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Abstract

The success of Large Language Models (LLMs), e.g., ChatGPT, is witnessed by their

planetary popularity, their capability of human-like question-answering, and also by

their steadily improved reasoning performance. However, it remains unclear whether

LLMs reason [1, 2, 3, 4]. It is an open problem how traditional neural networks can

be qualitatively extended to go beyond the statistic paradigm and achieve high-level

cognition [5]. Here, we present a minimalist qualitative extension by generalising

computational building blocks from vectors to spheres. Sphere boundaries introduce

into neural computing contact and non-contact relations, which are primitive relations

of mental spatial models [6, 7] for both spatial and non-spatial reasoning [8, 9]. We

propose Sphere Neural Networks (SphNNs) for human-like reasoning through model

construction and inspection [10, 11, 12], and develop SphNN for syllogistic reason-

ing, a microcosm of human rationality [13]. The construction is guided by a control

process and a three-layered hierarchical GNN, whose middle spatial transition layer is

equipped with gradual descent functions to transform spheres in the bottom layer to

reach the symbolic relations in the top layer. SphNN is the first neural model that can

determine the validity of long-chained syllogistic reasoning in one epoch by construct-

ing sphere configurations as Euler diagrams, with the worst computational complexity

of O(N) (where N is the length of the chain). Experiment 8.1 demonstrates 100%

accuracy of SphNN in determining the validity of every atomic syllogistic reason-

ing. Compared with ChatGPT (gpt-3.5-turbo) in long-chained syllogistic reasoning,
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SphNN achieves 100% accuracy for all 1200 tasks, while ChatGPT achieved an aver-

age accuracy of 62.8%, as shown in Experiment 8.2. SphNN can evaluate the answer of

ChatGPT by constructing models and giving feedback through prompts, through which

ChatGPT improves the accuracy from 80.86% accuracy to 93.75% in deciding the sat-

isfiability of atomic syllogistic reasoning (Experiment 8.3). SphNN has the power of

set-theoretic knowledge representation and the capability of neuro-symbolic unification

(Experiment 8.4). SphNN can evolve into various types of reasoning, such as spatio-

temporal reasoning, logical reasoning with negation and disjunction, event reasoning,

neuro-symbolic reasoning, and humour understanding (the highest level of cognition

[14]). All these suggest a new kind of Herbert A. Simon’s scissors [15, 16, 17] with

two neural blades: the representation blade using spheres as building blocks to repre-

sent tasks and environments, and the reasoning blade using the methodology of model

construction and inspection to solve problems. SphNNs will tremendously enhance

interdisciplinary collaborations to develop the two neural blades and realise determin-

istic neural reasoning and human-bounded rationality [18] and elevate LLMs to reliable

psychological AI that solves problems in the way human experts do [19]. This work

suggests that the non-zero radii of spheres are the missing components that prevent tra-

ditional deep-learning systems from reaching the realm of rational reasoning and cause

LLMs to be trapped in the swamp of hallucination.
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1. Introduction

The origin of reason is gradually developed.

— Charles Darwin

It is the rational reasoning that distinguishes humans from animals. This idea can

be traced back to Aristotle’s time, who invented syllogistic reasoning and founded the

science of logic to guarantee the validity of reasoning – a valid logical conclusion

explicitly states what is already implicit in the premises [18]. Thus, the information

within the syllogistic premises is sufficient to determine the validity of the syllogis-

tic conclusion. Other training data shall not be needed. In general, people only have

insufficient information and limited capabilities, and demonstrate bounded rational-

ity. They are prone to subgoals or heuristic solutions [18]. Herbert A. Simon raised

an inquiry how can the standard theories of global rationality be simplified to render

bounded rationality more tractable? In the era of deep-learning neural networks, ratio-

nality is no longer bounded by learning resources and computing power but by ways of

representations, vectorial or symbolic. They are heterogeneous building blocks to con-

struct decision-making artifacts. Using vectorial representation, deep learning neural

networks have succeeded in doing a variety of tasks [20], including defeating human

champions in playing Go [21, 22], and are moving towards simulating high-level cog-

nition, e.g., rational reasoning [5]. Here, we focus on a sub-question of Herbert A.

Simon’s inquiry, namely, how deterministic syllogistic reasoning can be tractably ren-

dered into neural computing and moves on to develop novel neural computing upon

traditional neural computing, which can evolve to various rational reasoning, including

statistic reasoning and heuristic reasoning.

