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ABSTRACT 

 

 

 

This paper assesses the performance of regularized generalized least squares (RGLS) and 

reweighted least squares (RLS) methodologies in a confirmatory factor analysis model. Normal 

theory maximum likelihood (ML) and GLS statistics are based on large sample statistical theory. 

However, ML and GLS goodness-of-fit tests often make incorrect decisions on the true model, 

when sample size is small. The novel methods RGLS and RLS aim to correct the over-rejection 

by ML and under-rejection by GLS. Both methods outperform ML and GLS when samples are 

small, yet no studies have compared their relative performance. A Monte Carlo simulation study 

was carried out to examine the statistical performance of these two methods. We find that RLS 

and RGLS have equivalent performance when N≥70; whereas when N<70, RLS outperforms 

RGLS. Both methods clearly outperform ML and GLS with N≤400. Nonetheless, adopting mean 

and variance adjusted test for non-normal data, RGLS slightly outperforms RLS. Power analyses 

found that RLS generally showed small loss in power compared to ML and performed better than 

RGLS. 
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Based on the assumption of multivariate normality, maximum likelihood (ML) and generalized 

least squares (GLS) methods provide the oldest and most widely used estimators and tests in 

structural equation modeling (SEM) (Bollen 1989, Browne 1974, Hu et al. 1992, Jöreskog 1969, 

Lee 2007). The behavior of their statistics, especially the chi-square goodness-of-fit tests, is based 

on asymptotic properties that require sample size to be very large. Simulation research has found 

that small sample size 𝑁 is the main contributor to failure of asymptotic theory, but large number 

of variables 𝑝 and/or parameters 𝑞, small number of indicator loadings per factor, and small ratio 

of 𝑁  to degrees of freedom 𝑑𝑓  also contribute to spurious goodness-of-fit model rejections 

(Arruda and Bentler 2017, Boomsma 1982, Moshagen 2012, Shi et al. 2018, Shi et al. 2019, Yuan 

and Bentler 1999).  

Two methods have recently been developed to correct the false model decision issue. Arruda 

and Bentler (2017) proposed a regularized GLS (RGLS) that “regularizes” an ill-conditioned 

sample covariance matrix. Simulations show that RGLS outperforms both ML and GLS across 

varied sample sizes. Hayakawa (2019) rediscovered a methodology based on both ML and GLS, 

Reweighted Least Squares (RLS), and showed that it similarly outperforms ML and GLS. 

However, the comparative performance of RGLS and RLS at various sample sizes is unknown. 

That is the focus of this paper. ML and GLS are included to provide a historic baseline. 

This article proceeds as follows. First, we summarize ML and GLS estimation and tests. Next, 

we give technical definitions of RGLS and RLS. Then, we introduce the data generation and Monte 

Carlo simulation methodology to be used in normal and non-normal data. The fourth section 

discusses simulation results. The fifth section is power analysis of different methods and their 

robust variants, and a discussion follows.  
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Classical SEM Test Statistics: ML and GLS 

Let 𝑥 ∈ {𝑥1, … . , 𝑥𝑁} be a random sample with all 𝑥𝑖  identically and independently distributed 

according to a multivariate normal distribution N [0, 𝚺]. A confirmatory factor model 𝒙 =  𝚲𝝃 +

 𝜺 is used to generate measured variable 𝒙 under various conditions on a  𝑚 × 1 vector of common 

factors 𝝃 and a 𝑝 × 1 vector of unique measurement errors. In SEM, we further assume that 𝚺 is a 

matrix function of a vector of unknown population parameters 𝜽 (𝑞 × 1), with 𝚺 = 𝚺(𝜽 ). The 

covariance structure of interest here is the confirmatory factor model  𝚺 = 𝚲𝚽𝚲′ + 𝚿, where 𝚲 is 

a 𝑝 × 𝑚 matrix of factor loadings, 𝚽 = 𝑐𝑜𝑣(𝝃) and 𝚿 = 𝑐𝑜𝑣 (𝜺). Assuming an identified model, 

the elements of 𝜽 are the unknown free parameters in these matrices.  

The sample covariance matrix, as usual, is 𝑺 =  ∑ (𝑥𝑖 − 𝑥̅)(𝑥𝑖 − 𝑥̅)′/(𝑁 − 1)𝑁
𝑖=1 , where the 

sample mean is  𝑥̅ =  ∑ (𝑁
𝑖=1 𝑥1, … . , 𝑥𝑛)/𝑁. The maximum likelihood estimator 𝜽̂𝑀𝐿 is obtained at 

the minimum of 

 

𝐹𝑀𝐿(𝜃) = log|𝚺 (𝜽)| − log|𝑺| + 𝑡𝑟(𝑺𝚺(𝛉)−1) − 𝑝,               (1) 

 

yielding the ML test statistic 𝑇𝑀𝐿 = (𝑁 − 1)𝐹𝑀𝐿(𝜽̂) (Jöreskog, 1969). If the structural model is 

correct and N is sufficiently large, 𝑇𝑀𝐿 can be referred to a 𝜒𝑝∗−𝑞
2  distribution, where p* is the 

number of nonduplicated elements of 𝑺. In small samples 𝑇𝑀𝐿 over-rejects the true model. 

 The normal-distribution GLS function (Browne, 1974) to be minimized is  

 

𝐹𝐺𝐿𝑆 =  2−1 𝑡𝑟[{(𝑺 − 𝚺(𝜽))𝑽}2]          (2) 
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where 𝑽 is a consistent estimator of 𝚺−𝟏. In practice, 𝑽 = 𝑺−𝟏 . The GLS estimator 𝜽̂𝐺𝐿𝑆 is ob-

tained at the minimum of (2), with associated GLS test statistic 𝑇𝐺𝐿𝑆 = (𝑁 − 1)𝐹𝐺𝐿𝑆(𝜽̂) similarly 

referred to a 𝜒𝑝∗−𝑞
2  distribution. 𝑇𝐺𝐿𝑆 tends to under-reject the true model, especially with small N.  

