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Abstract

The success of Large Language Models (LLMs), e.g., ChatGPT, is witnessed by their
planetary popularity, their capability of human-like question-answering, and also by
their steadily improved reasoning performance. However, it remains unclear whether
LLMs reason [1} 2, 3 14]. It is an open problem how traditional neural networks can
be qualitatively extended to go beyond the statistic paradigm and achieve high-level
cognition [S]. Here, we present a minimalist qualitative extension by generalising
computational building blocks from vectors to spheres. Sphere boundaries introduce
into neural computing contact and non-contact relations, which are primitive relations
of mental spatial models [6, [7] for both spatial and non-spatial reasoning [8} 9]. We
propose Sphere Neural Networks (SphNNs) for human-like reasoning through model
construction and inspection [[10, [11} [12], and develop SphNN for syllogistic reason-
ing, a microcosm of human rationality [13]. The construction is guided by a control
process and a three-layered hierarchical GNN, whose middle spatial transition layer is
equipped with gradual descent functions to transform spheres in the bottom layer to
reach the symbolic relations in the top layer. SphNN is the first neural model that can
determine the validity of long-chained syllogistic reasoning in one epoch by construct-
ing sphere configurations as Euler diagrams, with the worst computational complexity
of O(N) (where N is the length of the chain). Experiment 8.1 demonstrates 100%
accuracy of SphNN in determining the validity of every atomic syllogistic reason-

ing. Compared with ChatGPT (gpt-3.5-turbo) in long-chained syllogistic reasoning,
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SphNN achieves 100% accuracy for all 1200 tasks, while ChatGPT achieved an aver-
age accuracy of 62.8%, as shown in Experiment 8.2. SphNN can evaluate the answer of
ChatGPT by constructing models and giving feedback through prompts, through which
ChatGPT improves the accuracy from 80.86% accuracy to 93.75% in deciding the sat-
isfiability of atomic syllogistic reasoning (Experiment 8.3). SphNN has the power of
set-theoretic knowledge representation and the capability of neuro-symbolic unification
(Experiment 8.4). SphNN can evolve into various types of reasoning, such as spatio-
temporal reasoning, logical reasoning with negation and disjunction, event reasoning,
neuro-symbolic reasoning, and humour understanding (the highest level of cognition
[[14]]). All these suggest a new kind of Herbert A. Simon’s scissors [[15 [16} [17] with
two neural blades: the representation blade using spheres as building blocks to repre-
sent tasks and environments, and the reasoning blade using the methodology of model
construction and inspection to solve problems. SphNNs will tremendously enhance
interdisciplinary collaborations to develop the two neural blades and realise determin-
istic neural reasoning and human-bounded rationality [18]] and elevate LLMs to reliable
psychological Al that solves problems in the way human experts do [19]]. This work
suggests that the non-zero radii of spheres are the missing components that prevent tra-
ditional deep-learning systems from reaching the realm of rational reasoning and cause

LLMs to be trapped in the swamp of hallucination.
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1. Introduction

The origin of reason is gradually developed.

— Charles Darwin

It is the rational reasoning that distinguishes humans from animals. This idea can
be traced back to Aristotle’s time, who invented syllogistic reasoning and founded the
science of logic to guarantee the validity of reasoning — a valid logical conclusion
explicitly states what is already implicit in the premises [18]]. Thus, the information
within the syllogistic premises is sufficient to determine the validity of the syllogis-
tic conclusion. Other training data shall not be needed. In general, people only have
insufficient information and limited capabilities, and demonstrate bounded rational-
ity. They are prone to subgoals or heuristic solutions [18]. Herbert A. Simon raised
an inquiry how can the standard theories of global rationality be simplified to render
bounded rationality more tractable? In the era of deep-learning neural networks, ratio-
nality is no longer bounded by learning resources and computing power but by ways of
representations, vectorial or symbolic. They are heterogeneous building blocks to con-
struct decision-making artifacts. Using vectorial representation, deep learning neural
networks have succeeded in doing a variety of tasks [20], including defeating human
champions in playing Go [21} 22]], and are moving towards simulating high-level cog-
nition, e.g., rational reasoning [5]. Here, we focus on a sub-question of Herbert A.
Simon’s inquiry, namely, how deterministic syllogistic reasoning can be tractably ren-
dered into neural computing and moves on to develop novel neural computing upon
traditional neural computing, which can evolve to various rational reasoning, including

statistic reasoning and heuristic reasoning.

Non-deterministic judgements of GPT-4. The success of deep learning is witnessed
by its planetary usage, especially LLMs that demonstrate the fantastic capability of

human-like question-answering. Here is a sample communication with GPT-4.

Pietro: Which city is located further east, San Diego or Reno?

GPT-4: Reno, Nevada, is further east than San Diego, California. While

San Diego is located on the coast of the Pacific Ocean, Reno is situ-
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Figure 1: (a) The geographical location of San Diego and Reno; (b) the region-based mental spatial represen-
tation explains why people mistakenly judge the spatial relation between San Diego and Reno; (c) two-step

syllogistic reasoning to judge the relation between San Diego and Reno.

ated more inland, towards the eastern side of the Sierra Nevada mountain

range.

Recent exploration shows that LLMs, e.g., ChatGPT, may pass the Turing test in
human-like chatting but have limited capability even for simple reasoning tasks [4]].
It remains unclear whether LLMs can reason or only do indeterministic heuristic asso-

ciation [3]]. Let us continue the chat as follows.

Pietro: Are you sure?

GPT-4: I apologize for the confusion. You're right. Although San Diego,
California, is geographically south of Reno, Nevada, when considering
the longitudinal coordinates, San Diego is actually further east. San Diego
sits at a longitude of approximately 117.2 degrees west, while Reno is at

approximately 119.8 degrees west. So, contrary to intuitive geography



based on north-south positioning, San Diego is actually further east than

Reno. Thank you for prompting me to double-check this information.
Pietro: But your first answer is correct.

GPT-4: I apologize for any confusion. You're correct. Reno, Nevada,
is indeed further east than San Diego, California. San Diego, despite
being south of Reno, is more towards the west because it is on the coast. 1
appreciate your patience, and I'm sorry for any confusion caused earlier.

Thank you for helping ensure the accuracy of the information.

Sphere Neural-Network for deterministic syllogistic reasoning. In the example,
GPT-4 simulates perfect human-styled question-answering, but is not sure about its
answers. Other experiments show that LLMs may demonstrate irrationality by mak-
ing correct answers with incorrect explanations [23} [24]]. Many deep-learning systems
achieved extremely high accuracy in various tasks [25}126}22]], including reasoning syl-
logistic statements [27, 28]]. Yet, their judgements are unreliable, even with 100% ac-
curacy on the test data [5]. Traditional deep-learning neural networks must go beyond
the statistic learning framework and make qualitative extensions to simulate high-level
cognition, e.g., rational reasoning, like humans and animals do [5].

Humans’ rational reasoning can be metaphorised as scissors [15]], whose two blades
represent the task environment and the cognition capability, respectively. Being asked
which city is located further east, San Diego or Reno? people construct a nested region
structure as the task environment as follows: San Diego is inside California, Reno
is inside Nevada, and California is west to Nevada. This representation bounds their
rational reasoning and leads to the mistaken judgement that San Diego (SD) is located
further west to Reno (RN) [291130]. To judge the relation between San Diego and Reno,
people inspect the constructed spatial model and inherit the relation between San Diego
and Reno from their parent regions, as illustrated in Figure [I{b). If we understand
being further west to as a specified relation of being disconnected from, as illustrated

in Figure[I|(a), the above reasoning becomes the following rougher reasoning.



All San Diego is California.
No California is Nevada.

No San Diego is Nevada.

No San Diego is Nevada.
All Reno is Nevada.

No San Diego is Reno.

This is Aristotelian syllogistic reasoning, the other blade of the scissors. Syllogistic
reasoning made logic unable to take a single step forward [since Aristotle], and there-
fore seems to all appearance to be finished and complete, as described by Immanuel
Kant in the Critique of Pure Reason. Consider the well-known syllogistic reasoning as
follows.

all men are mortal.

all Greeks are men.

all Greeks are mortal.
The conclusion that all Greeks are mortal can be obtained by constructing Euler dia-
grams. Reasoning by mental model construction and inspection is best supported by
empirical experiments [31} 32} 33} 34} 35} 36} 112, 37, [13]]. Mental models are first de-
veloped for spatial environments and used as references for domain-general reasoning
[8,19]. For example, to infer which city has more inhabitants, San Diego or San Anto-
nio? German students reached 100% accuracy while American students only reached
62% because all German students heard about San Diego but not San Antonio, and
assumed San Diego was larger and, thus, had more inhabitants [[16, p.43]. To infer
the performances of soccer teams, people will reference the sizes of cities and assume
recognised cities are likely to be larger than unrecognised cities, thus having more qual-
ified soccer teams [[16]. Philosophically, size relations can be formalised by the con-
nection relation [38}139]. Eminent philosophers and psychologists advocated the funda-
mental roles of connection relation and regions in cognitive modelling [38} 140, 7,41, 9].
In contrast, traditional neural networks use vectors and similarity relations [20]. Here,
we computationally reconcile them by extending vectors into spheres and consequently

extending traditional neural networks into sphere neural networks (SphNNs). Spheres



are diameter-fixed geometric entities and can be used as Euler diagrams to represent
set-theoretic relations in the vector space, in this way, SphNNs have the genealogy from
both Minsky’s diameter-limited perceptron [42] and Rosenblatt’s set-diagrammatic net-
work architecture [43]. The capability of set-theoretic knowledge representation en-
dows SphNNs with the power of model construction and inspection for deterministic
reasoning.

We develop a particular SphNN that can validate all Greeks are mortal from all
men are mortal, and all Greeks are men (each is a syllogistic statement) without train-
ing dateﬂ as follows: SphNN firstly spatialises each statement into a spatial relation
between spheres, Figure [2| (B.i). To decide the validity, SphNN negates the conclu-
sion and tries to show that the following sphere configuration does not exist: the men
sphere is inside the mortal sphere; the Greek sphere is inside the men sphere; the
Greek sphere is not inside the mortal sphere, Figure[2|(A.ii, B.ii). Its reasoning process
consists of three control processes that synergistically transform sphere configurations,
Figure[3[(A). It starts with initialising a men sphere, a Greek sphere, and a mortal sphere
and then transforms the current sphere configuration to the neighbourhood configura-
tion towards the target. This is guided by a neuro-symbolic transition map of qualitative
spatial relations, Figure 2] (B.iii-B.v). A neural reasoner is deterministic for the classic

syllogism (syllogistic reasoning with three statements) if it has the property as follows.

For any three satisfiable syllogistic statements, there is a constant number M,

a neural reasoner can construct an Euler diagram for these statements in

vector space at the global loss of zero within M epochs.

For SphNN we prove that M exists, and M = 1. With this deterministic property,
SphNN inspects the constructed configuration after the first epoch, Figure [2| (B.vi).
If it is not a target configuration, SphNN will conclude the three statements are un-

satisfiable. This proves the validity of the original reasoning, Figure [2] (A.iii). This

!Traditional supervised deep learning systems cannot reach the determinacy of syllogistic reasoning. We
can show that training data automatically generates new out-of-distribution data that makes a well-trained

deep-learning system indeterministic.
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deterministic property can be extended to long-chained syllogistic reasoning: SphNN
can determine the validity (the satisfiability) of any long-chained syllogistic reasoning
in one epoch, with the computational complexity of O(/N?) (where N is the length of

the chain), as shown in Figure 3(B).

SphNN is slow, but determinate. Besides theoretical proofs in Section[7} we demon-
strated in Experiment [I0.1] that in the first epoch, SphNN correctly determines all
24 valid syllogistic reasoning among 256 possible syllogistic deductions and success-
fully constructed a counter-example for each invalid syllogistic reasoning. In Experi-
ment[T0.2] SphNN is compared with ChatGPT, to determine the validity of syllogistic
reasoning. Although slower, SphNN correctly determined all 240 long-chained (rang-
ing from 3 to 12 terms) valid syllogistic reasoning among 1200 candidates without a
time limit. In contrast, ChatGPT is faster, whose response time is almost irrelevant to
the length of syllogistic reasoning, achieves 75% accuracy for classic (atomic) syllogis-
tic reasoning (with three terms), and drops to 55.8% for syllogism with 12 terms. Chat-
GPT might give conclusions inconsistent with its descriptions, as shown in Figure[3(B).
SphNN can identify such inconsistency through constructing a model described
by ChatGPT. Experiment shows that SphNN can inform ChatGPT of the con-
sistency information through prompt engineering. Although ChatGPT might neglect
such feedback, SphNN still helped ChatGPT improve the accuracy from 80.86% to
93.75% in deciding the satisfiability of atomic syllogistic reasoning (3-statement syl-
logism). The communication between ChatGPT and SphNN demonstrates a micro
neural world that mirrors the synergistic collaboration between System 1 and System
2 of the mind: the former proposes candidate solutions using fast associative think-
ing; the latter slowly examines the correctness by following rules (here, constructing

models) [44], as shown in Figure[3(C).

SphNN has the representational capacity for neuro-symbolic unification. Vector
embeddings learned from traditional neural networks can serve as content addressable
memory [45] 46], which means that concepts with similar meanings are represented
by vectors close to each other. A sphere configuration may extend the representation

power of content addressable memory as follows: all sphere centres represent tradi-

12
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tional content addressable memory, and the boundary relations introduce explicit and
precise set-theoretic relations among concepts. This way, SphNN can evolve into uni-
fied neuro-symbolic models that simulate both System 1 (using sphere centres) and
System 2 (using boundary relations). Experiment [I0.4] shows the existence of this uni-
fication by successfully extending pre-trained vectors of GLOVE, BERT, and ChatGPT
into spheres whose boundary relations precisely represent set-theoretic relations be-
tween syllogistic statements, as shown in Figure [3{D). This unified representation will
allow SphNNss to directly update vector embeddings of LLMs, instead of using exter-
nal prompt communication that LLMs might ignore (as observed in Experiment|[10.3).

This provides a new way to work around open problems in prompt engineering [47]].

SphNN evolves into Herbert A. Simon’s neural scissors. We systematically show
how SphNN can evolve into various types of representation and reasoning that serve as
two neural blades of Herbert A. Simon’s scissors, as shown in Figure EKE). The context
blade represents task environments constructed by spheres. The evolution starts with
spatiotemporal structure, moves onto event structure, and then arrives at neurosym-
bolic unification that can host latent feature vectors into sphere centres and lands at
Descartes’s product of sphere configurations for heterogeneous knowledge. The ra-
tional reasoning blade represents computational procedures that select parts of sphere
configuration, transform them into the target, and decide the stop criterion. Along with
the evolution, various computational procedures can be developed to simulate logic
reasoning, Bayesian reasoning, heuristic reasoning, reasoning with LLM results and

humour (the highest level of cognition [[14]]).
2. The methodology: bounded rational reasoning through the construction of
sphere configurations

The representation of space and of things in space will necessarily be a

central topic in a science of design.

— Herbert A. Simon [18|]

14



2.1. Bounded rationality

In his seminal Ph.D thesis Administrative Behaviour: A Study of Decision-Making
Processes in Administrative Organisation, Herbert A. Simon coined the term bounded
rationality with two main tenets as follows: (1) humans only have bounded rationality,
bounded by the available information given by problems, by different individual capac-
ities, and by the situation where the problem is being solved, e.g. under time pressure,
without auxiliary computing devices, and (2) consequently, people are prone to switch
to subgoals and seek satisfactory, instead of optimal solutions [[18]. Considering the in-
tractable number of chess positions, Herbert A. Simon used the game of chess as a nice
example to illustrate the necessity of developing computationally efficient methods. A
solution is “good enough” in his terms, if it has a search procedure and a stopping cri-
terion and tells how information is integrated to make a decision. This raises two open

question as follows.
* How do human beings actually make decisions “in the wild”?

* How can the standard theories of global rationality be simplified to render them

more tractable?

In recent years, deep learning neural networks have successfully solved problems in
various fields and won Go against world champions [21, [22]]. This is primarily due
to high-performance GPUs and significant memories and storage, which allow neural
networks to learn heuristic patterns from almost all data on this planet. This puts Her-
bert A. Simon’s bounded rationality into a new situation, where rationality is no longer
bounded by learning resources and computing power. Though LLMs even demonstrate
human-like rationality in question-answering, they remain unexplainable and have lim-
ited capabilities in doing simple logical reasoning [3,4]. Following Herbert A. Simon’s
slogan “problem solving as change in representation” [ 18], rationality in the era of neu-
ral computing is bounded by representations used for decision-making, namely, vec-

torial or symbolic. Heuristic rationalities obtained by vectorial neural computing do

?https://plato.stanford.edu/entries/bounded-rationality/
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not have the deterministic rationality of symbolic logical reasoning. We introduce a

sub-inquiry of Herbert A. Simon’s second inquiry, as follows.

* How can the determinacy of standard theories of global rationality be tractably
rendered into the process of a heuristic inference and form the end pole of the
continuum of various reasoning processes, when information is steadily accu-
mulating and becomes sufficient; thus, uncertain inference problems become

certain?

Observing the success of deep learning neural computing, here we consider two basic

questions as follows.

* How can deterministic syllogistic reasoning be tractably rendered into neural

computing?

* How can the above neural computing serve as a common place to evolve and
integrate three major decision-making methods, namely, neural (heuristic), prob-

abilistic, and logical?

To answer the two questions, we need to systematically develop semantics for syllogis-
tic reasoning and statistical inference in the vector space and show that they are con-
sistent with the current vector semantics of traditional deep-learning neural networks.

We will provide our solution in Section [§]

2.2. Why do we focus on syllogistic reasoning?

The relevance of the whole battery of Aristotelian syllogisms to psychology

is, we are tempted to quip, equally mysterious.
— Mercier and Sperber [I37]

Scientists prefer to taking microcosms to disclose complex phenomena and ground
fundamental theories [[13]. Due to its simplicity, synthetic reasoning is used as the
microcosm by psychologists to explore the rationality of the mind [[13]. In over one

hundred years of research, various psychological theories have been proposed; some
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account for it as a heuristic phenomenon, and some account for it as deliberative rea-
soning processes with formal rules or diagrams. The mental model theory is the most
promising but still can not account for all the aspects. Modern theories are devel-
oped as unified theories by integrating several accounts, e.g., mReasoner [[13]. Despite
these, developing neural models for syllogism was extremely hard and considered in
the psychological community to be utopian ten years ago. In recent years, LLMs, e.g.
ChatGPT, demonstrate human-like performance in question-answering, including syl-
logistic reasoning questions. Although trained by almost all the datasets on this planet,
LLMs, unfortunately, have not reached the determinacy of syllogistic reasoning. On
the other hand, syllogistic reasoning is easily solved in mathematical logic [48) 49].
Therefore, we focus on syllogistic reasoning and stand at the logic perspective to ex-
plore novel neural computing that can achieve deterministic syllogistic reasoning and

show how this novel neural computing can develop various kinds of rational reasoning.

2.3. Spheres as the building blocks for knowledge representation and neural computing

The research about mental models can be traced back to Tolman’s experiments with
rats in 1948 [50]. Early psychological research found that mental spatial objects are
grouped into “regions”, and their hierarchical structures are represented as nested re-
gions where relations among siblings can be explicitly represented [51}152}29,30]]. Ad-
vances in neuroscience indicated that mental spatial models represent cognitive spaces
for domain-general tasks, representing properties and concepts as convex regions con-
strained by geometric features [S§]].

