
Journal of Industrial and Management Optimization

doi:10.3934/jimo.2022223

DEEP LEARNING-BASED RECOMMENDATION METHOD FOR

TOP-K TASKS IN SOFTWARE CROWDSOURCING SYSTEMS

Zhanglin Peng�, Dequan Wan�, Anning Wang�,∗ and Xiaonong Lu�

School of Management, Hefei University of Technology

Key Laboratory of Process Optimization and Intelligent Decision-making, Ministry of Education
Hefei 230009, China

Panos M. Pardalos�

Department of Industrial and Systems Engineering, University of Florida
Gainesville, 32611, USA

(Communicated by Kok Lay Teo)

Abstract. The task personalized recommendation problems in software crowd-
sourcing systems have unique characteristics, i.e., large task flow, high task

complexity, long development cycle, winning task competitions, professional
ability requirements, etc. However, existing software crowdsourcing recommen-

dation mechanisms do not consider the contextual information of crowdsourc-

ing tasks. In particular, the effects of crowdsourcing workers’ interest changes
and capability constraints on task selection are usually ignored. Therefore,

this study proposes a new worker capability-correction long- and short-term

attention network (CLSAN) recommendation framework. Firstly, explicit and
implicit features are obtained from the feature data of crowdsourcing workers

and historical crowdsourcing tasks. The long-term and short-term feature lay-

ers are extracted by adding LSTM to the historical tasks; the attention weight
of user preference is calculated by integrating the attention mechanism to ob-

tain each user’s personalized preference. Secondly, this study considers that

the capabilities of the worker need to be matched with the skills required for
the software task. We design a worker capability correction model that uses

Word2Vec software to obtain competency similarities between crowdsourcing

workers and tasks, thereby determining the priority of tasks that satisfy the
worker’s capability. The experimental results show that CLSAN can accurately

evaluate the changes of interest preferences of crowdsourcing workers, and ef-
fectively improve the quality and efficiency of crowdsourcing recommendations.

1. Introduction. The advancement and popularization of emerging Internet in-
formation technology have promoted the application and development of swarm
intelligence in online virtual communities. Large-scale “amateur” users are being
guided to participate in completing tasks in a cooperative and collaborative manner.
In 2006, Jeff Howe first proposed the term ‘crowdsourcing’ in Wired Magazine [10].

2020 Mathematics Subject Classification. Primary: 90B50; Secondary: 62P20.
Key words and phrases. Software crowdsourcing, recommendation algorithm, deep learning,

attention mechanism, user preference.
The work is supported by grants from the National Natural Science Foundation of China (No:

72071060, 72101078, 72171069, 71901086) and the Fundamental Research Funds for the Central
Universities (No. JZ2021HGTA0131).

∗Corresponding author: Anning Wang.

1

http://dx.doi.org/10.3934/jimo.2022223
mailto:pengzhanglin@hfut.edu.cn
mailto:2020110912@mail.hfut.edu.cn
mailto:waning@hfut.edu.cn
mailto:xnlu@hfut.edu.cn
mailto:pardalos@ufl.edu

2 Z. PENG, D. WAN, A. WANG, X. LU AND P. M. PARDALOS

Under this socialized production of crowd intelligence, with regard to software engi-
neering, software development tasks and developers are no longer limited to specific,
isolated community groups. Instead, an increasing number of people are choosing to
publish or participate in the completion of tasks on crowdsourcing platforms, grad-
ually forming a new cross-time and cross-regional software crowdsourcing model
[3]. For example, GitHub, the world’s largest open source software platform, has
more than 40 million developers worldwide. These developers not only have easy
access to source code, program documentation and test cases, but they also have
the freedom to create and manage open source software (OSS) projects. Devel-
opers can share ideas, experiences and source code with many other professional
developers and hobbyists on the platforms [11]. In recent years, millions of software
development tasks have been implemented by many successful crowdsourcing plat-
forms, including but not limited to platforms like Yipinweike, Zhubajie, Amazon
Mechanical Turk, Topcoder, and Local Motors.

Software crowdsourcing is mediated by platforms that connect requesters with
workers [33], and is the accomplishment of specified software development tasks
that have been undertaken on behalf of an undefined group of external people
with the requisite specialist knowledge [22]. At present, software crowdsourcing has
become a viable development paradigm for software-as-a-service (SaaS) ecosystems.
Many virtual online communities enable enterprises to tap into their global talent
pools and crowdsource a variety of SaaS development tasks, including requirement
analysis, architecture design, coding, testing and so on [27]. Klaas-Jan Stol et al.
[22] pointed that some potential benefits have been linked to the use of software
crowdsourcing, such as cost reduction, faster time to market, and higher quality
through broad participation, creativity and open innovation. However, at any point
in time, the number of open software tasks and development workers can become
quite large. The types of tasks are diverse, and the workers are heterogeneous.
Workers are faced with the challenge and difficulty of evaluating a large number of
tasks and identifying one in which they wish to participate. The selection of tasks
is autonomously initiated by the workers. This results in most workers potentially
compromising tasks that they decide to undertake but for which they may not
be suitable. As such, they may fail in task competitions. Manually selecting a
preferred task will cause problems, such as low task completion efficiency and the
reduced motivation of workers participating in the tasks. In such circumstances,
a personalized recommendation system can turn out to be an effective solution to
matching software tasks with development workers. Personalized recommendation
systems not only can significantly help the workers to reduce costs in searching for
the appropriate tasks in which they can participate and for which they can provide
high quality solutions; such systems can also give considerable help to requesters,
saving time and increasing productivity.

Recommendation algorithms have already been proven to be very successful in
e-commerce platforms and some entertainment platforms, such as Amazon, Alibaba
and Netflix. However, compared with traditional e-commerce recommendation sce-
narios, software crowdsourcing systems have certain unique features, i.e., the huge
flow of tasks and workers, the heterogeneous nature of tasks and workers, task com-
petition winning, the importance of workers’ capabilities, and the quality of tasks
completed [20]. All of these characteristics mean recommendation features in soft-
ware crowdsourcing systems face more challenges including: (1) the heterogeneity
of software tasks and workers, including the value of the task, the knowledge and

DEEP LEARNING-BASED RECOMMENDATION METHOD FOR TOP-K TASKS 3

skill required, the cognitive effort required and the complexity of the task [22]. In
contrast to all other micro-tasks, software crowdsourcing tasks are often interdepen-
dent, complex, and heterogeneous. Similarly, tasks are assigned to heterogeneous
developers with different skills, efforts, motivations, etc., which increases the com-
plexity of task selection and allocation [30]. (2) Dependence on workers’ capabilities:
different from consumers on e-commerce platforms, workers are the value creators
on digital software crowdsourcing systems. They also have value attributes similar
to enterprise employees, and ability attributes similar to typical knowledge workers.
Software tasks have strong knowledge barriers, which often require workers to have
different types of software engineering theoretical knowledge, cognitive processing
capabilities, code development, testing ability, and a willingness to spend a lot of
time on tasks. Importantly, these abilities and knowledge require repeated training
and cannot be acquired in a short period of time. (3) Context-aware of workers’
preferences on tasks: workers are driven to participate in software tasks by extrin-
sic and intrinsic motivation factors, and task attributes have significant impacts
on workers’ intrinsic motivation. Thus, the intrinsic motivation of different workers
when choosing different tasks is obviously different, and this has decisive significance
[36]. Intrinsic motivation is continuous, and correlations will exist at different tem-
poral positions, which are reflected in the context of workers’ historical behavior
sequences. Accordingly, software crowdsourcing recommendation systems must cap-
ture the intrinsic motivation of workers to engage in different tasks chronologically.
This can be achieved through sufficient contextual order information. (4) Dynamic
changes in workers’ preferences and capabilities: the process of user participation in
crowdsourcing initiatives can be abstracted as three stages consisting of solver in-
tention, solver participation and continuous solver participation. Those three stages
are dynamic, progressive and interrelated [34]. During the different stages, a worker
can be stimulated by different task requirements, different motivations, and different
complexities of the task when participating in software crowdsourcing initiatives.
Furthermore, a worker’s capabilities will change in line with time-series locations.
The capabilities which the worker has shown in completing near-time tasks can more
accurately reflect the essence of that worker’s capabilities. These distinct charac-
teristics and challenges make traditional recommendation methods unsuitable for
software crowdsourcing systems. Therefore, a special recommendation algorithm
should be designed that efficiently delivers personalized recommendation software
tasks for workers.

