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INTRODUCTION

A post-industrial revolution is encouraging the deployment of novel concepts both for designing smart
factories and for creating a new generation of monitoring, control and man-machine collaboration
systems. In general, companies are embracing an era of smart manufacturing built upon Cyber
Physical Systems (CPS), the Internet of Things (IoT), and Cloud and Cognitive computing. Using
digital technologies with advanced manufacturing tools can provide opportunities for building smart
decision support systems (DSS) to improve manufacturing analysis, monitoring, output, and
performance. Despite the potential of improved Decision Support Systems (DSS), the major challenge
is successfully adapting smart manufacturing processes to use new digital technologies that can enable
the implementation of Intelligent systems and improved DSS.

Additionally, to move towards smart manufacturing, better means are required for technology
deployments. The speed of technology implementation should be significantly faster, and machines
should have greater accuracy of calibration in comparison to traditional manufacturing. One approach
to enhancing deployment is incorporating optimization models into manufacturing systems. This
change should provide a design that provides ease of use for operators and decision makers in real-
time during the manufacturing process.

This chapter defines requirements for various types of DSS (see Power, 2002 and 2004, for details on
the typology of DSS) in a smart manufacturing environment based upon increased use of
optimization. It focuses on identifying key barriers which prevent the development and use of
enhanced or “smart” DSS in manufacturing and then provides the requirement and architecture for a
system engineering design for using optimization and other techniques with advanced computing and
manufacturing technologies.

This review aims to promote a standard design or framework that is useful for both the manufacturing
and academic communities that can facilitate needed efforts and innovation while stimulating
adoption and use of smart manufacturing technologies.

BACKGROUND

Mathematical models and optimization techniques are the driver for model-driven DSS. With regards
to the structure of data and a problem’s objective and constraints, many programming tools and
mathematical algorithms are available to aid decision-makers in building a DSS with optimal
recommendations. The critical step is to know the type of optimization algorithm needed to solve the
problem. For more details on a taxonomy of optimization problems, one can refer to a comprehensive
collection of optimization resources at https://neos-guide.org/.

Mathematical algorithms support convergence towards optimal solutions. This review classifies
optimization problems in terms of traditional and intelligent approaches. The most commonly used
intelligent optimization models are search-based (i.e., metaheuristic models), learning-based (i.e.,
machine learning models), uncertainty-based (i.e., robust optimization; stochastic optimization),
simulation-based (i.e., Markov Chain Monte Carlo) and Markov Decision Process (MDP) (see Tao et



al., 2016, for a comprehensive review on intelligent optimization).

Although using an intelligent optimization algorithm can gradually adapt a specific model-driven DSS
for smart manufacturing, such a DSS requires several other criteria be met to be adequately
intelligent. More intelligent DSS are created with a learning algorithm, a knowledge sharing system,
and with cognitive computing capabilities. Nevertheless, in a smart manufacturing system, with
connectivity among all manufacturing processes, an intelligent, integrated DSS is required to manage
a manufacturing system. Features of an integrated, intelligent DSS include expert knowledge, risk
management, production control, quality monitoring, marketing and sales management, project
management, and supply chain (SC) support. Guo (2016) provides an extensive collection of DSS
capabilities and features needed for managerial tasks of smart manufacturing integrated with
intelligent optimization algorithms.

There is a gap in the literature on the applications of optimization techniques in DSS for smart
manufacturing. Moreover, there is a lack of a comprehensive system design which can cover all types
of DSS and managerial decision making (DM). This analysis identifies the requirements of parameter
alignment, and conceptual design of an integrated, intelligent DSS for smart manufacturing by
considering the core of an optimization procedure.

DECISION SUPPORT CAN AID SMART MANUFACTURING INITIATIVES

Manufacturing in developed nations must incorporate more data capture and decision support to
control costs and maintain product quality. Digital transformation of manufacturing means production
must be transformed using technologies like robotics, [oT, Intelligent systems, and real-time analytics.
Smart manufacturing means all aspects of production are transformed so they are data, computing,
and decision support intensive. Smart manufacturing has been defined by i-SCOOP.eu as the "fully-
integrated, collaborative manufacturing systems that respond in real time to meet changing demands
and conditions in the factory, in the supply network, and in customer needs." Various decision support
and data-driven capabilities must be incorporated in smart manufacturing systems, including:

Knowledge-Driven DSS

In a smart manufacturing environment, sharing expert domain knowledge at the manager-operator and
operator-machine interface level is very important. Recommender systems and opinion mining can
support real-time, data-based decision making. Machine/user relationship mining and clustering can
increase the self-awareness, self-learning, and self-maintenance of production systems. Finally,
Reciprocal Learning-Based DSS (RL-DSS) can make repetitive decisions and reduce the human
decision making load. Routine decision tasks can be programmed and learning algorithms can
enhance performance. Then decision makers can update their knowledge and the improved system
helps create better decisions than previously possible for semi-structured decisions. Research
challenges include:

e Providing Man-Machine Knowledge-Sharing
¢ Knowledge-Mining
e Creating Reciprocal Learning-Based DSS

Data-Driven DSS / Document-Driven DSS

Big Data Management in the Cloud can improve data management and distribution for both
“machine-generated data” and ‘“human-generated data.” Real-time automated fault detection,
classification and root-cause detection should be optimized using data from sensors. Finally, data-
driven DSS should integrate real-time and special study data analytics. New and expanded data
sources can enhance predictive analytics and output can be quickly shared using visualization tools.



Model-Driven DSS

Factories of the Future (http://www.effra.eu/factories-future) require integrated supply chain
management, improved demand forecasting, and technology integration throughout the supply chain
management process. Sensors combined with quantitative models can reduce costs and identify faults
in the supply network itself, such as sensor failure and degradation. Ideally models will optimize the
frequency and timing of sensor measurement and will eliminate or reduce supply chain network
delays.

Creation of an Intelligent Feedback Control System can improve product quality and can provide
feedback for system management, which can be used to improve production scheduling, to maintain
machinery, and improve proactive maintenance.

Communication-Driven DSS

More machine to machine and person to machine decision support can facilitate the sharing of
machines across different tasks or under different conditions. Developing simulation tools can help
train operators and decision makers, prevent impending problems, and help in taking corrective action
in a timely manner. If Artificially Intelligent machines communicate, then security challenges will
increase, but shared decision making will increase in the capabilities of the production network.

Challenges to Improving DSS

Smart manufacturing requires intelligent systems and decision support for human participants.
Improving DSS capabilities is necessitated by the development and deployment of smart
manufacturing systems. The main sources of challenge are:

e Innovation: The fast growth of start-up firms has lead to accelerating change in
manufacturing environments. The production function has become a source of innovation. On
the other hand, innovation in an organization often leads to increased personalization.
However, the sustainability in innovation due to rapid change in technology is often
temporary. Invest in decision support may be delayed.

e Changes in Social Behavior: Customers are becoming more knowledgeable; and their
demand for quality, customer service, and rapid product adaptation to new technologies is
increasing. Therefore, manufacturing servitization, developing capabilities needed to provide
services and solutions that supplement traditional product offerings, is required. New service
capabilities often necessitate creating more integrated products, increased customer focus,
more automated services, support, and more knowledge integration in an effort to produce
value-added products. Additionally, rapid changes in leadership and culture must occur to
respond to rapid market, business, and technological change.

e Changes in Technology: Changes in technology set new standards for evaluating the
performance of manufacturing firms, such that from a quality management perspective, since
1987 (ISO 9000 series) society has moved to environmental management in 1992 (ISO 14000
series) and, recently, to an energy management perspective (ISO 50000 series). Other indices,
such as the Key Performance Indicators (KPI), must radically change in both definition and
metrics due to cross-factory integration.

e Changes in Market Behavior: Merging of small, medium, and large enterprises changes
the nature of competition in many markets. Lowering the general cost of IT infrastructure like
server and networks and market forces that are increasing the cost of innovative technologies
are increasing the dynamism and volatility in many industries. Robots and machines
participate in smart manufacturing systems by means of Artificial Intelligence (Al).
Therefore, the concept of a supply chain is not limited to moving services and products from



the supplier to customers; rather, supply chains must describe all transactions among different
parts of production systems and of the network both inside and outside of a manufacturing
environment.

Despite the challenges mentioned above, Table 1 summarizes some specific suggestions for
developing DSS and smart manufacturing solutions that can overcome them.