Non-deterministic judgements of GPT-4. The success of deep learning is witnessed

by its planetary usage, especially LLMs that demonstrate the fantastic capability of

human-like question-answering. Here is a sample communication with GPT-4.

Pietro: Which city is located further east, San Diego or Reno?

GPT-4: Reno, Nevada, is further east than San Diego, California. While

San Diego is located on the coast of the Pacific Ocean, Reno is situ-
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Figure 1: (a) The geographical location of San Diego and Reno; (b) the region-based mental spatial represen-

tation explains why people mistakenly judge the spatial relation between San Diego and Reno; (c) two-step

syllogistic reasoning to judge the relation between San Diego and Reno.

ated more inland, towards the eastern side of the Sierra Nevada mountain

range.

Recent exploration shows that LLMs, e.g., ChatGPT, may pass the Turing test in

human-like chatting but have limited capability even for simple reasoning tasks [4].

It remains unclear whether LLMs can reason or only do indeterministic heuristic asso-

ciation [3]. Let us continue the chat as follows.

Pietro: Are you sure?

GPT-4: I apologize for the confusion. You’re right. Although San Diego,

California, is geographically south of Reno, Nevada, when considering

the longitudinal coordinates, San Diego is actually further east. San Diego

sits at a longitude of approximately 117.2 degrees west, while Reno is at

approximately 119.8 degrees west. So, contrary to intuitive geography

7



based on north-south positioning, San Diego is actually further east than

Reno. Thank you for prompting me to double-check this information.

Pietro: But your first answer is correct.

GPT-4: I apologize for any confusion. You’re correct. Reno, Nevada,

is indeed further east than San Diego, California. San Diego, despite

being south of Reno, is more towards the west because it is on the coast. I

appreciate your patience, and I’m sorry for any confusion caused earlier.

Thank you for helping ensure the accuracy of the information.

Sphere Neural-Network for deterministic syllogistic reasoning. In the example,

GPT-4 simulates perfect human-styled question-answering, but is not sure about its

answers. Other experiments show that LLMs may demonstrate irrationality by mak-

ing correct answers with incorrect explanations [23, 24]. Many deep-learning systems

achieved extremely high accuracy in various tasks [25, 26, 22], including reasoning syl-

logistic statements [27, 28]. Yet, their judgements are unreliable, even with 100% ac-

curacy on the test data [5]. Traditional deep-learning neural networks must go beyond

the statistic learning framework and make qualitative extensions to simulate high-level

cognition, e.g., rational reasoning, like humans and animals do [5].

Humans’ rational reasoning can be metaphorised as scissors [15], whose two blades

represent the task environment and the cognition capability, respectively. Being asked

which city is located further east, San Diego or Reno? people construct a nested region

structure as the task environment as follows: San Diego is inside California, Reno

is inside Nevada, and California is west to Nevada. This representation bounds their

rational reasoning and leads to the mistaken judgement that San Diego (SD) is located

further west to Reno (RN) [29, 30]. To judge the relation between San Diego and Reno,

people inspect the constructed spatial model and inherit the relation between San Diego

and Reno from their parent regions, as illustrated in Figure 1(b). If we understand

being further west to as a specified relation of being disconnected from, as illustrated

in Figure 1(a), the above reasoning becomes the following rougher reasoning.

8



All San Diego is California.

No California is Nevada.

No San Diego is Nevada. ∴

No San Diego is Nevada.

All Reno is Nevada.

No San Diego is Reno. ∴

This is Aristotelian syllogistic reasoning, the other blade of the scissors. Syllogistic

reasoning made logic unable to take a single step forward [since Aristotle], and there-

fore seems to all appearance to be finished and complete, as described by Immanuel

Kant in the Critique of Pure Reason. Consider the well-known syllogistic reasoning as

follows.

all men are mortal.

all Greeks are men.

all Greeks are mortal. ∴

The conclusion that all Greeks are mortal can be obtained by constructing Euler dia-

grams. Reasoning by mental model construction and inspection is best supported by

empirical experiments [31, 32, 33, 34, 35, 36, 12, 37, 13]. Mental models are first de-

veloped for spatial environments and used as references for domain-general reasoning

[8, 9]. For example, to infer which city has more inhabitants, San Diego or San Anto-

nio? German students reached 100% accuracy while American students only reached

62% because all German students heard about San Diego but not San Antonio, and

assumed San Diego was larger and, thus, had more inhabitants [16, p.43]. To infer

the performances of soccer teams, people will reference the sizes of cities and assume

recognised cities are likely to be larger than unrecognised cities, thus having more qual-

ified soccer teams [16]. Philosophically, size relations can be formalised by the con-

nection relation [38, 39]. Eminent philosophers and psychologists advocated the funda-

mental roles of connection relation and regions in cognitive modelling [38, 40, 7, 41, 9].