Though the tradition of geometry uses the imperceptible abstract concept point
as the primitive to develop other concepts, e.g., lines, triangles, circles, cones, and
spheres, spatial knowledge can also be developed by utilising perceptible concrete re-

gions [38.,140L 1531154} 139], governed by the connection relation with three featuresﬂ @)

3The main literature of qualitative spatial representation assumes that two regions should be connected if
they satisfy feature (i) and feature (ii), e.g., [S5L1531156]], which is unfortunately insufficient and will introduce
issues in the theory and applications [39,157]. A counter-example will be the relation “region A is less than
one meter away from region B” — they satisfy both features but may be disconnected. Feature (iii) is the

characteristic feature of the connectedness relation and can be formalised [39].
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any region connects with itself (reflexive), (ii) if region A connects with region B, then
region B connects with region A (symmetric), and (iii) if two regions are connected,
any third region can be moved to a place where it connects with the first two regions
[39]. The three features can be axiomatised to develop various qualitative relations
(topology, distance, and orientation) and abstract concepts, such as point [39]].

Events are four-dimensional entities and can be understood in the same way as
knowledge of extended objects [58]. They have parts (in space and time) and tax-
onomies. Time is more natural and straightforward to be represented by intervals than
by points [59} 160, 61]. Temporal relationships among events develop causal relations
[62]. In this way, the connection relation and regions can be the building blocks for
representing events, times, and causalities.

Vectors can be understood as spheres evolved by shrinking the radii to zero. So,
traditional neural networks can be understood as being evolved from more primitive
neural networks that use spheres as the computational building block. Such primitive
neural networks represent and reason with spatial and non-spatial knowledge, simulat-
ing the way humans do before they learn abstract concepts, such as points and vectors.

We name such primitive neural networks Sphere Neural Networks (SphNNs).

2.4. Unified representation for heuristic and deliberative reasoning

The now dominant view of reasoning (“dual process” or “fast and slow
thinking”), however appealing, is but a makeshift construction amid the

ruins of old ideas.

— Mercier and Sperber [37]

How people reason is a central topic in the research of human rationality. Over one
hundred years, eminent psychologists chose Aristotelian syllogistic reasoning as a mi-
crocosm to investigate human rationality. Among 12 competing theories for syllogistic
reasoning, none provides an adequate account [35]. Still, three sorts are promising:
heuristic theories, deliberative theories with rules, and deliberative theories with set-
theoretic diagrams or models [35)]. Heuristic reasoning is fast and shallow and often

occurs before slow and deep deliberative reasoning that validates or refutes heuristic
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Figure 4: (a) a vector; (b) a closed umbrella; (c) an arc with its centre vector; (d) an open umbrella.

results. Falsifying heuristic results may generate new heuristics. More general ac-
counts shall operate heuristic and deliberative reasoning in parallel and interact with
each other [63}, 144, [13]].

Heuristic is usually simulated by neural networks or the Bayesian rule. We will
illustrate in Section [§] that the Bayesian rule and disjunctive syllogistic reasoning (a
kind of deliberative reasoning) can be introduced into neural computing through evolv-
ing a vector embedding into an arc embedding — somehow, like opening an umbrella
— a vector like a closed umbrella, an arc like an open umbrella (see Figure [d). In this
way, heuristic and deliberative reasoning can be carried out by a unified representation,
which will realise the interaction and paralleling of different styles of reasoning. The
main challenge is to develop a family of neural operations on spheres to realise delib-
erative reasoning and to prove that these operations indeed reach the determinacy of
deliberative reasoning. Finally, we need to explain the relationship between our novel

neural proof and the classic symbolic proof, as did in diagrammatic reasoning [64]].

2.5. Deliberative reasoning through model construction and inspection

Deliberative reasoning by model construction and inspection is best supported by
empirical experiments [31, 132} 133134} 36]] — What we have is a procedure to represent
and integrate in our mind the content of premises by means of models comparable
to schematic pictures of the situation. We then read the conclusions of these models
[37]. In the standard model theory, the reasoning is carried out as a process of model
construction, model inspection, and model variation [31]]. In the model variation phase,
people try to construct alternative models to refute the conclusion. If a counter-model

is found (the premises are true, and the conclusion is false), the conclusion will be
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Figure 5: (a) the input of a traditional perceptron is a vector & = [21 ...xn]; (b) the input of a diameter-

limited perceptron is restricted inside a sphere with the centre O and the radius 7.

proven to be invalid. The preferred mental model theory argues that people construct
a preferred and simplified model in mind, in a deterministic manner, while ignoring
other possibilities [[12,136] — The construction of the first model shall not be a stochastic
process that produces one model this time and another the next time [12 p.563-564],
the next model will be revised following the principle of minimal changes from the
current one [65) 166, 67, [68], and generated by a local transformation of the current

model, whose similarity is measured by a neighbourhood graph [69] [70].

2.6. Sphere Neural Networks simulate mental model construction

Mental models represent assertions as a set of observed or imaged possibilities that
mirror what they represent [71]. These representations are iconic and discrete [[13].
Like tips of the iceberg, they are supported by the part under the water, which are
neural routines [5]. We represent mental models as discrete configurations of spheres
and seek a family of habitual neural routines that manipulate these spheres.

Neurons can be distinguished through their output encodings [72]: one type of
neuron outputs frequency signals, for example, oculomotor neurons that control eye
movements. Their outputs are one-dimensional, characterized as integration devices,
and simulated by perceptron [42,[73]. A specific perceptron is the diameter-limited per-
ceptron whose input signals x; are restricted within a certain fixed diameter [42} p.12]:
Each z1, ..., x, is located within a sphere, as shown in Figure [5[a, b). We define the

input of a Sphere Neural Network as the input domain of a diameter-limited perceptron
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max{0,dis +ry —ra}

Figure 6: The inputs of the neural network are two spheres, 011 ...01n,71 and 021 . . . 02, 72, respectively,
each is represented by its centre and its radius. The network computes the distance between their centres
dis = /21 1 (01; — 02;)2. The output of the network is the value of max{0, dis + 71 — 72}, which equals

0 when O is inside O3, and greater than 0, if not.

[01,...,0p,7], where [01,...,0,] is the central vector O and r > 0 is the radius, that
is, || - OH <r,where 1 <i < n. If r = 0, it degrades into a random perceptron [42,
p-12]. The second type of neuron outputs spatial or place encoding, e.g., neurons in
the visual cortex [72]. The output shows the degree of the matching between the input
stimuli and the receptive field and is simulated by non-monotonic activation functions.
We may represent the input stimuli and the receptive field as two spheres O; and Os,
with the non-monotonic activation function f(O1, 03) £ max{0, |O; - O +71 - 72},
as illustrated in Figure@ When f(O1,03) =0, Oy is inside Oo; the larger the value of
f(O1,05) is, the further away is O; from Os. This way, Sphere Neural Networks can
explicitly signal spatial relations between two spheres, e.g., inside, partial overlapping.

The non-monotonic activation function A(Oy, O3) = max (0, |O; - Og| + 11 —75)
is a deviation of the non-monotonic activations of traditional neural networks and better
described as a kind of Kolmogorov—Arnold Networks (KANs) [[74], whose learnable

activation functions are on edges, as shown in Figure[7]
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Figure 7: The Kolmogorov-Amold neural architecture of A(O1,02) = max(0, [O1 — Oa| +r1 - 72).
Given two n + 1-dimensional vectors Z and § representing n-dimensional spheres, the fr(-) selects the
n + 1t element z,,41 and Yn+1, and returns the radius e®n+1 and eYn+1 of O and O3, respectively;
f&(+) selects the first n elements as the centre of a sphere; Fi (+) computes the Euclidean norm of a vector;
the output of the first hidden layer is 01 - Os; the output of the second hidden layer is \|Ol -0 [ +7r1—72;

the final output is this network is zero, if Oy is inside O2, otherwise the output is greater than zero.

2.7. What is SphNN about, and not about?

Reason is not a superpower implausibly grafted onto an animal mind; it
is, rather, a well integrated component of the extraordinarily developed

mind that characterizes the human animal.

— Mercier and Sperber [37]

SphNN is the first neural model to determine the validity (valid or invalid) and
the satisfiability (satisfiable or unsatisfiable) of syllogistic reasoning. It only con-
structs configurations of spheres whose radii are greater than zero and does not con-
struct abstract concepts, such as empty sphere [[I3] or point [[16]. Its control pro-
cesses suffice to determine the satisfiability of long-chained syllogistic reasoning in
the psychological literature [35] [77], which is slightly different from the usual de-

scription in the logic textbooks [33]. A syllogistic reasoning being valid means that
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Figure 8: Basic diagrammatic representation for syllogistic statements. (1) that all X are Y is represented by
(a) X c Y; (2) that some X are Y is represented by (a) X c Y or (b)Y c X or (¢) X nY # @&; (3) that
no X are Y is represented by (d) X n'Y = @&; (4) that some X are not Y is represented by (b) Y c X or (c)

XnY+gor(d) XnY =¢.
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Figure 9: (a) Sphere O x is is an open sphere; (b) Sphere O x disconnects from Sphere Oy-; (c) Sphere O x
partially overlaps with Sphere Oy-; (d) Sphere O x is part of Sphere Oy .

the conclusion is true in every case in which all its premises are true [18, p.1]: that
r(X,Y)ro(Y, Z) <. r3(X, Z) is valid means that r3(X, Z) is true in every case in
which 71 (X, Y) and ro(Y, Z) are true. SphNN can evolve into a variety of rational

reasoning, and can seamlessly integrate latent feature vectors learned by traditional

neural networks.

3. Spatialising syllogistic statements in the vector space

Spatial thinking is the foundation of abstract thought.

— Barbara Tversky [9]

3.1. Spatialising syllogistic statements
Classic syllogistic reasoning [78] is a form of deductive reasoning with only two

premises, three terms, and four possible relations (or “moods” used in the psycholog-
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ical literature): (1) universal affirmative: all X are Y, all(X, Y); (2) particular affir-
mative: some X are Y, some(X, Y); (3) universal negative: no X are Y, no(X, Y);
(4) particular negative: some X are not Y, some_not(X, Y'). Moods can be reduced
to four basic set relations in the forms of Euler diagrams [79]: (a) X is part of Y
(X cY), (b) X contains Y (Y c X), (c) X partially overlaps with Y (X nY # @),
and (d) X is disjoint from Y (X nY = @), as shown in Figure 8| If we fix moods and
allow terms to exchange places in the premises, there will be four kinds of syllogistic

reasoning, and enumerating moods will total 256 different syllogistic reasoning types.

’I“l(X,Y) ’I"Q(Y,Z) -'-7‘3(X7Z)
Tl(KX) TQ(Y,Z) -'.Tg(X,Z)
TI(X>Y) T2(ZaY) "'TB(sz)

(Y, X) r(2,Y) (X, 2)

where r; € {all, some,no, some_not} (i = 1,2, 3). We map each syllogistic relation to
spatial relations and define them in vector space, so that we can use neural operations
to update them. We ground a syllogistic term X to an n-dimensional sphere Ox, with
the central vector O x = [21,...,2p], and the radius rx = e"+. Sphere Oy is defined
as open, that is, a point P is inside a sphere O, if and only if |P - Ox| < rx, as
shown in Figure @ka). Sphere Ox disconnects from sphere Oy, D(Ox, Oy ), if and
only if the distance between their central vectors is greater than or equal to the sum of

their radiﬂ as shown in Figure Ekb).

D(Ox,Oy) holds, if and only if [Ox — Oy | - (rx +ry) > 0.

To reach the disconnectedness relation, we shall either increase the distance disx,y =

HOX - Oy” or decrease the radius, 7y, or ry, or both. We define ZP (Ox, Oy ) =

4By defining spheres as open, the externally connected relation EC (|Ox - Oy || - (rx +ry) = 0) in
[55] is included into the D relation. This way, we do not explicitly introduce the EC relation. This reduces

the number of neighbourhood transitions and makes the proofs of theorems clean.
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max{0,-disxy + rx + ry}, such that Ox disconnects from Oy, if and only if
TP (0x,0y) = 0, otherwise, ZP (Ox,0y) > 0. Generally, we design an inspec-
tion function IR(O x, Oy ) to inspect whether the relation R is held between O x and
Oy. It returns zero, if and only if the relation R(Ox, Oy ) is satisfied; otherwise, it
returns a positive real number. So, a target configuration is reached when the sum of
all inspection functions equals zero.

Ox is part of Oy, P(Ox,Oy), if and only if the distance between their centres
plus 7x is less than or equals to 7y, as illustrated in Figure [0(d). Oy containing Ox,

P(Oy,Ox), is equivalent to Ox being part of Oy-.

P(Ox,Oy) holds, if and only if [Ox - Oy | +rx <ry

P(Oy, Ox)=P(0Ox, Oy)

To reach the relation P(Ox, Oy ), we shall either decrease the distance disy y or de-
crease rx, or increase 7y . The inspection function IP((D x,0y) = max{0, dis X,y +
rx —ry}, and Iﬁ(OX, Oy) = max{0,disxy +ry — rx}. We call P and P being
inverse, written as P =P and P = P. In general, the inverse of R(Ox, Oy ) is to
switch the order of the parameters and name the new relation as R™*(Oy, Ox), e.g.,
D (0y,0x) = D(Ox,0y), -D(Oy,0x) = -D(Ox, Oy). R‘lfl(OX, Oy)
is to switch two times the order of O x and Oy, that will be the same as before switch-
ing, so, R‘l_l((’)x, Oy) = R(Ox,0y). A syllogistic statement can be spatialised
to exactly one qualitative spatial relation if the order of two spheres is fixed. This
one-to-one mapping prevents the complexity of the model construction process from

exploding exponentially. Thus:
e All X are Y, all(X,Y), is spatialised to P(Ox, Oy).
e Some X areY, some(X,Y), is spatialised to -D(Ox, Oy).
* No X are Y, no(X,Y), is spatialised to D(Ox, Oy).
» Some X are notY, some_not(X, Y'), is spatialised to -P(Ox, Oy).

We introduce the spatialisation function v that maps {all, some, no, some_not} to

{P,D,-P,-D}, namely, ¢)(all) = P,y (some) = =D, ¥ (no) = D,y (some_not) =
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-P.

Remark 1. Two spheres are coincided EQ(Qx,Oy), if and only if Ox = Oy and
rx = ry. Sphere Ox is a proper part of Sphere Oy PP(Ox,Oy), if and only if
Ox is part of Oy and they are not coincided, that is, PP(Ox,0y) 2 P(Ox,0y) A
-EQ(Ox,Oy). Its inverse relation is written as PP(Ox,0y) = PP(Oy,Ox).
That sphere Ox partially overlaps with Sphere Oy PO(Ox, Oy ), if and only if the
distance between their centres is (1) greater than the absolute difference between their
radii, and (2) less than the sum of their radii, that is, PO(Ox,0y) 2 |rx — ry| <
|Ox = Oy | < rx +ry. If some X are Y, Ox can either be proper part of PP, or
partially overlap with PO, or equal to EQ, or be inverse proper part PP of Oy-.
We can prove PP(Ox,0y) v PO(Ox,0y) v EQ(Ox,0y) v PP(Ox,Oy) is
equivalent to -D(Ox,Oy). If some X are not Y, Ox can either partially overlap
with (PO), or be inverse proper part of (PP), or disconnect from (D) Oy. We can
prove PO(Ox,0y) vPP(Ox,0y) v D(Ox,Oy) is equivalent to ~P(Ox, Oy ).

3.2. Syllogistic reasoning through model construction in the vector space

With the above spatialisation, we transform the task of syllogistic reasoning into

the task of model construction in the vector space as follows. A syllogistic reasoning

7"1(X7Y).
TQ(K Z)
7"3(X7Z)

is satisfiable, where r; € {all,no,some, some_not}, if and only if there are three
spheres Ox, Oy, and O that satisfy spatial relations as follows: 1 (r1)(Ox, Oy),
P(ry)(Oy, Oz),and ¥(r3)(Ox, Oy). This syllogistic reasoning is valid, if and only
if, there are no spheres Ox, Oy, and Oy that satisfy all spatial relations as follows:
¥(r1)(Ox, Oy ), ¥(r2)(Oy, Oz), and =1)(r3)(Ox, Oz). SphNN determines the
original reasoning valid, if after M epochs, it cannot construct a configuration of Ox,,
Ox,, and Ox, satisfying all relations ¢ (r1)(Ox,, Ox,), ¥(r2)(Ox,, Ox,), and
- (r3)(Ox,, Ox,).
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4. SphNN: A hierarchical GNN

We conceive GPS as moving through a large maze. The nodes of the maze
represent situations, described afferently; the paths joining one node to
another are the actions, described as motor sequences, that will transform
the one situation into the other. At any given moment GPS is always faced

with a single question: “What action shall I try next?”

— Herbert A. Simon [18|]

SphNN is a hierarchical neuro-symbolic Kolmogorov-Arnold [14] Geometric [80]
Graph Neural Network that explicitly constructs sphere configurations in the vector
space. SphNN has three layers — the top symbolic layer, the spatial transition layer,
and the geometric sphere layer, as illustrated in Figure [I0fa). The top symbolic layer
is a symbolic graph of neighbourhood relations [55) 139]. These relations are jointly
exhaustive and pairwise disjoint — at any time, there is one and only one relation be-
ing true. The bottom geometric sphere layer is the current sphere configuration, each
sphere is represented by an n + 1 dimensional vector whose first n elements repre-
sent the centre and whose last element represents the radius; between the top and the
bottom layers is the spatial transition layer that transforms the current sphere con-
figuration to the target configuration through neighbourhood transitions. The spatial
transition layer is the graph neighbourhood network whose nodes are spatial rela-
tions and whose edges are spatial neighbourhood relations. Every node in the spa-
tial transition layer corresponds to a node in the symbolic layer and has a function
that determines whether the symbolic spatial relation is held between the correspond-
ing spheres in the bottom layer. The values of this function are non-minus, it returns
zero if and only if this spatial relation is held between the two spheres. For example,
TP (Ox, Oy ) is the function that inspects locations and sizes of Ox and Oy and de-
cides whether O disconnects from Oy-. We call ZP an inspection function and define
IP(Ox,0v) 2 max{0, (rx +ry) - |Ox - Oy |} and implement it in a Kolmogorov-
Arnold-styled architecture, in the sense that each edge is associated with a gradual
descent function that can transform the current spatial relation into the neighbourhood

relation, as shown in Figure b). We introduce A%I:Tz((’) x,0Ov) as the gradual
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descent function that realises the neighbourhood transition from the current relation
T, (Ox, Oy ) toits neighbourhood relation T (Ox, Oy ) with the target T(Ox, Oy ).
If the context is clear, A$1;T2(0X7OV) can be written as A%(OX, Oy ), for ex-
ample, A%:TQ(OX,(’)V) = A%((’)X, Ov). Bach AT .1 (Ox,Oy) satisfies three

conditions as follows:

1. non-negative, AT .1 (Ox,Oy) 2 0;
2. strict monotonic, when AT .1 (Ox,0v) > 0;

3. if the target relation is reached, A%:Tg (Ox,0y) =0.

The three features make A%:TZ(O x, Oy ) work like a slide where Ox slips at the
height status of T1(Ox,Oy), where ZT1(Ox,0y) = 0 and ZT2(Ox,0y) > 0,
downward to the status of T2(Ox, Oy ), where ZT2(Ox, Oy ) = 0, towards the fi-
nal status (the target value) of T(Ox,Oy ), where ZT(Ox,Oy) = 0. Each transi-
tion (A function) starting from T targeting T with the next neighbourhood transition
T5 can be realised by a linear combination of the radii and the distance between the
centre points and implemented in Kolmogorov-Arnold-styled neural architecture. The
neighbourhood relations structure a graph structure that allows SphNN to construct
the target sphere configuration through neighbourhood transitions. For example, sup-
pose the current graph is G = (V,£), where V = {Ox, 0Oy} and £ = {D(Ox,Ov)},
and the target graph is G’ = (V,&’), where &' = {PP(Ox,Oy)}. SphNN firstly
uses AR (Ox, 0y ) to transform into the neighbourhood relation PO, then uses
ABE (Ox,0v) to transform the PO relation into its neighbourhood relation PP, as

illustrated in Figure [T0{c).