Table 1. Optimization-based solutions for overcoming DSS challenges in smart manufacturing

Quick Solutions Detailed Solutions
Digitalize knowledge- | * Incorporating the behavior of human decision makers with proposed
based DSS solutions.
. Automating decisions previously made by humans.
. Improving the interface of Information Systems for humans.
Incorporate dynamics | © Developing stochastic and dynamic versions of solutions and deterministic
into the solutions models.
. Anticipating stochasticity in the models based on dynamic programming,
robust optimization, and stochastic programming.
Design software-based | ¢ Considering the role of high-tech computing techniques, including cloud
solutions with a user- | computing techniques in DM and parallel computing on Graphics Processing Units
friendly interface (GPL).
. Knowing the restrictions of management software for smart manufacturing
management, process, and production.
. Proposing alternative software solutions, including service-oriented
computing and software agents for planning and scheduling applications.
Create a hybrid . Facilitating planning problems and a DM-based optimization and data
configuration of analysis perspective.
optimization models . Implementing “Manufacturing Execution System” (MES), “Enterprise

Resource Planning” (ERP), and “Advanced Planning and Scheduling” (APS) for
developing integrated production planning and scheduling solutions.

. Decreasing measurement uncertainty by merging the hybrid metrology
with state-of-the-art statistical analyses.
Enable Simulation and | * Simulating the physical environment to comprehend the connections amid

Data-driven solutions | real-world circumstances; and planning to find solution-based approaches in a risk-
free environment before applying those solutions.

. Visualizing production planning processes by use of event-driven process.
. Modeling and analyzing manufacturing challenges by utilization of
various simulation paradigms.
. Supporting the different aspects of DM in smart manufacturing by
embedding the actual simulation methods in existing and forthcoming information
systems.
Encourage Process . Integrating decisions made by the different elements of the system to avoid
integration ad hoc situations.
. Integrating high-tech computing procedures to derive computationally

tractable models, and to engage in discourse regarding the diverse uncertainties
encounterable in the industry.

. Incorporating sustainability aspects into proposed solutions and
deterministic models.

. Taking the product’s lifetime into account and integrating with demand
planning.

KEY COMPONENTS OF INTELLIGENT, INTEGRATED DSS

This section defines a framework and a reference architecture to support the requirements for more
intelligent, “smarter” DSS. Three components are explored: 1) the environment, 2) the architecture,
and 3) the requirements. The discussion is based upon common principles, assumptions, and
terminology for better integration and interoperability.



A. Environment

Cyber-Physical Systems (CPS) integrate computation, networking, and physical processes. A CPS
links cyberspace with the physical world through a network of interrelated elements such as sensors
and actuators, robotics, and computational engines. These systems are highly automated, intelligent,
and collaborative. A CPS is sufficient when only standalone model-driven, data-driven, and
document-driven DSS are implemented. However, when knowledge-driven and communication-
driven DSS are integrated with other types of DSS, the CPS itself cannot adequately cover
interactions among the system components. In this case, only a Cyber-Physical-Social System (CPSS)
can support all aspects of decision support needed in the system. Semantic integration transfers
information between the physical world and CPSS, and delivers knowledge between a CPSS and
communities of practice. In smart manufacturing, communities include expert engineers/managers
and/or machines/manufacturing tools. Communication can be defined in terms of its occurrence either
on a vertical level (between members at different expertise and application levels) or on a horizontal
level. Machines in the same group and similar application can form a community if they are carrying
out knowledge activities and if they can either learn from or teach other members of the group. A
schematic of the CPSS is illustrated in Figure 1.

Cyber space

Smart interaction

human-human,
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Physical space Social space

Learning-teaching interaction
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Figure 1. Schematic of a Cyber-Physical-Social System

Ideally, the CPSS environment will be an autonomous, sustainable, and intelligent system that can
gather and organize resources into semantically rich forms that both machines and decision makers
can efficiently use. Additionally, each space is required to be capable of self-evaluation.

The evolution of socialnomics, especially social network peer reviews, related to products/services in
manufacturing organizations and more integrated operational structures defines a new concept of
social manufacturing systems, see Jiang et al. (2016). Information technology and decision support
must process these new data sources, especially for consumer facing goods.

B. Architecture

DSS can create a sophisticated management system. In general, DSS can integrate multidisciplinary
data sources and related tools to generate value-added information to support DM. This section
outlines a functional description of components required for realizing a system based on CPSS. The
architecture comprises inherent layers that are typically considered in requirements specifications for
production systems and associated analytics, and decision processes. The ten proposed architecture
layers are as follows:



Data Layer: Contains distributed spatial, constraint, and relational databases—and their meta-
data information. This layer provides transparent access to data without concern for their original
formats. Since the data layer is the most frequently accessed layer, a data warehouse system
usually exists to help improve performance. The data layer also provides the base for building
data-driven and document-driven DSS.

