrate N P-value Rejrate P-value Rejrate P-value Rejrate
50 0.192 0354 0378 0108 0415 0.110 50 0.075 0.678 0258 0220 0345 0.154
80 0.245  0.265 0366 0.111 0457 0.077 80 0.063 0.720 0.132 0493 0.292 0.215
100 0.279  0.203 0350 0.135 0447 0.073 100 0.039 0816 0.074 0.682 0.222 0.241
200 0.255 0273 0291 0.194 0350 0.124 200 0.004 0974 0002 099 0.069 0.664
300 0.195 0.348 0218 0301 0271 0.207 300 0.001  0.995 0.000 1.000 0.012 0.942
400 0.156 0425 0.159 0439 0.199 0.337 400 0.000 1.000 0.000 1.000 0.002 1.000
500 0.107 0.574 0109 0563 0.147 0445
800 0.033  0.831 0.032 0.839 0.052 0.761
1,000 0.012 0920 0.014 0936 0.021 0.886
2,000 0.000 0999 0.000 1.000 0.000 1.000

As we can see in Table 6, the empirical power of different estimators increases with larger
sample sizes. In condition 1, when the sample size is about 2,000 and in condition 2 when sample
size is about 400, all estimators completely reject the chi-square test statistics. Nonetheless, the
rejection rates vary with the estimators within these sample sizes. In condition 1 when sample
sizes N<800, and in condition 2 when N<200 the ML method produces relatively smaller mean p-
values. As a result, it can reject in both conditions with smaller sample sizes as compared to RLS
and RGLS. Therefore, the ML method produces the most power, although this is not meaningful
since ML does not control Type | errors well. Comparing RLS and RGLS, in condition 1 when
N<1,000, and in condition when N<200, RLS starts to outperform RGLS by producing smaller
mean p-values, thus RLS produces more power than RGLS.

This performance is consistent in both normal and non-normal cases for scaled test, adjusted
test, and adjusted test with a correction based on ML, RLS and RGLS as shown in Table 7. As
documented by Zheng and Bentler (2022), GLS has less power than ML and RLS, and this

relationship translates to RGLS.
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Condition 1

Normal Distribution

Table 7
Power analysis of robust estimators in condition 1

) Scaled test Adjusted test Adjusted test with a correction
T Taus Te Tr Tps Ty TaL Ties FH

N P-value Rejrate P-value Rejrate P-value Rejrate P-value Rejrate P-value Rejrate P-value Rejrate Povalue Rejrate  P-value Rejrate  P-value Rej rate
50 0.009 0959 0.033 0.829 0.134 0446 0053 0642 0033 0815 0219 0080 0.009 0962 0025 0866 0158 0360
80 0001 0993 0.003 0995 0078 0698 0012 0943 0007 0964 0146 0315 0.001 0998 0003 0987 0081 0.706
100 0.001 0995 0.001 0997 0.046 0784 0.004 0990 0001 0999 0.082 0520 0.000 1000 0001 099 0037 0759
200 0000 1000 0000 1000 0000 1000 0000 1000 0000 1000 0003 0995 0000 1000 0000 1000 0000 1000
Elliptical Distribution

Scaled Test Adjusted test Adjusted test with a correction

fn L TR LS 7}; T-‘“' f’ms TR Tjﬁ L T}%Ls Tﬁ%

N P-value Rejrate P-value Rejrate P-value Rejrate P-value Rejrate P-value Rejrate P-value Rejrate P-ovalue Rejrate P-value Rejrate P-value Rejrate
50 0.020 0.897 0019 0918 0376 0045 0104 0250 0119 0202 0385 0000 0016 0923 0061 0686 0375 0.058
80 0.008 0962 0.008 0966 0.176 0412 0059 0537 0067 0526 0289 0006 0.007 0976 0025 0858 0205 0217
100 0.002 0992 0.003 0979 0111 0629 0037 0770 0041 0733 0241 0027 0.003 099 0007 0957 0141 0522
200 0.000 1000 0.000 1000 0009 0953 0000 1.000 0001 0999 0.038 0738 0.000 1000 0000 1.000 0007 0982
300 0.000 1000 0.000 1000 0000 1000 0000 1.000 0000 1000 0.004 099  0.000 1000 0000 1.000 0000 1.000
400 0.000  1.000 0000 1.000 0000  1.000 0000  1.000 0000  1.000 0000  1.000 0000 1000 0000 1000 0000 1000
Skewed Distribution