4.1. Geometric operations on spheres

We introduce a set of geometric operations on a sphere Ox to update its rela-
tion referenced to a fixed Sphere Oy : §(Ox|Oy) = {disﬁ(,v, e dis&yv, rl }, where
disx v is the distance between their centres disxy = HO < - Oy |, | represents to
decrease a value, 1 represents to increase a value. The target relation T determines
possible operations, either to preserve the already reached target relation or to trans-

form it into a neighbourhood relation towards the target. For example, to preserve
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Ox being inside Oy, P(Ox, Oy ), the possible operations on Ox are either to de-
crease the distance between their centres, or to decrease the radius of Oy, written
as 6F (Ox|Oy) = {dis&v,rﬁ(}; to transform Ox from being disjoint with Oy to
partially overlapping with Oy, the possible operations on Ox are either to decrease
the distance, or to increase rx, 0, 0p:po(Ox|Ov) = {dz’sﬁ(,v,rg(}. If this neigh-
bourhood transition is targeted at Ox being inside Oy, the current operation of in-
creasing rx will violate the possible operations of the target relation and may intro-
duce unnecessary back-and-forth updates of Ox, so, r; will not be selected. The
set of possible operations on Ox to transform D(Ox, Oy ) to PO(Ox,Oy) with
the target P(Ox,Ov), 05.po(Ox|Oy), are the intersections of 6¥(Ox|Oy) and
Sppo(Ox|Ov), written as 65 po(Ox|Oy) 2 6¥(Ox|Ov) N dppro(Ox|0Ov) =
{disﬁgv, ri}n {disﬁgv, i} = {dz’sfx)v}. Possible operations are implemented by
gradual descent functions as follows: z* is implemented by +z, written as {(z') = +x;
x! is implemented by —x, written as ((z*) = -z, where z € {disx v,rx,7v}. This
transforms a set of operations into a gradual descent function. A%;TQ (Ox,0y)isim-
plemented by max{0,C + ¥ ((op)}, where op € 07 .. (Ox|Ov) and C'is a constant
such that T is reached, exactly when C + 3 ((op) = 0.

4.2. Atomic neighbourhood transition

As a neighbourhood transition, A%:TQ (Ox,0y) needs to guarantee that on the
way from T4 (Ox, Oy ) toits neighbour T2 (Ox, Oy ), there will not appear a third re-
lation T3(Ox, Oy ), where T3 ¢ {T1, T }. That is, neighbourhood transitions should
be atomic. However, as gradual descent functions update independently the centre
and the radius of Oy, a neighbourhood transition, under some situations, may not be
atomic. For example, the transition from the partial overlapping relation PO(Ox, Oy)
to the disconnectedness relation D(Ox, Oy ) is realised by the gradual descent func-
tion ARG 5 (Ox,0v) = AR5 (Ox,Oy) = max{0,7x + 1y - disx,y }, as shown in
Figure a). To reach the target, AR5 (Ox,Oy) will either reduce rx or increase
disx v or both (Sphere Oy is fixed). When the centre of Ox is inside Oy, reducing
rx too fast may cause Ox being inside Oy, as shown in Figure[IT(b). To avoid this

situation, we partition PO into two sub-relations: PO; and POs: PO;(Ox, Oy ) is
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Figure 11: (a) AEO:D(O?(v Oy ) implements a neighbourhood transition from PO(Ox,Oy) to
D(Ox,0Oy). (b) If the centre of Ox is inside Oy, reducing rx too fast will cause Ox being inside
Oy ; (c) Solution: when the centre of Ox is inside Oy, O x will be moved away from Oy, till its centre is

at the boundary of Oy,.

the sub-relation of PO when the centre of Ox is outside Oy ; PO (Ox, Oy ) is the
sub-relation of PO when the centre of Ox is inside or at the border of Oy . We define
AEOzipol (Ox,Oy) as moving Ox away from Oy till PO (Ox, Oy ), while fixing
rX. Agol (Ox,Oy) is atomic even if its centre and radius are optimised indepen-
dently, as shown in Figure c). In this way, AEO(O x,Ov) is replaced by either
ABo, (Ox,0v) or ARy, .po, (Ox,Ov) followed with ARy (Ox, Oy ). Each case
is atomic.

Another case is the transition from the partial overlapping relation to the contain-

APP

ropp(Ox,0v) = Ag((’)x, Oy ), whose geometric operations are

ing relation,
enlarging rx and decreasing disx v, as shown in Figure a). If rx <ry and rx
is enlarged too slow, Ox will be part of Oy, instead of containing Oy, as shown in
Figure [[2]b). To avoid this situation, we split the PO relation into PO3 and POy:
PO;(Ox,Oy) is the sub-relation of PO(Ox, Oy ) with the condition that rx < ry;

PO4(Ox,Oy) is the sub-relation of PO(Ox, Oy ) with the condition that rx > ry.
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Figure 12: (a) Ag_ﬁ((? x,0Oy) implements a neighbourhood transition PO(Ox,Ov) to

ﬁ(@x, Oy). (b) If rx < ry, enlarging rx too slow will cause Ox being inside Oy ; (c) Solution:

when rx < ry, firstly enlarge rx to ry while fixing the centre of O x.

If PO3(Ox, Oy ) holds, rx will be enlarged to reach the same length as ry,, while
fixing the centre of Ox, resulting in PO4(Ox,Oy). After that, A§4 will trans-
form PO4(Ox, Oy ) into PP(Ox, Oy ), as illustrated in Figure c). In this way,

Agg:ﬁ((?x, Oy) is replaced by either ARE (Ox,0v) or ARG po, (Ox,0v)

followed with A§4 (Ox, 0y ). Each case is atomic.

5. Transition functions between two spheres

All mathematical derivation can be viewed simply as change in represen-

tation, making evident what was previously true but obscure.

— Herbert A. Simon [18|]

In this section, we list all transition functions for O x and Oy, where Oy, is fixed.

5.1. Targeting at D(Ox,Ov)

Let Ox should disconnect from Oy, D(Ox, Oy ). Whether this target relation is

satisfied can be measured geometrically by the truth value of (rx + ry) — dis x,v <0,
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Figure 13: If the centre of Ox is inside Oy, SphNN will move O x away from Oy, while fixing rx, till
the centre of Ox is located at the boundary of Oy-. Then, SphNN will continue to move O x away from

Oy, while independently decreasing 7 x, till reaching the target relation D(Ox, Oy ).

where disx v = |[Ox — Oy|. To make the formula true, SphNN can either grad-
ually descent rx or gradually ascent disx v, therefore, the possible operations are
dis})v and rﬁc, P (Ox|0y) = {dz’s&}v,rﬁ(}. The inspection function is defined as
IP(Ox,0y) 2 max{0, (rx +rv) - disx,v }.

If Ox and Oy are currently partially overlapped and the centre of Ox is inside
Oy, it may happen that uncoordinated optimising the centre and rx will not lead Ox
to disconnect from Oy . Following the analysis in Section we partition the PO

relation into PO; and PO5 and list the related formulas as follows and illustrated in
Figure[13]

PO,(0x,0v) £ PO(Ox,0v) Adisxy >Tv

PO, (0x,0v) 2PO(Ox,0v) Adisx,yv <Tv

IPO(OX, Ov) 2 max{0,|rx —rv|-disx v + €} + max{0,disx,v —ry —rx + €}

P01 (Ox,0v) 2 TP (Ox, Oy ) + max{0,ry — disx.v + ¢}

7P92(0x,0v) 2 TP (Ox, Oy) + max{0, disx v - rv}

A502;1301 (Ox,0v) 2max{0,ry —disx v}

Agol(OXa Ov) 2 max{O,rX +ry — diSX’V}

5.2. Targeting at P(Ox,Oy)
Let Ox should contain Oy, ﬁ(@ x,Ov). Whether this target relation is satisfied
can be measured geometrically by the truth value of disx v +ry —7x < 0. The inspec-

tion function Iﬁ(OX, Ov) 2 max{0,disx v +ry —rx}. When Ox contains Oy,
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Figure 14: If rx is shorter than v, SphNN will enlarge r x till 7x = ry,. Then, SphNN will continue to

move Ox towards Oy while independently increasing 7 x, till reaching the target relation P (O x, Oy ).

the value is 0; otherwise, the value is greater than 0. To reduce the value, SphNN shall
increase rx or reduce disx, v, therefore, the allowed operations are r;{ and disﬁ(’v.
If Ox and Oy are partially overlapped, and rx is shorter than ry, it may happen
that uncoordinated optimising the centre and the radius of Ox will not lead Ox to
cover Oy . Following the analysis in Section [4.2] we partition the PO relation into

POj; and POy and list the related formulas as follows and illustrated in Figure

PO;3(Ox,0v) 2 PO(Ox,0v) ATy <Tx

P9 (0Ox,0v) £ IPO(Ox, Oy) + max{0,ry —rx + €}
PO4(Ox,0v) 2 PO(Ox,0p) Ary >7x
IPO4(0x,0y) £ IP°(Ox, Oy) + max{0,rx - ry}
Agogzpo4(oX7 Oy) £ max{0,ry - rx}

A§o4((9x7 Ov) 2max{0,disx v +rv —Tx}

5.3. Targeting at PO(Ox,Ovy)

Two spheres being partially overlapped means that the distance between their cen-
tres is (1) shorter than the sum of their radii, and (2) longer than the difference between
their radii. That is [rx — rv| < disx,v < rx +ry. The partial overlapping relation
PO is not a final target relation but rather an intermediate target to reach other target
relations. It can be reached from four other relations. If Ox currently disconnects
from Oy, SphNN can perform both dz’sﬁgv and r; operations; if Ox currently is a
proper part of Oy, SphNN can perform dis&y and r& operations; if Oy is a proper

part of Ox, SphNN can perform dis; v and rﬁ( operations; if Ox coincides with Oy,
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Figure 15: The target relation PO(Ox, Oy ) can be reached from D(Ox, Oy ), PP(Ox, Oy ), and
PP(Ox, Oy ) by independently optimising rx and dis. If the current relation is EQ(Ox, Oy ), SphNN

will increase dis by slightly changing the centre of O x to reach the target relation.

SphNN only need to randomly shift Ox away from its current location, as illustrated
in Figure[T3]

A%(Ox, Ov) = maX{O, rx —Try — dZ'SX)V}

Agg(0X7 Ov) E max{O,rV -rx — diSva}

AEO(OX7 Ov) = max{O, diSX7V -Ty — Tx}

AEQ(Ox,0v) = Ox +¢

5.4. Target at P(Ox,0v)

Let Ox should be part of Oy, P(Ox, Oy ). Whether this target relation is sat-
isfied can be measured geometrically by the truth value of disx v +rx —ry < 0.
TP (0x,0y) = max{0,disx v +rx —ry}. To observe TP (Ox,0y) = 0, SphNN
can perform disﬁ(,v and ré( operations. In PO, status, performing either disAlX’V
or rﬁ( operation will lead to the target status, as illustrated in Figure We define
Ag%((’)x, Oy ) = max{0,disx v +rx —ry}. In POy status, only doing gradually
descent of rx may lead Ox to disconnect from Oy . To prevent this situation, SphNN
fixes rx and only performs the disﬁgv operation. We introduce Agolzpoz (Ox,0y) =
max{0,disx v} to transform the relation from PO; to POs.

The condition for ARg .pg, (Ox, Ov) to reach PO2(Ox, Oy ) is that the radius

of Ox should be less than the diameter of Oy, that is, rx < 2ry. If the condition
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Figure 16: If the centre of Ox is outside Oy, SphNN will move O x towards Oy while fixing 7 x, till
the centre of O x is located at the boundary of Oy . Then, SphNN will continue to move O x towards Oy,

while independently decreasing 7y, till reaching the target relation P(Ox, Oy ).
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Figure 17: If rx > 2ry, it may happen that reducing the distance between their centres causes O x contain-
ing Oy, as shown by the blue dotted line. Then, A%-Po (Ox, Oy ) will reduce the value of rx. This
loop repeats till PO2(Ox, Oy ) is reached.

is not satisfied, repeated operations of A501;P02 (Ox,0y) will push Ox to contain
Oy, P(Ox,0y), and trigger AET):PO(OX’ Oy ), whose possible operation is rﬁ(.
This operation is the intersection of the possible operations from PP to PO; and the
possible operations of the target relation P, as shown in Figure This works like
that AR po, (Ox,Ov) borrows A%:PO(OX,OV) to reduce the radius of Ox.
AEOI:P(,?((’)X, Oy ) is the only A function with a condition. So, we use the red
colour to demarcate this feature. To avoid this loop and make all A operations atomic,
we can introduce an additional operation: cut rx to ry, if rx > ry and P(Ox, Oy)

is targeted. This additional operation might make O x disconnect from Oy .
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Figure 18: The full version of the neuro-symbolic transition map of neighbourhood spatial relations. Oy, is
fixed, dis is shortened for dis x v/. Here, EQ is set as the initial status, and only takes PO as its neighbour.
Two ways to partition PO: (1) PO is partitioned into PO; and PO3, and (2) PO is partitioned into PO3
and POy. Allowed operations between neighbourhood relations are labelled. The target relation determines

which of them can be chosen.

5.5. Targeting at negative relations

If the target is a negative relation R € {~D, ~P,~P}, there will be only one non-
target relation =R € {D, P, P}. If the relation between Ox and Oy is D(Ox, Oy),
P(Ox,0y), or P(Ox,Oy), following three transition functions will optimise O x

to reach the target relation with Oy .

ABD(OX,OV) £ max{0,disx,yv —Tv —Tx +¢€}
AIBP((’)X,OV) £ max{0,ry —disx,v —Tx +€}

A%ﬁ(OX, Ov) 2 max{O, rx — diSX’V —-ry + 6}
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5.6. Target-oriented spatial partition

For syllogistic reasoning, there are six target spatial relations 7 = {D,-D, P, -P,
P,-P}, and a target relation determines the qualitative partition of the space. For
a negative target, e.g., -D, -P, and -P, SphNN only needs to partition the space
into two parts: D and -D, or P and -P, or P and -P. Each case only needs
one transition function AP (Ox, Oy ), AgF (Ox, Oy ), and A%ﬁ((’)x7 Oy), respec-
tively. When the target relation is D, P, or P, the space will be partitioned hier-
archically into two layers, at the top layer are five jointly-exhaustive-and-pairwise-
disjoint relations: {D,EQ,PO,PP, PP} = T5; at the second layer, PO will be
partitioned either into PO; and PO», or PO3 and POy4. The transition map is thus
hierarchical, as illustrated in Figure The whole can be organised into a neuro-
symbolic map for the transition of neighbourhood relations and formalised as a six-

tuple M 2 (Tv ftspvl-v S, ftn» A)
e T the set of six target relations;

* fisp: the function that maps a target relation to a set of jointly-exhaustive-and-
pairwise-disjoint qualitative spatial partitions, where tsp stands for rarget-oriented

spatial partitions. For example, f;5,(D) = {D,EQ,PO,,PO,, PP,PP};

» 7: a family of inspection functions. Let O; and O3 be two spheres. We distin-

guish three kinds of inspection functions.

1. inspecting relations with an explicit target relation. Z(QO;, Os|T) returns
the relation R € f;5,(T) and T € T;
2. inspecting relations with default target relations. Z(Op,Os) returns the

relation R € 75 = {D, EQ,PO,PP,PP};

3. inspecting whether a given relation holds. Z® (01, ©,) returns 0 if R(O1, 0)

holds, otherwise, returns a positive real number.

* S: the set of all relations between two spheres. S = U fisp(T), T € 7. S'is

closed for inverse relations. That is, forany R € S, R™! € S;
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Table 1: Target oriented neighbourhood transition table. ‘@’ means that the target relation is reached; ‘-’

means that the current relation is not in the domain of spatial partition.

(Ox,0v) D P P D|-P | -P
D o Abpo ABpo |AFP | 2 o
PO, ABo, ARo,:po, - @ @ %)
PO, ARo,po, Abo, - 2 Z
PO; - - ABo.po, | 2 @ %
PO, - - ARo, @ @ 2
PP APppo ARpro o - o
EQ ARqPO @ @ %) -
PP 1%):1)0 %:PO & & ? B
P - @ - | AFF | -
P - - %) %) - | A
-D - - - @ - -
-P - - - - @ -
-P - - - - - %)

* fin: the function maps the current relation R to its neighbourhood relation R/,
towards the target T, namely, R’ = f;,(T,R), tn stands for rarget-oriented

neighbourhood;

* A: the set of neighbourhood transition functions. Let T € 7 be the target
relation and let @ and Os be two spheres. R = Z(0;,05|T), where R ¢
ftsp(T). The neighbourhood transition function will be A%, Fon(ToR) (01,09)
or A%;(Ol, Os) for short. All neighbourhood transition functions are listed in

Table[T]
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6. Sequential control processes

When we recall that the process will generally be concerned with finding a
satisfactory design, rather than an optimum design, we see that sequence
and the division of labor between generators and tests can affect not only
the efficiency with which resources for designing are used but also the

nature of the final design as well.

— Herbert A. Simon [ 18]

The control process that realises deterministic reasoning is a process to determine
(1) the start and the end of the construction process; (2) the dynamic and static spheres;
and (3) the current neighbourhood transition. This process allows us to prove the exis-
tence of the maximum iteration number M and to identify the value of M if the target
configuration exists. Thus, this control process is “good enough” according to Herbert
A. Simon’s criterion [18]. We inspire decision-making of the control process from the
Cumulative Prospect Theory [81]: Instead of using an absolute magnitude of welfare
for decision-making, people prefer relative reference points to measure the change in
values; people are more sensitive to losses than gains of the same magnitude. Thus,
between two choices with the same gain, people will choose the one that won’t in-
cur losses. Decision-making in abstract domains, e.g., economics, has its root in the
spatial domain [9]. SphNN does not measure the loss with respect to the final target
but measures whether closer to the neighbourhood (Control process 1). SphNN will
not improve the relations of a sphere with two other spheres, as this may cause the
loss of one relation, which equals the gain of the other relation. Instead, SphNN first
improves one relation till it is satisfied, then improves both relations. If the already

satisfied relation is impaired, SphNN will repair it immediately (Control process 2).

6.1. Control process 1: neighbourhood transition without constraints

Letpi, ..., pn-1 be N —1 premises of a long-chained syllogistic reasoning, where
p; can be either r; (X, X;41) or r(X;41, Xi), r; € {all, some, no, some_not}. With-

out loss of generality, they can be spatialised into N — 1 spatial statements 1)1 (O, O2),
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Algorithm 1: The procedure to realise T(Ox, Oy )

Input: Two spheres Ox and Oy, the target relation: T(Ox, Oy ), Oy fixed.
Output: Two spheres Ox and Oy, satisfying T(Ox, Oy )
TI(OX7 OV) e I(OX7 OV|T)a

—

2 while Tl(OX,Ov) * T(Ox, Ov) do
3 one step AT .1, (Ox,0v); > Corollary
4 | Ti(Ox,0v) < Z(Ox,0v|T);

5 return Ox and Oy

ety WN-1(On_1, On), where

w(ﬁ') Ti(Xi, Xi+1)

V) (X, Xp)

Y; =

Y; € {D,P,P,-D,-P,~P}. Itis easy to construct N1 spheres satisfying 1), (01, Oz),
..., Yn-1(On_1, On) in one epoch as follows: We initialise NV — 1 coincided spheres;
then, we fix the first one and move the second one till the relation 11 (01, 03) is
satisfied; then we fix the second sphere and move the third sphere till the relation
12(Oy,03) is satisfied, .... Each step can be designed as a gradual descent process
(Corollary [T). This describes the first control process, namely neighbourhood trans-
formation without constraints. It determines the neighbourhood relation of the current
relation and triggers a A function (in Table[I)) that gradually optimises the size and the
location of a sphere to reach the neighbourhood relation. After one step of optimisa-
tion, the control process will inspect whether the neighbourhood relation is reached.
This process repeats till the target is reached, as outlined in Algorithm[I] Without con-
straints, SphNN can realise every neighbourhood transition. This follows that SphNN
can correctly construct an Euler diagram (in the form of a sphere configuration) for

non-cyclic syllogistic statements. We formally describe this in Theorem T}

Corollary 1. Each A function is linear concerning the radius and monotonic concern-

ing the distance between the centres.
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Figure 19: (a) Oy disconnects from O x; (b) when O is approaching to O x, a non-zero local minimum

will be reached; (c) C’OP]l;((gg g;()) (Oz|Ox; Oy ) forces Oz to rotate around Oy to decrease the global

loss; (d) Oz successfully arrived at a location of a target configuration.