In recent years, neural networks, such as recurrent neural networks (RNN) and
attention mechanisms, have begun to be widely used in many recommendation sys-
tems. Recurrent neural networks have significant advantages in the application of
recommendation systems. The RNN model records the user’s behavior and the cor-
responding temporal context as a temporal behavior sequence, so as to make better
use of the context relationship and obtain the temporal order dependency. The
attention mechanism is able to adaptively integrate various features, specifically to
capture user preferences from the entire sequence. However, existing crowdsourced
recommendation methods structure worker models without considering time-series
locations. This results in a lack of time-sequential information. These worker
models are constructed with the assumption that workers’ interests are stable and
focused over time. As a result, shortcomings also exist in terms of describing and
distinguishing users’ dynamic and changing long-term preferences and short-term

4 Z. PENG, D. WAN, A. WANG, X. LU AND P. M. PARDALOS

needs, both of which are critical for enabling accurate software crowdsourcing task
recommendations.

This article proposes a worker capability-correction long- and short-term atten-
tion network (CLSAN) for top-K task recommendations in software crowdsourcing
systems. In practice, a CLSAN can effectively combine the features and correla-
tions between workers and task interactions, in order to simulate user behavior
sequence changes. This approach captures the user’s long-term and short-term
preferences and adaptively adjusts the degree of association between workers and
tasks to achieve accurate recommendations. In the proposed CLSAN, this study
introduces ‘long short-term memory’ (LSTM) to model long-term and short-term
sequential behavior features between workers and tasks, thus preserving sufficient
contextual order information. Workers’ long-term and short-term preferences are
captured from historical behaviors, and the attention mechanism is used to give
different weights to workers’ expressions of interest in different historical behav-
iors. This method can ignore irrelevant content in interests and deeply learn the
dynamic characteristics of workers’ interests. Furthermore, we propose a worker ca-
pability correction mechanism. The mechanism is that, for each task, consideration
is given to how well the worker’s capability assessment matches the task’s required
skills. Finally, federated learning training is applied, to obtain the worker’s pre-
dicted recommendation top-K tasks list. On real crowdsourced datasets, extensive
experiments demonstrate the effectiveness of this method.

In summary, the main contributions of this paper are as follows:
(1) This study proposes a novel framework, specifically a worker capability-

correction long- and short-term attention network (CLSAN) for accurate recom-
mendations related to software crowdsourcing tasks. The model can effectively
utilize the feature information between workers and software tasks and deeply learn
to mine the workers’ dynamic interest changes of workers.

(2) A worker capability correction mechanism is introduced. This mechanism
fully considers the perceived similarity between workers and software tasks, to en-
sure that the required task skills can match the worker’s ability constraints, thus
improving recommendation performance.

(3) An extensive experimental study on real crowdsourced datasets shows that
the proposed model outperforms other baseline algorithms, e.g., collaborative filter-
ing (CF), singular value decomposition (SVD), LSTM, and LSTM-attention. These
experiments prove the effectiveness and efficiency of the proposed CLSAN model.

(4) Our research can further improve the accuracy of the recommendation algo-
rithm, help the crowdsourcing platform further optimize its recommendation algo-
rithm and recommendation mechanism, and improve the recommendation effect. It
also helps the crowdsourcing platform further optimize its governance mechanism
and improve user experience and satisfaction.

The rest of this article is organized as follows: First, some works related to this
study are reviewed in Section 2. Then, in Section 3, the proposed research ques-
tion is formulated, detailing the principle and framework of the CLSAN. Extensive
experiments are carried out in Section 4, and the results are analyzed. Finally, the
full text is summarized in Section 5.

2. Related work. This section reviews some related works on crowdsourcing per-
sonalized recommendation systems, including traditional general recommendation

DEEP LEARNING-BASED RECOMMENDATION METHOD FOR TOP-K TASKS 5

methods and deep learning based recommendation methods. Finally, the attention
mechanism is introduced.

2.1. General recommended. Traditional recommendation systems are mainly
based on collaborative filtering recommendation frameworks. One such system is
memory-based collaborative filtering, which relies on similar users, who are likely
to have similar interests. The system computes user-user or item-item similarity
to generate recommendations. For example, Yuan et al. [31] inferred user ratings
from the interaction behavior of crowdsourced workers and tasks, thereby learning
a task recommendation method based on worker latent feature space and task la-
tent feature space. Fu et al. [7] proposed a cluster based collaborative filtering
classification model (CBC), which describes the winner prediction problem of soft-
ware developers as a multi label classification problem. Liao et al. [14] divided
a group of workers into several characteristic communities with similar behaviors,
based on the workers’ reputations, preferences and activity characteristics. Through
interaction between multiple communities, top-N worker groups were selected for
recommendation. User participation behavior is also affected by many factors, such
as internal and external motivation and social environment [4]. Therefore, Wang
et al. [25] considered using the reputation and participation frequency of mobile
crowdsourcing workers to gain the trust of tasks, combined with the workers’ dwell
time, to predict potential tasks. Li et al. [12] further considered the social influences
of social affiliation and social intimacy to identify suitable contributors, specifically
those with high willingness to contribute and who were able to complete tasks with
high-quality results. In addition, some studies have focused on the impact of geo-
graphic location [23], privacy protection [21] and expert recommendations [19] on
task recommendation.

The other type of system is a model-based collaborative filtering recommenda-
tion. This system mainly uses machine learning or data mining methods (such as
Bayesian network, clustering, and association rule mining) to train and learn data
samples and complete the recommendation. For example, Li et al. [13] proposed
using the k-medoids clustering algorithm to obtain similar workers, and to provide
accurate and effective suggestions through the group selection and construction of
low-will workers. Mao et al. [15] proposed a Crowdrex recommendation system,
which will extract historical data and challenge data of developers as the input of
their models, and automatically match tasks and developers through content. You
et al. [1] used the crowdsourcing competition participation information, together
with the features of workers and competitions, as auxiliary information. The study
concluded that the combination of transfer learning and feature-based matrix factor-
ization can effectively predict the winner of crowdsourcing competitions. The study
of Yuan et al. [32] was based on a probabilistic matrix factorization (PMF) model,
which considers workers’ task choice preferences and workers’ performance history.
The study further described how the weight of worker task choice preference gradu-
ally decreases over time. The above research has made certain contributions to the
field of crowdsourcing recommendation study. However, traditional recommenda-
tion methods often only consider modeling worker or task features; these methods
assume that worker-task interactions are static. As such, they cannot effectively
simulate the dynamic changes of workers’ historical behavior context information
over time, making it difficult to capture workers’ long-term and short-term prefer-
ences.