 

Improved Test Statistics: RGLS and RLS 

Regularized GLS 

Arruda and Bentler (2017) proposed that the poor performance of GLS might be due to bias in the 

eigenvalues of 𝑺, specifically, their excess extremity (too large or too small) as compared to the 

eigenvalues of 𝚺. The condition number (ratio of largest to smallest eigenvalue) of 𝑺 is larger than 

that of 𝚺 and decreases monotonically with sample size (Yuan and Bentler 2016). Chi and Lange 

(2014) proposed Maximum a Posteriori (MAP) estimation, which introduces a nuclear norm 

penalty (CERNN) in the maximum likelihood framework. This function provides a simple non-

linear transformation of the sample eigenvalues thereby offering a reliable means of stabilizing 

covariance estimation. The general idea of covariance estimation regularization is to extract the 

eigenvalues from an ill-conditioned covariance matrix if not singular and regularize them 

according to a quadratic function. Through this regularization scheme highest eigenvalues will be 

pushed down, and lowest eigenvalues will be pulled up.  

The method to do this is straightforward. For a given symmetric matrix 𝑺 , it can be 

decomposed into eigenvectors and eigenvalues through spectral decomposition.  

 

 

𝑺 = 𝑸𝑫𝑸′          (3) 
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As shown in equation 3, 𝑸 is an orthogonal matrix containing the eigenvectors of 𝑺 , and 𝑫 is a 

diagonal matrix that contains the eigenvalues of S, 𝑑𝑖𝑎𝑔(𝑑1, ⋯ , 𝑑𝑝). Structured estimation of 

covariance matrices can be evaluated from two perspectives: generalized linear models and 

regularization (Pourahmadi 2013). Regularized estimation of covariance matrices and their 

inverses are based on a wide spectrum of structural assumptions, which has been a subject of 

debate. Covariance matrix regularization schemes are subject specific. For example, banded 

sample covariance matrices are suitable for time series and spatial data, in which the order of the 

components is significant (Chi and Lange 2014, Huang et al. 2006, Rohde and Tsybakov 2011).  

Chi and Lange (2014) do not assume any special prior structure; instead, they adopt the 

rotationally-invariant estimators proposed by Stein (1975). As they point out, their main purpose 

is to regularize the eigenvalue structure of the sample covariance matrix. Stein (1956) suggested 

an alternative unstructured covariance matrix estimator in the form  

 

𝚺̂ = 𝑸𝑑𝑖𝑎𝑔(𝑒1, ⋯ , 𝑒𝑝)𝑸′,        (4) 

 

where 𝚺̂ is a regularized estimation of covariance matrix with improved eigenvalue structure, and 

𝑒𝑖 is a shrunken estimate of 𝑑𝑖. This method retains the same eigenvectors. The shrunken estimates 

are obtained by adding a penalty function to a standard function to steer the estimated eigenvalues 

toward the geometric mean of sample eigenvalues. In MAP (Chi and Lange 2014), this is done by 

minimizing the objective function 

 

𝑓(𝚺) =  
𝑁

2
 𝑙𝑛|𝚺| +  

𝑁

2
𝑡𝑟(𝑺𝚺−1) +  

𝜆

2
[𝛼‖𝚺‖∗ +  (1 − 𝛼)‖𝚺−1‖∗].    (5) 
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As shown in equation 5, the first two terms of which are the typical negative log-likelihood 

function under normality. According to Chi and Lange (2014), the penalty is the term in brackets 

and is an 𝛼-weighted linear combination of nuclear norms, here, simply trace norms. Intuitively, 

the sums should be as small as possible. 𝜆  is a penalty parameter. As  𝜆 ⟶ 0, the solution 

approaches the maximum likelihood solution, and eigenvalues will equal sample eigenvalues. As 

𝜆  increases, the more aggressively the eigenvalues are shrunk toward the geometric mean. 

Appropriately, as N⟶ ∞, the data will overwhelm the penalty, making it follow a standard chi-

square distribution. 

 The way to minimize the objective function (equation 5) involves the determinations of  𝜆 and 

𝛼. Alpha (𝛼) is a parameter that controls mixture between the trace and inverse trace penalties. 

Chi and Lange (2014) proposed to compute it as 𝛼̂𝑟 = (1 + 𝑑̅2)
−1

, where 𝑑̅ is the mean of the 𝑑𝑖, 

the eigenvalues of 𝑺. Arruda and Bentler (2017) showed that 𝛼̂𝑟 might be susceptible to extreme 

sample eigenvalues, they chose to 𝛼̂𝑅 = (1 + 𝑑̂2)−1 where 𝑑̂ is the median of the 𝑑𝑖 . In their work, 

Arruda and Bentler showed that 𝛼̂𝑅 generated smaller condition numbers, and in the subsequent 

chi-square test, 𝛼̂𝑅 outperforms 𝛼̂𝑟. Therefore, in this study we only focus on 𝛼̂𝑅, and use it to 

determine penalty parameter 𝜆.  