Theorem 1. Let py, ..., py-1 be N — 1 premises of a long-chained syllogistic reason-
ing system, where p; can be either r;(X;, X;41) or 7;{( X1, X;), (1 < i < N -1),
r; € {all, some,no, some_not}. SphNN can construct a configuration of N spheres
as an Euler diagram of the N — 1 syllogistic statements, such that X; maps to O,
and p; maps to V;(O;, O4,1), where ; = ¥(r;) if ri(Xi, Xis1) or ¥y = 71 (r;) if
ri(Xis1, X;), and ¢; € {D,P,P,-D, -P,-P}.

6.2. Control process 2: neighbourhood transition with constraints

What we will put to you, then, is an interactionist approach to reason that

contrasts with standard intellectualist approaches.
— Mercier and Sperber [37]

Let p1, ..., pn-1--q be along-chained syllogistic reasoning with /N — 1 premises,
where p; can be either r; (X;, X;,1) orr; (X1, X;), qis fixed to the form r,, (X1, X ),
(1 <4< N),wherer; € {all, some, no, some_not }. Without loss of generality, p, ...,
pN-1--¢q can be spatialised into NNV spatial statements 11 (O1,02), ..., ¥n-1(On-1,0n),
Un(On,01), where ¥; = (r;) if r;(X;, X;) or ¢; = ¢~ (ry) if (X, X;), and
Y; € {D,P,P,-D, -P,-P}. SphNN determines the validity of the reasoning by
trying to construct a counter-example, namely, to construct a sphere configuration
satisfying N relations ¥1(O1,02) ... ¥n-1(On-1,0x), and -on (On, O1), where
Y; € {D,P,P,-D,-P,-P}.

We first use Algorithm[I]to construct N spheres satisfying all premises, and observe

the relation between O and Oy : If ¥ (O, O1) holds, the current configuration is a
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Algorithm 2: Update O to optimise its relation with Ox while preserving

its relation with Oy-.
Input: The target relations: Tz x(Oz,O0x), T2y (Oz,Oy),

Tzx,Tzy € {P,P,-P,-P,D,-D}

Output: gLoss, Oy
1 Fix Ox, optimise O to satisfy T 7y (O, Oy );
Szx(0z,0x) <« Z(0z,0x|Tzx) and Szy (Oz,0y) « Z(Oz,Oy|Tzy);

~

3 last_gLoss < +00;
T .
4 gLoss <« get the loss of ASZZ;( (0z,0x);
5 while gLoss < last_gLoss do
6 last_gLoss < gLoss; > In 5-12: Corollary Theorem Lemma @
7 one step gradual descent Agzz)f (0z,0x) + AgZZ“: (0z,0y);
G AT
8 while ASZZ}‘:(Oz,Oy) > 0do
9 Gradual descent AgZZ;’ (0z,0y);
10 Szy(0z,0y) <+ I(0z,0y|Tzy);

11 Szx(OZ,Ox)<—I(Oz,Ox|TZ)();
12 gLoss < get the loss of Agzz)’(‘ (0z,0x);

13 return gLoss, Oy

target configuration. Otherwise, SphNN tries to update O to see whether the relation
-tn(On,O1) can be satisfied without breaking the relation ¢n_1 (On-1,On).

We design a constraint optimisation process, whose function can be described as
follows: Given Ox, Oy, and O, with target relations T xy (Ox, Oy ), Ty z(Oy,0z),
and Tzx(0z,0x), where Txy,Tyz,Tzx € T = {D,P,P,-D,-P,-P}. Sup-
pose that relations Txy (Ox, Oy ) and Ty z(Oy, Oz) are satisfied, this control pro-
cess will fix the two spheres O x and Oy, and optimises O to satisfy the target relation
T;x(0z,0x), while keeping Ty 7 (Oy,Oz), written as COP,;TFZZ;( (0z|0x; 0y ),
where T zy is the inverse relation of Ty z, or COP(Oz|Ox; Oy ) for short. SphNN

optimises the relation between Oz and Ox by rotating Oy around Oy, as rotating

a sphere around another sphere preserves their qualitative spatial relations (Corol-
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lary . Concretely, let Szy and Sz x be the current inspected relations between Oz
and Oy, and between Oz and Oy, respectively, that is, Szy = Z(Oz,Oy|Tzy),
Szx = Z(0z,0x|Tzx). C’OP,EZZ;‘(OZKDX;Oy) gradually reduces the value of
A'SIZZ;‘(OZ,(’)X) + AgZZ:(Ob(’)y); After each step, if Tzy (Oz,Oy) is broken,
that is, AgZZ:(OZ,Oy) > 0, Oz will be optimised to recover Tzy (Oz, Oy) till
Agzz;’ (Oz, Oy ) reaches zero (Theorem .

The whole process can be understood as such an interactive motion of O that step-
by-step improves the relation with Ox and immediately repairs the broken relation
with Oy . For example, suppose that Oy needs to be inside Ox and disconnect from
Oy, shown in Figure [[9a). While Oz optimises the relation with Ox by moving
towards it, Oz may connect with Oy and get stuck at a non-zero global loss (due
to the broken relation with Oy), shown in Figure b). COPE (0z]|0x; 0y) will
repair the broken relation first. If the central points of the spheres are not collinear,
COPS (0z]|Ox; Oy) will force O rotating around Oy, and improve the relation
with Ox, shown in Figure [I9c, d). This procedure is outlined in Algorithm 2] We
prove that COPTTZZ;‘((’)Z|OX; Oy ) is gradual descent and will find a model if the

target relation T zy and the constraint relation T 7 x are consistent (Theorem [2 and

Theorem[3).

Corollary 2. For any spheres Ox and Oy, rotating Ox around the centre of Oy

preserves the qualitative spatial relation between them.

Theorem 2. Let Ox and Oy be two fixed non-concentric spheres; Oz be a movable
sphere; Tyzy and T zx be the target relations of Oz to Oy and Ox, respectively,
Tzy,Tzx €T ={D,P,P,-D,-P,-P}. COPTZX((’)Z|(9X; Oy) is monotonic.

Tzy
Theorem 3. Let Ry, Ty, and T3 be satisfiable, where Ry € {D, P, PO, P}, Ty, T3 €
T ={D,P,P,-D,-P,-P}. Let Ox and Oy be fixed and satisfying R1(Ox, Oy).
SphNN can construct O z such that To(Oy,Oz), and T3(Oz, Ox).

6.3. Control process 3: neighbourhood transition with restart
With the two control processes above, SphNN may mistakenly choose an unin-

tended positive relation to spatialise a negative one. We illustrate this using the follow-
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Figure 20: (a) Ox and Oy are incorrectly fixed to the partial overlapping relation; (b) after restart the

process by fixing O at the beginning, the relation between O x and Oy will be correct.

ing example: —P can be spatialised by three possible positive spatial relations, namely,
D, PO, PP, but only the relation D is correct between Ox and Oy if D(Ox,Oz)
and P(Oy,Oz). If -P is mistakenly spatialised as PO, SphNN will not be success-
ful in constructing a target configuration. The remedy is to restart the process once by
choosing a different sphere as the first fixed sphere (Lemma [7] [8). Because an unin-
tended relation is inconsistent with the other two relations, this unintended relation can-
not appear, when the other two relations are realised first. For example, PO(Ox, Oy )
is inconsistent with D(Ox, Oz) (no X are Z) and P(Oy,Oyz) (all Y are Z). If we fix
Oz, and realise Ox disconnecting from O, and realise Oy being part of Oz, Ox
will disconnect from Oy, as illustrated in Figure 20] We outline the control process
with this remedy in Algorithm [3] We prove that for any three satisfiable syllogistic
statements, this algorithm can construct a sphere configuration with one epoch and a

maximum of one restart (Theorem ).

Theorem 4. Let p1, p2, ps be three syllogistic statements, where py can be either
r1(X1, Xo) or r1(Xa, X1), pa can be either ro( X2, X3) or ro( X3, X2), and p3 can
be either r3(X1, X3) or r3(Xs, X1), r1,72,73 € {all, some,no, some_not}. SphNN

can determine the satisfiability of p1, ps, ps in the first epoch, with at most one restart.

6.4. SphNN determines the validity of a long-chained syllogistic reasoning

Let p1, ..., pn-1-- g be a long-chained syllogistic reasoning with N — 1 premises,

where p; can be either r;(X;, X;11) or ;(Xi41, X;), ¢ is fixed to 7, (X1, Xn), 7; €
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Algorithm 3: SphNN for Classic Syllogistic Reasoning (S3)
Input: Three target relations: T15(O01, O3), Ta3(O2,03), T31(03,01),

where T;; € {P,P,-P,-P,D,-D}, 1 <i,5j <3.
Output: SAT or UNSAT

1 Initialise O1, O, and O3 as being coincided;
2 if all three relations are satisfied then return SAT

3 break coincide relations with a small random fluctuation;

4 fix Oy, update O, to satisfy T12(01,02) = T51(O2,01); > AlgorithmI
5 fix Oy, update Oj to satisfy T31(O3,01); > AlgorithmT
6 do COP%;Z (05|04, 04); > Algorithmz
7 if not all three relations are satisfied then -
8 | fix Oy, update O3 to satisfy T3 (O3, 02); > AlgorithmI
9 fix O, update O; to satisfy T12(O1,02); > AlgorithmT
10 do COP,;_F;3 (01|03, 03); > Algorithm;
11 if all three relations are satisfied then return SAT > Theoremz

12 else return UNSAT

{all, some, no, some_not}. Without loss of generality, p1, ..., py-1 - ¢ can be spa-
tialised into N spatial statements ¢, (O1,02), ..., ¥n-1(On-1,0n), ¥n(On,O1),
where v; = ¥(r;) if r;(X;, X;) or oo, = ¢~ (r;) if r;(X;, X;), and ; € {D, P, P, -D,
-P,-P}. It will be easy to construct N — 1 spheres satisfying 11 (O01,05), ...,
¥YN-1(On-1,On) in one epoch as follows: We initialise IV -1 coincided spheres; then,
we fix the first one and move the second one till the relation 1 (01, Os) is satisfied;
then we fix the second sphere and move the third sphere till the relation 19 (Os, O3)
is satisfied, .... Each step can be designed as a gradual descent process (Corollary [)).
This process repeats till the target is reached. In this way, SphNN can correctly con-
struct an Euler diagram (in the form of a sphere configuration) for non-cyclic syllogistic
statements. We formally describe this in Theorem T}

SphNN determines the validity of the reasoning by trying to construct a counter-

example, namely, to construct a sphere configuration satisfying N relations 11 (01, O2)
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. YN-1(ON_1,0n), and ~hx (On, O1), where ¥; € {D,P,P,-D,-P,-P}. We
show that SphNN can construct a sphere configuration if the /V relations are satisfiable,
with the worst computational complexity O(N?).

Firstly, SphNN initialises IV coincided spheres (all relations are EQ). If this triv-
ial configuration is a counter-example, the validity of the original reasoning is re-
futed. We prove that for satisfiable relations, if one relation must be the EQ rela-
tion, all relations will be the EQ relation. Thus, after refuting the trivial configuration
(all relations are the EQ relation), SphNN restricts the target spatial relations to be
{D,PP,PP,-D,-PP,-PP}. Because suppose that several EQ relations are in a
satisfiable configuration, each EQ shall be replaced by a non-EQ relation. Otherwise,
all relations must be EQ relations.

Suppose that SphNN has successfully constructed N spheres O,...,Op satis-
fying ¥1(O01,03), ..., ¥n_1(ONn-1,0n) (Theorem . Let iN—l,l be the inspected
spatial relation between Oy _; and Oy, that is, 1[’N—1,1 ¢ {D,PO,PP,PP}. SphNN
determines the satisfiability of the three spheres On_1, O1, and Oy with the rela-
tions 1;]‘\,171’1((’)1, On-1), ¥n-1(On-1,0n), and - (Opn, O1) as follows: It fixes
O; and On_1, and rotates O around On_; to reach the relation - (Opn,O1).
If =N (On,O1) is satisfied, SphNN will find a counter-example. Otherwise, the
relations 1;1}171’1((’)1,(9]\;_1), YN-1(On-1,0n), and -5 (On, 1) are unsatisfi-
able, which follows that ¢n_1 (On-1,On) and —1p x5 (On, O1) will deduce the rela-
tion ﬂ/NJJ‘Vl_M(Ol, On-1). Accordingly, SphNN starts the backward process by up-
dating the relation between O; and On_1: It fixes O; and updates Oy to satisfy
-tn(On,O1), then fixes O and updates O _1 to satisfy ¥y_1(On_1,On). After
the two operations, the relation between O _; and O; will be inspected and updated.

Let R be the inspected relation, R(Oy_1,0;), where R € {D,PP,PP,PO}. The
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Algorithm 4: SphNN for long Syllogistic Reasoning (Sy)

10

11

12

13

14

15

16

17

18

19

20

21

22

Input: N target relations: T 2(O1, O2)... Tno1,n(On-1,0n),
TN,I(ONa 01)9 T’L € {Pvﬁa _‘P7 _‘ﬁa Dv _‘D}
Output: SAT or UNSAT > return SAT if N relations are satisfiable.

Initialise all O; as being coincided (1 < i< N);

if N coincided spheres satisfy the N relations then return SAT;
if N == 3 then return S3 for T 2(O1, O2), T2,3(02,03), T31(0s,01);
fori=1...Ndo

L fix O;, update O, to satisfy T; ;4+1(O;, O;41); > Algorithm
do COP,;_{TIJ\:[";V_1 (ON|01,0Nn-1); > Algorithm
if Ty 1(On, O1) then return SAT;
R «<Z(01,0n-1), ReTs;
fix Oy, update O to satisfy T 1(On,O1); > Algorithm
fix O, update On_; to satisfy Tn_1 N (On-1,0n); > Algorithm
i< N-1,
while ; > 3 do

R < Z(01,0;), R € Ts;

if R’ ¢ {D,PP, PP} then T, , « R/

elseif R == D then T ; < -D

elseif R == PP then T ; < -P

else if R == PP then T, ; < -P

fix 01, update O; to satisfy T1 ;(O1,0;); > Algorithm
if T;_1,:(O0;_1,0;) holds then return SAT;

R «<7Z(01,0,-1), R eTs;

fix O;, update O;_; to satisfy T;_1 ;(Oi_1, O;); > A]gorithmm

1+ i-1

return S3 of T1 2(01, 03), T2 3(02,03), and R(O4,03)

relation between Opn_1 and Oy, QMV_M, will be updated as follows.

R,if Re {D,PP, PP}

, -D,if R=PO Aty 11=D
YN_11 = _ 49
-PP,if R=PO Aty =PP

-PP,if R=POA¢y_,, = PP



In all cases, 1/J§V7171 is a syllogistic relation. This way, SphNN reduces the task into the
caseof N-1....If w;‘ll contradicts with ¥, SphNN will conclude there is no counter-
example and the original syllogistic reasoning is valid. The construction process is
illustrated in Figure[21)and listed in Algorithm[4] The following corollary and theorem

guarantee the determinacy of SphNN for long-chained syllogistic reasoning.

Corollary 3. For any spheres Ox and Oy, rotating Ox around the centre of Oy

preserves the qualitative spatial relation between them.

Theorem 5. (The principle of deterministic neural reasoning) Let p1, ..., pn-1--q
be a long-chained syllogistic reasoning with N — 1 premises, where p; can be ei-
ther ri(X;, Xi1) or ri( X1, X5) (1 <4 < N —1), g is fixed to (X1, Xn), rj €
{all, some,no, some_not} (1 < j < N). SphNN can determine its validity (or satisfi-

ability) with the computational complexity of O(N).

7. The proofs of the theorems

It seems impossible to reach any definitive conclusions concerning human
rationality in the absence of a detailed analysis of the sensitivity of the

criterion and the cost involved in evaluating the alternatives.

— Amos Tversky [82)]

We outline theorems and proofs whose dependency relations are diagrammed in
Figure Proofs are independent of the dimension of spheres, so theorems hold for
n-dimensional space (n > 2) (Corollary [3). With these theorems and proofs, SphNN

becomes the first neural model for deterministic logical reasoning.

7.1. Basic theorems

Corollary 1. Each A function is linear concerning the radius and monotonic concern-

ing the distance between the centres.

Proof (corollary) 1. Each A function updates the radius rx and the centre Ox of

sphere Ox. So, it is linear concerning the radius rx and monotonic concerning the
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distance between the centres disx v = \|OX -Oy |, except AEQ:PO(0X7 Ov), where
T e T. When Ox coincides with Oy (EQ), one step of update the length of |Ox |
(|Ox|| # 0) will push Ox to be partially overlapped with Oy, so AEQIPO(0X7 Ov)

can also be understood as monotonic. O

7.2. The satisfiability theorem for non-cyclic statements

Theorem 1. Let py, ..., py—1 be N — 1 premises of a long-chained syllogistic reason-
ing system, where p; can be either r;(X;, X;41) or (X1, X;), (1 < i < N -1),
r; € {all, some,no, some_not}. SphNN can construct a configuration of N spheres
as an Euler diagram of the N — 1 syllogistic statements, such that X; maps to O,
and p; maps to ¥;(O;, O441), where ; = (r;) if ri( Xy, Xis1) or 0y = 71 (ry) if
ri(Xis1, X;), and ¢; € {D,P,P,-D, -P,-P}.

Proof 1. We show 1¥1(01,03),...,v¥n-1(On-1,0OnN) are satisfiable. We prove this

by inducting on the length of the sequence.

1. N = 1. For any initial relation between Oy and Oy, SphNN can realise the
target relation by using A functions in the neural transition map of qualitative
spatial relations.

2. Suppose that it holds for N < K — 1.

3. N = K. Assume that SphNN has constructed K — 1 spheres Oq,..., Og_1
satisfying first K — 1 constraints. To optimise Oy, SphNN repeats the method

used for N =1, as optimising ¥ 1(Ok -1, Ok ) will not hurt other relations. O

7.3. Existence theorems

Lemma 1. Given R;,Ry,R3 € {D,EQ,PO,PP,PP}. If the three relations are

satisfiable, that is, 301, 02, 03[R (01,02) ARo(Os,O3) AR3(O3,01)], then for

any fixed O x and Oy satisfying R1(Ox, Oy ), there will be O z such that R (Oy, Oz)
and R3(0z,0x).

Proof (lemma) 1. We enumerate the combination of relations of Re and Rs.

1. R3(0z,0x) = EQ(Oz, Ox). A trivial case ofTheorem
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Figure 23: (a) Oy is proper proper part of Ox; (b) Ox is proper part of Oy ; (¢c) Ox disconnects from

Oy ; (d) Ox partially overlaps with Oy . In any situation, there is Oz disconnecting from O x and Oy .

2. Ry(Oy,0z) =EQ(Oy,Oy). A trivial case ofTheorem
3. Ro(Oy,0z) = D(0Oy,0z) and R3(04z,0x) = D(0O4,0x). For any fixed
Ox and Oy, if
(a) PP(Ox,0y). Any Oy disconnecting from Ox disconnects from Oy,
shown in Figure[23]a).
(b) PP(Ox,0y). Any Oz disconnecting from Oy disconnects from Ox,
shown in Figure23]b).
(c) D(Ox,0y). Let both Ox and Oy be inside Oy, any Oy disconnecting
from Oy disconnects from Ox and Oy, shown in Figure[23(c).
(d) PO(Ox, Oy ). The same as (c), shown in Figured).
4. Ro(0Oy,0z) =PO(0Oy,0z) and R3(0z,0x) = D(Oz,0x). For any fixed
Ox and Oy, if
(a) PO(Ox,0y). Let Oy (the centre of Oy) be located at the boundary
of Oy and be the apogee to Ox. As Ox partially overlaps with Oy,
PO(Ox,Oy), they cannot be concentric, so there is vz = € such that

Oy disconnects from Ox and partially overlaps with Oz, shown in Fig-
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Figure 24: (a-c) Oy partially overlaps with Oz and Oz disconnects from Ox; (d) Ox contains Oy,
therefore, if Oz connects with Oy, it will connect with O x . The grey background means an unsatisfiable

case.

ure[24a).

