
Research Article
Sustainable Smart Industry: A Secure and Energy Efficient
Consensus Mechanism for Artificial Intelligence Enabled
Industrial Internet of Things

A. Sasikumar,1 Logesh Ravi,2 Ketan Kotecha ,3 Jatinderkumar R. Saini,4

Vijayakumar Varadarajan,5,6 and V. Subramaniyaswamy 7

1Department of Electronics and Communication Engineering,
Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, India
2SENSE, Vellore Institute of Technology, Chennai, Tamilnadu, India
3Symbiosis Centre for Applied Arti cial Intelligence, Symbiosis International (Deemed University), Pune, India
4Symbiosis Institute of Computer Studies and Research, Symbiosis International (Deemed University), Pune, India
5Ajeenkya DY Patil University, Pune, India
6School of Computer Science and Engineering, University of New South Wales Sydney, Kensington, NSW, Australia
7School of Computing, SASTRA Deemed University, �anjavur, India

Correspondence should be addressed to Ketan Kotecha; head@scaai.siu.edu.in and V. Subramaniyaswamy;
vsubramaniyaswamy@gmail.com

Received 11 March 2022; Accepted 1 June 2022; Published 20 June 2022

Academic Editor: Akshi Kumar

Copyright © 2022 A. Sasikumar et al. �is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In recent years, the Internet of �ings (IoT) has been industrializing in various real-world applications, including smart industry
and smart grids, to make human existence more reliable. An overwhelming volume of sensing data is produced from numerous
sensor devices as the Industrial IoT (IIoT) becomes more industrialized. Arti�cial Intelligence (AI) plays a vital part in big data
analyses as a powerful analytic tool that provides �exible and reliable information insights in real-time. However, there are some
di�culties in designing and developing a useful big data analysis tool using machine learning, such as a centralized approach,
security, privacy, resource limitations, and a lack of su�cient training data. On the other hand, Blockchain promotes a
decentralized architecture for IIoTapplications. It encourages the secure data exchange and resources among the various nodes of
the IoTnetwork, removing centralized control and overcoming the industry’s current challenges. Our proposed approach goal is
to design and implement a consensus mechanism that incorporates Blockchain and AI to allow successful big data analysis. �is
work presents an improved Delegated Proof of Stake (DPoS) algorithm-based IIoTnetwork that combines Blockchain and AI for
real-time data transmission. To accelerate IIoT block generation, nodes use an improved DPoS to reach a consensus for selecting
delegates and store block information in the trading node.�e proposed approach is evaluated regarding energy consumption and
transaction e�ciency compared with the exciting consensus mechanism. �e evaluation results reveal that the proposed
consensus algorithm reduces energy consumption and addresses current security issues.

1. Introduction

�e digitization transition gives expressive possibilities for
the industry to grow creative and changing economic
models and complex circular distribution networks.
However, the information technology and transmission
sector have a small impact on the environment; such a
conversion has signi�cant consequences for sustainability.

It is vital to supply solutions in a resilient and compre-
hensive manner throughout their entire life cycle to meet
the milestones set forth by the industrial revolution for
sustainable development [1] and achieve the circular
economy’s goals. �ree fundamental innovative models
enable the long-term digitization of a smart circular
economy: industrial IoT, edge-based computing, and ar-
ti�cial intelligence (AI).
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'e introduction of the context of big data and two
dominant digital innovations, such as machine learning and
the Internet of'ings, has recently been experienced around
the world. Whereas the Internet of 'ings establishes a
network of interlinked systems, machine learning (AI) al-
lows machines to mimic cognitive abilities. AI and the IoT
can work together to allow a new potential technology called
Artificial Intelligence of 'ings (AIoT). In general, AIoT
intends to make IoT production effective, increase human-
machine interactions, and improve data gathering and
analysis capabilities. 'ese innovative techniques are de-
veloped through intelligent system advances in hardware
(e.g. edge devices and accelerators) and software (e.g. RTOS,
digital twin, deep learning architecture); AIoT is becoming
the real-time application. In recent times, AIoT has been
adopted in many application areas such as smart home
automation [2], industry automation, and smart cities [3].

AIoT, as an AI-enabled framework, follows the standard
training and inference approach [4] depicted in Figure 1. In
the first stage, AI models utilise various machine learning
techniques for training the data set. In the deployment of
AIoT, training data have frequently gathered various data
from IoTdevices. Models are developed in the second step to
arrive at conclusions from specific information. 'e two
processes are commonly referred to as model development
and Inferencing. A fundamental difficulty in AIoT is that the
development of the model algorithm stage necessitates a
large quantity of data and processing capabilities to produce
the best AI models [5]. Yet, most IoT devices lack the
necessary storage resources due to different constraints.