Scaled Test Adjusted test Adjusted test with a correction

fn L Tiz LS 7}; T-‘“' f’ms TR Tf' L Tﬁ%LS T*%

N P-value Rejrate P-value Rejrate P-value Rejrate P-value Rejrate P-value Rejrate P-value Rejrate Povalue Rejrate P-value Rejrate  P-value Rejrate
50 0118 0599 0252 0294 0509 0036 0241 0017 0251 0011 0435 0000 0120 0423 0260 0378 0574  0.000
80 0.166 0475 0244 0324 0546 0.041 0270 0025 0267 0019 0446 0000 0.169 0485 0235 0370 0500 0.085
100 0.190 0421 0234 0365 0521 0.104 0269 0035 0278 0.028 0440 0001 0.154 0494 0213 0415 0483 0.139
200 0112 0602 0121 0601 0304 0191 0210 009 0205 0092 0338 0005 0.108 0599 0110 0594 0326  0.194
300 0.049 0794 0055 0791 0170 0365 0126 0332 0117 0347 0242 0050 0051 0767 0048 0811 0160 0.461
400 0021 0907 0023 0861 0079 0613 0072 0555 0077 0506 0151 0194 0028 0878 0020 0897 0081 0.601
500 0.008 0944 0007 0952 0038 0810 0033 0783 0030 0815 0088 0440 0005 098 0007 0967 0034 0.829
800 0.000 0998  0.000 1.000 0002 0984 0004 0988 0004 0980 0.017 0926 0.000 1.000 0000 1.000 0004 0.990

Table 7 shows the robust versions of ML, RLS and RGLS methods in condition 1. In normal

distribution, Ty, Ty, and T\, tend to have the most power, when N=50, both T}, and T}, can

reject 96 percent of the test statistics. Tx.s, Tris and T, ¢ tend to have similar power, except when

N=50, for which its reject rates is about 82 percent. In contrast, T, Tx and TS tend to have the

least power when N<200. In elliptical distribution, T, and T}, have similar performance as in

normal condition, but the rejection rates of Ty, and T, reduce a lot when N<200. In contrast, the

power of Ty, Tr and T reduce a lot in elliptical distribution. In skewed distribution, all variants

of robust estimators reduce statistical power to reject the misspecified model, as compared to
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normal and elliptical distributions. Still, the performance of Ty,,, Ty, and T, is better than other

robust variants of RLS and RGLS.

Condition 2

Normal Distribution

Table 8
Power analysis of robust estimators in condition 2

Scaled test Adjusted test Adjusted test with a correction
Thav Tous Tr Tar Trus Ty T Tis i

N P-value Rejrate P-value Rejrate P-value Rejrate P-value Rejrate P-value Rejrate P-value Rejrate P-value Rejrate P-value Rejrate P-value Rejrate
50 0.085 0614 0244 0242 0324 0.167 0182 0123 0147 0290 0372 0018 0094 059 0241 0235 0365 0.108
80 0.127 0459 0242 0239 0283 0198 0177 0210 0151 0356 0326 0031  0.113  0.535 0244 0255 0258  0.243
100 0.114 0516 0193 0303 0246 0174 0171 0218 0137 0435 0293 0056 0112 0560 0193 0317 0200 0.327
200 0.045 0799 0081 03599 0041 0739 0073 0619 0065 0.636 0070 0366 0039 0809 0094 0595 0051 074
300 0.011  0.948 0030 0844 0.012 0940 0020 0.898 0.021 0887 0.021 0902 0.012 0950 0.030 0840 0009 0.938
400 0.001 1000 0.007 098  0.001 0994 0000 L1000 0.004 0982 0003 0992 0002 0993 0009 0970 0.001 1.000
500 0.000  1.000 0000 1.000 0000 1.000 0000 1000 0000 1000 0000 1.000 0000 1.000 0001 0995 0000 1.000
Elliptical Distribution

Scaled Test Adjusted test Adjusted test with a correction

7'-14 L TR LS T'N TN’L ]‘;RLS TR ijr L Jlid\agl.s Tﬂ?