(b) D(Ox,Oy). The same as (a), shown in Figure b).

(c) PP(Ox,0y). If Ox and Oy are not concentric, the case is the same as
(a); otherwise, Ox is a proper part of Oy (ry > rx), letrz <ry —rx.
shown in Figure24(c).

(d) PP(Ox,Oy). Any Oz connecting with Oy connects with Ox. This
contradicts with D(Oz, Ox), shown in Figure d).

5. Ry(Oy,0z) = PP(Oy,0z) and R3(0z,0x) = D(Oz, Ox). For any fixed
Ox and Oy, if
(@) PO(Ox,0Oy). As Ox partially overlaps with Oy, let the line L pass the
centres of Ox and Oy, intersect with the boundary of Ox at Py (Py is
inside Oy ), intersect with the boundary of Oy at 2 (P is outside Ox).
Let Oz be a sphere whose diameter is a segment between po and Pl, shown
in Figure[23[a).
(b) D(Ox,Oy). Let Oy be any sphere inside Oy, shown in Figure b).

54



Figure 25: (a-c) As long as O x does not totally cover Oy, there will be O that is proper part of Oy-, and

disconnects from O x; (d) Ox totally covers Oy, if O is inside Oy, it will be inside O x .

(c) PP(Ox,0y). As Ox is proper part of Oy, let the line L pass the centres
of Ox and Oy, intersect with the boundary of Ox at 131 and ]32, intersect
with the boundary of Oy at Py and Ps. Without the loss of generality, let
|ﬁ0ﬁ1| > |ﬁ2133| > 0. As PP(Ox,Oy), it is not possible that |]30161| =
|]32I33| = 0. Let Oy be a sphere whose diameter is a segment between 130
and ]31, shown in Figure @c).

(d) PP(Ox,Oy). As Oz is part of Oy, Oz will be inside Ox, which con-
tradicts with D(Ox,Oz), shown in Figure[25(d).

6. Ro(Oy,02) =PP(0Oy,0z) and R3(0z,0x) =D(0Oz,Ox). For any fixed
Ox and Oy, if

(a) D(Ox,0y). Let the line L pass the centres of Ox and Oy, intersect
with the boundary of Oy at Py, the perigee of Ox. Let Oy be the sphere
that tangentially contains Oy and Py be the tangential point, shown in
Figure[26]a).

(b) PO(Ox,0y) vPP(Ox,0y) vPP(Ox,0y). As Oy is part of Og,
any sphere Ox, if Ox connects with Oy, Ox connects with Oz, which

contradicts with D(Oz, Ox), shown in Figure @b-d}.
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Figure 26: Oy is proper part of Oz and Oy disconnects from O x. This case is only possible when O x

disconnects from Oy (a).

7. Ro(Oy,02) =D(0Oy,0z) and R3(04,0x) =P0O(0Oz,Ox). Case 4.
8. R2(0y,0z) = PO(Oy,0z) and R3(0z,0x) = PO(O4,0x). For any
fixed Ox and Oy, if
(@) PO(Ox,Oy). Let the boundaries of Ox and Oy intersect at Py and P,.
Any sphere Oz with PO as the centre and with rz less than min{rx,ry }
will partially overlap with O x and Oy, shown in Figure[27(a).
(b) D(Ox,0Oy). Let Oy be the sphere with the segment |6X Oy| as the di-
ameter, shown in Figure |2_7{b).
(c) PP(Ox,0Oy). Let Oz be a sphere whose centre is at the boundary of Oy
and whose boundary passes the centre of Ox, shown in Figure[27(c).
(d) ﬁ(@x, Oy). Let Oz be a sphere whose centre is at the boundary of Ox
and whose boundary passes the centre of Oy, shown in Figure[27(d).
9. Ry(0y,0z) = PP(Oy,0z) and R3(0z,0x) = PO(Oz,0x). For any
fixed Ox and Oy, if
(a) PO(Ox,0Oy). Let the line L pass the centres of Ox and Oy, intersect
with the boundary of Ox at points Py and Ps, and intersect with the bound-

ary of Oy at points ]31 and 132, PM is located between ]30 and 132. Oz is
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Figure 27: (a) O x partially overlaps with Oy, and their boundaries intersect at ]30 and Pp; (b) O x discon-

nects from Oy-; (c) Ox is proper part of Oy-; (d) Oy is proper part of O x .

(© (d)

Figure 28: (a) Ox partially overlaps with Oy-; (b) Ox is proper part of Oy ; (¢) Ox disconnects from

Oy ; (d) Oy is proper part of Ox.
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Figure 29: (a) Ox disconnects from Oy ; (b) Ox partially overlaps with Oy-; (¢c) Oy is proper part of
Ox; (d) Ox is part of Oy-.

(b)

(©)

(d)

the sphere with |I31 PM| as the diameter. It is easy to prove that O z partially
overlaps with Ox and is a proper part of Oy, as shown in Figure[28(a).

PP(Ox,Oy). Let the line L pass the centres of O x and Oy and intersect
with the boundary of Oy at points ﬁo and ﬁl. Let O x be closer to p@

than to ]31. Let Oy be the sphere whose diameter is |]310 x|, shown in

Figure28b).

D(Ox,0y). As Ox disconnects from Oy, Ox will disconnect from any

sphere inside Oy . This contradicts with PO(Oz,Ox), shown in Fig-

ure[28c).
PP(Ox,0y). As Ox contains Oy, Ox will contains any sphere inside
Oy-. This contradicts with PO(Oz,Ox), shown in Figure @d}.

10. RQ(Oy,Oz) = PP(Oy,Oz) and Rg(@z,@x) = PO(Oz,Ox). For any
fixed Ox and Oy, if

(a)

D(Ox,Oy). Let Py be located at the boundary of Oy and be the apogee
to Ox. Let Oz be the sphere takes the segment |O Xl30| as the diameter.

Then, Oy contains Oy and partially overlaps with Ox, shown in Fig-

ure2%a).
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Figure 30: (a) Ox is proper part of Oy ; (b) O x partially overlaps with Oy-; (c) Oy is proper part of O x;

(d) O x disconnects from Oy .

(b) PO(Ox,Oy). The same as (a), shown in Figure @{b}.
(c) PP(Ox, Oy). Let the line L pass the centres of Ox and Oy, intersect
with the boundary of Ox at Py and Py, and intersect with the boundary of
Oy at ]32 and 153, as shown in Figure @6). Let O take 151 as the centre,
and | P, Py| as the radius, where | P, Py| > | P, P3| .
(d) PP(Ox,0Oy). For any Oz containing Oy, Oz will contain Ox. This
contradicts with PO(Oz, Ox), shown in Figure @d}.
11. Ry(Oy,0z) =D(Oy,0z) and R3(0z,0x) = PP(0Oz,0x). Case 5.
12. R2(Oy,0z) =PO(0Oy,0z) and R3(0z,0x) = PP(Oz,0x). Case 9.
13. Ry(Oy,0z) = PP(Oy,0%) and R3(0z,0x) = PP(Oz,0x). For any
fixed Ox and Oy, if
(a) PP(Ox,0y). Let the line L pass the centres of Ox and Oy, intersect
with the boundary of Ox at P, and P, and intersect with the boundary
of Oy at 150 and 131, where 130 is nearer to 132 than to f’g. Let PM be a
point between ]30 and ]32; ﬁN be a point between ]31 and 133. Let Oy be
the sphere with |13M]3N| as the diameter, as shown in Figure @a}.
(b) From PP(Oy,0z) and PP(Oz,0x) we have PP(Oy,Ox), which is
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Figure 31: When Oy is proper part of Oz and O contains Ox, Oy and Ox can be of any relation.

14.

15.
16.
17.
18.

equivalent with PP(Ox, Oy ). Therefore, other relations between O x and
Oy are not possible, shown in Figure[30(b-d).
R3(0y,0z) = PP(Oy,0%) and R3(0z,0x) = PP(Oz,0x). For any
Ox, Oy, let Oz be large enough to contain both Ox and Oy, as shown in
Figure[31]
R2(0y,07) =D(0y,0z) and R3(0z,0x) =PP(04,0x). Case 6.
R2(0Oy,02) =PO(0Oy,0z) and R3(0Oz,0x) =PP(Oz,Ox). Case 10.
R2(Oy,0z) =PP(Oy,0%) and R3(0z,0x) = PP(0Oz,0x). Case 14.
R2(0y,02) =PP(Oy,0z) and R3(0z,0x) = PP(O4z,0x). Case 13. O

Lemma 2. Given R;,R, ¢ {D,EQ,PO,PP,PP} and R3 ¢ {-D,-P,-P}. If
the three relations are satisfiable, that is, 301,03, O3[R1(O1,02) A Ro(O2,03) A
R;3(03,04)], for any fixed Ox and Oy satisfying R1(Ox,Oy), there will be Oz
such that Ry (Oy,Oz) and R3(Oz,Ox).

Proof (lemma) 2. We enumerate the relations of Ry and Ry. The negative value of
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(© (d)

Figure 32: Oy can partially overlap with O x and O in each case: (a) O x disconnects from Oz, (b) Ox

partially overlaps with O, (c) Ox is proper part of O, (d) O is proper part of Ox .

R can be understood as the grouping of several positive relations, as follows.

-D=EQvPOVvPPVvPP
-P=DvPOVPP
-P=DvPOVPP

The rest of the part is similar to Proof{lemma)[l] m|

Lemma 3. Relations Ty, Ts, and T3 are satisfiable (301,02, O3[R1(01,02) A
R (03, 03)AR3(03,01)]), where T1, Ty € {~D,-P,-P}and T3 ¢ {D,P,P,PO}.
For any fixed O 7 and O satisfying T3(Oz, Ox), there is Oy satisfying T1(Ox, Oy ),
T2(Oy,0z).

Proof (lemma) 3. l. T3(0z,0x)=D(0z,0x).
Let Oy be such a sphere whose centre is outside O x and Oz and whose bound-
ary passes the centres of Ox and Oy. In this way, Oy partially overlaps with
Ox and O. Therefore, for all T1, Ty € {-D, =P, -P}, we have T1(Ox, Oy)
and T(Oy,0yz), as illustrated in Figure a).
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2. T3(0z,0x) =PO(0z,0x)vP(Oz, Ox)vP(Oz,Ox). The same as case
1, illustrated in Figure[32(b-d). i

7.4. The relative qualitative space

© )

Figure 33: (a) [UP);O“ occupies the whole space except an open sphere with the centre Og and the radius

of ro+rx. Ur)éoo is concave; (b) IUT)?’OO is an open ring concentric with Og whose radius within the

P . . P
range of |ro — rx| and ro + rx. U,.XO’OO is concave, if rx < 79; (c) IU,.)’(OO

centre Oo and the radius of rg — rx. It is convex; (d) Uf}’(o"

is a closed sphere with the
is a closed sphere that is concentric with Og

and with the radius of rx — rg. It is convex.

Definition 1. Let Oy be a fixed sphere with radius ro and the centre Oo, and let
Ox be a moving sphere with fixed radius rx, satisfying R(Ox,Qq), where R ¢
{D,PO,P,P}. All possible locations of the centre of Ox form a relative qualita-

tive space U as follows.

1. R(Ox,0p) =D(Ox, ). UP:0 is the space of all points Ox whose distance
to Oq is greater than or equal to 1 x + To. UP};OO ={Ox :|OxOp| 2 rx +70}
as illustrated in Figure[33]a).

2. R(Ox,0) = PO(Ox,0). UL is the space of all points Ox whose

distance to Oy is less than rx + 1o and greater than the absolute difference
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Figure 34: (a) U;)]?’OU is the complement space of UTD);OO ;(b) U;E’OO is the complement space of Uf)’(oo ;

P,0q

() U;E’OO is the complement space of Uy. ;7.

between rx andrg. UE Q90 = {Ox : [rx-ro| < |OxOq| < rx+ro}. Ifrx <o,
Uf}? 90 will be a ring, and thus is concave, as illustrated in Figure b).

3. R(Ox,00) = P(Ox,0q). If 1o > rx, Uf}’(o" is the space of all points Ox
whose distance to Oy is less than or equal to ro—7x. UF:©0 = {Ox : |OxOp| <
ro — rx}, as illustrated in Figure c). Ifro<rx, U}?;(O“ is empty &.

4. R(Ox,00) = P(Ox,0). If rx > ro, Up;90 is the space of all points Ox
whose distance to Oy is less than or equal to rx —7y. UEOO ={Ox : |[Ox Oy <

rx — 1o}, as illustrated in Figure|33(d). If rx <o, U?);OO is empty &.

Definition 2. U;)]?’OU, U;E’OO, and U;E’OO are complement regions of UPX’OO, 04 )"(OO,

and Uf}’(o‘), respectively.

1. [U;?’O“ is the space of all points OX whose distance to OO is less than rx + ro.
U;E’OO ={Ox : |OxOq| < rx + 10}, as illustrated in Figurea).

2. Ifro 2rx, U;f:’o“ is the space of all points O x whose distance to Oy is greater
than ro - rx. U;P:90 = {Ox : |OxOq| > 7o - rx}, as illustrated in Fig-
ure b). Ifro <rx, U;}?’O" is the whole space ().

3. Ifrx >ro, [U:f’o‘] is the space of all points Ox whose distance to Oy is greater
than rx —ry. U;f’o" ={Ox : |OxOq| > rx—ro}, as illustrated in Figurec).

If rx <o, [U;f’oo is the whole space Q.

7.5. The rotation theorem in a relative qualitative space

Corollary 2. For any spheres Ox and Oy, rotating Ox around the centre of Oy

preserves the qualitative spatial relation between them.
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Figure 35: (a) Uf )’(O and Uf)’(o are convex spheres; (b) UTDX’,O is concave (foo 'O can be concave), with

a spherical hole; (c) this hole can be circumvented by rotating around it.

Proof (corollary) 2. Each qualitative spatial relation is a function of the distance be-

tween their centres, disx y = HOX - OV , and the radii. Rotating Ox around the
centre of Oy preserves disx v, and their radii rx and rv. Therefore, it preserves the

qualitative spatial relation. |

Lemma 4. For any two different spheres O and Oy with the same radius rx and
satisfying R(O1,0g) and R(O,0y), if R € {P, P}, directly move Oy to O, the
relation R will always hold during the movement process; if R € {D, PO}, directly
shifting O1 to O3 may violate the relation R during the movement process. To preserve
R (01, 0q) during the process of shifting, O1 may need to rotate around the centre of
Oop.

Proof (lemma) 4. 1. Re {P,P}. Ufﬁ;o" is a close sphere O concentric with Q.
Let the centre of O1 move from 01 to 02. Then, both 01 and 62 are inside O,
as shown in Figure a). Let Op be any point along the segment |01 Og| Let
a=2000p0; and 8= 2000p0sy, o + B = 180°, one of them is greater than

Oo - Op| is less than max{|0 0], |0 Os|}, so, Op

or equal to 90°, therefore,

is inside O.

2. R ¢ {D,PO}. U&OO encompasses a concentric sphere that does not belong
to Ufﬁ(’o". Suppose that direct shifting O1 to Oy intersects with this concentric
sphere at points Py and Py, as illustrated in Figureb ). At point P, the relation
R exactly holds, with Corollary rotating Oy at point Py around the centre of
Oy to point Py will preserve the relation R, as illustrated in Figure c). O
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Figure 36: The gradual descent along the line segment HOZO’Z | may cause the gradual ascent of

[10x 0% - [0x Oz || however. [ Ox O || - [Ox Oz || < [0z 0% |.

7.6. The monotonicity of the constraint optimisation
Theorem 2. Let Ox and Oy be two fixed non-concentric spheres; Oz be a movable
sphere; Tyzy and T zx be the target relations of Oz to Oy and Ox, respectively,

Tzy,Tzx T ={D,P,P,-D,-P,-P}. COPTZX(OZ|OX;(’)y) is monotonic.

Tzy

Proof 2. Sy and Sz x be the actual relations of Oy to Oy and Ox, respectively.
Szx € fisp(Tzx)andSzy € fisp(Tzy); the relation Rg((’)z, Oy)andR3(0z,0x)
be the next target relations of Oz to Oy and to Ox, respectively, where f{g, R3 e S.
C'OP,ITZZf (Oz|Ox; Oy) repeatedly performs two steps as follows: (1) it gradually
decreases the value of the function Al;;X((’)Z,OX) + Ag;y(OZ,Oy); (2) while
Al

Consider the case that the radius of Oz is fixed, and repeatedly perform gradual

(Oz,0y) >0, gradual descent operations will be applied for A?ZQY (Oz,0y).

descent operation on Asﬁzzy (Ogz, Oy ) until it equals zero, at this time Ag;x (0z,0x%)
may increase a value §;. We need to prove that the decreased value related to Oy, is
no less than 4;.

When Oy is fixed, with Theorem the gradual descent operation on AS;Y (Oz,0y)
will move O along the straight line Oy Oz, with the decrease of §) = |0z 0% ||. This
may cause a maximum increase of A?;X (Oz,0x) with the value of 5, = ||Ox 0| -

|0xOz||, shown in Figure We have &, = 10204 = |0x 0% - |0OxO||| = 5.

65



The equal relation holds if 0) X, o) =z, and O'Z are collinear.

Consider the case that the gradual descent operation on AS;Y (Oz,0y) also up-
date the radius of Oz, with the change of 6,,. This value helps to reduce the value
of Ag{ZQY (Oz,0y). With Corollarjy the same amount of the value may increase
the value of AS;X (Oz,0x), which exactly counteracts the decreased value from the

relation to Oy . Therefore, C’OP,EZZ;,‘ (Oz|Ox; Oy) is monotonic. O

7.7. Theorems about constraint optimisation

Lemma 5. Let Ry, Ry, and R be satisfiable, where Ry, Ry € {D,P,PO,P}, R3¢
{D,P,P,-D,-P,~P}. Let spheres Ox and Oy be fixed and satisfying the relation
R1(Ox,Oy). SphNN can construct Oz such that Ro(Oy,Oz) and R3(Oz, Ox).

Proof (lemma) 5. With Theorem SphNN can construct O z such that Ro(Oy,Oz).
With Theorem [Z] COP(0Oz|Ox; Oy) is gradual descent.

1. Ry ¢ {D,P,P}.
With Lemmall| there is O, satisfying Ra(Oy, 0%) and R3(O3%, Ox). That is,
COP(0%|0x;0y) =0.

2. Ry e {-D,-P,-P).
With Lemma 2} there is O satisfying Ro(Oy, O%) and R3(0%, Ox). That is,
COP(0%|0x;0y) =0.

In both cases, COP(Oz|Ox; Oy) will reach 0. Therefore, SphNN can construct
Oz such that Ro(Oy,0z) and R3(Oz,0x) by gradual descending the function
COP(Oz|Ox;Oy). O

Lemma 6. Let Ox, Oy, and Oz be spheres that satisfy three relations T1(Ox, Oy ),
Ty (Oy,0z) and T3(Oz,Ox), where T1,T5 € {-D,-P,-P}, T3 ¢ {D,P,P,PO}.
SphNN can construct an Euler Diagram by first realising T3(Oz,Ox), then fix Oy
and Ox, and constructs Oy to satisfy both T1(Ox, Oy ) and T2(Oy,Oz).