With the development of smart sensor technologies to
integrate AI-based systems deployed in real-time applica-
tions, all data start from the era of the Industry 4.0 revolution
[6]. Smart sensors are a topic that contributes to the en-
hancement of production and increased turnover in a variety
of industries [7]. 'ese advantages have been proven, es-
pecially when the technology available on the market is used
effectively. However, AI applications can be harmful in some
situations, causing major problems for the company in
question. Furthermore, sensors can respond differently in
different environments. 'ey may give data of varying
quality, which might misidentify the model decision and
result in categorization failures if the model is not suffi-
ciently stable. A significant effort and high costs are asso-
ciated with an AI-based system developed to solve a single
classification challenge, and a single misclassification sce-
nario is costly.

'e disadvantages of misclassification differ from one
area to the next, based on a specific domain. On the one side,
in the medical field, when a computerized diagnosis suggests
that a person is sick, but in reality his health is not that poor
[8]. Later, a doctor can verify and discover that the patient is,
in fact, healthy. In the opposite situation, failing to recognize
a sick patient and allowing him or her to continue without
treatment is extremely harmful. Human safety is taken into
account here; hence, high classification accuracy of greater
than 99.99 per cent is essential. On the other hand, we permit
marginally greater categorization errors for most industrial
settings that do not endanger people’s safety.

Based on various research studies in the agricultural field,
the work of Xiong et al. [9], as well as Wossen et al. [10],
validated that the cost of a misclassification error varies based
onwhether it is a false-negative or false-positive error in terms
of financial and material loss. Various fault prediction ap-
proaches have been developed in the literature [11] to achieve
low classification error rates. Other Support Vector Machine
(SVM)-based approaches for minimizing misclassification
situations have been proposed [12]. 'ese approaches require
a significant amount of training data, that is, data that contain
classified information. 'is step is still challenging and time-
consuming, particularly when working on new software
programs that lack previous defect data.

Furthermore, time is a critical issue because these re-
ceived much attention in the post-evaluation of the classi-
fication stage. Achieving a low classification error rate with
the lowest possible risks is essential. Even more model re-
training must be conducted after the prediction of the
misclassification impact based on reference data, as dem-
onstrated by Xiong, Y. and Zuo and Xiong in their paper
[13], where they investigate the effect of misclassification
errors to train a cost-effective neural network with different
expense proportions. 'is method is time-consuming and
requires an online training variable change despite the
positive findings. 'ere are also additional types of studies
interested in evaluating sensor data online. In their study
[14], Song and Deng use proof theory and intuitionistic
fuzzy to continuously assess the trustworthiness of sensor
data. As a result, the system can assign a fair dependability
factor to sensors that give contradictory data. On the other
hand, the proposed system design is extremely sophisticated
and necessitates a good mathematics background.

Combining data from several sources yields significant
benefits for decision-making and framework management,
primarily in terms of increased trust and better-resolved
system information. However, deciding on appropriate
sensors to integrate for a specific task is difficult. Time and
money are generally spent on respectful considerations.
Instead, we present a clever AI-based solution to advanced
sensor fusion that determines multiple sensor data streams
based on the individual requirements, situations, and tasks.
We recommend using AI automation as a pre-evaluation
method in particular. 'is AI-based sensor assessment and
clever fusion using interpretable frameworks technique can
be easily applied to a wide range of sensor fusion systems.

As a result, the model’s interoperability allows the
candidate to follow the decision-making activity. In
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Figure 1: Artificial Intelligence two-stage process.
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addition, the suggested method can deny a request if the
model is unsure about a decision. We demonstrate how to
create a bi-functional system that incorporates both aspects.
We concentrate on both the dynamic and static pre-eval-
uation of the system. A dynamic pre-evaluation evaluates
sensor inputs during the classifier training phase. In con-
trast, a static pre-evaluation is done offline after the clas-
sifiers have been taught but before they are used in
manufacturing lines. 'e developed system enables the
evaluation of each sensor in terms of its data contribution to
a predetermined categorization assignment and the hardi-
ness of this information based on various external
conditions.

Artificial intelligence (AI) has been hailed as a cure for a
slew of problems in various industries [15]. It can upend old
business models by opening new ones [16–18]. AI appli-
cations in the industrial business promise unique services in
addition to efficiency improvements [19]. Enhancing goods
with data-driven solutions is a crucial revenue generator in
marketplaces with shrinkingmargins. It allows companies to
stand out from competitors, especially in environments with
ubiquitous nondata-driven services [20]. As discussed in this
research [21], AI technologies are particularly valuable for
commercial comprehensive supplier marketing strategies.
Full-service providers (FSPs) retain ownership of intellectual
products (e.g., industrial systems) and offer their use as a
service in the manufacturing sector. FSP customers gain
from converting procurement expenses into usage- or time-
based costs, as well as the elimination of operational costs
and the transfer of property control risks to the FSP. 'e
FSP, on the other hand, gains from improved client loyalty
[22] and additional revenue streams by embracing inno-
vative payment formats. AI applications have the potential to
boost the profitability of FSP marketing strategies by low-
ering maintenance costs and improving the availability of
products or durability [23].