Information Layer: Contains a collection of domain-specific mathematic or analytic tools or
simulation models that help aggregate data into information. The analytic tools can be distributed
over a network of computers in each of the other layers in the architecture. The analytic tools
include domain-specific statistics, optimization, and simulation models. These domain-specific
tools can provide value-added information based on raw data from the data layer.

Knowledge Layer: Knowledge is created or discovered by combining information when it
transfers from an expert/intelligent engineer/machine to other parties in the system. Tools or
applications that provide or recognize domain-specific knowledge include data mining,
knowledge discovery algorithms, or traditional statistical inference approaches. The tools in the
knowledge layer do not make decisions. Instead, they contribute and organize knowledge that is
used in the decision making process. This layer also provides the knowledge base needed to build
a knowledge-driven DSS.

Integration Layer: In a smart manufacturing context, additional adapters for sensor and IoT
object integration are required. Due to the extensive variety in the use of various sensors, an initial
classification into an ontology-based enterprise data model is needed. The integration layer can
provide access for all types of DSS. In the integration layer, data from multidisciplinary sources is
combined into information that can be used as domain knowledge either by non-experts or by
machines. Those multidisciplinary data sources and related tools can be organized under a
hierarchical architecture structure to clarify their relationship. The system in this layer cannot
express the information context inside a domain-specific application for decision making.

Physical Configuration Layer: This layer deals with the practical deployment of essential
hardware for implementing CPSS such as sensors, actuators, machines, and personnel.
Information about the task, process plans, quality requirements, and real-time data can be stored
in the physical devices, which can repeatedly be read and written for production management
usage. The physical devices flow via wireless communications in the manufacturing environment,
and the information network and databases extracted from physical devices are configured and
connected with each other for information sharing.

Social Interaction Layer: The social interaction layer plays the role of a mediator to assist the
communication and collaboration among manufacturing components as described in the social
space of the CPSS. This layer also provides the base to build more comprehensive
communication-driven DSS.

In-Memory Data Management and Connectivity Layer: Due to the high volume of data and
the velocity by which it is generated by physical devices, an in-memory data management
platform is utilized, allowing for distributed in-memory data management with predictable latency
and fast data access for real-time data handling. An in-memory data store will act as a central
point of coordination, aggregation, and distribution. Besides data management, events such as
alerts or system messages communicate with users in this layer.

Predictive Learning Layer: Real-time data access via the in-memory data management platform
can be preprocessed, and the results are fed back to the in-memory data store. The aggregated data
are used for in-situ analysis. Historical data can be analyzed for pattern detection and correlated
with respective manufacturing process behaviors. Based on these patterns, manufacturing
abnormalities can be detected, learned, optimized, and applied to monitor real-time data streams.
Furthermore, modern Markov Decision Process (MDP) approaches could be combined with
historical data to optimize the learning procedure.

Presentation Layer: To enable decision makers to make quality real-time decisions, all relevant
data needs to be aggregated and visualized appropriately. Additionally, process engineers must be



notified proactively if a decision is required or when a deviation in the current state of a process is
detected. Moreover, a recommendation should be generated based on historical process analysis,
and drill-down functionality should allow for navigation to Bayesian information and enable
decision makers to make high quality decisions. Also, the presentation layer creates a user
interface platform for displaying decision rules to decision makers. It manages the
multidisciplinary meta-information from the layers beyond it. Based on the meta-information, it
can reflect and provide internal data and services to users by means of a user interface diagram.
The user interface can take many forms, such as a Web portal.

10. Intelligent Action Layer: DM happens in this layer based upon presented information.
Manufacturing processes can be adapted by adjusting the current decision. However, adaptations
in one process can lead to necessary changes in other interlinked processes. A consistent
transition of changes must be fed back into the process execution system(s) when adaptations
have taken place.

Figure 2. illustrates the relationship among the different layers.
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Figure 2. The schematic of the relationship among different layers of architecture

C. Requirements

To create the architecture needed required reasoning about a CPSS. A generalized framework of
methods, tools and concepts can describe the needed components required for all types of DSS in a
smart enterprise manufacturing environment. We define the following requirements:

o Engineering Methodologies: The combining of different engineering tools to build
different models of a smart plant; this may be expressed in the form of process models
using different process modeling languages. Methodologies decide which model to
produce and which modeling languages to use to describe the model.

e Modeling Languages: Used for shaping the different aspects of the system and its
entities—aspects including human roles, operational processes, functions, information,
the workplace, and production technologies.

o Engineering Tools: Used for implementing modeling languages, which are supported by
engineering methodologies, and model concepts to create, use, manage, analyze, evaluate,
and enact models for simulation and to provide a shared design repository or database.

o Model Concepts: Define and formalize the most generic concepts of models in the form
of ontological models, meta-models, or reference models.

e Modules: Used to implement the operating systems supported by models.