Proof (lemma) 6. Let S, be the actual relation between Ox and Oy, and So be
the actual relation between Oy and Oz, in which S1 € f1,(T1) = {T1,-T1},
S2 € fusp(T2) = {T2,~Ts}, where T, T € {~D, -P,~P}, with Lemma|3) for any
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fixed Oz and Ox satisfying T3(Oz,Ox), there exists Oy satisfying T1(Ox, 05 )
and T2(0%,0y), in which T1, Ty € {-D,-P,-P}. So, COP(0%|0x;0z) = 0.
Therefore, SphNN can construct an Euler Diagram by first realising T3(Oz,Ox)
(Theorem , then fix Oz and Ox, and constructs Oy to satisfy both T1(Ox,Oy)
and T2 (Oy ,Oz) by gradual descending the function COP(Oy|Ox;Oy). O

Theorem 3. Let Ry, Ty, and T3 be satisfiable, where Ry € {D,P,PO,P}, Ty, T3 €
T ={D,P,P,-D,-P,-P}. Let Ox and Oy be fixed and satisfying R (Ox, Oy).
SphNN can construct O z such that To(Oy,0z), and T3(Oz,Ox).

Proof 3. Lemmal3and Lemmal6] O

7.8. The restart theorem

Lemma 7. Let Ox and Oy be fixed, satisfying T1(Ox,Qy ), and Oz be movable,
satisfying T2(Oy,Oy), where T1, Ty € {D,P,P}. Let the relation between Oz
and Ox be R3(0z,0x) and the three relations T1,Ta,Rg are satisfiable, where
Rj3 € {D,PO,P,P}. The number of possible relations of R3 can not be 2.

Proof (lemma) 7. We enumerate relations of T and T'5.

1. T1(Ox,0y) =D(Ox,0y) and To(Oy,0z) = D(Oy,O7z).

(a) Let Oy be a sphere that contains Ox and Oy. Any Oy that discon-
nects from Oy disconnects from Ox and Oy, D(Oz,Ox) shown in Fig-
ure[37/a).

(b) Py be the apogee to Oy at the boundary of Ox. Let Oy take Py as the
centre and have the same radius as Ox, then Oz partially overlaps with
Ox and disconnects from Oy, PO(Oz,Ox) shown in Figure b).

(c) Let Oz be part of Ox, Oz will disconnect from Oy, P(Oz,Ox), shown
in Figure[37(c).

(d) Py be the apogee to Oy at the boundary of Ox. Let Oy take Py as the
centre and the diameter of Ox as the radius, then Ox is part of Oz and

disconnects from Oy, P(Oz,Ox), shown in Figure d).

So, the number of possible relations of R is 4.
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Figure 37: When Ox disconnects from Oy, and Oy disconnects from O, all 4 qualitative relations

between O x and O are possible.
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.""OY. &
L i H
By :.m
(@) (b)
B i T -
1“‘ : II’,' (9;\ \.:

Figure 38: (a-c) Ox disconnects from Oy and Oy is proper part of Oz, then, Oz cannot be part of Ox,

and other qualitative relations between O x and O are possible; (d) if O x disconnects from Oy and Oz

is proper part of Oy, O x will disconnect from O .
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Figure 39: If Oy contains both O x and Oz, Ox and Oz can be of any relations.

2. T1(Ox,0y)=D(0x,0y) and T3(Oy,0z) = P(Oy,Oz).

(a) Let the line L pass the centres of Ox and Oy, intersect with boundaries
of Ox and Oy at Py, Py, P, and Ps, respectively, shown in Figure @a}.
Let Oy be the sphere with Py P3 as diameter, P(0z,0x);

(b) Let the line L pass the centres of Ox and Oy, intersect with the bound-
ary of Oy at Ps, the apogee to Ox. Let O take Ps as the centre and
Oy ’s boundary pass the centre of Ox, then Oz contains Oy and partially
overlaps with Ox, PO(Oz,0x), shown in Figure @b};

(¢c) Let Oy take ]53 (created in case (b)) as the centre and take the diameter
of Oy as the radius, then Oz contains Oy and disconnects from Ox,
D(0z,0x), shown in Figure c).

(d) If Oy is proper part of Ox, Ox disconnects from Oy, Oz will disconnect
from Oy This contradicts with the relation that Oy is proper part of O,
P(Oy,0z).

So, the number of possible relations of R is 3.
3. T1(Ox,0y) =D(0Ox,0y) and T2(Oy,0z) = P(Oy,02). As Ox discon-

nects from Oy and Oz is inside Oy, so Ox disconnects from Oz, as shown in
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Figure 40: (a) if Ox is proper part of Oy and Oy is proper part of Oz, O x will be part of O z; switching

Ox and Oz will result in the case (b).

Figure[38d). So, the number of possible relations of Ry is 1.

4. T1(Ox,0y) =P(Ox,0y) and T3 (Oy,0z) = D(Oy,0%). Case 2.

5. T1(Ox,0y) = P(Ox,0y) and T5(Oy,0z) = P(Oy,0%). Ox and Oy
are part of Oy, Ox and Oz can be of any relations, as shown in Figure[39 So,
the number of possible relations of R is 4.

6. T1(Ox,0y) = P(Ox,Oy) and To(Oy,0z) = P(Oy,0z). When Ox is
proper part of Oy and Oy is proper part of Oz, Ox will be part of Oy, as
shown in FigureH0(a). So, the number of possible relations of R is 1.

7. T1(0Ox,0y) = ?(OX, Oy) and To(Oy,0z) = D(Oy,Oy). Case 3.

8. T1(Ox,0y)=P(Ox,0y) and To(Oy,0z) = P(Oy,0z). Case 5.

9. T1(0Ox,0y) =P(Ox,0y) and T2(Oy,0z) = P(Oy,OZ). This is equiva-
lent to Case 6, as shown in Figure[O(b). So, the number of possible relations of
Rsis 1.

Therefore, the number of possible relations of R3 can not be 2. O

Lemma 8. Let three relations T, T4, and T be satisfiable, which means that there
are three spheres Oy, O1, and Oy satisfying the relations To(Ogp, 01), T1(01,05),
and T3(04,0y), where Ty, T1,Ty € {D,P,P,-D,-P,-P}. Leti ¢ {0,1,2},
j=(G+1) mod 3, k= (j+1) mod 3. SphNN can successfully construct a
sphere configuration with a maximum of one restart: first construct O; and Oj sat-
isfying T;(0;,0;); fix O; and construct Oy, satisfying T;(O;, Ok); fix O; and O;
and update Oy, to satisfy Ty (O, O;) while preserving T ;(O;,Oy). If the last step
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fails, SphNN restarts the process by firstly fixing Oy and realising Ty (O, O;) and
Tj (O] ’ Ok )

Proof (lemma)8. 1. T, ¢ {D,P,P}.

(a) at most one of T; and T}y, is a member of {-D,-P, -P}. Ty, Ty, and
T3 are satisfiable, with Lemma/[5] SphNN will construct an Euler diagram
without error.

(b) T;, Ty € {-D,-P, ~P}. With Lemma@ SphNN will construct an Euler
diagram without error.

2. T; e {-D,-P,-P}.
T is consistent with three relations in the set {D,PO,P,P}. Let consis(T;)
denote the three consistent relations: consis(-D) = {PO, P, P}, consis(-P) =
{PO,D, P}, and consis(-P) = {PO,P,D}.
Let the relation between O; and O; be R;(0;,0;), R; € {D,PO,P,P} and
R; is consistent with T ;.

(@) If R;, T}, and T}, are satisfiable, the same proof structure as case 1, as
LemmaE]and Lemma@holdfor {D,P,PO,P}.

(b) IfR;, T}, and T}, are unsatisfiable, then the following syllogistic reasoning
is valid.

T;(0;,Ok)
T(Ok, 0;)
-R,;(0;,0;)
i. T;,,T;¢{D,P,P}.
Only relations in consis(T;) except R; can be consistent with T ; and
Ty. The size of consis(T;)/R; is less than or equals to 2. With
Lemmal7} exactly one relation R; ¢ consis(T;)/R; is consistent with
T, and T and Ty. With Theorem[l} let SphNN fix Oy, then opti-
mise Oj to the relation T;j(O;,Oy), and optimise O; to the relation
T (O, O;), then the relation between O; and O; can only be R;.
ii. T;, Ty € {-D,=P,-P}. There is no valid syllogism with three nega-
tive forms (All valid syllogisms are listed in[Appendix_A).
So, T, Ty € {-D,-P,~P} is not possible.
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Figure 41: Case N = k + 1: (a) 91 or ¢ is EQ. The k + 1 spheres are partitioned into two circular chains
(1) O1, Oz and O3, and (2) O1, O3 ...; (b) Yy, or Y41 is EQ. The k + 1 spheres are partitioned into two
circular chains (1) O1, O and Og1, and (2) Ok, 01,02 ... Op_1;(©) ¥; isEQ (2 < j < k). The k + 1
spheres are partitioned into three circular chains (1) O1, O; and Oj41, (2) O;, O1, O2 ... O;_1, (3) O,

iii. exactly one of Tj and T, is the member of {-D,-P,-P}.
Without the loss of generality, let T; € {-D,-P, ﬁﬁ}. Therefore,
T, ¢ {D,P,P}, and T;,T; € {~D, =P, ~P}. With Lemmal6| SphNN

will construct an Euler diagram without error. |

Lemma 9. Let 1)1 (01,053)... Un-1(On-1,0n), Un(On,O1) be N syllogistic state-
ments, where 1; € {D,P,P,-D,-P,-P}. If the N statements are satisfiable, and
one of Yy, must be EQ, then, every 1¥; must be EQ.

Proof (lemma) 9. We induct on N.

1. N = 3. Without loss of generality, let 13(O3,01) must be EQ(QO3,01). That
is, P(O3,01) and P(O1, O3) are valid. From P (O3, 01), we infer P(Os3, 03)
and P(O4, 01) and from P(O1,0s), we infer P(O1,03) and P(O3,03), as
Jorvalid conclusion P(Og,Op) there is only one kind of premises P(Og,Opr)

and P(Oypr, Op) (All valid syllogisms are listed in|Appendix A).
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2. If the theorem holds, when N < k.

3. N=
(a)

(b)

()

k+ 1. Let ¢; must be EQ.

Case j = 1 or j = 2. As N statements are satisfiable, there will be an
Euler diagram in terms of a configuration with N spheres. Consider three
spheres O1, Oy and Os. They form an Euler diagram for three syllogistic
statements (31 € T is an observed syllogistic relation), and 1; must be
EQ. So, three relations among O1, Oy and Oz must be EQ. Consider k
relations among k spheres: Oy, Os, ... Oyi1, where Y13 € T is an ob-
served syllogistic relation. The relation between O and O3 must be EQ.
With the inductive assumption, all relations must be EQ. Figure[dfa).
Case j = k or j = k+ 1. Consider three spheres Oy, O.1 and Oy. Three
relations among them must be EQ. The rest proof is similar to the Case of
j=1orj=2. FiguredIb).

Case 2 < j < k. Consider three spheres O, O; and Oj.1, where ¥ j,
Vi1 € T are observed syllogistic relations. They form an Euler diagram
for three syllogistic statements, and 1; must be EQ. So, three relations
among O1, O; and Oj.1 must be EQ. Consider j (< k) relations among j
spheres: Oy, ... Oj. The relation between O and O; must be EQ. With
the inductive assumption, all j relations must be EQ. Consider k — j + 2
(< k) relations among O1, Oj.1...Oi1. The relation between Oy and
Oj1 must be EQ. With the inductive assumption, all k — j + 2 relations
must be EQ. Figure[dIc). O

7.9. The theorem of deterministic neural syllogistic reasoning

Theorem 4. Let p1, ps, p3 be three syllogistic statements, where p1 can be either
r1(X1,X2) or r1 (X2, X1), p2 can be either ro(Xa, X3) or ro(X3, X2), and p3 can
be either r3(X1, X3) or r3(X3, X1), r1,72,73 € {all, some, no, some_not}. SphNN

can determine the satisfiability of p1, ps, ps in the first epoch, with at most one restart.

Proof 4. We map X; to O; (i = 1,2,3) and map p; to T;;(O0;,0;), where i,j =
1,2,3,i %

3 Tij = () if ri( X4, X;) or Tyj = 71 (r;) if ri( X, X;), and Ty €
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{D,P,P,-D, -P,-P}. SphNN first initialises three coincided spheres (line 1 in
Algorithm B)); if this configuration is a model that satisfies the three target relations,
done (line 2 in Algorithm [3). If not, SphNN fixes Oy, then updates Oy and O3, to
satisfy T12(O1,O02) and T31(03,01), respectively (line 3, 4 in the algorithm), then
SphNN performs COP%;f(OgK’)g, O1) (line 5 in the algorithm). If the global loss
reaches zero, done; otherwise, SphNN repeats the process by fixing Oz (line 6 - 9,
in the algorithm). COP$115(01|(93,(92) will reach zero, if the input is satisfiable
(Theorem 2| and Lemmalg). o

Theorem 5. (The principle of deterministic neural reasoning) Let p1, ..., py-1-- ¢
be a long-chained syllogistic reasoning with N — 1 premises, where p; can be ei-
ther ri(X;, Xiv1) or 7i(Xi41,X;) (1 <4 < N —1), q is fixed to r,(X1,XN), 7j €
{all, some,no, some_not} (1 < j < N). SphNN can determine its validity (or satisfia-
bility) in the first epoch, with maximum once restart, with the computational complexity

of O(N).

Proof 5. Without loss of generality, p1, ..., pn-1--q can be spatialised into N spatial
statements 1 (O01,02), ..., Yn-1(On-1,0n), ¥n(On,O1), where 1; = (r;) if
ri(Xi, Xj) or by =~ (ry) if ri(X;, X;), and ¢; € {D,P,P,-D, =P, -P}.

Any non-cyclic chain r1(X1, X2)...rn-1(Xn-1,Xn) is satisfiable (Theorem .
Consequently, SphNN can construct a satisfiable model with N — 1 steps (line 4-5 in
AlgorithmH). SphNN determines the satisfiability of relations among On_1, O, and
01, if not, SphNN will determine the relation between Oy and On_1 (line 11 -17).
With Theorem |} the complexity of this part is O(1). This way, SphNN reduces the
satisfiability with N terms to the case of N —1 terms, and starts the backward procedure
(line 22 in Algorithm @) whose worst complexity (backwards to the first three spheres
01, Os, O3) is the same as the forward procedure. Therefore, the worst complexity is
proportional to [(N —=1) + O(1)]+ [(N = 1) » O(1)], which is proportional to O(N).

O

Corollary 3. If SphNN can construct an Euler diagram in 2-dimensional space, it can

construct an Euler diagram in n-dimensional space (n > 2), and vice versa.
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Proof (corollary) 3. Trivial, as all proofs hold for dimension n > 2. |

For the question of how the standard theories of global rationality can be simplified
to render them more tractable, Herbert A. Simon proposed to use a simpler decision
criterion that he called satisficing and models with better predictive power. Compared
with traditional neural models, SphNN adopts a simple and strict criterion, namely,
SphNN shall reach the global loss of zero within one epoch for satisfiable long-chained
syllogistic statements. This endows SphNN with the ability to achieve the rigour of

syllogistic reasoning.

8. SphNN and human rational reasoning

The central task of a natural science is to make the wonderful common-
place: to show that complexity, correctly viewed, is only a mask for sim-

plicity; to find pattern hidden in apparent chaos.

— Herbert A. Simon [18|]

Geometrically, a sphere can be understood as a set of points in a universe, whose
distances to a fixed point (the centre of the sphere) is within a constant (the radius).
Sphere configurations may represent a variety of conceptual structures. If the universe
is a line, spheres turn out to be line segments and can represent temporal relations.
If the universe is a circle, spheres turn out to be arcs and can represent complement
concepts and evolve to spatial semantics for logical reasoning with negation, Bayesian
reasoning. Descartes’s product of spheres represents heterogeneous knowledge and
serves as spatial semantics for neuro-symbolic spatio-temporal reasoning, pure neuro-
symbolic unification, and event reasoning. All these lead to a neural model of System 2
that can examine, instruct, and govern hallucinative LLMs. Synergistic collaboration of
neural models of System 1 and System 2 can be represented by rotating spheres, which

shapes a way for humour understanding (the highest-level cognition), as illustrated in

Figure
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8.1. Logical reasoning with negation and disjunctions

If the universe is a circle, a sphere becomes an arc. Geometrically, we can represent
a set F' as an arc, with the centre 10) r and the radius 7,,, the complement set —F" as the
arc with the centre Oﬂ r and the radius 7, (OF and (1 r have the same length and
point at the opposite direction, the sum of r,, and 1. is half of the perimeter), as shown
in Figure #3](a-c).

The arc embedding (Descartes’s product of several 2-dimensional arcs) can repre-
sent logical reasoning with negations and disjunctions. We illustrate this by using a

first-order logic deduction with disjunction and negation, as follows.
Vo - F(x) - G(x) v H(x).
Vo F(zx) - -G(x).
Vo - F(x) - H(x).

Geometrically, the first premise describes the relation that each component of Descartes’s
product of F arcs is part of the union of corresponding components of G arcs and H
arcs, read as for any x, if x is a member of F, x is either a member of G or a member
of H, as shown in Figure @kd-e); the second premise describes the relation that each
component of Descartes’s product of F arcs is part of the corresponding component of
-G arcs, read as for any x, if x is a member of F, x is not a member of G, as shown in
Figure3|f). The conclusion describes the relation that each component of Descartes’s
product of F' arcs is part of the corresponding component of H arcs, read as for any x,
if © is a member of F', x is a member of H. In this way, SphNN realises logical reason-
ing with negation and disjunction as motions (rotation and resizing) of arcs targeting
an arc configuration. Arc embedding and the methodology of reasoning through model
construction may simulate “reasoning as the motion of mind” [9] and pave a new way
of cognitive modelling. For example, it can be used to simulate how clever monkeys

perform disjunctive syllogistic reasoning [83].

8.2. Bayesian reasoning and probability judgment

Learning of new concepts may fall into the paradigm of Bayesian induction [84]].

Like syllogistic reasoning having the Euler diagram as its spatial semantics, Bayesian
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Figure 43: Arc embedding can be used to decide the validity of logical reasoning with negation and disjunc-
tions. (a)-(c) illustrates the arc embedding of F'(x), G(x), and H(z); (d) illustrates the arc embedding
of G(x) v H(x); (e) Yz - F(x) - G(z) v H(z): the F(x) arc is part of the arc of G(z) v H(z); (f)
Va - F(x) > -G(z): the arc of F'(x) disconnects from the arc of G(x); As the F'(x) arc is part of the arc
of G(x) v H(z), it will be part of the H (z) arc. Thus, Va - F(z) — H(z).

rules can have a configuration of arcs as its spatial semantics as follows. Let arc A
with the centre vy and the offset angle ¢ 4 represent event A. The intersection of arc
A and arc D represents the part that event A co-occurs with event D, which consists of
two parts: (1) y1 = max{0, ¢4 + ¢p — arccos cos(ay, @)}, and (2) v = max{0, p4 +
¢p — (2m — arccoscos(av, a2))} (see Figure [#4). Let o, be a ray starting from the
centre O. The chance of o, to hit both arcs is %, written as P(A n D). We can

decompose the hit into two steps: «, hits arc A with the chance 2;%:‘, written as P(A),

then under this condition, hit arc D with the chance 2222, written as P(D|A). We

204
have P(An D) = 22 = 2;%% = P(A)P(D|A). In the same way, we have
P(D)P(A|D) = 22222 Put together, we have the Bayesian rule:
P(A|D)P(D

P(A)
This introduces a novel neural approach to solving statistical problems. We illustrate

this by using the flying bird problem in [83l]: One-quarter of all animals are birds.
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Figure 44: The blue arc represents Event A; the red arc represents Event D; the probability that “Event D
occurs if Event A occurs” is the length of the intersection of both arcs divided by the length of arc A. Both

red and blue arcs shall be part of the same circle.
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Figure 45: (a) Initializing two arcs, one representing the set of birds and the other representing the set of

animals that can fly; (b) A final configuration of the two arcs, after SphNN updates the locations and the

sizes of the arcs.
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Two-thirds of all birds can fly. Half of all flying animals are birds. Birds have feathers.
If X is an animal, what is the probability that it’s not a bird, and it cannot fly? We
represent the set of birds and the set of animals that can fly as two arcs: arc bird
with the centre og and the offset angle ¢ and arc flying with the centre oy and the
offset angle ¢y, as shown in Figure a). Animals except birds will be the arc with the
centre 7+, and the offset angle 7 — ¢;,. Animals that cannot fly will be the arc with the
centre 7 + oy and the offset angle m — ¢ . We have three relations as follows: (1) one-
quarter of all animals are birds, that is, 2¢; = g; (2) two-thirds of all birds can fly,
that is, %2@ =, where + is the sum of the angle(s) of the intersected sectors, and v =
max{0, ¢y +¢@ s —arccos cos(ap—ay)} + max{0, ¢p+¢ s —(2m—arccos cos(ap—ay)) };

and (3) half of all flying animals are birds, that is, %Qd) ¢ = . The arc for the set of an
Vs

7" us frm
4 7 6

animal that is not a bird and cannot fly will be 2w — 2¢p, — ¢ = 27 - 5 - %
shown in Figure 45|b).
We revisit Tversky and Kahneman’s Taxi-cab problem [86] to show how SphNN

may explain and simulate heuristic reasoning.