6 Z. PENG, D. WAN, A. WANG, X. LU AND P. M. PARDALOS

2.2. Deep-learning-based recommendation. Recently, neural networks have
made outstanding contributions in the fields of natural language processing, video
and image understanding. Neural networks have also achieved good results in the
application of recommendation systems. Many researchers have tried to introduce
deep learning into the field of crowdsourcing recommendation algorithms. For ex-
ample, Pan et al. [18] proposed a deep learning-based tag semantic task recommen-
dation model, which calculated the similarity of word vectors through Word2Vec
software. The study established a semantic tag similarity matrix database, as a
means to realize personalized recommendations for crowdsourcing tasks. Yang et
al. [29] constructed a dynamic crowd work decision support model (DCW-DS) us-
ing multiple influencing factors, which can predict the role of developers in a given
challenge (registrant, submitter or winner). Zhang et al. [35] further proposed
different meta learning adaptive prediction models for the registration, submission
and winning stages of developers, and then used the meta characteristics of learn-
ing as a strategy to recommend topk developers for challenges issued by customers.
Yi et al. [6] proposed a CRF based method to learn software crowdsourcing task
requirements from task descriptions. This research uses potential Dirichlet assign-
ment (LDA) topic modeling to obtain the topic distribution of crowdsourcing tasks,
and quantitatively measures the matching between tasks and developers. Gao et al.
[8] studied the assignment of tasks to users through expert knowledge, using tree
decomposition techniques and heuristic depth-first search algorithm (DFS+HA) to
rank the assigned tasks. In addition, the consideration of explicit and implicit rela-
tionship features between users and tasks is a key factor affecting the construction
of recommendation models. He et al. [9] introduced the consideration of implicit
feedback. The study used a multilayer perceptron to learn the user-item interac-
tion functions, in order to model the key factors in collaborative filtering. Wang et
al. [24] proposed a user-item graph collaborative filtering method (NGCF), based
on a graph neural network, by exploring the potential collaborative relationship in
user-item interactions. Xie et al. [26] considered the multiple implicit relationships
of interactions between software developers and tasks. The study generated predic-
tions based on a deep neural network architecture to make recommendations. The
introduction of deep learning can effectively capture global context information.
However, the modeling of workers’ individual interests is still not adaptive enough
and is unable to identify changes in workers’ interests with different preferences
and behavior sequence distributions. The attention mechanism was first proposed
by Desimone [5]. The mechanism’s principle is to simulate the attention of the hu-
man brain and selectively allocate limited attention to more important information.
Specifically, the attention mechanism forces the model to focus on the most impor-
tant parts of the target with different weights. Inspired by the attention mechanism,
we first design our own CLSAN recommendation model to capture features that are
more likely to attract user interest. The proposed model can correlate explicit and
implicit features between crowdsourcing workers and tasks, for global optimization.

3. The proposed system model. This section introduces our CLSAN recom-
mendation model. First, the software crowdsourcing task recommendation and
the basic framework concept are defined. Then, we give the description of the
preference feature extraction and worker ability correction methods defined by the
CLSAN model, as well as the definition of parameters and the generation of the
list of predicted recommendation probabilities. The goal of the CLSAN model is to

DEEP LEARNING-BASED RECOMMENDATION METHOD FOR TOP-K TASKS 7

optimize the task selection scheme of crowdsourcing workers and help them get the
top-K recommended task list that is interested and matches their abilities.

3.1. Problem definition. Let U = {U1, U2, ..., Ul, ..., Un} denote the set of n
crowdsourcing workers, and Ul represents the feature vector of the l -th crowdsourc-
ing worker; V l = {V l

1 , V
l
2 , V

l
3 , V

l
4 , ..., V

l
t } represents the set of historical task data of

the l -th crowdsourcing worker. Tasks are ordered by time series of interactions with
crowdsourcing workers, and V l

i (i ∈ [1, t]) represents the session of user Ul at time i.
Specifically, the crowdsourcing worker’s behavior sequence data V l are divided into
sessions, and each session V l

i represents a crowdsourcing worker’s behavior within
a task. Obviously, the task behavior at different times represents the long-term
or short-term preferences of the particular crowdsourcing worker. Then, we distin-
guish the data of crowdsourcing workers Ul and task behavior V l into structured
data and unstructured data. The features extracted from structured data are de-
fined as explicit features Ce; those features extracted from unstructured data are
defined as implicit features Ci. In summary, our task recommendation goal is to
recommend the crowdsourcing worker Ul the next task V l

t+1 from the target task
set VT in which he is interested and has a probability of winning. This is achieved
by combining the explicit and implicit features of the crowdsourcing workers and
historical tasks. The key notations used in this paper are presented in Table 1.

Table 1. Key notations and their descriptions.

Notations Explanations
U , V Set of crowdsourcing workers and task data
V l
i Interaction task session of the user l at time i

Ce Explicit features from structured data
Ci Implicit features from unstructured data
VT Set of target task
ei Overall explicit feature vector of task session at time i
W ∗, b∗ The weight matrix and bias vector
bt, bu The vector of the target task requirement and the worker’s ability
∂ The time decay coefficient
Ce,a, Ce,u Explicit feature vector of target task and crowdsourcing worker

3.2. Recommendation framework. The architecture diagram of the proposed
model is shown in Figure 1. Specifically, the CLSAN framework consists of an
embedding layer, a preference extraction layer, a capability correction layer, and a
prediction layer, as follows:

(1) Embedding layer: we encode the preprocessed structured data. Specifically,
numericalize, clean and convert the information that the model needs to process, and
input in the form of data. Since the input data is high-dimensional and sparse, the
high-dimensional sparse input data are converted into a low-bit dense hidden rep-
resentation through the embedding layer. The original sparse features are mapped
into multiple fixed-length representation vectors, and all representation vectors are
then concatenated, to obtain the overall explicit feature vector e of the session.

(2) For the preference extraction layer, we propose a feature extraction model
based on LSTM-attention (as shown in Section 3.3). This model deals with ex-
plicit features obtained from structured data. Focus on the long-term and short-
term sequential behavior characteristics of crowdsourcing workers under different

8 Z. PENG, D. WAN, A. WANG, X. LU AND P. M. PARDALOS

Figure 1. Worker capability-correction long- and short-term
attention network (CLSAN) recommendation framework

time sequence information, so as to extract the interest preference of crowdsourcing
workers.

(3) For the capability correction layer, we propose a capability corrected method,
based on Word2Vec (as shown in Section 3.4). This method obtains implicit features
from unstructured data. By matching the capability of crowdsourced workers with
the task requirements, we can obtain a modified matrix about the comprehensive
capability of workers. It can help us to select tasks that crowdsourcing workers are
more capable of completing.

(4) Prediction layer: The task prediction layer (as shown in Section 3.5) predicts
the interest features of the crowdsourced workers from the preference extraction
layer. Then, it is combined with the comprehensive capability of workers in the
capability correction model for common learning, so as to obtain a more accurate
recommended task list.

3.3. Worker preference feature extraction. On the crowdsourcing platform,
different crowdsourcing workers will choose different tasks, and they are more in-
clined to choose tasks that interest them. Therefore, a worker’s choices of different
tasks reflect all his/her interest preferences. Importantly, user interests are not
fixed. Temporal changes and contextual information between different tasks reflect
changes in the interests of crowdsourcing workers. Therefore, the proposed model

DEEP LEARNING-BASED RECOMMENDATION METHOD FOR TOP-K TASKS 9

combines LSTM and an attention mechanism as a preference extraction model to
focus on sequence information at different times. This way, the interesting features
of these data can be captured, thus obtaining dynamic changes about long-term
and short-term interests.

3.3.1. LSTM model. LSTM is a variant of RNN suitable for processing serialized
data. Specifically, LSTM adds a memory unit and three control gate structures,
consisting of a forget gate, an input gate and an output gate. The structure of a
memory cell is illustrated in Figure 2.

Figure 2. Structure of LSTM

To process sequence information, the three-gates structure will use the input
xt at the current time t, the output ht−1 at the previous time t−1, and the cell
state ct−1 at the previous time t−1 to achieve each LSTM unit update. Therefore,
each gate acts as a filter, and each filter fulfills a different function. Specifically,
the forget gate ft determines what information needs to be discarded at present.
It will first check ht−1 and xt, and then use the generated ft to control those in
the previous state ct−1 that need to be retained or forgotten. The input gate it
determines how much new information in xt and ht−1 will be added to the internal
state and used to synchronously complete the update of cell state ct−1. The output
gate ot determines which information will be used as the output ht of the current
state and outputs it to the next LSTM unit.