There are different methods to find the penalty parameter 𝜆  based on covariance matrix 

estimation, we followed the same strategy of Chi and Lange (2014) and chose 𝜆  in the 

unsupervised context. That is, we partition the observed data 𝒀 ∈ ℝ𝑛×𝑝 into 𝑘 disjoint sets, and 

employ 𝜅-fold cross-validation, where often  𝜅 = 10 (Pourahmadi 2013). We partition each data 

set into training and validation sets. The covariance matrix is estimated based on the validation 

sample. Subsequently, the estimated covariance matrix is evaluated according to the following 

predictive negative log-likelihood of the estimated covariance matrix of the training set:  
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ℓ𝑘(𝚺̂𝜆
(−𝑘)

, 𝒀𝑘) =  
𝑛𝑘

2
ln det 𝚺̂𝜆

(−𝑘)
+  

𝑛𝑘

2
 tr (

1

𝑛𝑘
𝒀𝑘

𝑡 𝒀𝑘[𝚺̂𝜆
(−𝑘)

]
−1

).      (6) 

Where 𝒀𝑘 denotes the 𝜅th subset, and 𝑛𝑘 denotes the number of its rows, and 𝚺̂𝜆
(−𝑘)

 denotes the 

estimate using all but the  𝜅th partition 𝒀𝑘. During these processes, the estimation is based solely 

on λ, since we adopt the pre-determined 𝛼̂𝑅  at the value derived previously. We repeat the 

procedure 𝜅 times for each value of 𝜆 that is auditioned, and an empirical average log-likelihood 

is calculated. Eventually, a series of penalty parameter 𝜆 = 0, ⋯ , 𝜆𝑚𝑎𝑥 are tested and an optimal 

𝜆 is selected, which minimizes the average ℓ𝑘 over the 𝑘 folds as follows:  

 

𝜆̂ =  arg min
𝜆∈{0,…,𝜆max}

1

𝑛
 ∑ ℓ𝑘(𝚺̂𝜆

(−𝑘)
, 𝒀𝑘)

𝑘

𝑘=1

. 

                        (7) 

 

Following the abovementioned procedures, the optimal values of 𝜆 and 𝛼 will be selected and 

incorporated into a quadratic equation (equation 8). The original eigenvalues 𝑑𝑖 will be shrunk in 

conforming to the quadratic equation, and “regularized” eigenvalues 𝑒𝑖 will be produced.  

 

𝑒𝑖 =  (−𝑁 +  √𝑁2 + 4𝜆𝛼[𝑁𝑑𝑖 +  𝜆(1 − 𝛼)])/2𝜆𝛼.           (8) 

 

As shown in equation 8, the values under the square root are nonnegative, so that the covariance 

matrix must be positive definite. The results are incorporated into equation 4, which derive a 

regularized covariance matrix Σ̂. Similar to Arruda and Bentler’s (2017), we used Chi and Lange’s 

(2014) MAP function to shrink (move toward their median value) the eigenvalues of 𝑺 and used 
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the resulting “regularized” sample covariance matrix, say Σ̂𝑅 , to replace the GLS weight matrix. 

Hence, RGLS is simply GLS in (2) with  -1

RV = Σ . The associated test statistic is 𝑇𝑅𝐺𝐿𝑆 , here denoted 

𝑇𝑅  for simplicity. Arruda and Bentler showed that 𝑇𝑅  outperforms 𝑇𝑀𝐿  and 𝑇𝐺𝐿𝑆, and produces 

highly stable results across different sample sizes.  

 

Reweighted least squares 

Reweighted least squares is even simpler. The first step is to compute the ML estimator 𝜽̂𝑀𝐿 and 

the associated MLΣ . Then, also using (2), 𝑇𝑅𝐿𝑆 =  
𝑛

2
 𝑡𝑟{(𝑺 − 𝚺̂𝑀𝐿) 𝚺̂𝑀𝐿

−1 }
2
. Hence, the estimator is 

ML, but the GLS function (2) is evaluated with weight matrix 𝑽 = 𝚺̂𝑀𝐿
−1 . Hayakawa (2019) 

reported that RLS avoids the over-rejection problem of ML in the context of a confirmatory factor 

model, a panel autoregressive model, and a cross-lagged panel model. Zheng and Bentler (2022) 

also show that RLS outperforms ML and GLS in mean and covariance structure.  

From a practical perspective, the test statistic 𝑇𝑅𝐿𝑆  has been available in EQS for decades 

(Bentler 2006) and in LISREL after Version 8.52 (Joreskog et al. 2001). RGLS and its test statistic 

𝑇𝑅 are available in EQS 6.4. All computations and test statistics reported in this study were done 

with the R package ‘lavaan’ (Rosseel 2012) along with original R code for computing the above 

test statistics developed by, and available from, the senior author.  

Data Generation and Simulation Design 
 

In this study, the population follows a traditional confirmatory factor model  

 

𝑿𝒊 = 𝜦𝝃𝒊 + 𝝐𝒊,           (9) 
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where 𝑿𝒊 = (𝑋𝑖1, 𝑋𝑖2, … , 𝑋𝑖𝑝)′ is a vector of 𝑝 observations on person 𝑖 in a population, and 𝑖 =

1,2, . . . , 𝑁. Under the usual assumptions, this leads to the covariance structure 𝚺 = 𝚲𝚽𝚲′ +  𝚿. 

Specifically, we take         

 

𝚲′ = [
. 7 . 7 . 75
0 0 0
0 0 0

    
. 8 . 8 0
0 0 . 7
0 0 0

    
0 0 0
. 7 . 75  .8 
0 0 0

   
0 0 0
. 8 0 0
0 . 7 . 7

    
0 0 0
0 0 0

. 75 . 8 . 8
], 

 

 

𝚽 =

















15.4.

13.

1

 

 

 

We take the diagonal of 𝜮 =𝜤, so the unique variances are given by 𝚿 = 𝑰 − diag(𝚲𝚽𝚲′). This 

population model, previously used by Hu et al. (1992), Huang and Bentler (2015), Arruda and 

Bentler (2017), Jalal and Bentler (2018), and Zheng and Bentler (2022) was adopted to allow 

comparison to previous research. Regarding methodology, sample size, and testing criteria, we 

follow Arruda and Bentler (2017). With 𝑝 =15, and 3 latent factors, there 33 free parameters, and 

model tests have 87 degrees of freedom. Under the assumed 𝜒87
2  distribution, the expected value 

of a test statistic is 87 and its expected standard deviation is √2𝑑𝑓 ≈ 13.19. In normal distribution, 

ξ=𝚽1/2𝒁𝜉  and ε = 𝚿1/2𝒁𝜀 where 𝚽1/2𝚽1/2 = 𝚽, 𝚿1/2𝚿1/2 = 𝚿, and both 𝒁𝜉 and 𝒁𝜀 followed 

a standard normal distribution 𝒩(0, 1). 