N P-value Rejrate P-value Rejrate P-value Rejrate P-value Rejrate P-value Rejrate  P-value Rejrate P-value Rejrate P-value Rejrate P-value Rejrate
50 0.127  0.541 0132 0511 0724 0000 0238 0011 0245 0009 0508 0000 0.139 0527 0287 0208 0.633  0.034
B0 0.199 0332 0214 0309 059 0012 0316 0020 0293 0014 03503 0000 0210 0337 0316 0205 0514 0.062
100 0232 0307 0226 0319 03509 0057 0295 0017 0295 0033 0475 0000 0218 0348 0337 0152 0578 0.068
200 0226 0308 0213 0339 0384 0118 0243  0.094 0278 0080 0363 0045 0.194 0358 0273 0277 0380 0.176
300 0.166 0424 0174 0385 0226 0284 0224 0184 0205 0178 0260  0.099 0163 0407 0217 0315 0233 0.293
400 0.121 0544 0108  0.558 0159 0435 0176 0262 0175 0273 0197 0215 0.118 0553 0173 0416 0170 0451
500 0.077  0.645  0.061 0691 0100 0556 0133 0460 0110 0448 0116 0392 0061 0712 0120 0477 0.098  0.547
B00 0.012 0930 0037 0.893  0.022 0.88095 0.041 0800 0.061 0706 0.047 0765 0039 0829 0030 0828 0020 0.897
1,000 0.008 0939 0.003 1.000  0.008 0947 0013 0917 0006 0970 0015 0923 0010 0953 0.018 0919 0002 1.000
Skewed Distribution

Scaled Test Adjusted test Adjusted test with a correction

7'-14 L TR LS T'N TN’L ]‘;RLS TR ijr L Jlid\agl.s Tﬂ?

N P-value Rejrate P-value Rejrate P-value Rejrate P-value Rejrate P-value Rejrate  P-value Rejrate P-value Rejrate P-value Rejrate P-value Rejrate
50 0.149 0474 0325 0197 0605 0037 0272 0013 0271 0014 0498 0000 0.143 0574 0304 0310 0647 0.000
80 0.241 0351 0340 0216 0575 0046 0304 0009 0299 0.017 0493 0000 0220 0415 0325 0311 0618 0.040
100 0.244 0312 0335 0216 0548 0051 0322 0005 0328 0012 0475 0000 0241 0384 0347 0232 0509 0.055
200 0.245 0295 0309 0194 0367 0135 0309 0025 0321 0.024 0409 0008 0246 0348 0313 0244 0409 0.129
300 0.201 0397 0234 0291 0277 0215 0266 0046 0260  0.045 0316  0.038 0.199 0364 0222 0344 0324 0.209
400 0.151 0456 0188 0369 0180 0378 0206 0.131 0211 0137 0266 0065 0.132 0507 0181 0422 0186  0.400
500 0.094  0.604 0147 0470 0115 0529 0.154 0289 0169 0260 0188 0173  0.101 0.598 0136 0537 0125 0.562
B00 0.030  0.828 0051 0775  0.037 0.820 0.068 0620 0069 0593 0096 0510 0031 0845 0.042 0814 0018 0.871
1,000 0.013 0935 0023 0859 0007 0958 0.031 0803 0025 0.830 0024 0836 0011 0932 0020 0904 0023 0918

Table 8 shows the performances of robust variants of different estimators in condition 2,

under which the analysis model is incorrect. In the normal condition, T}, and T}, have similar

rejection rates, while adjusted test T, has the least power as compared to T}, and T,. Similar

performances are also shown in T, Tris, Ts, Try Tr and T. With both elliptical and skewed

distributions, Ty, Ty, and TS, have similar powers, and consistently less than those in normal
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distributions. Tg,s and Tg;s have more power in elliptical condition, while TS, ¢ has more power
in skewed condition when N<300. T} tends to have slightly more power in the skewed distribution
than in the elliptical distribution. In contrast, T and TS have more power in the elliptical

distribution than in the skewed one.