On the other hand, most AI applications use statistical
approaches to training as part based on information [24].
'ese predictions allow for categorization that helps with
various industrial applications and services. Cost-effective
predictive maintenance (PM) and computerized predictive
quality assurance (PQ) are two examples of such applica-
tions. As a result, the categorization algorithms that FSPs use
must add value to consumers–i.e., service recipients (SRs)–
while still being profitable.

Although most machine learning techniques are
designed to turn even complicated cognitive issues into a
binary classification [25], we look into classification tech-
niques. Furthermore, the statistical structure of today’s AI
applications renders classifications inaccurate; nonetheless,
studies show that up to 30% of decision-makers lack a basic
knowledge of AI. Firms wanting to reinvent data-driven
solutions based on categorization techniques must account
for this imperfection in the construction of service-level
agreements (SLAs) to obtain the promised benefits. As a
result of the poor predictive power (PP), misclassifications
resulted in breakdowns and decreased service levels. 'e
FSP, for example, may be required to pay the SR for a lesser
service level, resulting in additional costs.

Similarly, fluctuating service standards could impact an
FSP’s revenue. 'e revenue fluctuates regarding the payment
system according to the PP-dependent quality of service. Low
PP has little effect on a subscriber payment schedule, which
provides FSPs with consistent revenue. On the other hand, a
high PP allows FSPs to grow income by increasing service levels
in utilization payment models. On the other hand, Low PP
reduces the level of services provided and, consequently, in-
come. 'e interaction of PP and different payment arrange-
ments might positively or negatively impact the FSP’s
estimated net present value (NPV) [26]. As a result, FSPs must
use an economic calculus to weigh the risks and benefits of
using classification algorithms to pick payment arrangements.

1.1. Contribution. In Industrial automation applications,
integrating blockchain, artificial intelligence, and big data
constitutes the core technologies that allow dynamic data
transmission. Moreover, integrating these technologies
provides many features in addressing the challenges related
to security, such as transparency, privacy, ensuring own-
ership rights, decentralization, and so on [27]. 'e inte-
gration of blockchain and artificial intelligence, on the other
side, is still being investigated. More research studies have
recommended artificial intelligence adoption using a sim-
plified distributed system, with a focus on decentralized
authentication. 'ese research studies have failed to develop
an artificial intelligence-based big data security model.
Furthermore, the blockchain is not employed for big data
analytics to overcome the risk of handing dynamic data into
the system [28]. Instead, researchers implemented a
blockchain model incorporated with distributed ledger for
secure transaction processes in the industries.

In this manuscript, we introduce an improved DPoS-
based consensus algorithm to increase the data transaction
speed, decentralized control, and data security for IIoT
networks. 'e novelty of developed consensus mechanism
for industrial applications is as follows:

(i) To resolve the centralized security problems of IIoT,
we proposed an improved DPoS consensus algo-
rithm based on honor delegates for real-time
applications.

(ii) To accelerate IoT block creation, nodes use an
improved DPoS to reach a consensus for selecting
delegates and store block information in the trading
node.

(iii) Due to the demanding needs of enabling technol-
ogies in industrial applications, the data transmis-
sion and energy consumption are challenging tasks.
To overcome these issues, we introduce delegates
and honor delegate nodes–based consensus algo-
rithm for AI-enabled IioT.

2. Related Work

In this section, we describe the basic mechanism of artificial
intelligence, big data, and blockchain for industrial appli-
cation and how consensus mechanism-based AI change
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industrial IoT. Blockchain, data science, and AI are the
enabling technologies for industrial applications. Blockchain
is mainly focused on the distributed ledge and decentralized
framework for real-time applications. At the same time, data
science is used for providing dynamic information and AI is
employed for analyzing and classifying the sensor data in
IoT applications. 'ese innovative techniques are allowing
machines to make decision and provide intelligent services.
Figure 2 shows the IoT node interconnection for industrial
applications.

2.1.Artificial IntelligenceandBigDataOverview. Big data has
been one of the most prominent research topics in recent
years. Because of its huge volume, rapid velocity, and het-
erogeneous diversity, it differs from regular data.'ese traits
of volume, velocity, and variety are known as the 3Vs of big
data. Later, the list was expanded to include two more Vs:
value and veracity. As a result, all data that are of substantial
quantity (volume), generated at a high rate (velocity), and
diverse in nature (organized, semi-organized, or unorga-
nized) are referred to as big data (variety). 'e value of big
data analytics is that it incorporates the fourth V (value) into
its qualities, making it a valuable asset to the company.

Big data analytics is a technique for analyzing large
amounts of data and turning it into useful information by
employing cutting-edge statistical, analytical, logistic, or
artificial intelligence methods. 'e 3Vs of big data, on the
other hand, introduce a new set of obstacles, such as col-
lecting, storing, exchanging, organizing, processing, ana-
lyzing, and visualizing such large amounts of data at rapid
speeds [29]. Various frameworks have been built to manage
large data for successful analytics in various applications for
this purpose.