The data generating process consists of two steps. For a given N, a sample 𝝃𝒊 is drawn from a 

multivariate normal distribution with covariance matrix 𝚽, while the unique factors 𝝐𝒊 are drawn 

from a multivariate normal distribution with covariance 𝚿. These are used to generate the observed 

𝑿𝒊  using (7). This procedure generates one normal sample from the population structure 𝚺 =

𝚲𝚽𝚲′ +  𝚿; this is repeated 1000 times. In each sample, the parameters are estimated, and various 
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statistics related to 𝑇𝑀𝐿 , 𝑇𝐺𝐿𝑆 , 𝑇𝑅 , and 𝑇𝑅𝐿𝑆  are computed. In addition, all this was repeated at 

varied sample sizes from 50 to 100,000.  

Performance of the various methods across the 1000 replications at each N is summarized and 

presented below. Because RGLS aims to reduce the extremity of eigenvalues of Σ̂𝑅 as compared 

to S, we first compute and present the condition numbers of those matrices. Then we summarize 

results on the performance of the various test statistics, such as their means, biases, standard 

deviations, and model rejection rates with α=.05 at various sample sizes. 

 

Normal Data Results 

Condition Numbers 

In each sample, we computed the condition number, the ratio of largest to smallest eigenvalue. 

The empirical averages of these condition numbers across 1,000 replications at each N is shown 

in Table 1. Given that the population covariance matrix has a condition number of 15.35, at N = 

100,000 we would expect the condition numbers of 𝑺 and Σ̂𝑅  to be close to 15.35 on average. This 

occurs, thus validating the simulation results. As N increases from 50 to 100,000, the mean 

condition numbers of 𝑺 monotonically decrease; as expected, eigenvalues are more extreme as N 

decreases. In contrast, the mean condition numbers of  Σ̂𝑅  are remarkably stable across N and are 

always close to 15.35. RGLS regularization has achieved its objective. 

The variability (standard deviations, SDs) of condition numbers across replications within a 

given N also show, as expected, larger SDs with smaller Ns. However, these SDs vary widely from 

.09 to 14.87 for 𝑺, but are much more stable with SDs of .08 to 2.71 for Σ̂𝑅 . 
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Table 1 

 

 

Performance of Test Statistics 

Table 2 shows the mean values, across 1,000 replications of 𝑇𝑀𝐿, 𝑇𝐺𝐿𝑆, 𝑇𝑅, and 𝑇𝑅𝐿𝑆 at each 

sample size. The expected mean test statistic for each estimation method is 87. The table also 

shows the percent bias of each of these means. It is obvious that the mean 𝑇𝑀𝐿 is always too large 

(positive bias), except at the largest sample sizes; the mean 𝑇𝐺𝐿𝑆 is typically too small (negative 

bias), except at the largest N. These results are consistent with previous simulation research, such 

as Yuan and Bentler (1999) for ML results with smaller N, and normal theory condition 1 for ML 

and GLS in Hu et al. (1992) for larger N. The mean 𝑇𝑅 shows a small positive bias at the smallest 

Ns, but the mean 𝑇𝑅𝐿𝑆 shows virtually no bias – less than 1% at all but one sample size. 
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Table 2 

 

 Table 3 shows the SDs of the test statistics across replications within each sample size, 

expected to be about 13.19. All methods’ SDs meet our expectations when N>400. The SDs of 𝑇𝑅 

and 𝑇𝑅𝐿𝑆 are generally more stable than those of 𝑇𝑀𝐿 and 𝑇𝐺𝐿𝑆. With smallest Ns, the SDs of 𝑇𝑀𝐿 

and 𝑇𝐺𝐿𝑆, and especially that of 𝑇𝑅 at N=50, deviate from 13.19.  
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Table 3 

 
 

Mean P-values and Empirical Rejection Rates 
 

Next, we turn to performance of average p-values and empirical rejection frequencies. Since this 

simulation was done under the null hypothesis, the distribution of p-values should be 

approximately uniform with a mean of .5, and with the chosen significance level 𝛼 = .05, the 

expected empirical rejection rates of the correct model should be about .05.  

Table 4 presents, for each sample size and for each statistic, the mean p-value across the 1,000 

replications as well as the number and proportions of p-values less than .05. The average p-values 

are given in the left part of the table. When N ≥ 1,000, the mean p-values of all methods are close 

to .5, while with N=50, mean p-values of ML and GLS deviate substantially from .5 in opposite 

directions. The mean p-values of RGLS and RLS are marginally less than .5, with RLS being more 

stable. The mean p-values of RGLS range from .421 to .507, while those of RLS vary from .483 

to .498.  
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Table 4 

 

 

The rejection rates out of 1000 replications are shown on the right of Table 4. The results reveal 

that the empirical rejection rates are excessively large at the smallest of sample sizes for ML; while 

GLS over-accepts the null hypothesis, with rejection rates ≤.01 when N≤100. When N=500, there 

rejection rates are more reasonable for all methods. The RGLS empirical rejection rates are close 

to the nominal level, ranging from .038 to .118, but a bit too large at N<70. In contrast, the RLS 

empirical rejection rates are very stable across N, ranging from .031 to .063.  