A cab was involved in a hit-and-run accident at night. Two cab companies,
the Green and the Blue, operate in the city. You are given the following

data:

1. 85% of the cabs in the city are Green and 15% are Blue.

2. A witness identified the cab as a Blue cab. The court tested his ability
to identify cabs under the appropriate visibility conditions. When
presented with a sample of cabs (half of which were Blue and half of
which were Green) the witness made correct identifications in 80%

of the cases and erred in 20% of the cases.

Question: What is the probability that the cab involved in the accident was

Blue rather than Green?

We represent blue cabs and green cabs as two arcs in a circle, as shown in Fig-
ure [46a). Probabilities of human judgements are represented by arcs of a concentric

circle, as shown in Figure d6b). That the witness made correct identifications in 80%
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of the cases and erred in 20% of the cases covers two cases - the cab is Blue, and the cab
is Green. So the probability that the cab involved in the accident was Blue shall count
in the case when the involved cab is Green and mistakenly identified as Blue. Tversky
and Kahneman’s experiments reported that people ignored this and gave the probability
80%, as shown in Figure @c). In this way, a judgement process can be simulated as a
process of creating and rotating arcs to reach a configuration and computing relations

among them.

8.3. Descartes’s product of spheres to embed heterogeneous knowledge

Descartes’s product of spheres may represent heterogeneous knowledge. In the
knowledge graph in Figure [#7)a), there are two different types: (1) geospatial rela-
tions, e.g., San Diego is in California; (2) category relations, e.g., Nevada is a state.
Geographically, Reno is inside Nevada, and San Diego is inside California. Categor-
ically, so, Reno and San Diego are inside the city sphere; Nevada and California are
inside the state sphere. Both the city sphere and the state sphere are inside the admin-
istrative sphere. Let each entity e can be represented by a Descartes product of two
spheres ((’)gl) , ng)). Spheres in the first position represent geospatial relations; for
example, 0(01 j is inside Ogs) 4> as California is part of the USA; spheres in the sec-
ond position represent category relations, for example, (9(02 ;2 is inside O

state.n.0l1> as
illustrated in Figure {7|(b, c).

8.4. Neuro-symbolic temporal reasoning

Automatic driving will come, but not in the way we have been led to be-

lieve.

— Gerd Gigerenzer[19]

If we project two closed spheres into the temporal line, they will become temporal
intervals. The neighbourhood transition map in Section ] will become a transition map
for temporal relations with two additional properties: (1) the temporal arrow will in-
troduce the order between two intervals; (2) temporal intervals introduce new relations
by the coincide relation of their endpoints. With the two properties, the five qualita-

tive spatial relations between spheres in Figure ?? turn out to be 13 relations between
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Figure 48: The five qualitative spatial relations turn into 13 temporal interval relations in [60].

temporal intervals [60], as illustrated in Figure 4g]. This way, SphNN can reason with
spatio-temporal relations by using a transition map structured as a Descartes product
of a spatial transition map and a temporal transition map, as illustrated in Figure 2| B).
This spatio-temporal reasoning is neuro-symbolic and will bring advantages of neu-
ral computing into the symbolic qualitative spatio-temporal reasoningﬂ and solve tasks
in real applications that must be addressed from both perspectives [87], for example,

complex traffic scenarios of self-driving carsﬂ [188]].

8.5. Event reasoning

Events are four-dimensional entities in three-dimensional physical space and one-
dimensional temporal space and are closely tied with causalities and goals [62]. Spatio-
temporal reasoning is the foundation of the reasoning of events. Temporally, an event

can be partitioned into three parts: a start, a middle, and an end. Spatially, it can

SThe literature of symbolic qualitative spatio-temporal has some limitations: there has been active work
in this area [qualitative spatial reasoning] for more than 20 years, and more than 1,000 research papers
have been published, but very little connects to any common-sense reasoning problem that might ever arise
571, in part because symbolic rules have not completely governed the connection relation — The two axioms
in the main-stream literature of qualitative spatial reasoning also allows distance comparison relation [39].

SphNN suggests that it would be easier to solve the problems in the vector space.
815 self-driving car smarter than a seven-month-old? The Economist, September 4, 2021.
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be partitioned into objects and spatial relations among objects. Driven by goals or
forced by certain causality, agents within an event may perform actions that transform
the event’s start to the end through the middle. As spatiotemporal relations among
events are the backbone of an event structure and closely related to causal relations
[O], SphNN can be developed to reason relations among components of events, as

illustrated in Figure @2|(E), and further develop causal reasoning, e.g., [89].

8.6. Towards a neural model of System 2

The simplest scheme of evolution depends on two processes: a generator
and a test. The generator produces variety, new forms that have not existed
previously, whereas the test culls out the generated forms so that only those

that are well fitted to the environment will survive.

— Herbert A. Simon [18|]

LLMs hallucinate and can neither stop nor notice it by itself. Their rationality
can be improved by dividing a reasoning task into several subtasks, such as Chain-of-
Thought [23} 1] (Multiple CoT [90]]), Tree-of-Thought, and Graph-of-Thought [91].
Though this divide-and-conquer strategy improves performances, each sub-thought
and atomic reasoning are still carried out within the black box paradigm of traditional
deep learning [23} 192, [93]], which lack determinacy and responsibility. For example,
each sub-thought in the chain of reasoning utilises supervised reward model processes
[92, 93]. Challenging research in Al is to move from simulating associative thinking
(System 1) to simulating higher-level cognition (rational reasoning of System 2) [5].
Theorem [5] guarantees SphNN to be a neural simulation of System 2 for deterministic
syllogistic reasoning and can examine the reasoning results of LLMs in two different
ways: (1) if LLMs can prompt the steps of its reasoning process, SphNN checks the
existence of the final sphere configuration by following the reasoning steps; (2) LLMs
provide internal vector embeddings of the reasoning results. SphNN checks the ex-
istence of the final sphere configuration by using these vectors as the orientations of
sphere centres. The non-existence of the final configuration refutes the reasoning re-

sult of LLMs. The interaction between SphNN and ChatGPT mirrors a micro-world of
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the neural dual-process model of the mind. When SphNN evolves to various kinds of
rational reasoning, it will serve as the deterministic neural reasoners that examine and

instruct the outputs of LLMs, as illustrated in Figure A2[F).

8.7. Neuro-symbolic unification, supporting both heuristic and deliberative reasoning
Our ambition, anyhow, is to offer something clearly better. More rele-
vant to us than the varieties of dual-process theories is the way the whole
approach has shaken and in some sense shattered the psychology of rea-
soning.

— Mercier and Sperber [37]

In the main literature of neural-symbolic Al [94], the neural module and the sym-
bolic module are two separate modules with incompatible semantics. They are loosely
bridged in a probabilitistic way that the symbolic module provides semantic loss func-
tions to optimise the neural module [95} 96} 97, (98] In contrast, SphNN demonstrates
the possibility of creating continuous set-theoretic semantics that explicitly cohabit
with the latent vector semantics of the neural module. Thus, SphNN can genrate to
pure neuro-symbolic unification [94], a new artifact [18], described as follows: Firstly,
it initialises the orientations of sphere centres by using latent feature vectors provided
by LLMs. Then, it tries to optimise the lengths of the centre vectors and radii of spheres
to reach the target sphere configuration with minimal rotations of sphere centres. If no
satisfiable configuration is found, it refutes the output of LLMs; if there is a satisfiable
configuration, it confirms the outputs of LLMs, meanwhile directly updating the vec-
tor outputs of LLMs and, consequently, forcing LLMs to gear their parameters. This
way, sphere semantics can be viewed as being promoted and specified from the latent
vector semantics. The existence of such pure neuro-symbolic spheres has been created
and explored by utilising geometric construction [99, [100]. They loyally inherit the
preciseness of symbolic structure and heuristics of vector embedding, so that symbolic
structures can govern out-of-distribution data. This frees neural computing from the
stable world assumption and can solve hard Al problems with performances beyond

the glass ceiling of traditional deep learning neural networks [101} [102], as illustrated

in Figure 2| D).
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8.8. Towards humour understanding, the highest level of cognition

Automatic inference in perception and deliberate inference in reasoning
are at the two ends of a continuum. Between them, there is a great variety

of inferential processes doing all kinds of jobs.

— Mercier and Sperber [37]

Humour is usually regarded as the highest level of cognition that interweaves both
heuristic and rational reasoning — if an Al system can simulate humour, it can simu-
late any cognitive activity [14]. The understanding of humour can be described by the
Script-Based Semantic Theory Of Humour (SSTH) [103]] and its improved versions
[[LO4) [1051 1106, [107], as follows: A humour encodes two scripts; the first schematizes a
normal event appearing with high frequency in everyday life, and then a punch triggers
the second event. The new event schematizes an abnormal story (out-of-distribution)
in which an object in the first event has an opposite feature that surprises the reader. A
computation model for humour understanding shall be capable of acquiring both nor-
mal and abnormal events from the same text. Though this may frustrate both classic
Al and traditional neural networks, we propose that the two inconsistent scripts can
be synergistically unified by rotating spheres [108| [109]. We show that humour under-
standing also has the root in spatial reasoning by using the classic joke of the SSTH

theory [103]] as follows.
- “Is the doctor at home?” the patient asked in his bronchial whisper.
- “No”, the doctor’s young and pretty wife whispered in reply, “Come right in.”

We transform the Euler diagram of San Diego and Reno scenario into a diagram of
a street scene: a doctor and his wife are at home, and a patient is in a car, as shown in
Figure [9(a). This is the start of a patient-visit-doctor event. The expected end of the
event is the patient at home with the doctor, as shown in Figure @kb). However, the
wife tells the patient, “The doctor is not at home.” The expected end part of this event
is that the patient gets in his car and leaves, as shown in Figure #9]c). The pretty wife
continues, “Come right in.” This triggers the start of an affair event between the wife

and the patient, as shown in Figure 9(d), in which the target of the patient switches
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from “no sex” to “sex”, the doctor loses the superiority and becomes the loser to the
patient. We represent the features of an object as Descartes’s product of 2-dimensional
arcs, as shown in Figure #9|(e), and assemble them into an n-dimensional sphere. The
centre vector of an arc can be represented by a rotating axis of the n-dimensional
sphere, and the switching of features will be physically simulated by the rotation of an
axi as shown in Figure f). Let H be the signature of a humour script, then H will
be structured as a pair of event scripts (S,S). An event script has temporal parts (the
start, mid, and end of an event); each can be represented as a configuration sphere E.

Thus, H has a form of ((E,E,E), (E,E,E)).

9. Conclusions

The intuitive mind is a sacred gift and the rational mind is a faithful ser-

vant.

—Albert Einstein

We adopt the minimalist approach to qualitatively extending traditional neural net-
works by generalising the computational building block from vectors to spheres, and
develop SphNN for deterministic syllogistic reasoning. SphNN has the genealogy of
the diameter-limited perceptron, in the sense that the input of SphNN is the input do-
main of a diameter-limited perceptron, as illustrated in Figure [SO{E). SphNN can also
be understood as a deviation of the set-diagram network architecture, in the sense the
SphNN utilises Euler diagram configuration in the vector space, Figure [50(C), while
Rosenblatt’s set-diagram network used Venn diagram, as illustrated in Figure [50(F).
Traditional deep neural networks learn latent feature vectors from corpora, and SphNN
can host these vectors in sphere centres. In this way, traditional neural networks can be
a part of Sphere Neural Networks, which optimise orientations of sphere centres from
data, Figure [50{G). Domain-general reasoning is rooted in spatial reasoning, which

can be realised by constructing iconic mental models, Figure [50(B). The construction

7A complete demo with animation is available for public access atlhttps://www.ml2r.de/joke/

#title, Rotating spheres are illustrated athttps://www.ml2r.de/joke/#science.
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process is carried out by repeatedly transforming the current sphere configuration to its
neighbour till the target is achieved, Figure [S0(H). We develop SphNN, Figure [50(A),
the first neural model that achieves the determinacy of long-chained syllogistic rea-
soning, the microcosm of human rationality and can evolve into simulate humour rea-
soning, the highest level of cognition. Syllogism and humour serve as the ends of
the continuum of high-level cognition [111} [112]. Sphere Neural Networks promise
to simulate a variety of rational reasoning in between, pave neural ways to implement
Herbert A. Simon’s scissors [[15} [16] 17, [18]] for heuristic reasoning under uncertainty
and bounded resources (shown in Figure[51]) and create a neural path for psychological
Al that process rules faster and without errors [[19| p.26].

The world of Al is filled with deep-learning skyscrapers, among which Foundation
Models and Large Language Models (FM/LLMs) are the highest. They have demon-
strated remarkable success in simulating various human intelligence, and when their
parameters reach a large scale, e.g., 100 billion, the reasoning phenomenon can be ob-
served [1,[113]. This seems to suggest that the larger the number of parameters is, the
more powerful reasoning LLMs will have. But, this may be a mirage [114]. Enhanc-
ing the decision-making capability of foundation models faces significant challenges,
and certain components may be missing in current foundation models and decision-
making paradigms [115]. Deterministic syllogistic reasoning, the microcosm of hu-
man rationality that dominated logical research for over 2000 years, will probably be
an unreachable horizon for deep learning skyscrapers for another thousand years, let
alone other rational reasoning. Alternatively, if we use spheres as the computational
building block and adopt the methodology of reasoning by model construction and
inspection, a very small-scaled neural network (SphNN) already achieves human-like
determinate logical deduction without training data, in which spheres play the role of
the hub to connect with (1) traditional neural computing, (2) set-theoretic knowledge
representation, (3) mental model theories, and (4) qualitative spatial reasoning. Tradi-
tional neural networks can be understood as special Sphere Neural-Networks where all
radii are fixed to zero. The non-zero radii turn out to be the missing stakes that cause
deep-learning skyscrapers to be trapped in the swamp of hallucination and prevent them

from marching to the realm of rationality.
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10. Experiments

10.1. Experiment I

This experiment examines whether SphNN can determine every valid classic syl-
logistic reasoning among 256 possibilities using the method of reasoning by model

construction.

10.1.1. Method

To determine the validity of a classic syllogistic deduction

r1(S, M).

ro(M, P).

r3(S, P).
SphNN will try to refute it by constructing three spheres Og, Oy, and Op, satisfying
W(r1)(Os,0n), ¥(r2)(Onr, Op), and —)(r3)(Og,Op). If it fails, SphNN will
conclude the original deduction is valid. The determinacy of validity requires SphNN

to construct a sphere model for each satisfiable syllogistic reasoning correctly.

10.1.2. Setting of experiments

We set the learning rate to 0.05, the maximum number of epochs to 1, and set
different dimensions of spheres (dim) = 2, 3, 15, 30, 100, 200, 2000, 10000. All spheres
are initialised as being coincided, the radius being one and the length of the centre
point being 10. All experiments were conducted on MacBook Pro Apple M1 Max
(10C CPU/24C GPU), 32 GB memory.

10.1.3. Experiment results

Experiment results show that SphNN accurately constructs Euler diagrams for each
satisfiable syllogistic reasoning in the first epoch. For any syllogistic structure whose
global loss is greater than zero, SphNN concludes the premises and the negation of
the conclusion is valid. This totals exactly 256 — 232 = 24 valid syllogistic reasoning
structures. This shows that the transition map of neighbourhood relations successfully
guides SphNN to construct target sphere configurations and that three control processes

are effective and efficient.
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10.1.4. Discussions
If spheres were randomly initialised, SphNN can successfully construct Euler dia-

grams for all satisfiable syllogistic statements, except one as follows.

all M are S.
all P are M.
all S are P.

The only model of this syllogism is all three spheres being coincided. Our strict cri-
terion (the global loss of zero) requires SphNN to optimise the three spheres to have
the same size and to be located at the same place, which gradual descent operations
are hard to construct. Consequently, SphNN mistakenly concluded the negation of the

conclusion, namely, “some .S are not P”, is valid.

10.2. Experiment 2

This experiment evaluates the performance of SphNN for long-chained syllogistic

reasoning, compared with ChatGPT (“gpt-3.5-turbo”).

10.2.1. Testing datasets
For syllogistic reasoning with N terms, we create 24 multiple choice tasks; each
task has one valid and four invalid syllogistic reasoning, totalling 24 x 5 = 120 syllo-

gistic reasoning tasks. We range N from 3 to 12, totalling 1200 tasks.

10.2.2. Testing with ChatGPT and SphNN

We ask ChatGPT to decide the validity of syllogistic reasoning.

For example, “Is this reasoning always true? some M1 are not S, some M2 are not
M1, no M3 are M2, all P are M3, therefore, no S are P.” A typical answer of ChatGPT

starts with its decision, followed by an explanation.

The reasoning is valid, and the conclusion is logically correct. To see why,
we can draw a diagram (shown in Figure[52fa)). The diagram shows that
there is no overlap between the S circle and the P circle and that all S are
outside the P circle. This means that the statement "no S are P” is true

based on the given premises.
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We feed the same syllogistic reasoning to SphNN, and let it decide the validity. SphNN
first negates the conclusion into some S are P, then tries to construct an Euler diagram.
Finally, SphNN successfully constructs a counter-model to refute the validity of the

input syllogistic reasoning, shown in Figure 52{b).

4.0
| M3 | 3.5
| [—— | 5
| P S ML
________ 3.0 1 S M2
/\
I 2.5 4
Il
| om2 2.0 -
[-=mmmm- |
| ~M1 | 1.5
/\
Il 1.0
I
———————— 0.5
I Ml I T T T T T
- | 30 35 40 45 50 55 6.0
| ~s |
________ (b) SphNN refutes the validity by finding a
counter Euler diagram. The vcircle of P, centred at
(a) ChatGPT argues for (4.4659342765808105, 1.0935691595077515)  with the ra-
the validity by showing a dius 0.5761237553232794, is part the circle of M3 that is centred
diagram. at (4.465934753417969, 1.09356689453125) with the radius

0.5761421616706572.

Figure 52: Both ChatGPT and SphNN use diagrams to check the validity of the syllogistic reasoning: some
M1 are not S, some M2 are not M1, no M3 are M2, all P are M3, .. no S are P, which is invalid.