Discussion

The most important results of these Monte Carlo simulations involve the rejection rates of the four
test statistics at various sample sizes in normal data, and the Type | error rates in non-normal data.
We found that Ty, s and T perform equally well when the samples are sufficiently large (N>70 in
this study), although the behavior of RLS is near-ideal at all sample sizes. Consistent with prior
research, and hence not surprisingly, both methods clearly outperform ML and GLS at
intermediate to small sample sizes (N<400). In non-normal cases, particularly the adjusted test
with a correction, both TS, ¢ and TS are superior to TS, in overcoming the over-rejecting problem,
and T has more consistent performance in delivering p-values that are within the acceptable range
than T§, .

These results are consistent with the separate results of Arruda and Bentler (2017) and
Hayakawa (2019), but go beyond earlier work by showing that RLS is superior to RGLS at N=50,
a condition not considered by Arruda and Bentler (2017). In the case of non-normal distribution,
the results of this study really advanced our understanding of RGLS. However, there is some
conflict with RGLS at N=60, with Arruda-Bentler showing a rejection rate of .065, while this study
found the less acceptable rate of .084. In order to clarify the performance of these statistics at
smaller sample sizes, an additional simulation study was done using the same model and

methodology as earlier, but with a greater range of small sample size (N=50, 55, 60, 65, 70, 75).
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For better stability, the number of replications was increased to 2000. The results are shown in

Table 9 in similar format as in previous tables.

Table 9
Simulation Results for Small Samples
Test Statistics (SD) Average P-values Rejection Rates
N Tr (SD) TrLs (SD) RGLS RLS RGLS RLS

50 91.57 20.81 88.02 12.46 0.42 0.48 0.11 0.05
55 90.45 21.06 87.71 12.84 0.44 0.48 0.10 0.05
60 89.30 13.97 87.83 12.69 0.46 0.48 0.08 0.05
65 88.27 13.59 87.59 13.05 0.48 0.49 0.06 0.05
70 88.48 13.16 87.50 12.42 0.47 0.49 0.06 0.04
75 88.55 13.27 87.29 12.88 0.47 0.49 0.06 0.05

Clearly, RGLS marginally over-rejects the true model at N=50, 55, 60. In contrast, the rejection
rate of RLS is basically perfect. These findings suggest that among the methods considered here,
Tr.s is the best choice for general SEM practice. It is advantaged over T of simplicity in that it is
much easier to program and requires less computational power. However, to get a more complete
understanding of their comparative characteristics and advantages, further research could compare
the performances of Ty, s and T with a greater range of number of factors and indicators, varying
sizes of factor loadings, and an extended range of unique variances. Of course, it would be of
interest to see whether any advantage of Ty, over Ty also occurs in models that include a mean
structure, such as in growth curve models.

Another question for further research is whether the marginally problematic small sample
behavior of Ty can be further improved. As shown in Table 7, the mean of Ty was a bit too high,
but its SD was especially high, suggesting that perhaps the regularization used to obtain the weight
matrix V in the GLS function (eq. 2) was not always effective enough. RGLS has so far been based

on a default Chi and Lange (2014) methodology for shrinking the eigenvalues of the sample
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covariance matrix. With small N, perhaps its tuning parameters need to be adjusted, or a
completely different shrinkage method considered.