 

RLS and RGLS in Non-Normal Data 

Non-normally distributed data are ubiquitous in real world data analysis, and goodness-of-fit tests 

which work in normal data may not work equally well in non-normal data. In this section, we will 

evaluate the performances of RLS and RGLS in the context of non-normal data distributions. We 

use three different distributional conditions: a normal distribution, an elliptical distribution, and a 
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skewed distribution. Data generation procedure of normal distribution is the same as what we have 

discussed in the previous section, where 𝒙 is simulated from a confirmatory factor analysis (CFA) 

based on 𝒙 = 𝚲𝝃 + 𝜺, and the population covariance matrix is 𝚺 =  𝚲𝚽𝚲′ + 𝚿. In the elliptical 

distribution condition (symmetric distributions with heavy tails), ξ = 𝑟𝚽1/2𝑍𝝃, and ε = 𝑟𝚿1/2𝑍𝜺 

with r ∼ (3/𝜒5
2) 1/2 , 𝚽 = 𝑐𝑜𝑣(ξ)  and 𝚿 = 𝑐𝑜𝑣(𝜺) . In the skewed distribution condition, ξ = 

𝑟𝚽1/2𝑍𝝃 and ε = 𝑟𝚿1/2𝑍𝜺 where 𝑍𝝃 ∼ standardized (𝜒1
2). For each condition, we simulated 1,000 

samples. This method of generating elliptical and skewed distributions has been used by Hu et al. 

(1992), Yuan and Bentler (1998), and Du and Bentler (2022). The descriptive statistics about skew 

and kurtosis of the variables are include in Table A1 in Appendix.  

 In this study, we propose to examine three robust test statistics: the scaled test, the adjusted 

test, and the adjusted test with a 𝑑𝑓 correction on ML, RLS and RGLS. These robust tests are 

defined as 

𝑇̇𝑀𝐿 =  
𝑑𝑓

𝑎̂1
𝑇𝑀𝐿             (10) 

𝑇̈𝑀𝐿 =  
𝑎̂1

𝑎̂2
𝑇𝑀𝐿             (11) 

𝑇̈𝑀𝐿
𝑐 =  

𝑎̂1

𝑎̂2
𝑐 𝑇𝑀𝐿            (12) 

In equation 10, 𝑇̇𝑀𝐿 is referred to a chi-square distribution with 𝑑𝑓 degrees of freedom. In these 

equations, 𝑎̂1 = 𝑡𝑟(𝑼̂𝚪̂) , and 𝑎̂2 = 𝑡𝑟[(𝑼𝚪)2] . 𝑼̂ = 𝐖̂ − 𝐖̂𝐆̂ (𝐆̂′𝐖̂𝐆̂)−1𝐆̂′𝐖̂ , 𝐖̂ =

 
1

2
D𝑝

′ (Σ̂−1⨂Σ̂−1)D𝑝, 𝐆̂ = 𝐆(𝜽̂𝑀𝐿), and 𝐆(𝜽̂𝑀𝐿)=
𝜕𝝈(𝜽̂𝑀𝐿)

𝜕𝜽̂𝑀𝐿
′ . 𝛀̂ = (𝑁 − 1)−1 ∑ (𝑠𝑖 − 𝑠̅)(𝑠𝑖 − 𝑠̅)′𝑁

𝑖=1 , 

and 𝑠̅ =  𝑁−1 ∑ 𝑠𝑖
𝑁
𝑖=1 . Satorra and Bentler (1988) proposed scaling the test statistics 𝑇𝑆𝐵 =  𝑇𝑀𝐿/𝑘, 

where 𝑘 = 𝑡𝑟(𝑼𝚪)/𝑑𝑓 is a scaling factor that corrects 𝑇𝑀𝐿 so that the sampling distribution of 𝑇𝑆𝐵 

at least matches the first moment of the nominal chi-square distribution. The scaling factor 𝑘 is an 

estimate of the average of the nonzero eigenvalues of 𝑼𝚪. Tong and Bentler (2013) find that when 
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𝑁 < 𝑑𝑓, equation 10 will not be a correct formula because there will not be the same number of 

eigenvalues that match the degrees of freedom. Moreover, Satorra and Bentler (1994) proposed 

adjusting the test statistic 𝑇̈𝑀𝐿 so that the resulting statistic has the same mean and variance as the 

chi-square distribution. Hence, in equation 12 𝑇̈𝑀𝐿 is referred to as a chi-square distribution with 

𝑑𝑓′ degrees of freedom, and 𝑑𝑓′ =  
𝑎̂1

𝑎̂2
 .  

Recently Hayakawa (2019) introduced a new adjusted test with a correction, 𝑇̈𝑀𝐿
𝑐 , as shown in 

equation 12, which is referred to as a chi-square distribution with 𝑑𝑓′ degrees of freedom. In 𝑇̈𝑀𝐿
𝑐  

the unbiased estimator is 𝑎̂2, which was proposed by Srivastava et al. (2014) and Himeno and 

Yamada (2014).  Du and Bentler (2022) also proposed to use the same unbiased asymptotic 

distribution free (ADF) estimator 𝑎̂2 in the study of robust test statistics.  This new 𝑎̂2 is different 

from that of equation 11 in that 𝑠𝑖 is defined as  

𝑠𝑖 = 𝝈 +  𝛀𝟏/𝟐𝒖𝒊 

where 𝑠𝑖 = 𝑣𝑒𝑐ℎ {(𝑥𝑖 − 𝑥̅)(𝑥𝑖 − 𝑥̅)′} , 𝐸(𝒖𝒊) = 0 , 𝐸(𝑠𝑖) = 𝝈 , 𝑣𝑎𝑟 (𝑠𝑖) =  𝛀,  𝑤𝑖 = 𝑼1/2𝑠𝑖 , 

𝐸(𝑤𝑖) = 𝑼1/2𝝈 , and  𝑣𝑎𝑟(𝑤𝑖) = U1/2ΩU1/2 . Therefore, Hayakawa (2019) proposed a new 

correction of unbiased estimator 𝑎̂2
𝑐 in the adjusted test as follows: 

𝑎̂2
𝑐 =  

1

𝑁(𝑁−1)(𝑁−2)(𝑁−3)
{(𝑁 − 2)(𝑁 − 1)𝑡𝑟((𝒀′𝒀)2) − 𝑁(𝑁 − 1)𝑡𝑟((𝑫)2) + [𝑡𝑟(𝒀′𝒀)]2}, 

where 𝒀 = (𝑦1, 𝑦2, … , 𝑦𝑁), 𝑫 = 𝑑𝑖𝑎𝑔(𝑦1
′𝑦1, … , 𝑦𝑁

′ 𝑦𝑁), 𝑦𝑖 =  𝑤̂𝑖 − 𝑤̅̂, 𝑤̅̂ =
1

𝑁
 ∑ 𝑤̂𝑖

𝑁
𝑖=1 .  