'e digital reproduction of three primary cognitive
abilities: training, thinking, and self-correction, is known as
artificial intelligence (AI). Digital learning is a set of prin-
ciples applied as a predictive algorithm that transforms real-
world historical data into useful information [30]. 'e
purpose of digital reasoning is to select the best rules for
achieving a specific goal. Digital self-correction, on the other
hand, is the continuous process of accepting the results of
reinforcement learning. 'is approach is followed by every
AI model in order to create a smart technology that can
accomplish a task that would ordinarily consume a lot of
time.

Machine learning, deep learning, data analysis, and
principle techniques are used in the majority of intelligent
systems, while reasoning and experience and understanding
methods are used in others [31]. Machine learning and deep
learning are two AI methods that are commonly employed
nowadays. 'e distinctions among artificial intelligence,
machine learning, and deep learning methods are frequently
misunderstood.

Machine learning is a type of artificial intelligence (AI)
that looks for certain trends in past data to help with de-
cision-making. 'e more data we gather, the more precise is
the learning process (eliminate the term big data). Machine
learning can be classified into three types based on the

decision process. First, supervised learning, wherein sets of
data containing labelled outputs are accepted in required
amounts to practice a model for categorization or future
projections. Second, unsupervised learning is a type of
machine learning that works with unstructured sets of data
which are used for clustering and sorting. Finally, rein-
forcement learning collects data recordings with no labels
but delivers response to the intelligent agent once specified
actions take place. Linear regression, decision tree, and
SVMs are the examples of supervised machine learning
algorithms [32]. K-means and hierarchical cluster analysis
fall under the unsupervised learning [33]. Lastly, Monte
Carlo learning and Q-learning comes in the categories of
reinforcement learning techniques [34]. Deep learning is a
data mining technique inspired by the biological neural
network and utilising one or more hidden units of artificial
neurons. 'e historical data are handled repeatedly by
several layers during the learning process, creating links and
continuously weighting the neuron inputs for best results.

2.2. Relationship between Artificial Intelligence, Big Data, and
IIoT. Real-time surveillance of physical equipment, indoor
asset management, and outdoor asset management are just a
few of the novel opportunities enabled by new smart sensors
and IoT deployments in industrial ecosystems [35]. By in-
tegrating the physical environment to its virtual picture, IoT
devices promote the real-time data gathering required for
the production of a digital model of the physical component
and permit the enhancement and servicing of the physical
component (using smart devices). Because the IoT data
indicated above is large in size, big data analytics can be
useful in the building of an effective technology.

'e reason for this is that industrial activities are ex-
tremely complicated, making early detection of possible
issues difficult using conventional methods. Such issues, on
the other side, may be easily retrieved from collected data,
bringing productivity and expertise to industrial applica-
tions. However, in the industrial and technological realms,
handling this massive volume of data necessitates complex
approaches, structures, platforms, technologies, and algo-
rithms. In a digital twin setting, for example, Zhang et al.
[36] suggested a big data analytic system for smart account

Figure 2: Graph-based IoT node generation for industrial
applications.
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auditing and maintenance. 'e relationship between AI, big
data, and IIoT is depicted in Figure 3.

Cloud technology is frequently the perfect platform for
processing and analyzing large amounts of data [37]. Fur-
thermore, only by using AI technologies on the obtained
data how would an intelligent digital system be created. In a
nutshell, the IoT is used to collect large amounts of data from
the physical world. 'e data are then placed into an AI
model to create a digital twin. 'e developed digital system
can then be used to improve other industrial processes.

2.3. Research Challenges and Security Issues. 'e growing
acceptance and accessibility of blockchain, as well as the use
of IoT, data science, and AI innovations, has broadened the
research problems of blockchain. 'ese difficulties are di-
vided into four categories.

2.3.1. Data Collection. Data collecting from a physical de-
vice, data combining, and data exchanging with the asso-
ciated blockchain are all made easier by the IoT. 'is
procedure has the potential to be rather costly. It is possible
that the digital ledger will be more expensive than the asset
itself, in which case it will not be worthwhile to build the
digital system.'e acquired data, on the other hand, is huge,
fragmented, unorganized, and noisy. As a result, more data
processing is necessary to guarantee its optimal usage.

We need to use data cleaning procedures, as well as
organize, rearrange, and homogenize the data. Furthermore,
keeping such a massive volume of data under control is a
huge task. Furthermore, the fundamental machine learning
techniques require a specific quantity of data for training
reasons in order to enhance the reliability of the blockchain
model.

2.3.2. Challenges in Big Data. 'e rapid use of IoT tech-
nology in the industries has resulted in massive volumes of
monitoring (sensor) data being generated. To this goal,
improved infrastructures, foundations, platforms, tech-
niques, and strategies are needed to represent, preserve,
share, analyze, and evaluate the raw data in big data and
analytics. Edge and cloud services platforms could also be
used to handle digital twin related data. Edge computing, in
particular, allows for dispersed computation at the network’s
edge, with collective analysis taking place in the cloud.
However, data processing on the cloudmay result in a longer
response time.