10.2.3. Testing results

If we strictly evaluate the correctness of a multiple choice task as correctly selecting
the one valid syllogism (without selecting any invalid ones), the best performance of
ChatGPT is 20.1% (5 among 24 tasks) when N = 3 (classic syllogistic reasoning).
If we treat one multiple choice task as five yes-no decision tasks (to decide whether
syllogistic reasoning is valid), the best performance of ChatGPT is 75.0% (90 among
120 tasks when N = 3), and the performances drop to 55.0% (66 among 120 tasks) as
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the length of chains increases, as listed in Table@

In contrast, without a time limit, the performance of SphNN is perfect. SphNN
does reasoning by constructing models, so generally, it needs more time for longer
chained reasoning. This is also well revealed in the experiments. Table[3|listed the per-
formance with time limits in making yes-no decisions. SphNN can reach the perfor-
mance of ChatGPT for short-chained reasoning (/N = 3, 4) within 15 seconds, for rea-
soning with NV = 5, 6 within 20 seconds. Within 45 seconds, SphNN outperforms Chat-
GPT in all reasoning task groups. After around 20 minutes (1200 seconds), SphNN
can finish each reasoning task with 100% accuracy. The random mechanism to break
the coincide relations causes the construction time not proportional to the length of
the reasoning task. For the task of multiple choices, SphNN continues to outperform
ChatGPT within 45 seconds. One speciality of multiple choice is that there is one and
only one valid reasoning among five candidate choices. This allows SphNN to select
the right choice if it determines four among the five and reaches 100% accuracy within
a time limit of 375 seconds for each candidate choice. Table [ listed the performance

with time limits for multiple-choice tasks.

10.2.4. Analysis

The number of possible syllogistic structures increases exponentially with the num-
ber of terms — there are 23"~ different syllogistic reasoning structures for N terms.
It is not possible for supervised deep learning to reach the rigour of syllogistic rea-
soning by increasing the amount of training data. A promising alternative approach
is to construct models, as advocated by main-stream cognitive psychologists, e.g.,
[12, 113} (31} [116]], which ChatGPT has often used in its answers. The limitation seems
to be that ChatGPT does not examine whether a model is correctly constructed. De-

spite this, the model-construction-styled human-like answering makes ChatGPT look

Table 2: Performances of ChatGPT.

Syllogism with N terms 3 /4 |5|6 |7 |8|9 1011|122 | total

Num. of correct multiple choices | 5 5 2 |3 5 312 1 0 1 24

Num. of correct yes-no decision | 90 | 85 | 75 | 74 | 83 | 76 | 71 | 66 | 66 | 67 | 120
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Table 3: 1200 tasks are grouped by the number of terms /N in a reasoning task. Each group has 120 reasoning

tasks. The time limit affects the performance of SphNN.

time limit N=3| 4 5 6 7 8 9 10 | 11 | 12
15 (seconds) 87 80 60 61 48 30 27 21 12 7

20 91 88 | 78 | 78 | 64 | 49 | 46 | 39 | 25 | 20
45 109 99 | 89 | 91 | & | 87 | 84 | 76 | 88 | 77
435 120 | 120 | 118 | 119 | 118 | 114 | 109 | 108 | 101 | 101
555 - - 119 | 120 | 119 | 119 | 115 | 115 | 108 | 107
1080 - - 120 | - 119 | 120 | 120 | 120 | 120 | 120
1200 - - - - 120 | - - - - -

professional and easily accepted.

10.3. Experiment 3
This experiment evaluates whether SphNN can simulate the function of System 2
to provide feedback to ChatGPT, through prompt engineering to improve the perfor-

mance.

10.3.1. The design of the experiment

Through a well-designed prompt, we let ChatGPT decide the satisfiability of 256
types of classic syllogistic reasoning. This prompt describes the task, content, and
output format in detail, so that SphNN can easily parse the output to construct a model.
The result of SphNN will be passed to ChatGPT by appending the result to the end of
the prompt. For example, to check the satisfiability of 'no MO are S’, ’all P are MO’,

'some S are not P’, we feed ChatGPT the original prompt, as follows.

Table 4: The performance of SphNN in doing multiple choice tasks.

time limit N=3|4 (5|6 |7 /|8|9 101112
15 (seconds) 17 10| 3 2 0 0 01]0 0
20 19 69 10,700 ]0|0/|O0
45 23 24 | 18 (19 |17 |16 | 13 | 11 | 17 | 10
375 24 - | 24|24 |24 |24 |24 |24|24 |24
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f"""We represent ’'’’all X are Y’’’ as circle X being inside
circle Y, '''no X are Y’’’ as circle X disconnecting from
circle Y. ''’some X are Y’’’ as one of the three possible
configurations: (1) circle X is inside circle Y; (2) circle

X partially overlaps with circle Y; (3) circle Y is inside
circle X. ''’"some X are not Y’’’ as one of the three possible
configurations: (1) circle X disconnects from circle Y;

(2) circle X properly contains circle Y; (3) circle X partially

overlaps with circle Y. If ’’’7all X are Y'’’, then ’’’some X are Y’'’’.

Can the statements ’'’’'no MO S’, ’"all P MO’, ’'some S are not P’’’ be

represented by relations among three circles?

If they cannot be represented by relations among three circles,
only reply ’’’cannot’’’, otherwise, reply ’'’'’'yes’’’, and give
the relations in the list of triple forms:

(circle X, inside, circle Y).

rrr rrs rrr

Do not reply both cannot’’’ and yes

ChatGPT replied as follows.

yes (circle s, disconnects from, circle mO), (circle p, inside,

circle mO), (circle s, partially overlaps with, circle p)

SphNN checks the correctness by constructing a modeﬂ for this output, and failed.
This information is fed back to ChatGPT by adding the following line to the end of the

above prompt.

It is not correct that '’’’ (circle s, disconnects from,

8For this experiment, we extended the neuro-symbolic transition map to have the partial overlapping

relation as a target relation.
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circle mO), (circle p, inside, circle m0O), (circle s, partially

overlaps with, circle p)’'’’

With this feedback from SphNN, ChatGPT repeats the task and replied, cannot.
SphNN then checks the satisfiability of the three original syllogistic statements ‘1o
MO are S°, ‘all P are MO’, ‘some S are not P’, and concludes that they are satisfiable,

so, append the following line to the end of the last prompt.
It is not correct that ’’’cannot’’’.
With continued feedback from SphNN, ChatGPT replied as follows.

Yes, the statements can be represented by relations among
three circles. The relations in the triple form are:
(circle mO, inside, circle p)

(circle s, disconnects from, circle p)

(circle s, disconnects from, circle mO0)

This time, SphNN successfully constructed a model for the three statements from Chat-
GPT. After two rounds of communication with SphNN, ChatGPT correctly answered

the question.

10.3.2. Testing results

We set the maximum number of communications between ChatGPT and SphNN
to 10. Without the feedback from SphNN, ChatGPT made 207 (among 256) cor-
rect answers (80.86%); with SphNN’s feedback, ChatGPT made 240 correct answers
(93.75%). ChatGPT’s first-round answer for every 24 unsatisfiable cases was incor-
rect (0%). With the first feedback from SphNN, ChatGPT successfully identified 22
unsatisfiable cases (91.67%). ChatGPT failed to identify the other two unsatisfiable
cases, even with ten times feedback from SphNN. For 232 satisfiable cases, ChatGPT
made 207 correct answers in the first round (89.24%), and after ten times’ feedback
from SphNN, ChatGPT made 11 more correct answers (reaching 93.97% in accuracy),
details are listed in Table
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Table 5: The performance of ChatGPT supported by SphNN.

232 satisfiable cases 24 unsatisfiable cases

num. of SphNN’s feedback | 0 1123|456 |7|910]010{0] 1 |2-10 | 0-10

num. of correct answers 20710 (5|31 ]1]0]1 0 218 | 0] 22 0 22

10.3.3. Conclusion

SphNN not only successfully improves the performance of ChatGPT in deciding
the satisfiability of syllogistic reasoning with three terms but also confirms the outputs
of ChatGPT - those approved by SphNN are no more hallucinations. Our experiments
show that ChatGPT is prone to answer optimistically — for ChatGPT there are no un-
satisfiable cases. Our experiments also show the first one or two rounds of feedback are
especially effective and that for some tasks (16 tasks among 256), SphNN failed to in-
fluence ChatGPT through prompt engineering. This suggests that in addition to prompt
engineering, there should be other communication channels between LLMs and neural

models of System 2.

10.4. Experiment 4

This experiment examines whether (how well) pre-trained vector embeddings can
approximate orientations of the centres of spheres to construct sphere configurations.
Positive experiment results will suggest three things: (1) a novel representation for
neuro-symbolic unification whose centre orientations are pre-trained vectors and whose
boundary relations encode symbolic relations; (2) a faster method for model construc-
tion by restricting centre orientations of spheres the same as or close to pre-trained
vectors; (3) a new method of tuning pre-trained vectors by aligning them to centre
orientations of a constructed model. This may lead to another effective way to commu-

nicate between LLMs and computational models of System 2.

10.4.1. Testing dataset
We group 24 valid syllogism types into 14 groups, as “no X are Y’ has the same

meaning as “no Y are X’ and “some X are Y’ has the same meaning as “some Y are X'.
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We find 500 interpretations for each group using the hypernym relations in WordNet-

3.0 [[117], totalling 7000 syllogism reasoning tasks. For example,

all clarinetist.n.01 are musician.n.0l.

all musician.n.0l are performer.n.0Ol.

all clarinetist.n.0l are performer.n.0Ol.

is an interpretation of the valid syllogistic reasoning

all S are M.

all M are P.

all S are P.
From the 7000 syllogistic reasoning tasks, we select those whose word stems, e.g.,
clarinetist, musician, performer, have different vector embeddings in 50-D GLOVE,
in 1024-D BER, and in OpenAl text-embedding ada-002, totalling 2537 tasks. Next,
for each task, we enumerate the other three possible conclusions. The other three

conclusions in the above example are as follows.

i some clarinetist.n.01 are not performer.n.0l
ii no clarinetist.n.0l are performer.n.0l

iii some clarinetist.n.0l are performer.n.01

This totals 2537 x 4 = 10148 syllogistic reasoning tasks, among which, 6479 tasks are

satisfiable, and 145 tasks are interpretations of the syllogistic structure

all S are M.
all M are P.
all P are S.

or

all M are P.
all S are M.
all P are S.
As observed in Experiment[I0.T} SphNN cannot construct correct models for these 145

tasks.
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Figure 53: If Oy, and the orientation of the centre of O x are fixed, O x cannot be inside Oy .

Table 6: The orientation of pre-trained vectors very well approximates the orientation of spheres

using pre-trained vectors as the orientations of centres no restrictions

GLOVE 50-D | BERT 1024-D | OpenAl text-embedding ada-002 | all spheres are initialised as being coincided

6479/6624 6479/6624 6479/6624 6624/6624

97.81% 97.81% 97.81% 100.00%

10.4.2. The design of the experiment

We create two experiment settings: (1) fix the orientation of a sphere centre to
the pre-trained vector; (2) no orientation restriction and all spheres are initialised as
being coincided. When the orientations of two spheres are fixed, we cannot use the
constraint optimisation algorithm (Algorithm [2)), as it will cause one sphere to rotate
around another sphere and change its centre orientation. We also notice that not each
relation can be achieved by fixing one sphere. For example, if we fix Oy and the
orientation of the centre of Ox, Ox cannot be optimised to be inside Oy, as illustrated
in Figure For this reason, the single relation optimisation may not be realised (in
Algorithm[3)). To solve this problem, we allow iterations and set the maximum iteration
number to 9. This way, O x being inside Oy will be realised in the next iteration, where

Ox is fixed, and Oy enlarges its radius to contain Ox.

10.4.3. Experiment results and analysis

Without restriction, SphNN successfully constructed models for every satisfiable
syllogistic reasoning (6624 tasks). When orientations of sphere centres are fixed to
pre-trained vectors, SphNN successfully constructed models for all 6479 tasks, with

145 unsuccessful cases, as expected. Results are listed in shown in Table@

101



11. Data and Code availability

Datasets and codes will be published for open access after the formal publication
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Appendix A. 24 valid types of classic syllogistic reasoning

The four moods of syllogistic reasoning are as follows: (1) universal affirmative

[A]: all X are Y'; (2) particular affirmative [1]: some X are Y; (3) universal negative

[E]: no X are Y; (4) particular negative [O]: some X are not Y. Each valid syllogism

is given a name whose vowels indicate types of moods, e.g., ‘CELARENT’ indicates

types of moods are ‘E’, ‘A’, ‘E’, respectively.

Table A.7: List of all valid syllogisms, each is mapped to a qualitative spatial statement.

Num Name Premise Conclusion Qualitative spatial relations statement
1 BARBARA all s are m, all m are p all s are p P(0O;,0,) AP(0,,0,) - P(O,,0,)
2 BARBARI all s are m, all m are p some s are p P(O;,0m,) AP(On,0,) - -D(0s,0,)
3 CELARENT nomisp,all sare m no sisp DO, 0,) AP(Os,0,,) = D(0,,0,)
4  CESARE no p is m, all s are m no sisp D(0y,01) AP(0s,0,,) - D(O,,0p)
5 CALEMES all pare m,nomis s no sisp P(O,, 0,,) AD(O, 05) = D(0,,0,)
6 CAMESTRES all p are m, no s ism no sisp P(0p,0m) AD(0s,0,,) - D(O,,0p)
7  DARII all m are p, some s are m some s are p P(On,0p) A -D(0;,0,,) - -D(0s,0,)
8  DATISI all m are p, some m are s some s are p P(Onm,0p) A-D(Op,,0;) = -D(0,,0,)
9 DARAPTI all m are s, all m are p some s are p P(0,,,0;) AP(O,,,0,) - -D(0Os,0,)
10 DISAMIS some m are p, all m are s some s are p -D(Op,,0,) AP(Orp, Os) = -D(0O4, 0p)
11 DIMATIS some p are m, all m are s some s are p -D(0,,0p,) AP(O,,,05) - -D(0,,0,,)
12 BAROCO all pis m, some s arenotm  some sarenotp P(O,,0y,) A -P(Os,0,,) - -P(0s,0,)
13 CESARO no pis m, all s are m some sarenotp  D(O,,0p,) AP(Og, Oy,) - -P(0s,0,)
14 CAMESTROS all s are m, no m is p some sarenotp P(O;,O0p) AD(Op, Op) - -P(0s,0,)
15 CELARONT no sism,all pare m some sarenotp  D(Os, O0y,) AP(Op, Oy,) = -P(O0s,0))
16 CALEMOS all pare m,nomis s some sarenotp P(O0p, O0n) AD(Op,, O5) - -P(0s,0,)
17 BOCARDO some m are not p, all m are s some s arenotp -P(O,,,0p) AP(O0,,,0;) - -P(Os,0,)
18 BAMALIP all m are s, all p are m some s are p P(On,05) AP(Op,0p) » -D(0s,0,)
19 FERIO some s are m, no m is p some s arenot p -D(O,,O0,,) AD(O,,, 0,) - -P(O0s,0,)

20 FESTINO some s are m, no p is m some s arenotp -D(O;, Op,) AD(O,p, 0) » -P(Os,0,)
21 FERISON some m are s, N0 m is p some s arenot p -D(O,,, O5) AD(O,,, 0,) - -P(O0s,0))
22 FRESISON some m are s, no p is m some s arenotp —~D(Opn, Os) AD(Op, O) » -P(Os,0,)
23  FELAPTON  all mare s,nomisp some sarenotp  P(O,,,05) AD(O,,,0,) - -P(O0s,0,)
24 FESAPO all m are s, no pis m some sarenotp P(Op,0s) AD(Op, 0) » -P(Os,0,)
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Appendix B. The neuro-symbolic map for neighbourhood transition

Here, we list the complete structure of M £ (T, fiop,Z, S, fint, D).
T is the set of target relations. 7 = {D,-D,P,-P,P,-P}.
fisp is the function of farget-oriented spatial partitions. Given a target T € T,

fisp(T) returns the set of qualitative spatial relations, as follows.

fisp(=D) = {-D, D}

fisp(=P) = {-P, P}

fesp(-P) ={-P, P}

fisp(P) = {P,D,PO,,PO,, PP}
fisp(D) 2 {D,EQ,PO;,PO,, PP, PP}
fisp(P) = {P,D,PO3, POy, PP}

T is the set of inspection functions. Its element takes the form of Z® (01, 0,). If

R(Ol, 02), IR(O)(, Ov) =0, otherwise ZR(O)(, Ov) > 0.

TP (0x,0v) = max{0, ~disxy +rw +7v}

TP (0x,0v) = max{0,disx v —rw — v}

IP(C’)X, Ov) £max{0,disx v +rx —Tv}

TP (0, Ov) £max{0,rv —disx,v —rx}

Iﬁ((’)x, Ov) 2max{0,disx v +ryv —rx}

Ij(ox, Oy) 2max{0,rx —disx v —ryv}

IPO(OX, Ov) 2 max{0,|rx —rv|-disx v + €} + max{0,disx,v —ry —rx +€}
Ipol((’)x,ov) IPO(OX,(’)V) +max{0,7ry - disx,v +€}

IPO2((9X, Oy) = IPO((’)X, Ov) +max{0,disx,v - v}

IPOS((’)X, Oy) = IPO((’)X7 Oy) + max{0,ry —rx + €}
( )

IPO4(O)(,O\/) IPO Ox,OV +max{0,rx—rv}
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Table B.8: Possible operations of the A functions in Tab]e|z| Oy is fixed.

AZ(Ox,0y) | operations A%:PO dis*, r¥ AEOS:PQ; i
Agol dis', Agolzpoz dis' Ag}?:Po B
ABo, PO, dis' AR .po dis' A§o4 dis, rﬁ(
ABppo dis' AE% dis*, r¥ Agzpo dis*, rl
ARqro dis' ARpo dis' | Apupo dis'
A%:Po dis’, Tﬁ( AE,P dis', r; A%ﬁ dis’, Té(
A]“DD dis', rg( A%:Po dis', 7’}( Af;g:Po dist, Tﬁ(

IEQ(O)(,O\/) 2 H’I“X —Tv‘l +dZ'SX’V
IPP(O)(, Ov) e max{&disxy +rx —Try + 6}

Iﬁ(ox, Ov) 2max{0,disx v +ry —rx +€}

S is the set of all qualitative spatial relations in M. & = U fi5,(T), T € T.

Given a target relation T € 7, SphNN inspects the current relation R € f;,,(T),
and looks up the table of neighbourhood transitions to get the transformation function
fint (T, R), as listed in Table Possible operation sets of each transformation function
are listed in Table[B.8]

A is the set of neighbourhood transition functions. Each transforms the current

relation to the neighbourhood on the route to the target relation.

Agol(OX,OV) £ max{0,rx +ry —disx v}
ARo,:p0, (Ox,0v) = max{0,ry - disx v}
ABqro(0x,0v) = AE3(Ox,0v)
ABppo(0Ox,0v) £ App(Ox,0v)

ADS 6 (0x,0v) £ AR2(Ox, Oy)
AEQ(Ox,0y)20x +0
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A%((’)x,(’)v) £ max{0,rx —ry —disx v}
AES(OX,OV) £ max{0,ry —rx —disx v}
ABpo(Ox,0v) = AR (Ox, Ov)

ABo, (Ox,0v) 2 max{0,disx,y +rv - rx}
Agogzpo4(oxv Oy) = AES;(OX, Ov)
Alppo(Ox,Ov) = ARR(Ox, Oy)
ARC(Ox,0v) £ max{0,disx,y - v —rx}
Agg;‘(@;o Oy) 2 max{0,ry —-rx}
Appo(Ox,0v) = AR°(Ox,0y)
Abo,po,(0x,0v) £ AL (Ox,Ov)
Apo:(0x,0v) £ max{0, |Ox - Ov| - rv}

ARo, (0x,0v) £ max{0, |Ox - Oy | +rx —rv}
AP 56(0x,0v) = ARS(0x, 0v)
ABD(OX,OV) £ max{0, HOX - Oy | -rv —rx +e}
AR (Ox,0v) £ max{0,ry - [Ox - Oy | —rx +e€}

A%ﬁ(OX,Ov) 2 max{0,rx — ||OX —Ovﬂ -1y +e}
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