 The robust tests in equations 10, 11, and 12 are based on 𝑇𝑀𝐿. In the following analyses, we 

replace 𝑇𝑀𝐿 with the corresponding test statistics of RLS and RGLS, 𝑇𝑅𝐿𝑆 and 𝑇𝑅. Specifically, for 

the scaled test, we denote the ML, RLS and RGLS as 𝑇̇𝑀𝐿, 𝑇̇𝑅𝐿𝑆 and 𝑇̇𝑅. Similarly, we use 𝑇̈𝑀𝐿, 

𝑇̈𝑅𝐿𝑆 and 𝑇̈𝑅 to indicate the adjusted tests of ML, RLS and RGLS. For their corresponding adjusted 

tests with a correction, we denote them as 𝑇̈𝑀𝐿
𝑐 , 𝑇̈𝑅𝐿𝑆

𝑐  and 𝑇̈𝑅
𝑐. 
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Non-normal Data Test Results 

The evaluation of the test statistics is based on empirical type I error rates. The results reported in 

Table 5 are empirical Type I error rates ×1000 with 𝑎 = 0.05 across all tests. Based on criteria in 

Bradley (1978), the acceptable empirical Type I error rates (i.e., 0.025 to 0.075) are in bold font.  

Table 5 

Type I error rates × 1000 with 𝛼 = 0.05 
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Note: The acceptable empirical Type I error rates ×1000 (i.e., 25 to 75) are in bold font. 

 

 

 

Table 5 shows that in normal distribution, and when sample size is small,  𝑇̇𝑀𝐿, 𝑇̇𝑅𝐿𝑆, and 𝑇̇𝑅 

start to experience more empirical Type I errors. The explanation is that when sample size is 

smaller than 100, 𝛀̂ becomes an inefficient estimator for 𝑣𝑎𝑟(𝑠𝑖), because it contains the fourth-

order moments (Hayakawa 2019). Nonetheless, when sample size is larger, their empirical Type I 

error rates increasingly become closer to the nominal level (i.e., 0.05). In normal distribution case, 

𝑇̇𝑅𝐿𝑆, and 𝑇̇𝑅 have similar performances. In the adjusted test, the empirical Type I error rates of 

𝑇̈𝑀𝐿 and 𝑇̈𝑅𝐿𝑆 are close to nominal level, while 𝑇̈𝑅 is consistently deviated from it. In the adjusted 

test with a correction, the empirical Type I error rates of both 𝑇̈𝑀𝐿
𝑐  and 𝑇̈𝑅𝐿𝑆

𝑐  are inflated when 

sample size is smaller 100. In contrast, 𝑇̈𝑅
𝑐 delivers the most consistent Type I error rates that are 

within the acceptable range from 25 to 75.  

 In non-normal cases, both elliptical and skewed distributions, 𝑇̇𝑀𝐿 , 𝑇̇𝑅𝐿𝑆  and 𝑇̇𝑅  have good 

performances in empirical Type I error rates when N>500, whereas they tend to increasingly over-

reject the null hypothesis as sample size becomes smaller and inflate the Type I error rates. 𝑇̇𝑅 has 

an interesting behavior in the scaled test. 𝑇̇𝑅 tends to over-reject the null hypothesis when sample 

sizes are smaller than 100 in both normal and skewed distributions, whereas it tends to under-reject 
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the null hypothesis and deflate the Type I error rates in elliptical distribution case. In the adjusted 

test, all these robust test statistics tend to deflate the Type I error rates. This indicates that in real 

data analysis, the adjusted test seems to be biased towards the null hypothesis, making it the least 

ideal robust test of all that we have examined in this study. As for the adjusted test with a correction, 

𝑇̈𝑅𝐿𝑆
𝑐  and 𝑇̈𝑅

𝑐 outperform 𝑇̈𝑀𝐿
𝑐  in both elliptical and skewed distribution cases, because they both 

reduce the Type I error bias when sample sizes are smaller than 400. By and large, 𝑇̈𝑅𝐿𝑆
𝑐  avoids 

over-rejection problem unless the sample sizes are less than100 in both normal and non-normal 

distribution cases. Whereas 𝑇̈𝑅
𝑐  is advantaged over 𝑇̈𝑅𝐿𝑆

𝑐  in delivering the acceptable empirical 

Type I error rates in normal and non-normal distribution cases, which are negligibly deviated 

from .05, especially when sample sizes become smaller than 100.  

 

Power Analysis 

To better examine the performances of ML, RLS and RGLS, we need to compare the performances 

in which the models are misspecified, and examine which method is better to handle Type II error. 

If a test statistic requires smaller sample size to reject models with misspecification, then the power 

of that test is stronger. The power analysis requires that 𝚺 ≠ 𝚺(𝜽 ). This is done in two ways: 

Modifying our population model; and modifying our analysis model.  

Condition 1 consists of a modified population model and the original analysis model. In the 

population model we added two extra parameters to the original population model. We connect 

the second factor with the first manifest variable and the third factor with the sixth manifest 

variable and set the factor loadings at the values of .2 and .3 respectively. Thus, the new factor 

loading matrix is defined as: 
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𝚲′ = [
0.7 0.7 0.75
0.2 0 0
0 0 0

    
0.8 0.8 0
0 0 0.7
0 0 0.3

    
0 0 0

0.7 0.75  0.8 
0 0 0

   
0 0 0

0.8 0 0
0 0.7 0.7

    
0 0 0
0 0 0

0.75 0.8 0.8
]. 