Regarding the power to reject false models, ML and its robust variants tend to outperform RLS
and RGLS, along with their robust variants in normal and non-normal cases. However, the inability
of ML to control the alpha level under the null hypothesis makes its results less meaningful; since
it overrejects the true model, rejecting a false model is not much of an accomplishment. At the
same time, the loss in empirical power of RLS — which controls Type I errors —is small compared
to ML. Yet, RLS exceedingly well controls alpha level with a correct model. In general, RLS and
its robust variants outperform those of RGLS in both normal and non-normal cases.

Finally, the current paper only considered RLS and RGLS in the context of normal theory GLS
and GLS with robust corrections. It would be interesting if there were parallels to these methods
in the asymptotically distribution free (ADF) method (Browne 1982, Browne 1984). However, we
know of no way that RLS can be generalized to ADF, since there is no ML estimator of the ADF
weight matrix. However, as noted by Arruda and Bentler (2017), since the estimated ADF weight
matrix can be computed as the inverse of a type of sample covariance matrix (Huang and Bentler
2015, Satorra 1992), the eigenvalues of this weight matrix also may be too extreme in small
samples. Hence, in theory, weight matrix regularization may also improve the performance of

ADF, but whether it actually does so, remains to be studied.
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Appendix
Table Al provides the descriptive statistics of empirical kurtosis and skewness. A sample with
N=10,000 is based on a simulation of a fixed covariance structure of the same population that is
used in study. Table Al contains three conditions: Normal, elliptical, and skewed cases. The
kurtosis and skewness tests are conducted using R package “semTools” (Jorgensen et al. 2022).
The measure of excessive kurtosis is computed by the fourth standardized moment of the empirical
distribution of a variable, which is known as G2. The measure of skewness is computed by the

third standardized moment of the empirical distribution of a variable, which is also known as G1.
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Table Al
Univariate Kurtosis-Skewness Normality Tests Under Three Distributional Conditions

Normal Elliptical Skewed
Variable Kurtosis Skewness Kurtosis Skewness Kurtosis Skewness
X1 0.002 0.041 3.206 -0.064 3.721 1.495
X2 -0.023 0.016 3.359 -0.031 4.085 1.713
X3 0.039 -0.011 3.789 0.055 3.094 1.385
X4 0.044 -0.014 4.786 -0.019 3.901 1.412
X5 -0.036 0.021 3.501 0.058 4.365 1.182
X6 -0.023 0.025 3.856 0.069 4.538 1.246
X7 -0.088 0.014 3.378 -0.020 3.278 1.049
X8 0.022 -0.046 3.740 -0.012 3.070 1.454
X9 0.081 0.000 4.573 0.035 2.881 1.041
X10 0.033 -0.028 2.404 -0.055 4.084 1.029
X11 -0.069 -0.013 4.841 -0.076 2.943 1.363
X12 -0.054 0.046 4.525 0.022 3.485 1.317
X13 -0.085 -0.025 4.706 -0.015 2.069 1.172
X14 0.015 0.004 5.537 0.053 3.803 1.404
X15 -0.001 0.034 4.899 0.047 2.978 1.299

Note: If a skewness or kurtosis is 0, the data are perfectly normally distributed; whereas a skewness
or kurtosis is between -.5 and .5 indicates that the data are still approximately normal. A negative
kurtosis indicates that the distribution has lighter tails than the normal distribution. If a skewness
or kurtosis is between -1 and -.5 or between 1 and .5, the distribution is moderately kurtotic or
skewed. If a skewness or kurtosis is less than -1 or greater than 1, the distribution is considered
highly kurtotic or skewed (Hair et al. 2017).

Table Al shows that in the normal distribution simulation, the kurtosis and skewness statistics
of all simulated variables are close to zero, with the largest value of -0.088. For the elliptical
distribution, the kurtosis statistics range from 2.404 to 5.537, meaning that all simulated variables
are kurtotic. Skew under the elliptical distribution is near zero, with -.076 as the largest discrepancy
from zero. In contrast, for the skewed distribution, the statistics of skewness range from 1.029 to
1.713; whereas it may be noted that skew also induces kurtosis, with values somewhat smaller than

under the elliptical distribution.
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