2.3.3. Analysis of Raw Data. As described in the literature,
artificial intelligence–based techniques for big data played an
important role in industry for decision-making. However,
choosing a certain model from hundreds of machine
learning with unique settings is difficult. To various appli-
cations and data sources, each intelligence has various levels
of accuracy and efficiency. On the other hand, accuracy
might have a negative impact on efficiency. As a result,
choosing the proper optimization algorithm and function-
alities is difficult depending on the motivation and

implementation of industry automation. Furthermore, there
are less realistic deployments of intelligence for industry 4.0
revolution in the literature, which adds to the difficulties.

2.3.4. Challenges in Privacy and Security. Some
manufacturing sectors, such as sensor data, product-related
information, and human management ledger are deemed
sensitive and may demand strict security and privacy
guarantees. First, because IoT devices are involved in digital
twinning, the privacy of the fundamental communication
systems must be prioritized. Furthermore, the enormous
amount of asset-related data must be securely held to avoid
data theft from both inside and outside attacks.

2.4. Need of Blockchain Technology in IIoT. In recent times,
there has been a lot of studies into the privacy and security of
interaction among IoT devices. Blockchain technology is a
new use in IIoT networks, and its effective deployment has
been the focus of much research. 'e IIoT benefits from the
blockchain’s decentralization, data integrity, cryptography
privacy, fault tolerance, data security and identification, and
consensus mechanism [38]. Several research studies com-
pared popular blockchain platforms, including crypto-
currency, Ethereum [39], Hyperledger-Fabric [40], and
IOTA [41], and discussed the advancement of smart con-
tracts and its practicability in the industry, IOTA offers free
transactions designed specifically for device to device
communication, but it lacks the maturity of Ethereum and
Public blockchain.

Blockchain technology has clearly evolved in people’s
perception as scientific research and innovations have
progressed, and it has become a topic of studies by scholars
and researchers. Industry and academics are paying growing
attention to it. People have recognised the one-of-a-kind
extraordinary development that distributed ledger may

AI
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Machine
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Smart
Factory

IoT
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Figure 3: AI enabled IIoT network integration.
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bring about and have committed in the development on
business elements such as banking, healthcare, and trace-
ability. 'e distributed system is speeding up the maturity
and industrial adoption of blockchain technology. Presently,
China is creating its own blockchain technology; the
competitive market structure and the separate copyright
system are being developed [42].

At the same time, relevant techniques and developed
ecology are integrating sectors, such as energy, healthcare,
and agriculture. 'e decentralized security is a new kind of
innovative platform in that digital information such as
random data blocks are used to authenticate user and
provide the data privacy through consensus algorithm. 'e
blockchain technology is implemented to ensure the security
and privacy of data transmission between nodes.

2.5. Consensus Algorithm for Industrial Applications. A
consensus algorithm is a collection of rules governing how a
decentralized network is supposed to work. 'ese principles
outline the basic roles of various parts, how they interact,
and the criteria that must be met in order for them to
function correctly. A consensus algorithm specifies the rules
that must be followed in order to establish an agreement, as
well as the procedures that should be done under what
situations.'e proof of work (POW) technique states that as
long as such a node could generate a block which adheres to
the desired value, the entire network can verify it [43]. In a
distributed system, a consensus algorithm is a technique for
resolving data synchronisation between nodes that do not
trust each other.

PoX (proof-of-X) decision techniques for blockchain
systems without authorities have recently emerged and
developed, with all techniques focusing on network trans-
actions [43]. However, because there is no agreement,
transaction verification is delayed, which is incompatible
with most dynamic IIoT devices that demand real-time
validation. 'e Equihash method [45] is a proof-of-work
(PoW) agreement technique based on the generalised
birthday dilemma in which a fundamental cryptography
implementation is difficult. 'is is a memory-dependent
consensus technique that sets the burden based on the
nodes’ storage sizes. It requires a lot of storage to provide
evidence, but it can achieve quick confirmation. Although
this design enhances the cost-effectiveness of ASIC devices,
the application’s security has yet to be validated.

'e Ouroboros techniques deployed in Ref. [46] is a
distributed system-based proof of stake (PoS) consensus
model. 'e techniques develop a tight security guarantee
consensus procedure and push the PoS consensus process
via a reward system. 'is reward is to confirm that non-
malicious devices maintain a nash equilibrium and also
prevent security breaches affected by selfish block creation.
Da Xu and Viriyasitavat [47] combined the PoW and PoS
consensus concepts for security transactions. 'e PoW
method is utilised for the acquisition of tickets in the early
stages of the process. When the blockchain system has ac-
quired sufficient assets, the PoS algorithm is utilised to
ensure the network’s long-term safety. 'e PoS algorithm

provides direct correlation between coin age and time that is
converted to an exponentially decaying rate. 'is approach
helps the rate of growth of coin age to reach zero over the
period of time and prohibits the accumulation of money.
However, the approach increases computation time and
necessitates a large amount of network memory size.