 

 For condition 2, we modified the original analysis model as indicated in Figure 1 by creating 

an extra path connecting F2 to X4 and holding the correlation between F2 and F3 fixed. Under this 

condition it has a larger misspecification, thus we expect smaller sample sizes to reject the model. 

The samples are simulated from the original population model.    

 

Figure 1 

Diagram of the misspecified analysis model 

 

 
 

 

In both conditions, 1,000 replicated samples were drawn from a population with covariance 

structure. Because the hypothesized models are incorrect, we expect to reject them, and the 

rejection rate shows an estimate of the power of the test under these model misspecifications. The 

mean p-value and rejection rate for each replicated sample are computed. Table 6 reports mean p-

values and rejection rates of regular 𝑇𝑀𝐿, 𝑇𝑅𝐿𝑆, and 𝑇𝑅 in normal distribution. Table 7 reports that 

scaled test, adjusted test, and adjusted test with a correction of ML, RLS and RGLS in both normal 

and non-normal cases.  
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Table 6 

Power analysis in normal distribution 

 

 
 

 As we can see in Table 6, the empirical power of different estimators increases with larger 

sample sizes. In condition 1, when the sample size is about 2,000 and in condition 2 when sample 

size is about 400, all estimators completely reject the chi-square test statistics. Nonetheless, the 

rejection rates vary with the estimators within these sample sizes.  In condition 1 when sample 

sizes N<800, and in condition 2 when N<200 the ML method produces relatively smaller mean p-

values. As a result, it can reject in both conditions with smaller sample sizes as compared to RLS 

and RGLS. Therefore, the ML method produces the most power, although this is not meaningful 

since ML does not control Type I errors well. Comparing RLS and RGLS, in condition 1 when 

N<1,000, and in condition when N<200, RLS starts to outperform RGLS by producing smaller 

mean p-values, thus RLS produces more power than RGLS.  

This performance is consistent in both normal and non-normal cases for scaled test, adjusted 

test, and adjusted test with a correction based on ML, RLS and RGLS as shown in Table 7. As 

documented by Zheng and Bentler (2022), GLS has less power than ML and RLS, and this 

relationship translates to RGLS.   
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Table 7 

Power analysis of robust estimators in condition 1 

 
 

Table 7 shows the robust versions of ML, RLS and RGLS methods in condition 1. In normal 

distribution, 𝑇̇𝑀𝐿, 𝑇̈𝑀𝐿 and 𝑇̈𝑀𝐿
𝑐  tend to have the most power, when N=50, both 𝑇̇𝑀𝐿 and 𝑇̈𝑀𝐿

𝑐  can 

reject 96 percent of the test statistics. 𝑇̇𝑅𝐿𝑆, 𝑇̈𝑅𝐿𝑆 and 𝑇̈𝑅𝐿𝑆
𝑐  tend to have similar power, except when 

N=50, for which its reject rates is about 82 percent. In contrast, 𝑇̇𝑅, 𝑇̈𝑅 and 𝑇̈𝑅
𝑐 tend to have the 

least power when N<200. In elliptical distribution, 𝑇̇𝑀𝐿 and 𝑇̈𝑀𝐿
𝑐  have similar performance as in 

normal condition, but the rejection rates of 𝑇̈𝑀𝐿 and 𝑇̈𝑅𝐿𝑆 reduce a lot when N<200. In contrast, the 

power of 𝑇̇𝑅, 𝑇̈𝑅 and 𝑇̈𝑅
𝑐 reduce a lot in elliptical distribution. In skewed distribution, all variants 

of robust estimators reduce statistical power to reject the misspecified model, as compared to 
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normal and elliptical distributions. Still, the performance of 𝑇̇𝑀𝐿, 𝑇̈𝑀𝐿 and 𝑇̈𝑀𝐿
𝑐  is better than other 

robust variants of RLS and RGLS.   

Table 8 

Power analysis of robust estimators in condition 2 

 

 
 

  Table 8 shows the performances of robust variants of different estimators in condition 2, 

under which the analysis model is incorrect. In the normal condition, 𝑇̇𝑀𝐿 and 𝑇̈𝑀𝐿
𝑐  have similar 

rejection rates, while adjusted test 𝑇̈𝑀𝐿 has the least power as compared to 𝑇̇𝑀𝐿 and 𝑇̈𝑀𝐿
𝑐 . Similar 

performances are also shown in 𝑇̇𝑅𝐿𝑆, 𝑇̈𝑅𝐿𝑆, 𝑇̈𝑅𝐿𝑆
𝑐 , 𝑇̇𝑅, 𝑇̈𝑅 and 𝑇̈𝑅

𝑐. With both elliptical and skewed 

distributions, 𝑇̇𝑀𝐿, 𝑇̈𝑀𝐿 and 𝑇̈𝑀𝐿
𝑐  have similar powers, and consistently less than those in normal 
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distributions.  𝑇̇𝑅𝐿𝑆 and 𝑇̈𝑅𝐿𝑆 have more power in elliptical condition, while 𝑇̈𝑅𝐿𝑆
𝑐  has more power 

in skewed condition when N<300. 𝑇̇𝑅 tends to have slightly more power in the skewed distribution 

than in the elliptical distribution. In contrast, 𝑇̈𝑅  and 𝑇̈𝑅
𝑐  have more power in the elliptical 

distribution than in the skewed one.  

Discussion 
 

The most important results of these Monte Carlo simulations involve the rejection rates of the four 

test statistics at various sample sizes in normal data, and the Type I error rates in non-normal data. 