In contrast, traditional neural networks use vectors and similarity relations [20]. Here,

we computationally reconcile them by extending vectors into spheres and consequently

extending traditional neural networks into sphere neural networks (SphNNs). Spheres
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are diameter-fixed geometric entities and can be used as Euler diagrams to represent

set-theoretic relations in the vector space, in this way, SphNNs have the genealogy from

both Minsky’s diameter-limited perceptron [42] and Rosenblatt’s set-diagrammatic net-

work architecture [43]. The capability of set-theoretic knowledge representation en-

dows SphNNs with the power of model construction and inspection for deterministic

reasoning.

We develop a particular SphNN that can validate all Greeks are mortal from all

men are mortal, and all Greeks are men (each is a syllogistic statement) without train-

ing data1, as follows: SphNN firstly spatialises each statement into a spatial relation

between spheres, Figure 2 (B.i). To decide the validity, SphNN negates the conclu-

sion and tries to show that the following sphere configuration does not exist: the men

sphere is inside the mortal sphere; the Greek sphere is inside the men sphere; the

Greek sphere is not inside the mortal sphere, Figure 2 (A.ii, B.ii). Its reasoning process

consists of three control processes that synergistically transform sphere configurations,

Figure 3(A). It starts with initialising a men sphere, a Greek sphere, and a mortal sphere

and then transforms the current sphere configuration to the neighbourhood configura-

tion towards the target. This is guided by a neuro-symbolic transition map of qualitative

spatial relations, Figure 2 (B.iii-B.v). A neural reasoner is deterministic for the classic

syllogism (syllogistic reasoning with three statements) if it has the property as follows.

For any three satisfiable syllogistic statements, there is a constant number M ,

a neural reasoner can construct an Euler diagram for these statements in

vector space at the global loss of zero within M epochs.

For SphNN we prove that M exists, and M = 1. With this deterministic property,

SphNN inspects the constructed configuration after the first epoch, Figure 2 (B.vi).

If it is not a target configuration, SphNN will conclude the three statements are un-

satisfiable. This proves the validity of the original reasoning, Figure 2 (A.iii). This

1Traditional supervised deep learning systems cannot reach the determinacy of syllogistic reasoning. We

can show that training data automatically generates new out-of-distribution data that makes a well-trained

deep-learning system indeterministic.
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deterministic property can be extended to long-chained syllogistic reasoning: SphNN

can determine the validity (the satisfiability) of any long-chained syllogistic reasoning

in one epoch, with the computational complexity of O(N2) (where N is the length of

the chain), as shown in Figure 3(B).

SphNN is slow, but determinate. Besides theoretical proofs in Section 7, we demon-

strated in Experiment 10.1 that in the first epoch, SphNN correctly determines all

24 valid syllogistic reasoning among 256 possible syllogistic deductions and success-

fully constructed a counter-example for each invalid syllogistic reasoning. In Experi-

ment 10.2, SphNN is compared with ChatGPT, to determine the validity of syllogistic

reasoning. Although slower, SphNN correctly determined all 240 long-chained (rang-

ing from 3 to 12 terms) valid syllogistic reasoning among 1200 candidates without a

time limit. In contrast, ChatGPT is faster, whose response time is almost irrelevant to

the length of syllogistic reasoning, achieves 75% accuracy for classic (atomic) syllogis-

tic reasoning (with three terms), and drops to 55.8% for syllogism with 12 terms. Chat-

GPT might give conclusions inconsistent with its descriptions, as shown in Figure 3(B).

SphNN can identify such inconsistency through constructing a model described

by ChatGPT. Experiment 10.3 shows that SphNN can inform ChatGPT of the con-

sistency information through prompt engineering. Although ChatGPT might neglect

such feedback, SphNN still helped ChatGPT improve the accuracy from 80.86% to

93.75% in deciding the satisfiability of atomic syllogistic reasoning (3-statement syl-

logism). The communication between ChatGPT and SphNN demonstrates a micro

neural world that mirrors the synergistic collaboration between System 1 and System

2 of the mind: the former proposes candidate solutions using fast associative think-

ing; the latter slowly examines the correctness by following rules (here, constructing

models) [44], as shown in Figure 3(C).