Functional Components: For connecting to DSS in the operation phase. The functional
components of DSS are included in all defined phases of software development and
support the rapid adaptability and reconfigurability of manufacturing within the smart
environment.

Information Analysis: Consists of the analytical process modeling, statistical data and
information modeling and analysis, quality management, and optimization.

System Management: Involves the definition of requirements and parametric
constraints. The reference structure of system management is open, which permits the
possibility of expansion and improvement of the system. It can also specify hardware,
processes, personnel, and facilities.

Mathematical Models: Adequate models of the processes for achieving the control tasks
of the system modules and equipment are required. The mathematical models allow for
the optimization of the process parameters, function, and behavior of the system,
information maintenance, operations and data management, and organizational structure.

Database: Methods, tools, and models are arranged in a database. The methods and tools
have to be characterized by their attributes for a database. Attributes determine their
applicability from the system requirements. The database contains a case library and a set
of solutions related to these cases. The attributes represent the objects in the database.

Attributes: Defined within the ontology model as relating to properties for each concept.
The attributes which are only used by the corresponding methods in each group, form the
basis for choice of a suitable method or tool for the given task. Attributes characterize the
prepared cases in detail and are stored in the database to be utilized in case-based
reasoning.

Ontology: Describes the meaning and relationships among modeling concepts
(definitions) available in modeling languages, to improve the analytic capability of
engineering tools and the usefulness of the models. Different components have different
ontologies that coincide only partially or even mismatch. However, ontologies can merge
and create a single coherent ontology; or they can align and reuse information from one
another.

Monitoring Agents: These follow system behavior after applying the recommended
method for design and control. The “data collection and acquisition” subsystem is
available and connected with monitoring agents.

Control Agents (Actuators): These execute control algorithms. During the real-time
control, the actuators interfere with an equipment control block initiated by some
industrial controller devices or which may occur following operator manipulation. State
feedback regulators can be implemented after receiving signals from measuring devices.

Equipment Control: Usually designed by equipment producers. It includes sources of
the actual measurement of data for the state of the physical or cyberspace equipment by
sensors or other measuring devices.

Object-Based Architectures: The most promising approach in modeling interactive
systems. These model the interface software as a composition of co-operating objects.
These models are highly modular and support concurrency, distribution of applications,
and multithread dialogues.

Interference Monitoring of a User’s Requirements: Defines outputs and inputs for the
identification of control work for making connection of external applications via the
internet or a local network for distributed computing. It is required to start as an
independent component and to connect to a server for computing. The resources could be
physically accessible in cyberspace.



o Readability of Knowledge: Knowledge has to be represented in a form which can be
read by a human or by a machine/computer.

o Reusability of Data: All data about the specific domains have to be stored, archived, and
organized for future reuse.

e Reproducibility: New knowledge has to be reproducible (based on historical
information), and it should be organized as a structured database.

e Contestability: Monitoring agents update the database with newly achieved results for
subsequent usage and application if all of the requirements are satisfied — or else the
monitoring and control agents have to repeat their operations.

o Connectivity: The data collection and acquisition, the information system, and system
management have to connect to DSS to provide decision makers, operators, and managers
with key information that enables them to make efficient and consistent decisions.

o Knowledge Sharing: Representation is the application of logic, computation, and
ontology for the task of constructing models for an application domain. Knowledge can
integrate with conjoint use of ontology and software patterns inside each component.

o Rules: Defined within an interference engine; serve to find solutions for the user
according to the user’s requirements.

e Control Strategies: Defined for searching solutions by predefined rules in both forward
chaining and backward chaining.

e Case-Based Reasoning: Used within the system to find a solution that matches best with
the user’s requirements, using data stored in a database.