The specific calculation formulas of LSTM are as follows:

ft = σ(Wf · [ht−1, xt] + bf), (1)

it = σ(Wi · [ht−1, xt] + bi), (2)

ot = σ(Wo · [ht−1, xt] + bo), (3)

c∼t = tanh(Wc · [ht−1, xt] + bc), (4)

ct = ft ⊙ ct−1 + it ⊙ c∼t , (5)

ht = ot ⊙ tanh(ct), (6)

where W and b refer to the weights and deviations of the raining matrix, respec-
tively; tanh refers to the hyperbolic tangent activation function; ⊙ is the dot product
operation; c∼t is the candidate value of the cell unit, and the ct state at the current
time t. σ is the sigmoid activation function. Its calculation formula can be seen in

10 Z. PENG, D. WAN, A. WANG, X. LU AND P. M. PARDALOS

(1)-(3); the sigmoid function scales the activation value between 0 and 1. Here, 1
represents completely retaining the stated value, whereas 0 represents completely
discarding the value. The state C of the memory unit is used as the accumulator of
state information, and the state ct−1 is updated to the state ct using the Formula
(5). In this way, ht and ct will be transferred to the next memory unit at each
time-step, in order to realize the repetition of the information transfer process.

For crowdsourcing workers, workers’ task choices change dynamically over time;
these tasks are also contiguous and finite in nature, rather than being an isolated
set of points. Therefore, LSTM is used to simulate the contextual information re-
lationship of crowdsourcing workers’ task sequence changes. The long-term and
short-term sequence-related information of the task is learned and stored by using
the LSTM gated structure to control the path of information transmission. The de-
pendencies among tasks can be more comprehensively captured, thereby selectively
preserving contextual information. The model has a prominent auxiliary role in the
mining and analysis of user interest preferences.

3.3.2. Attention mechanism. Different tasks may have different amounts of infor-
mation when chosen by crowdsourcing workers. Therefore, it is necessary to assign
higher weights to some tasks and lower weights to others, in order to obtain crowd-
sourcing tasks that are more important in terms of historical behavior. The atten-
tion mechanism can well capture the correlation between each task selected by the
workers and can also obtain the factors that change the task interest characteristics
of the crowdsourced workers, thereby learning more representative crowdsourced
worker representations.

First, the attention mechanism causes each intermediate output result of the
LSTM layer modeling the input sequence to be associated with the output sequence
value. The mechanism also trains a model to learn how to selectively focus on input
data, which in turn assigns higher weights to more relevant input vectors. Note that
the calculation formula of the weight at is:

at =
exp(htWCe,a)
T∑

j=1

hj ∗WCe,a

, (7)

where Ce,a is the explicit feature vector of target task, W ∈ RnH×nA , nH is the
dimension of the hidden state, nA is the dimension of the target task vector, and ∗
represents the scalar-vector product.

Then, the attention weight configuration is performed. Attention resources are
allocated to the feature vector ht, according to the degree of association between
tasks, thereby generating a weighted representation of the feature vector and en-
hancing the feature expression of the task. Attention score it

′ can be calculated as
follows:

it
′ =

T∑
j=1

at,j ∗ ht,j , (8)

where at,j is the weight value of the j -th feature at time t; ht,j is the j -th feature at
time t, it

′ represents the feature vector with attention weight. The attention score
can reflect the relationship between the target task and the input information ht, a
strong correlation can also make the attention score higher.

DEEP LEARNING-BASED RECOMMENDATION METHOD FOR TOP-K TASKS 11

3.4. Capability correction model. Software crowdsourcing tasks have strong
capability barriers, specifically with regard to professional knowledge and technical
capabilities. As such, crowdsourcing workers are often required to have the corre-
sponding skills required to undertake the task. The knowledge and skills possessed
by different crowdsourcing workers may be different and even inadequate. This can
lead to crowdsourcing workers choosing to abandon tasks of interest, due to a lack of
corresponding technical capabilities. The belief with regard to perceived ease of use
in a technology acceptance model (TAM) is that, when the public perceives their
own ability to complete an activity more easily, the possibility of their participation
is greater. Naturally, then, crowdsourcing workers will give priority to undertaking
tasks at which they are good. Therefore, this study corrects the recommendation
model based on interest preference extraction, by measuring the matching degree
between worker capabilities and task requirements.

In this article, the ability of crowdsourced workers is measured through two data
sources: (1) Platform registration information, which includes the skills and project
descriptions that workers are good at performing. (2) Historically completed soft-
ware crowdsourcing tasks: each task has a descriptive text that describes the task
requirements, functional purpose, etc., thereby providing more personalized infor-
mation. Here, worker skills are defined as the task requirements needed for workers
to participate in completing those tasks. For example, if a worker participates in a
task that requires Java to be developed, it is natural to assume that the worker is
good at Java technology. Therefore, Java-related tasks can be recommended to the
worker.

A popular deep learning-based word vector similarity calculation tool is
Word2Vec. The basic idea of Word2Vec is to judge the semantic similarity be-
tween words, according to the distance between them (such as cosine similarity,
and Euclidean distance). This tool makes full use of the context of words to make
semantic information richer. Therefore, we compute the similarity between worker
capabilities and target tasks by introducing the Word2Vec semantic training model.
The text description of the target task and worker ability is converted into word
vectors, thus obtaining worker capability weight vectors and target task weight vec-
tors under each historical task. The cosine similarity s(bt, bu) between target tasks
and worker capabilities is calculated as:

s(bt, bu) =

m∑
i=1

bti ∗ bui√
m∑
i=1

(bti)
2

√
m∑
i=1

(bui)
2

, (9)

where bt represents the vector representation of the target task requirement, bu
represents the vector representation of the worker’s ability, and m represents the
dimension of the vector. When constructing the ability similarity matrix, the larger
the value of s(bt, bu) is, the better will be the ability of the worker to meet the needs
of the target task.

In the process of crowdsourcing workers bidding for tasks, the workers’ preference
for certain tasks will gradually be attenuated over time [28]. The recent behaviors of
crowdsourcing workers are also more meaningful than their early behaviors. There-
fore, when calculating the task-ability similarity, the time decay function f(T − ti)
that is suitable for the application scenario of the test set in this paper is introduced

12 Z. PENG, D. WAN, A. WANG, X. LU AND P. M. PARDALOS

as follows:

f(|T − ti|) =
1

1 + ∂ |T − ti|
, (10)

where T represents the current time node, ti represents the time node when the
i -th task occurs, and ∂ is the time decay coefficient.

The introduced time decay function f(T − ti) reflects the degree of worker pref-
erence decay for different tasks. Therefore, the correction matrix for the compre-
hensive capability of crowdsourced workers is obtained as:

s′ =

n∑
i=1

s(bt, bu)f(|T − ti|), (11)

where n represents the total number of tasks with which the crowdsourcing workers
interact, and s′ represents the matching value between the target task and the
worker’s comprehensive capability.

3.5. Recommendation prediction. Through joint learning of the vectors output
by the model, the predicted probability scores of the crowdsourcing workers for the
tasks to be recommended are obtained.