SphNN has the representational capacity for neuro-symbolic unification. Vector

embeddings learned from traditional neural networks can serve as content addressable

memory [45, 46], which means that concepts with similar meanings are represented

by vectors close to each other. A sphere configuration may extend the representation

power of content addressable memory as follows: all sphere centres represent tradi-
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tional content addressable memory, and the boundary relations introduce explicit and

precise set-theoretic relations among concepts. This way, SphNN can evolve into uni-

fied neuro-symbolic models that simulate both System 1 (using sphere centres) and

System 2 (using boundary relations). Experiment 10.4 shows the existence of this uni-

fication by successfully extending pre-trained vectors of GLOVE, BERT, and ChatGPT

into spheres whose boundary relations precisely represent set-theoretic relations be-

tween syllogistic statements, as shown in Figure 3(D). This unified representation will

allow SphNNs to directly update vector embeddings of LLMs, instead of using exter-

nal prompt communication that LLMs might ignore (as observed in Experiment 10.3).

This provides a new way to work around open problems in prompt engineering [47].

SphNN evolves into Herbert A. Simon’s neural scissors. We systematically show

how SphNN can evolve into various types of representation and reasoning that serve as

two neural blades of Herbert A. Simon’s scissors, as shown in Figure 3(E). The context

blade represents task environments constructed by spheres. The evolution starts with

spatiotemporal structure, moves onto event structure, and then arrives at neurosym-

bolic unification that can host latent feature vectors into sphere centres and lands at

Descartes’s product of sphere configurations for heterogeneous knowledge. The ra-

tional reasoning blade represents computational procedures that select parts of sphere

configuration, transform them into the target, and decide the stop criterion. Along with

the evolution, various computational procedures can be developed to simulate logic

reasoning, Bayesian reasoning, heuristic reasoning, reasoning with LLM results and

humour (the highest level of cognition [14]).

2. The methodology: bounded rational reasoning through the construction of

sphere configurations

The representation of space and of things in space will necessarily be a

central topic in a science of design.

— Herbert A. Simon [18]
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2.1. Bounded rationality

In his seminal Ph.D thesis Administrative Behaviour: A Study of Decision-Making

Processes in Administrative Organisation, Herbert A. Simon coined the term bounded

rationality with two main tenets as follows: (1) humans only have bounded rationality,

bounded by the available information given by problems, by different individual capac-

ities, and by the situation where the problem is being solved, e.g. under time pressure,

without auxiliary computing devices, and (2) consequently, people are prone to switch

to subgoals and seek satisfactory, instead of optimal solutions [18]. Considering the in-

tractable number of chess positions, Herbert A. Simon used the game of chess as a nice

example to illustrate the necessity of developing computationally efficient methods. A

solution is “good enough” in his terms, if it has a search procedure and a stopping cri-

terion and tells how information is integrated to make a decision. This raises two open

questions2 as follows.

• How do human beings actually make decisions “in the wild”?

• How can the standard theories of global rationality be simplified to render them

more tractable?

In recent years, deep learning neural networks have successfully solved problems in

various fields and won Go against world champions [21, 22]. This is primarily due

to high-performance GPUs and significant memories and storage, which allow neural

networks to learn heuristic patterns from almost all data on this planet. This puts Her-

bert A. Simon’s bounded rationality into a new situation, where rationality is no longer

bounded by learning resources and computing power. Though LLMs even demonstrate

human-like rationality in question-answering, they remain unexplainable and have lim-

ited capabilities in doing simple logical reasoning [3, 4]. Following Herbert A. Simon’s

slogan “problem solving as change in representation” [18], rationality in the era of neu-

ral computing is bounded by representations used for decision-making, namely, vec-

torial or symbolic. Heuristic rationalities obtained by vectorial neural computing do

2https://plato.stanford.edu/entries/bounded-rationality/
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not have the deterministic rationality of symbolic logical reasoning. We introduce a

sub-inquiry of Herbert A. Simon’s second inquiry, as follows.

• How can the determinacy of standard theories of global rationality be tractably

rendered into the process of a heuristic inference and form the end pole of the

continuum of various reasoning processes, when information is steadily accu-

mulating and becomes sufficient; thus, uncertain inference problems become

certain?

Observing the success of deep learning neural computing, here we consider two basic

questions as follows.