We found that 𝑇𝑅𝐿𝑆 and 𝑇𝑅 perform equally well when the samples are sufficiently large (N>70 in 

this study), although the behavior of RLS is near-ideal at all sample sizes. Consistent with prior 

research, and hence not surprisingly, both methods clearly outperform ML and GLS at 

intermediate to small sample sizes (N≤400). In non-normal cases, particularly the adjusted test 

with a correction, both 𝑇̈𝑅𝐿𝑆
𝑐  and 𝑇̈𝑅

𝑐 are superior to 𝑇̈𝑀𝐿
𝑐  in overcoming the over-rejecting problem, 

and 𝑇̈𝑅
𝑐 has more consistent performance in delivering p-values that are within the acceptable range 

than 𝑇̈𝑅𝐿𝑆
𝑐 .  

These results are consistent with the separate results of Arruda and Bentler (2017) and 

Hayakawa (2019), but go beyond earlier work by showing that RLS is superior to RGLS at N=50, 

a condition not considered by Arruda and Bentler (2017). In the case of non-normal distribution, 

the results of this study really advanced our understanding of RGLS. However, there is some 

conflict with RGLS at N=60, with Arruda-Bentler showing a rejection rate of .065, while this study 

found the less acceptable rate of .084. In order to clarify the performance of these statistics at 

smaller sample sizes, an additional simulation study was done using the same model and 

methodology as earlier, but with a greater range of small sample size (N=50, 55, 60, 65, 70, 75). 
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For better stability, the number of replications was increased to 2000. The results are shown in 

Table 9 in similar format as in previous tables. 

 

Table 9 

 
 

 

Clearly, RGLS marginally over-rejects the true model at N=50, 55, 60. In contrast, the rejection 

rate of RLS is basically perfect. These findings suggest that among the methods considered here, 

𝑇𝑅𝐿𝑆 is the best choice for general SEM practice. It is advantaged over 𝑇𝑅 of simplicity in that it is 

much easier to program and requires less computational power. However, to get a more complete 

understanding of their comparative characteristics and advantages, further research could compare 

the performances of 𝑇𝑅𝐿𝑆 and 𝑇𝑅 with a greater range of number of factors and indicators, varying 

sizes of factor loadings, and an extended range of unique variances. Of course, it would be of 

interest to see whether any advantage of 𝑇𝑅𝐿𝑆 over 𝑇𝑅 also occurs in models that include a mean 

structure, such as in growth curve models.  

Another question for further research is whether the marginally problematic small sample 

behavior of 𝑇𝑅 can be further improved. As shown in Table 7, the mean of 𝑇𝑅 was a bit too high, 

but its SD was especially high, suggesting that perhaps the regularization used to obtain the weight 

matrix 𝑽 in the GLS function (eq. 2) was not always effective enough. RGLS has so far been based 

on a default Chi and Lange (2014) methodology for shrinking the eigenvalues of the sample 
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covariance matrix. With small N, perhaps its tuning parameters need to be adjusted, or a 

completely different shrinkage method considered.  

Regarding the power to reject false models, ML and its robust variants tend to outperform RLS 

and RGLS, along with their robust variants in normal and non-normal cases. However, the inability 

of ML to control the alpha level under the null hypothesis makes its results less meaningful; since 

it overrejects the true model, rejecting a false model is not much of an accomplishment. At the 

same time, the loss in empirical power of RLS – which controls Type I errors –is small compared 

to ML. Yet, RLS exceedingly well controls alpha level with a correct model. In general, RLS and 

its robust variants outperform those of RGLS in both normal and non-normal cases.  

Finally, the current paper only considered RLS and RGLS in the context of normal theory GLS 

and GLS with robust corrections. It would be interesting if there were parallels to these methods 

in the asymptotically distribution free (ADF) method (Browne 1982, Browne 1984). However, we 

know of no way that RLS can be generalized to ADF, since there is no ML estimator of the ADF 

weight matrix. However, as noted by Arruda and Bentler (2017), since the estimated ADF weight 

matrix can be computed as the inverse of a type of sample covariance matrix (Huang and Bentler 

2015, Satorra 1992), the eigenvalues of this weight matrix also may be too extreme in small 

samples. Hence, in theory, weight matrix regularization may also improve the performance of 

ADF, but whether it actually does so, remains to be studied.  
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Appendix 

Table A1 provides the descriptive statistics of empirical kurtosis and skewness. A sample with 

N=10,000 is based on a simulation of a fixed covariance structure of the same population that is 

used in study. Table A1 contains three conditions: Normal, elliptical, and skewed cases. The 

kurtosis and skewness tests are conducted using R package “semTools” (Jorgensen et al. 2022). 

The measure of excessive kurtosis is computed by the fourth standardized moment of the empirical 

distribution of a variable, which is known as G2. The measure of skewness is computed by the 

third standardized moment of the empirical distribution of a variable, which is also known as G1.  
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Table A1 

Univariate Kurtosis-Skewness Normality Tests Under Three Distributional Conditions 

 
Note: If a skewness or kurtosis is 0, the data are perfectly normally distributed; whereas a skewness 

or kurtosis is between -.5 and .5 indicates that the data are still approximately normal. A negative 

kurtosis indicates that the distribution has lighter tails than the normal distribution. If a skewness 

or kurtosis is between -1 and -.5 or between 1 and .5, the distribution is moderately kurtotic or 

skewed. If a skewness or kurtosis is less than -1 or greater than 1, the distribution is considered 

highly kurtotic or skewed (Hair et al. 2017).  
 

  Table A1 shows that in the normal distribution simulation, the kurtosis and skewness statistics 

of all simulated variables are close to zero, with the largest value of -0.088. For the elliptical 

distribution, the kurtosis statistics range from 2.404 to 5.537, meaning that all simulated variables 

are kurtotic. Skew under the elliptical distribution is near zero, with -.076 as the largest discrepancy 

from zero. In contrast, for the skewed distribution, the statistics of skewness range from 1.029 to 

1.713; whereas it may be noted that skew also induces kurtosis, with values somewhat smaller than 

under the elliptical distribution.  