Based on the original Paxos algorithmic concept, Moraru
et al. [48] created EPaxos consensus method. Creating the
dependency, accepting the request, and completing the
phase are the three stages of the method. Each proposition
has characteristics, such as gathering and pattern num-
bering, in addition to the intrinsic data. To establish the
execution order of competing proposals, the ideas of a quick
stream, slow stream, and dependency graph are presented.
Only implementation situations with few or no conflicts are
acceptable for the technique.

For the distributed ledgers, Sousa et al. [49] introduced
the Byzantine fault-tolerant consensus protocol. To model
the continuity of Byzantium fault-tolerance, this protocol
employs a probability remuneration network. Although the
protocol offers some benefits in terms of transmission ca-
pacity and faster transaction time, the execution flow could
be improved. On the basis of credit, Yeow et al. [50] sug-
gested an enhanced practical Byzantine fault-tolerant
(PBFT) consensus protocol. 'e consensus protocol was
enhanced, credit assessment predicated on a coalition chain
was created, and the system was brought into a feedback
loop by including a lightweight integrity method. 'e
checkpoints protocol was changed to allow devices to enter
and depart the network on demand, increasing the plat-
form’s adaptability.

Lin et al. [51] developed a ring signature-based modified
PBFT consensus technique. 'e PBFT technique, the
ElGamal cryptographic signature encryption method, and
the ring signature concept were all presented. 'e efficiency
and secrecy of a ring signature technique based on the
ElGamal technique were then investigated. 'e ring sig-
nature strategy was optimized to enhance the PBFT com-
putation signature and validation procedure, allowing nodes
to enter and depart the network continuously.'e suggested
solution surpassed the original PBFT computation fault-
tolerant percentage.

Delegated Proof of Stake (DPoS) was created by Larimer
and deployed initially for the BitShares project [52]. 'e
DPoS consensus process is separated into two parts: the first
is the election of witnesses (block creators), and the second is
the generation of blocks. Witnesses are simply authorized
for confirming the transactions, validating the signature, and
timestamping it; they are not allowed to trade. 'ey each
produce one block every three seconds, and if a witness fails
to perform the task within the time limit, it is ignored and
substituted by the next one. Each network node has the
ability to vote for its own dedicated witness, and the more
smart contract stakes he or she has, the more likely he or she
is to be a witness. However, because of the core method
whereby each witness node generates blocks in succession,
the identification of the witness is already established and
stable, making the distributed ledger network more open to
fraud assaults.

6 Computational Intelligence and Neuroscience
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Furthermore, achieving fairness by solely employing
DPoS is challenging, as it will only allow those with more
resources to become voters. In addition, while employing the
PoW alone, the block period is around 10minutes, wasting a
significant amount of computer and energy resources. For
this third issue, this paper proposes an honor mechanism
akin to that used in reputation to select the delegate node
that causes the consensus to be harmed and replace them.

'ere are two types of nodes in the consensus algorithm,
according to our findings. 'e delegate node, for example, is
a node that creates or validates transactions and contributes
in the consensus mechanism. 'e honor delegate node, on
the other hand, serves as a contender for the delegate node
and is used to replace it if it fails.'ese two types of nodes are
termed as delegate nodes for conforming consensus
mechanism.

2.6. Proposed Blockchain-BasedConsensusMechanism for AI-
Enabled IIoT. To resolve the security and privacy issues of
AI and enable IIoT, considering the distributed ledge of
sensor information, we proposed an improved DPoS con-
sensus mechanism based on honor voting system for in-
dustrial application. We construct a consensus
mechanism–based ledger for sensor data storage in IoT
device system solutions for smart industrial automation
because of the transparency and data integrity of blockchain.
Data cannot be changed by distant attackers wanting to
quickly get into the device for harmful modification. Since
IoT sensor data, such as identification, password protection,
application settings, and behavioral records, may be safely
kept in distributed ledger, in this paper, we employed an
improved DPoS algorithm to create a consensus for pro-
ducing blocks including sensor information, which speeds
up block generation.

2.7. Improved DPoS Consensus Algorithm. 'e most ap-
propriate delegates cannot be picked for block formation
due to the inaccuracy of voting choices and the inaccuracy of
vote calculation. An improved DPoS algorithm is introduced
in this manuscript to be more effective, versatile, and precise
in choosing suitable delegates. Improved DPoS algorithm is
made up of three parts. 'e first is an honor voting system,
which yields a collection of delegates phrases for each voting
node. 'e second step is to create an improved voting
function that will be used to determine each node’s value.
'e highest number of honor voting, the better the node’s
chances of becoming a delegate. To complete the voting
process, the final step is to determine the divergence level.

2.8. 4e Basic Concept of Improved DPoS Algorithm.
According to the literature, the major drawbacks of the
public blockchain consensus mechanism are that the dis-
tributed ledge techniques are more permissioned and in-
secure, and its difficulty in creating blocks is considered as a
critical limitation to our technological needs. To overcome
these issues, the DPoS-based consensus algorithm can solve
the security problems because the DPoS algorithm can

greatly enhance the authentication and also reduce energy
consumption. On the other side, the PoW mechanism
greatly reduces the energy consumption because every node
has the right to create blocks.