• How can deterministic syllogistic reasoning be tractably rendered into neural

computing?

• How can the above neural computing serve as a common place to evolve and

integrate three major decision-making methods, namely, neural (heuristic), prob-

abilistic, and logical?

To answer the two questions, we need to systematically develop semantics for syllogis-

tic reasoning and statistical inference in the vector space and show that they are con-

sistent with the current vector semantics of traditional deep-learning neural networks.

We will provide our solution in Section 8.

2.2. Why do we focus on syllogistic reasoning?

The relevance of the whole battery of Aristotelian syllogisms to psychology

is, we are tempted to quip, equally mysterious.

— Mercier and Sperber [37]

Scientists prefer to taking microcosms to disclose complex phenomena and ground

fundamental theories [13]. Due to its simplicity, synthetic reasoning is used as the

microcosm by psychologists to explore the rationality of the mind [13]. In over one

hundred years of research, various psychological theories have been proposed; some
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account for it as a heuristic phenomenon, and some account for it as deliberative rea-

soning processes with formal rules or diagrams. The mental model theory is the most

promising but still can not account for all the aspects. Modern theories are devel-

oped as unified theories by integrating several accounts, e.g., mReasoner [13]. Despite

these, developing neural models for syllogism was extremely hard and considered in

the psychological community to be utopian ten years ago. In recent years, LLMs, e.g.

ChatGPT, demonstrate human-like performance in question-answering, including syl-

logistic reasoning questions. Although trained by almost all the datasets on this planet,

LLMs, unfortunately, have not reached the determinacy of syllogistic reasoning. On

the other hand, syllogistic reasoning is easily solved in mathematical logic [48, 49].

Therefore, we focus on syllogistic reasoning and stand at the logic perspective to ex-

plore novel neural computing that can achieve deterministic syllogistic reasoning and

show how this novel neural computing can develop various kinds of rational reasoning.

2.3. Spheres as the building blocks for knowledge representation and neural computing

The research about mental models can be traced back to Tolman’s experiments with

rats in 1948 [50]. Early psychological research found that mental spatial objects are

grouped into “regions”, and their hierarchical structures are represented as nested re-

gions where relations among siblings can be explicitly represented [51, 52, 29, 30]. Ad-

vances in neuroscience indicated that mental spatial models represent cognitive spaces

for domain-general tasks, representing properties and concepts as convex regions con-

strained by geometric features [8].

Though the tradition of geometry uses the imperceptible abstract concept point

as the primitive to develop other concepts, e.g., lines, triangles, circles, cones, and

spheres, spatial knowledge can also be developed by utilising perceptible concrete re-

gions [38, 40, 53, 54, 39], governed by the connection relation with three features3: (i)

3The main literature of qualitative spatial representation assumes that two regions should be connected if

they satisfy feature (i) and feature (ii), e.g., [55, 53, 56], which is unfortunately insufficient and will introduce

issues in the theory and applications [39, 57]. A counter-example will be the relation “region A is less than

one meter away from region B” – they satisfy both features but may be disconnected. Feature (iii) is the

characteristic feature of the connectedness relation and can be formalised [39].
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any region connects with itself (reflexive), (ii) if region A connects with region B, then

region B connects with region A (symmetric), and (iii) if two regions are connected,

any third region can be moved to a place where it connects with the first two regions

[39]. The three features can be axiomatised to develop various qualitative relations

(topology, distance, and orientation) and abstract concepts, such as point [39].

Events are four-dimensional entities and can be understood in the same way as

knowledge of extended objects [58]. They have parts (in space and time) and tax-

onomies. Time is more natural and straightforward to be represented by intervals than

by points [59, 60, 61]. Temporal relationships among events develop causal relations

[62]. In this way, the connection relation and regions can be the building blocks for

representing events, times, and causalities.

Vectors can be understood as spheres evolved by shrinking the radii to zero. So,

traditional neural networks can be understood as being evolved from more primitive

neural networks that use spheres as the computational building block. Such primitive

neural networks represent and reason with spatial and non-spatial knowledge, simulat-

ing the way humans do before they learn abstract concepts, such as points and vectors.

We name such primitive neural networks Sphere Neural Networks (SphNNs).

2.4. Unified representation for heuristic and deliberative reasoning

The now dominant view of reasoning (“dual process” or “fast and slow

thinking”), however appealing, is but a makeshift construction amid the

ruins of old ideas.