With regards to the environment and the architecture mentioned previously relative to intelligent,
integrated DSS, Figure 3 is a block diagram of requirements for improved DSS to support the
essential characteristics of smart manufacturing.
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Figure 3. Block diagram of requirements for intelligent, integrated DSS

FUTURE RESEARCH DIRECTIONS

In proposing future research directions, we attempt to provide a broad vision of a design for “smart”
DSS for “smart” manufacturing. These design requirements are not discussed in the literature with
regards to an analytic and decision support context and thus are new directions for the next step



towards smart manufacturing. In the following bullet points, we discuss some of the highlighted
topics in this technology chain.

e Area 1: Bi-level optimization is an approach where the outer optimization problem is
embedded (nested) within an inner optimization problem (including lower-level variables).
Many multi-level DMs exist—DMSs such as strategic planning of marketing and sales
channels; global SC simulation models based on a marketing-operations perspective; and
positioning order penetration points (OPP) in global SCs in smart manufacturing, which can
be modeled by Bi-level optimization approach. As an example, in a Bi-level DM, both the
leader and the follower may have multiple objectives with uncertain values and constraints
which can be modeled as a fuzzy multi-objective Bi-level programming DSS.

e Area 2: Developments in electronic communication, computing, and DM — coupled with new
interest on the part of organizations to improve meeting effectiveness — are spurring research
in the area of group DSS (GDSS). GDSS combines communication, computing, and DM to
facilitate the formulation and solution of unstructured problems by a group of people. Another
area of future research would be developing mathematical models of group DM in DSS of the
smart manufacturing environment.

e Area 3: Optimizing the product design process in smart manufacturing has a significant
impact on the global SC. The role of having a smart DSS for optimal product design in smart
manufacturing is crucial. Multi-level DM programming can be applied for capturing different
features in design stages and for evaluating design alternatives based on correlated criteria
such as functionality, reliability, and manufacturability to perform automated DSS for product
design criteria. Consequently, multi-level optimization — as a useful and practical tool —
provides the what-if analysis for product design (i.e., “What would happen if a particular
decision is taken?).

e Area 4: Smart manufacturing employs computer control and high levels of adaptability.
There are an increasing number of computer systems in smart manufacturing which can be
considered as autonomous agents. Another area of future research would be developing Game
Theory models for making rational choices—DSS in a negotiation and bargaining game.

e Area 5: Applying cooperative and noncooperative multi-level programming is a generalized
future research direction in control and optimization of cooperative systems in the smart
manufacturing environment.

e Area 6: Other topics in SC and operation management in smart manufacturing: 1) Integrated
DSS for operation and maintenance optimization; 2) Integrated and coordinated DSS for SC
optimization; and 3) Integrated DSS for maintenance, spare parts, inventory, and logistics.

CONCLUSION

More sophisticated decision support is critical for intelligent decision making in smart manufacturing
environments. In this analysis, we have reviewed briefly the role of optimization and other
mathematical and machine learning models in DSS to solve complex decision making tasks in smart
manufacturing systems. We have proposed a systematic structure for engineering decision support
applications. Integrating operations research modeling, optimization, big data analytics, and Al
provide a means for making better decisions with complex objectives in a smart manufacturing
setting. In smart manufacturing and in an Industry or Manufacturing 4.0 context, optimization
techniques can play a critical role in automating strategic, operational, and tactical decision making
and can provide more precise error analysis. Smarter decision support should lead managers to make
better decisions to improve the efficiency and effectiveness of smart manufacturing systems.

We are early in the journey toward smarter manufacturing and personalization of goods. We are
moving towards automation and using and integrating data capture is facilitating process
improvements.
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KEY TERMS AND DEFINITIONS

Advanced Planning and Scheduling: Refers to a manufacturing management process by which raw
materials and production capacity are optimally allocated to meet demand.

Case-Based Reasoning: The process of learning to solve new problems based on the solutions of
similar past problems.



Enterprise Resource Planning: The real-time integrated management of core business processes,
mediated by software and technology.

Manufacturing Execution System: Computerized systems used in manufacturing to track and
document the transformation of raw materials to finished goods.

Markov Decision Process: Describes the environment for solving the optimization problem by
reinforcement learning or dynamic programming. Provides a mathematical framework for modeling
DM in situations where outcomes are fully or partially observable.

Order Penetration Point (OPP): Defines the stage in the manufacturing value chain, where a
particular product is linked to a specific customer order.

Semantic Integration: The process of integrating information from diverse sources. In this regard,
semantics focuses on the organization of, and action upon, information by acting as an intermediary
between heterogeneous data sources which may conflict not only in structure but also in context or
value.