However, achieving fairness by solely employing DPoS is
challenging, as it will only allow those with more money to
become voters. Furthermore, while employing the PoW
alone, the block interval is around 10 minutes, wasting a
significant amount of computing power sources. For the
power consumption issue, this paper proposes an honor
voting mechanism akin to that used in the modern system to
reduce the latency of the voting node that causes the con-
sensus to be harmed and replace them. We have considered
that there are two types of nodes in the consensus algorithm.
'e one is the voting node, which creates blocks and takes
part in the authentication process. 'e second node is
termed as a honor voting node, and it has special voting
privilege. With the special voting privilege, the honor voting
node can replace the node when it fails to perform. And,
these kinds of proposed nodes are generally considered as
the consensus nodes.

2.9.4eDevelopment of ConsensusMechanism. We separate
the consensus procedure into two parts. To begin with,
utilise the PoW concept to select a set number of suitable
nodes from the entire network, and employ stake voting to
select consensus nodes. In this network, the top 101 nodes
serve as delegate nodes and the remainder nodes serve as
honor delegates. 'e delegate nodes then record the
transactions in a block and disseminate it to all consensus
nodes for consensus in the second phase. 'e block will be
added to the blockchain if it is successfully verified by more
than half of the consensus nodes. 'e process steps of an
honor delegate node selection based on improved DPoS
algorithm is shown in Figure 4.

As immediately as the malicious node is discovered, we
implement an honor voting method to regenerate it. When a
delegate node is discovered to be malicious, it is added to the
honor delegates’ nodes set, and the rank of all existing
delegate nodes is reduced by one. 'e node in the set of
honor delegate nodes with sequence number is moved to the
delegate nodes set and ranked last in the delegate nodes set.
'e malicious node is sorted at the end of the collection of
honor delegate nodes, while the identifiers of all the
remaining honor nodes are decremented by one. Algo-
rithm 1 describes the proposed mechanism for honor node
selection in the IoT network.

'e N number of nodes with the maximum votes can be
selected as delegate nodes in improved DPoS, and the
shortlist of delegates nodes will be updated every 20 hours,
just like in DPoS.'e delegate node’s reputation and witness
identification will be revoked if someone is discovered to
have a poor rate of creating blocks or to be engaging in
harmful activities.

'e module for choosing consensus networks: all nodes
in the public ledger are successfully prepared in order to
allocate various tasks to different types of nodes, which are
primarily separated into consensus nodes (such as delegate

Computational Intelligence and Neuroscience 7
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nodes and honor nodes) and transaction network. Trading
nodes are responsible for generating transactions, while
consensus nodes are responsible for generating and verifying
blocks. Figure 5 shows the delegate node selection using the
graph method. 'e consensus module is responsible for
executing the entire process from block creation to block
confirmation. 'e module for degrading malicious nodes is
as follows: When a malicious node is discovered, the im-
proved DPoS algorithm switches to a module that replaces
honor node and sorts the delegate nodes.

'e decentralized network ecosystem is described as a
peer-to-peer network made up of all branches in the ar-
chitecture, with consensus nodes and trade nodes being the
two types of nodes in this network.'e consensus network is
a sub-network ecosystemmade up of delegate nodes that will
change when the voting number in the improved DPoS
algorithm updates. Conversely, the trading sub-network is
the network architecture comprising of trading nodes which
is not static.'e trading nodes update them after each round
of selecting the delegate node.

Only during the time between the formation of the
current delegate nodes and the beginning of another round
of honor node selection will the trading networks be secure.

As previously stated, the nodes that participate in the
consensus process rather than generating transactions are
divided into two categories: delegate node and honor nodes.
'e trade nodes are accountable for the production,
transmitting, and storage of distributed ledger, while the
witness nodes take turns recording trades into a block and
transmitting it to the other delegate nodes for validation.

3. Result Evaluation and Discussion

In this section, we describe the performance assessment of
the blockchain-based consensus mechanism for AI-en-
abled IIoT network. We present the comparison result of
the proposed work with existing mechanism such as PoS,
PoW, and DPoS in terms of important parameters which
includes block creation approach, block generation time,
and energy resources. To carry out security performance,
we include existing consensus mechanism. Each work
represents the artificial intelligence–based big data analysis
at the IoT device with decentralized control. 'e proposed
blockchain-based consensus mechanism provides distrib-
uted architecture to enhance security and privacy at the IoT
device.

Select first delegate as Honor Node

Consensus Mechanism

Hash Voting

Trading Node

Delegate node Honor Delegate

Number of IoT Nodes

Figure 4: Selecting an honor delegate node in the Improved DPoS Algorithm.