Specifically, the crowdsourcing workers explicit feature vector Ce,u, the target
task vector Ce,a, and the crowdsourcing workers interest preference feature vector
it
′ are all combined into the overall feature vector v:

v = it
′ ⊕ Ce,a ⊕ Ce,u. (12)

Then, v is input to the fully connected layer, and the excitation function of each
neuron in the fully connected layer adopts the ReLU function, in order to obtain
the weighted feature vector v′:

v′ = ReLU(vW ′ + b′), (13)

where W ′ and b′ represent the network parameters of the fully connected layer.
The output value of the last fully connected layer is passed to an output, which

in turn is associated with the capability feature vector. The function is used as
the network objective function to guide the classification. The vector v′ and the
capability correction vector s′ are normalized to obtain the probability value y′ as
follows:

y′ = tanh((v′, s′)W ′′ + b′′), (14)

where W ′′ and b′′ represent the network parameters that the model can learn. Thus,
a top-K recommendation is performed on y′ in descending order, and the final task
recommendation list is obtained.

4. Experiment and results.

4.1. Experiment. In order to verify the performance of the proposed model in
this paper, we conducted extensive experiments on the real data set.

We crawled the information of software crowdsourcing workers and interactive
historical tasks on the “Yipingweike” crowdsourcing website as an experimental
data set. Yipingweike is one of the most widely used online crowdsourcing plat-
forms in China. The data mainly include crowdsourcing worker information, task
information, bidding and bid winning records, etc. Data were divided into struc-
tured data and unstructured data according to type, and the explicit and implicit
features defined in this paper were extracted from that data. The specific data
items obtained are shown in Table 2 and Table 3:

DEEP LEARNING-BASED RECOMMENDATION METHOD FOR TOP-K TASKS 13

Table 2. Experimental data explicit feature.

Feature Data Feature
Type

Feature Description

Crowdsour-
cing worker
structural
data

Worker ID Text Name information
Type Category Individual, studio or business
Rating Category 1st rate, 2nd rate, ..., 9th rate
Reputation score Number Reputation score, integrity

level of a worker
City Category City which the worker is lo-

cated in

Identity informa-
tion

Number
Time of the worker updates
his/her certificate information

Total transaction
amount

Number
Total bonuses earned by wor-
ker for completing historical
tasks

Completed total
tasks

Number
Total number of historical ta-
sks completed by worker

Employer positive
rating

Number
Task posters’ evaluation metr-
ics for a crowdsourcing worker

Total winning bids Number
Total number of historical ta-
sks won by a crowdsourcing
worker

Crowdsou-
rcing task
structural
data

Type of task Category The type attribute which the
task belongs to

Sub-task type Category The Sub-type attribute which
the task belongs

Task price Number A reward for completing the
task

Task followers Number Number of workers that the
task has been followed

Number of bidders Number Number of workers that the
task has been biden

Number of success-
ful bidders

Number
Number of workers who have
won the bidding on the plat-
form

Time of posting the
task

Number Time of posting the task

Submission dead-
line

Number Submission deadline

Transaction mode Category Tender, Hire, Single bounty,
Multiplayer bounty, Piece
count

The data acquisition and preprocessing process mainly includes the following:

14 Z. PENG, D. WAN, A. WANG, X. LU AND P. M. PARDALOS

Table 3. Experimental data implicit feature.

Feature Data Feature
Type

Feature Description

Crowdsour-
cing worker
unstructure-
d data

Personal descrip-
tion

Text Self-introduction informa-
tion of crowdsourcing worker

Good at skills Text The expertise of crowdsourc-
ing worker

Crowdsourci-
ng task unst-
ructured data

Task name Text Task name information
Task requirements Text Detailed description of the

task requirements

Table 4. Dataset statistics.

Statistics Category Statistics
Number of workers 471
Number of tasks 38896
Number of task categories 284
Maximum number of task interactions for workers 1045
Minimum number of task interactions for workers 20
Average number of worker interactions 61.35
1st quartile (25th percentile) of worker task interactions 40
2nd quartile (50th percentile) of worker task interactions 61
3rd quartile (75th percentile) of worker task interactions 85.25

(1) Firstly, Python, Octopus and other crawler tools were used to perform large-
scale real-time incremental crawling of the crowdsourcing workers and crowdsourc-
ing tasks of the Yipinweike platform. By crawling the data of 2637 software crowd-
sourcing workers on the platform, and then locating and tracking the data of the his-
torical interactive tasks of these crowdsourcing workers, a total of 53443 interactive
tasks and task information were combined to form the crowdsourcing worker-task
behavior sequence data.

(2) Secondly, in order to improve the quality of the data, the historical task data
of the crowdsourcing workers was cleaned, and the meaningless tasks were elimi-
nated. The meaningless tasks include unreal tasks, duplicate tasks and task testing.
In addition, the data with 20 or more bidding records for a certain crowdsourcing
worker were screened out. In order to ensure the activeness of crowdsourcing work-
ers, it was necessary to delete workers that have not been updated for a long time
in the bidding records of crowdsourcing tasks. We set the time threshold for the bid
update time at 180 days. After the above data processing and cleaning, the data
set of 471 crowdsourcing workers and 38896 software tasks were finally obtained.
Table 4 provides statistical information about the dataset.

(3) Thirdly, in order to ensure the expressive ability of the original features of
the data, and to improve the convergence speed and accuracy of the model, label
encoding was performed on categorical features in the dataset. Word vector training
was used on text features to convert text-like data into vectors, and normalization
of numerical features was conducted to convert data values in the range [0, 1]. The

DEEP LEARNING-BASED RECOMMENDATION METHOD FOR TOP-K TASKS 15

normalization processing formula is as follows:

xi =
xi −min

max−min
, (15)

where min is the minimum value under the corresponding numerical feature, and
max is the maximum value under the corresponding numerical feature.

4.2. Experimental methods. This paper uses the historical task data set of
crowdsourcing workers. For any one crowdsourcing worker, we randomly selected
n tasks of the same scale with which the crowdsourcing workers had not interacted
as negative samples. Meanwhile, the time when the negative samples occurred is
guaranteed to be within the positive sample time interval. In the data set, a total of
2n tasks were used as data sets, which are arranged in the order of task release time.
The first 80% of the data set was obtained as the training set, and the remaining
20% of the data set was used as the test set.

4.3. Evaluation metrics. This article utilizes precision, mean average precision
(MAP), mean reciprocal rank (MRR) and normalized discounted cumulative gain
(nDCG) to evaluate models’ abilities to capture users’ preferences and to perform
time-sensitive next-item recommendations. These metrics are widely used in other
recommendation areas.

Precision is commonly used to evaluate the recommendation results. ‘Precision
rate’ refers to the ratio of the number of positive samples predicted by the model
to the total number of positive samples. The precision method is shown in (16):

Precision =

∑
u∈U

|R(u) ∩ T (u)|∑
u∈U

|R(u)|
, (16)

where R(u) is the list of recommendations made to the crowdsourcing worker u
based on his/her behaviors on the training set, and T (u) is the list of real behaviors
of the crowdsourcing worker u on the test set.

Next, MAP is a comprehensive recommendation evaluation index that focuses
on sequence weights. In practice, MAP is used to calculate the arithmetic average
on the basis of the average accuracy of each recommendation result. The top-K of
MAP can be expressed as:

AP =
1

k

k∑
j=1

Precisioni × reli, (17)

MAP =
1

|U |

|U |∑
i=1

AP, (18)

where k represents the length of the recommendation list, Precisioni is the precision
of a cut-off rank list from 1 to i, and reli represents the correlation of the prediction
results at position i. The value of a positive sample will be 1; otherwise, it is 0.
Finally, |U | is the number of users.

Next, MRR is an internationally used measurement tool used for evaluating
the accuracy of lists. In practice, MRR mainly evaluates the performance of a

16 Z. PENG, D. WAN, A. WANG, X. LU AND P. M. PARDALOS

recommendation algorithm in time series prediction, which can be summarized by
the following equation:

MRR =
1

|U |

U∑
i=1

1

ranki
, (19)

where ranki is the rank of the first correct answer for the i -th task.
Finally, nDCG is used to measure the quality of recommendation ranking and

consider the impact of recommendation tasks at different positions in the recom-
mendation list on the overall recommendation results. Formally, nDCG is defined
as:

DCG =

k∑
i

2reli − 1

log2(i+ 1)
, (20)

IDCG =

|REL|∑
i

2reli − 1

log2(i+ 1)
, (21)

nDCG =
DCG

IDCG
, (22)

where |REL| represents an ideally sorted list of correlations from largest to smallest.

4.4. Experimental results and analysis.

4.4.1. Performance comparison. In order to further verify the superiority of the
proposed CLSAN model for software crowdsourcing task recommendations, CLASN
was compared with the traditional collaborative filtering algorithm, SVD and LSTM-
based algorithm used in our research. When top-K recommendation was carried
out in the experiment, the length of the recommendation list took different val-
ues for the experiment, and the experimental results when was 5, 10, 15, and 20
were selected as the analysis samples. We repeated the experiment for all users
collected in the experiment and selected the average value of each evaluation index
(such as precision rate, MAP, MRR, and nDCG) in the recommendation test as the
experimental result. Table 5 shows the experimental results of all the methods:

Table 5. Performance comparison of CLSAN with other
algorithms on crowdsourced datasets.

Methods
Top-5 Top-10

P MAP MRR nDCG P MAP MRR nDCG
CF 0.3602 0.1464 0.1097 0.3199 0.3637 0.1825 0.0914 0.3073
SVD 0.4816 0.4375 0.3075 0.6018 0.5750 0.4041 0.1940 0.6147
LSTM 0.3903 0.1522 0.1122 0.3577 0.5333 0.2527 0.0997 0.4351

LSTM-A 0.6667 0.4044 0.2100 0.5458 0.6904 0.4708 0.1536 0.6143
CLSAN 0.7333 0.6122 0.3544 0.7571 0.7971 0.6595 0.2333 0.7958

Methods
Top-15 Top-20

P MAP MRR nDCG P MAP MRR nDCG
CF 0.3999 0.1854 0.0722 0.3295 0.4263 0.1984 0.0599 0.3405
SVD 0.5500 0.3721 0.1423 0.5888 0.5625 0.3669 0.1151 0.5907
LSTM 0.6222 0.3266 0.0870 0.5164 0.6500 0.3653 0.0757 0.5533

LSTM-A 0.6667 0.4561 0.1178 0.6107 0.6833 0.4794 0.0986 0.6311
CLSAN 0.8667 0.7211 0.1815 0.8417 0.8333 0.6971 0.1465 0.8240

DEEP LEARNING-BASED RECOMMENDATION METHOD FOR TOP-K TASKS 17

Among different recommendation list lengths, the CF algorithm had the most
unfavorable performance under nearly all metrics. On the one hand, many tradi-
tional CF algorithms consider user-task feature modeling, but they have difficulty
modeling implicit features. Therefore, we considered introducing implicit features
into the CLSAN algorithm for recommendation. On the other hand, a CF algorithm
does not consider contextual information between tasks and cannot accurately iden-
tify users’ dynamic interest preferences. However, the LSTM-based models achieved
better results, which indicates that LSTM can effectively obtain the long-term and
short-term preferences of workers. Moreover, the sequential information of user in-
teraction behavior also plays an important role in crowdsourcing recommendations.

As shown in Table 5, we can find that, as the recommended list length changes,
the proposed CLSAN model significantly outperformed SVD and other algorithms
in almost all cases. In addition, SVD achieves similar but poorer performance than
CLSAN, because a SVD algorithm can effectively pay attention to the display and
implicit feedback information of a user-task interaction matrix. Compared with
the baseline algorithm, both LSTM and LSTM-attention use deep neural networks
for recommendation systems. This finding further demonstrates the importance of
considering contextual information and time-order recommendation as a means to
provide more information about user preferences. We attribute the performance
enhancement of the CLSAN to the effect of the relevant context based on the
attentional mechanism on the user’s dynamic interest conversion. This shows that
the application of an attention mechanism can capture the influence of historical
interaction on user interest transformation.

In particular, one can find that both the precision and nDCG show a trend of
first increasing and then decreasing. With an increase in the K value, the model
can get more and more information regarding the potential interests of users at the
beginning; this makes the recommendation effect better and better. However, when
the recommendation list exceeds a certain range, the indications are that possible
over-fitting will affect the final recommendation result. Therefore, in parameter
comparisons, we set the recommended length of CLSAN to 15. The precision and
nDCG models reached the highest value, 86.6% and 84.1% respectively, to ensure
good performance.

4.4.2. Model component analysis. To further ensure the effectiveness of the algo-
rithm, we provided optimal hyperparameter settings for the LSTM algorithm. As
shown in Figure 3, several important hyperparameters were taken as examples.
‘Dropout rate’ is the retention rate of neurons in the training process, and is used
to reduce the over-fitting problem of the neural network. Experimental results show
that the best performance can be achieved when the dropout rate is 0.1. The learn-
ing rate can provide guidance on how to adjust the weight of the network through
the gradient of the loss function. When the learning rate is 0.005, the performance
is optimal.

In order to analyze the advantages of each computing component, we compared
CLSAN, LSTM-attention, and LSTM for different metrics, under K=15. As shown
in Figure 4 significant improvement can be observed in recommendation perfor-
mance by adding the attention mechanism. This is because the attention mechanism
can highlight relevant important features and reduce the interference of irrelevant
features, in order to capture more accurate user interest features. Therefore, the re-
sults verify that an attentional mechanism can further optimize the ability to learn
important situational information in the dynamic interaction of behavioral data.

18 Z. PENG, D. WAN, A. WANG, X. LU AND P. M. PARDALOS

In addition, CLSAN takes into account the embedment of the worker competency
correction model and achieved 19.8% precision and 23.1% nDCG improvement on
average, compared with LSTM-attention. In the real software crowdsourcing rec-
ommendation process, a crowdsourcing worker’s choice of tasks will be restricted
by the worker’s professional competence. The staff competency calibration model
can effectively identify tasks that better match the competencies of crowdsourced
workers. The model ensures that crowdsourcing workers can first find and then
select the tasks that are most relevant to them. Due to the embedding of the capa-
bility correction model, the next recommendation function of personalization in the
proposed CLSAN model is further improved. This finding also shows that CLSAN
not only can model the dynamics and different interest preferences of employees
through attention networks, but can also fully simulate the behavioral patterns of
employees interacting with real recommendation system.

In CLSAN, the time decay coefficient affects the influence of the association re-
lationship between workers and tasks on the recommendation results, to a certain
extent. As can be seen from formulas (9)-(11), CLSAN uses to balance the similar
correlations between workers’ abilities and tasks, considering that different work-
ers have different levels of time sensitivity to task preference. When is 0, this is
equivalent to completely ignoring the influence of preference time sensitivity. As
increases, task-time relationships can be used to make higher priority recommen-
dations. As shown in Figure 5, when ranges from 0.01 to 0.5, CLSAN’s precision,

Figure 3. Parameter optimization process in datasets, K=15

DEEP LEARNING-BASED RECOMMENDATION METHOD FOR TOP-K TASKS 19

and the values of MAP, MRR and nDCG decrease; when exceeds 0.5, these values
gradually increase.