'e algorithm for selection of honor delegate node
Input: Voting results among N nodes, nonce
Output: honor delegates
Transmit (nonce, N)
Ni : Hash (hash (BlockHead), nonce)
while (Hash (hash (BlockHead), nonce)> delegates)
Calculate the vote of each delegate and sort them
if number of vote of first delegate≥ second delegate
Select the first delegate as the honor delegate
If the votes of different delegates are same
Calculate the vote deviation percentage
Select small deviation percentage delegate as honor node
end if
end if

ALGORITHM 1: Honor delegates node selection algorithm.

8 Computational Intelligence and Neuroscience
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'e distributed consensus mechanism–based AI-en-
abled IoT architecture resolved the real-time security issues
and also reduced the energy consumption. An improved
DPoS algorithm suggested AI-based decentralized IoT
network for big data analysis in real-time, and it will
overcome the issue of data storage. 'e proposed mecha-
nism introduces the trading node in which the actual block
information is stored. 'e implementation of big data an-
alytic is developed on the IIoT blocks to evaluate the scal-
ability and robustness of improved DPoS. We presented the
performance of the proposed method with existing con-
sensus algorithm research shown in Table 1. According to
the security metric, the proposed algorithm provides better
results compared with PoS and PoW in terms of energy
consumption.

To analyze the data transaction rate of improved DPoS
algorithm, we investigate the performance with existing
methods such as a PoW, PoS, and DPoS mechanism [43].
'e transaction rate of PoW is very low because of its
computation time. In PoW, blocks are verified based on the
computing power. In the same way, in the case of PoS the
blocks are verified through stake methods and it will require
more transaction time. In order to reduce the transaction
time, DPoS is proposed based on the stake voting
mechanism.

Delegate node

Voting node

Figure 5: Graph-based delegate nodes selection in consensus mechanism.

Table 1: Performance of various consensus algorithm.

Consensus mechanism Proof-of-work (PoW) Proof-of-stack (PoS) Improved delegate PoS (DPoS)
Mechanism for block generation Computing power Stake Stake votes
Security issues Constant power Inactive nodes Malicious nodes
Energy consumption Very high High Low
Average block generation time 10min 65 sec 5 sec
Reliability High Low Low
Robustness High High High

PoW PoS DPoS Improved 
DPoS 
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Figure 6: Transaction data rate of various consensus mechanisms.
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Figure 7: Energy consumption comparison of various consensus
mechanisms.
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Likewise, our proposed algorithm verified through
honor delegates which required less time for verification.
'erefore, compared with other three mechanisms, our
improved DPoS increases the transaction rate.

Figure 6 clearly shows that our improved DPoS algo-
rithm has more TPS than other mechanisms. To reduce the
energy resource of the blockchain-based consensus mech-
anism, we developed an improved DPoS algorithm for IIoT
devices. In order to overcome the computing resources
problems in the PoW and PoS mechanism of decentralized
ledger-based industrialized IoT devices, we propose to
combine artificial intelligence and blockchain technology. In
the decentralized improved DPoS consensus algorithm
implemented to enhance the data privacy and reduce energy
resources for big data analysis, the main reason to introduce
delegates and honor nodes-based consensus mechanism for
IIoT devices is to reduce overall energy consumption, as it
will verify the blocks in the idea of stake voting mechanism
and also replace malicious nodes through honor delegates.
To develop smart contracts between nodes, we used DPoS-
based stake voting mechanism, which is denoted as delegates
nodes.

Figure 7 represents the energy consumption analysis of
the proposed algorithm and other two existing models. In
the PoW mechanism, if the number of blocks increases, the
energy consumption also increases because in this algorithm
the blocks are created based on the computing power of the
particular system. 'erefore, the PoW model required more
resources than other models. In the case of the proposed
algorithm, the blocks are created through stake vote which
will be part of the IoTnetwork, as the energy consumption is
very less compared to the PoW model.

Finally, the different performance evaluations of the
developed blockchain-based AI-enabled IIoT network
conforms that an improved DPoS consensus algorithm
increases data transaction rate per seconds and reduces the
energy resources. Overall, the proposed consensus mecha-
nism is most applicable for AI-based IIoT applications in
order to analyze data in a secure manner with less energy
resources.

4. Conclusion

A combined blockchain and artificial intelligence–based
consensus algorithm for big data analysis in IoTapplications
are introduced in this manuscript.'is work aims to develop
efficient and reliable IoT data transactions at the industrial
level.'e suggested DPoS consensus algorithm performance
was evaluated using security and energy consumption
metrics. An improved DPoS was implemented to block-
chain-based AI for decentralized control in IIoT. 'e ex-
perimental analysis is presented to evaluate the performance
of the suggested consensus mechanism AI-enabled IIoT
applications with distributed and secure big data analytics.
In terms of reliability, speed, privacy, and security, the
experimental results show the efficiency of the proposed
algorithm compared with existing mechanisms. According
to the TPS results, the integration of blockchain with arti-
ficial intelligence successfully addresses the issues of getting

high accuracy, security, and low latency through a decen-
tralized network. 'e proposed consensus algorithm suc-
cessfully overcomes the difficulties of accuracy, latency, and
security by combining blockchain and artificial intelligence
and also addresses the energy consumption issue [44].
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