5. Conclusions and discussions. Traditional recommendation approaches are
not suitable for software crowdsourcing systems that require timely, personalized
recommendations of tasks/workers. Software crowdsourcing brings new features

Figure 4. Performance comparison of different LSTM
algorithms, K=15

Figure 5. Performance comparison of CLSAN at different time
decay coefficient, K=15

20 Z. PENG, D. WAN, A. WANG, X. LU AND P. M. PARDALOS

that do not exist in traditional recommendation scenarios, i.e., large task flow, high
task complexity, long development cycle, winning task competitions, the importance
of workers’ professional capabilities, and so on. When designing recommendation
systems, these properties not only need to be fully considered, but one must also
note that the selection of tasks by crowdsourcing workers is driven by intrinsic
interests. Personalized recommendations for crowdsourcing workers are made by
excavating the interests and preferences of workers, and proactively recommending
tasks that workers are interested in or that they need. Based on the research on
the dynamic changes of the individual interests and preferences of crowdsourcing
workers and the ability factors, this article proposes a worker capability-corrected
long- and short-term attention network recommendation model (CLSAN). First of
all, this method introduces the LSTM model, which is used to learn the context
information in a large number of historical tasks and which combines the atten-
tion mechanism to apply different attention weights to the obtained information
features. On the basis of retaining effective information features, the focus on key
information features is increased, in order to obtain the personalized preferences of
crowdsourcing workers. Finally, a worker capability correction model is introduced.
Considering the actual recommendation situation, there are strong knowledge and
skills barriers between crowdsourcing workers and tasks. Workers will often reject a
task, due to a lack of corresponding abilities. The proposed model implements the
refined sorting of the recommendation list by revising the worker’s ability attributes.
The experimental results show that, compared with traditional CF, SVD, LSTM,
and LSTM-attention algorithms, the CLSAN algorithm proposed in this paper has
an average increase of 30.6% in precision, 38.6% in MAP, 7.7% in MRR, and 33.0%
in nDCG. The evaluation results showed the potential benefits of the CLSAN model
in recommending appropriate tasks to crowdsourcing workers. CLSAN model can
help the crowdsourcing platform to achieve a more accurate and personalized rec-
ommendation mechanism, quickly help the crowdsourcing workers find the most
suitable task for them, and reduce the time cost and economic cost lost by the
crowdsourcing workers when looking for task matching. In addition, it can help
the platform optimize the service and management mechanism for crowdsourcing
employees, formulate corresponding service strategies for different types of crowd-
sourcing employees, and improve user satisfaction and enthusiasm. Our work has
contributed to solving the problem of heterogeneity between task requirements and
software crowdsourcing workers, focusing on personalized task recommendation and
providing inspiration for task recommendation in other crowdsourcing scenarios.

In the future, we plan to explore several possible directions to extend our work.
First, we are interested in integrating auxiliary information, such as user reviews
and trust relationships, to further enhance the performance of crowdsourcing recom-
mendations. Second, crowdsourcing recommendation systems have a large number
of complex scenes and heterogeneous data, which will cause a lot of noise interfer-
ence to our recommendation results. It is worth mentioning that some advanced
algorithm models have achieved remarkable success in solving scenario uncertainty
and data uncertainty [17, 2, 16]. We will use these algorithm models to provide
more effective suggestions and make our models more effective.

Acknowledgments. The work is supported by grants from the National Natural
Science Foundation of China (No: 72071060, 72101078, 72171069, 71901086) and

DEEP LEARNING-BASED RECOMMENDATION METHOD FOR TOP-K TASKS 21

the Fundamental Research Funds for the Central Universities (No. JZ2021HGTA01
31).

REFERENCES

[1] Y. Baba, K. Kinoshita and H. Kashima, Participation recommendation system for crowd-
sourcing contests, Expert Syst. Appl., 58 (2016), 174-183.

[2] İ. Batmaz, F. Yerlikaya-Özkurt, E. Kartal-Koç, G. Kösal and G.-W. Weber, Evaluating

the CMARS performance for modeling nonlinearities, in AIP Conference Proceedings, 1239
(2010), 351-357.

[3] A. Begel, J. Bosch and M.-A. Storey, Social networking meets software development: Per-
spectives from GitHub, MSDN, Stack Exchange, and TopCoder, IEEE Softw., 30 (2013),

52-66.

[4] L. Chen, A. Baird and D. Straub, Why do participants continue to contribute? Evaluation
of usefulness voting and commenting motivational affordances within an online knowledge

community, Decision Support Syst., 118 (2019), 21-32.

[5] R. Desimone and J. Duncan, Neural mechanisms of selective visual attention, Ann. Rev.
Neuroscience, 18 (1995), 193-222.

[6] Y. Fu, B. Shen, Y. Chen and L. Huang, TDMatcher: A topic-based approach to task-developer

matching with predictive intelligence for recommendation, Appl. Soft Comput., 110 (2021).
[7] Y. Fu, H. Sun and L. Ye, Competition-aware task routing for contest based crowdsourced

software development, 6th International Workshop on Software Mining (SoftwareMining),

Urbana, IL, USA, 2017.
[8] L. Gao, Y. Gan, B. Zhou and M. Dong, A user-knowledge crowdsourcing task assignment

model and heuristic algorithm for Expert Knowledge Recommendation Systems, Engrg. Appl.
Artif. Intell., 96 (2020).

[9] X. He, L. Liao, H. Zhang, L. Nie and X. Hu, et al., Neural collaborative filtering, in Proceedings

of the 26th International Conference on World Wide Web, 2017, 173-182.
[10] J. Howe, The Rise of Crowdsourcing, Wired Magazine. Available from: https://www.wired.

com/2006/06/crowds/.

[11] W. Li, W.-J. Wu, H.-M. Wang, X.-Q. Cheng and H.-J. Chen, et al., Crowd intelligence in AI
2.0 era, Frontiers Info. Tech. Electron. Engrg., 18 (2017), 15-43.

[12] Y.-M. Li, C.-Y. Hsieh, L.-F. Lin and C.-H. Wei, A social mechanism for task-oriented crowd-

sourcing recommendations, Decision Support Syst., 141 (2021).
[13] Z. Li, B. Cheng, X. Gao, H. Chen and G. Chen, A unified task recommendation strategy for

realistic mobile crowdsourcing system, Theoret. Comput. Sci., 857 (2021), 43-58.

[14] Z. Liao, X. Xu, X. Fan, Y. Zhang and S. Yu, GRBMC: An effective crowdsourcing recom-
mendation for workers groups, Expert Syst. Appl., 179 (2021).

[15] K. Mao, Y. Yang, Q. Wang, Y. Jia and M. Harman, Developer recommendation for crowd-
sourced software development tasks, 2015 IEEE Symposium on Service-Oriented System En-

gineering, San Francisco, CA, USA, 2015.
[16] A. Özmen, G. W. Weber, İ. Batmaz and E. Kropat, RCMARS: Robustification of CMARS

with different scenarios under polyhedral uncertainty set, Commun. Nonlinear Sci. Numer.

Simul., 16 (2011), 4780-4787.

[17] S. Özöğür-Akyüz and G.-W. Weber, Infinite kernel learning via infinite and semi-infinite
programming, Optim. Methods Softw., 25 (2010), 937-970.

[18] Q. Pan, H. Dong, Y. Wang, Z. Cai and L. Zhang, Recommendation of crowdsourcing tasks
Based on Word2vec semantic tags, Wirel. Commun. Mob. Comput., 2019 (2019).

[19] B. Rashidi, C. Fung and T. Vu, Android fine-grained permission control system with real-time

expert recommendations, Pervasive Mobile Comput., 32 (2016), 62-77.
[20] M. Safran and D. Che, Efficient learning-based recommendation algorithms for top-N tasks

and top-N workers in large-scale crowdsourcing systems, ACM Trans. Inf. Syst , 37 (2019),

1-46.
[21] J. Shu, X. Jia, K. Yang and H. Wang, Privacy-preserving task recommendation services for

crowdsourcing, IEEE Trans. Services Comput., 14 (2018), 235-247.

[22] K.-J. Stol, B. Caglayan and B. Fitzgerald, Competition-based crowdsourcing software devel-
opment: A multi-method study from a customer perspective, IEEE Trans. Softw. Engrg., 45

(2019), 237-260.

http://dx.doi.org/10.1016/j.eswa.2016.04.010
http://dx.doi.org/10.1016/j.eswa.2016.04.010
http://dx.doi.org/10.1063/1.3459772
http://dx.doi.org/10.1063/1.3459772
http://dx.doi.org/10.1109/MS.2013.13
http://dx.doi.org/10.1109/MS.2013.13
http://dx.doi.org/10.1016/j.dss.2018.12.008
http://dx.doi.org/10.1016/j.dss.2018.12.008
http://dx.doi.org/10.1016/j.dss.2018.12.008
http://dx.doi.org/10.1146/annurev.ne.18.030195.001205
http://dx.doi.org/10.1016/j.asoc.2021.107720
http://dx.doi.org/10.1016/j.asoc.2021.107720
http://dx.doi.org/10.1109/SOFTWAREMINING.2017.8100851
http://dx.doi.org/10.1109/SOFTWAREMINING.2017.8100851
http://dx.doi.org/10.1016/j.engappai.2020.103959
http://dx.doi.org/10.1016/j.engappai.2020.103959
http://dx.doi.org/10.1145/3038912.3052569
https://www.wired.com/2006/06/crowds/
https://www.wired.com/2006/06/crowds/
http://dx.doi.org/10.1631/FITEE.1601859
http://dx.doi.org/10.1631/FITEE.1601859
http://dx.doi.org/10.1016/j.dss.2020.113449
http://dx.doi.org/10.1016/j.dss.2020.113449
http://www.ams.org/mathscinet-getitem?mr=MR4204523&return=pdf
http://dx.doi.org/10.1016/j.tcs.2020.12.034
http://dx.doi.org/10.1016/j.tcs.2020.12.034
http://dx.doi.org/10.1016/j.eswa.2021.115039
http://dx.doi.org/10.1016/j.eswa.2021.115039
http://dx.doi.org/10.1109/SOSE.2015.46
http://dx.doi.org/10.1109/SOSE.2015.46
http://www.ams.org/mathscinet-getitem?mr=MR2820867&return=pdf
http://dx.doi.org/10.1016/j.cnsns.2011.04.001
http://dx.doi.org/10.1016/j.cnsns.2011.04.001
http://www.ams.org/mathscinet-getitem?mr=MR2724176&return=pdf
http://dx.doi.org/10.1080/10556780903483349
http://dx.doi.org/10.1080/10556780903483349
http://dx.doi.org/10.1155/2019/2121850
http://dx.doi.org/10.1155/2019/2121850
http://dx.doi.org/10.1016/j.pmcj.2016.04.013
http://dx.doi.org/10.1016/j.pmcj.2016.04.013
http://dx.doi.org/10.1145/3231934
http://dx.doi.org/10.1145/3231934
http://dx.doi.org/10.1109/TSC.2018.2791601
http://dx.doi.org/10.1109/TSC.2018.2791601
http://dx.doi.org/10.1109/TSE.2017.2774297
http://dx.doi.org/10.1109/TSE.2017.2774297

22 Z. PENG, D. WAN, A. WANG, X. LU AND P. M. PARDALOS

[23] D. Sun, K. Xu, H. Cheng, Y. Zhang and T. Song, et al., Online delivery route recommendation
in spatial crowdsourcing, World Wide Web, 22 (2019), 2083-2104.

[24] X. Wang, X. He, M. Wang, F. Feng and T.-S. Chua, Neural graph collaborative filtering, in

Proceedings of the 42nd International ACM SIGIR Conference on Research and Development
in Information Retrieval , 2019, 165-174.

[25] Y. Wang, X. Tong, K. Wang, B. Fan and Z. He, et al., A novel task recommendation model
for mobile crowdsourcing systems, Int. J. Sens. Netw., 28 (2018), 139-148.

[26] X. Xie, B. Wang and X. Yang, SoftRec: Multi-relationship fused software developer recom-

mendation, Appl. Sci., 10 (2020).
[27] X. Xu, W. Wu, Y. Wang and Y. Wu, Software crowdsourcing for developing Software-as-a-

Service, Front. Comput. Sci., 9 (2015), 554-565.

[28] L. Yang, Y. Hu and G. Shao, Preference prediction method based on time attenuation and
preference fluctuation, Optim. Method Softw., 36 (2016), 2011-2015.

[29] Y. Yang, M. R. Karim, R. Saremi and G. Ruhe, Who should take this task? Dynamic decision

support for crowd workers, in ESEM’16: Proceedings of the 10th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement , 2016 (2016).

[30] X. Yin, J. Huang and W. He, H. Yu and L. Cui, Group task allocation approach for hetero-

geneous software crowdsourcing tasks, Peer-to-Peer Netw. Appl., 14 (2021), 1736-1747.
[31] M.-C. Yuen, I. King and K.-S. Leung, TaskRec: A task recommendation framework in crowd-

sourcing systems, Neural Process. Lett., 41 (2015), 223-238.
[32] M.-C. Yuen, I. King and K.-S. Leung, Temporal context-aware task recommendation in crowd-

sourcing systems, Knowl.-Based Syst., 219 (2021).

[33] A. L. Zanatta, L. S. Machado and G. B. Pereira, Software crowdsourcing platforms, IEEE
Softw., 33 (2016), 112-116.

[34] X. Zhang, Z. Peng, Q. Zhang, X. Tang and P. M. Pardalos, Identifying and determining

crowdsourcing service strategies: An empirical study on a crowdsourcing platform in China,
J. Ind. Manag. Optim., 18 (2022), 1809-1833.

[35] Z. Zhang, H. Sun and H. Zhang, Developer recommendation for Topcoder through a meta-

learning based policy model, Empir. Softw. Engrg., 25 (2020), 859-889.
[36] H. Zheng, D. Li and W. Hou, Task design, motivation, and participation in crowdsourcing

contests, Int. J. Electron. Commer., 15 (2011), 57-88.

Received August 2022; revised October 2022; early access November 2022.

http://dx.doi.org/10.1007/s11280-018-0563-4
http://dx.doi.org/10.1007/s11280-018-0563-4
http://dx.doi.org/10.1145/3331184.3331267
http://dx.doi.org/10.1504/IJSNET.2018.096259
http://dx.doi.org/10.1504/IJSNET.2018.096259
http://dx.doi.org/10.3390/app10124333
http://dx.doi.org/10.3390/app10124333
http://dx.doi.org/10.1007/s11704-015-4900-9
http://dx.doi.org/10.1007/s11704-015-4900-9
http://dx.doi.org/10.1145/2961111.2962594
http://dx.doi.org/10.1145/2961111.2962594
http://dx.doi.org/10.1007/s12083-020-01000-6
http://dx.doi.org/10.1007/s12083-020-01000-6
http://dx.doi.org/10.1007/s11063-014-9343-z
http://dx.doi.org/10.1007/s11063-014-9343-z
http://dx.doi.org/10.1016/j.knosys.2021.106770
http://dx.doi.org/10.1016/j.knosys.2021.106770
http://dx.doi.org/10.1109/MS.2016.151
http://www.ams.org/mathscinet-getitem?mr=MR4414556&return=pdf
http://dx.doi.org/10.3934/jimo.2021045
http://dx.doi.org/10.3934/jimo.2021045
http://dx.doi.org/10.1007/s10664-019-09755-0
http://dx.doi.org/10.1007/s10664-019-09755-0
http://dx.doi.org/10.2753/JEC1086-4415150402
http://dx.doi.org/10.2753/JEC1086-4415150402

	1. Introduction
	2. Related work
	2.1. General recommended
	2.2. Deep-learning-based recommendation

	3. The proposed system model
	3.1. Problem definition
	3.2. Recommendation framework
	3.3. Worker preference feature extraction
	3.4. Capability correction model
	3.5. Recommendation prediction

	4. Experiment and results
	4.1. Experiment
	4.2. Experimental methods
	4.3. Evaluation metrics
	4.4. Experimental results and analysis

	5. Conclusions and discussions
	Acknowledgments
	REFERENCES