— Mercier and Sperber [37]

How people reason is a central topic in the research of human rationality. Over one

hundred years, eminent psychologists chose Aristotelian syllogistic reasoning as a mi-

crocosm to investigate human rationality. Among 12 competing theories for syllogistic

reasoning, none provides an adequate account [35]. Still, three sorts are promising:

heuristic theories, deliberative theories with rules, and deliberative theories with set-

theoretic diagrams or models [35]. Heuristic reasoning is fast and shallow and often

occurs before slow and deep deliberative reasoning that validates or refutes heuristic
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Figure 4: (a) a vector; (b) a closed umbrella; (c) an arc with its centre vector; (d) an open umbrella.

results. Falsifying heuristic results may generate new heuristics. More general ac-

counts shall operate heuristic and deliberative reasoning in parallel and interact with

each other [63, 44, 13].

Heuristic is usually simulated by neural networks or the Bayesian rule. We will

illustrate in Section 8 that the Bayesian rule and disjunctive syllogistic reasoning (a

kind of deliberative reasoning) can be introduced into neural computing through evolv-

ing a vector embedding into an arc embedding – somehow, like opening an umbrella

– a vector like a closed umbrella, an arc like an open umbrella (see Figure 4). In this

way, heuristic and deliberative reasoning can be carried out by a unified representation,

which will realise the interaction and paralleling of different styles of reasoning. The

main challenge is to develop a family of neural operations on spheres to realise delib-

erative reasoning and to prove that these operations indeed reach the determinacy of

deliberative reasoning. Finally, we need to explain the relationship between our novel

neural proof and the classic symbolic proof, as did in diagrammatic reasoning [64].

2.5. Deliberative reasoning through model construction and inspection

Deliberative reasoning by model construction and inspection is best supported by

empirical experiments [31, 32, 33, 34, 36] – What we have is a procedure to represent

and integrate in our mind the content of premises by means of models comparable

to schematic pictures of the situation. We then read the conclusions of these models

[37]. In the standard model theory, the reasoning is carried out as a process of model

construction, model inspection, and model variation [31]. In the model variation phase,

people try to construct alternative models to refute the conclusion. If a counter-model

is found (the premises are true, and the conclusion is false), the conclusion will be
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Figure 5: (a) the input of a traditional perceptron is a vector x⃗ = [x1 . . . xn]; (b) the input of a diameter-

limited perceptron is restricted inside a sphere with the centre O⃗ and the radius r.

proven to be invalid. The preferred mental model theory argues that people construct

a preferred and simplified model in mind, in a deterministic manner, while ignoring

other possibilities [12, 36] – The construction of the first model shall not be a stochastic

process that produces one model this time and another the next time [12, p.563-564],

the next model will be revised following the principle of minimal changes from the

current one [65, 66, 67, 68], and generated by a local transformation of the current

model, whose similarity is measured by a neighbourhood graph [69, 70].

2.6. Sphere Neural Networks simulate mental model construction

Mental models represent assertions as a set of observed or imaged possibilities that

mirror what they represent [71]. These representations are iconic and discrete [13].

Like tips of the iceberg, they are supported by the part under the water, which are

neural routines [5]. We represent mental models as discrete configurations of spheres

and seek a family of habitual neural routines that manipulate these spheres.

Neurons can be distinguished through their output encodings [72]: one type of

neuron outputs frequency signals, for example, oculomotor neurons that control eye

movements. Their outputs are one-dimensional, characterized as integration devices,

and simulated by perceptron [42, 73]. A specific perceptron is the diameter-limited per-

ceptron whose input signals xi are restricted within a certain fixed diameter [42, p.12]:

Each x1, . . . , xn is located within a sphere, as shown in Figure 5(a, b). We define the

input of a Sphere Neural Network as the input domain of a diameter-limited perceptron
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Figure 6: The inputs of the neural network are two spheres, o11 . . . o1n, r1 and o21 . . . o2n, r2, respectively,

each is represented by its centre and its radius. The network computes the distance between their centres

dis =
√
∑

n
i=1(o1i − o2i)

2. The output of the network is the value of max{0, dis+ r1 − r2}, which equals

0 whenO1 is insideO2, and greater than 0, if not.

[o1, . . . , on, r], where [o1, . . . , on] is the central vector O⃗ and r ≥ 0 is the radius, that

is, ∥xi − O⃗∥ ≤ r, where 1 ≤ i ≤ n. If r = 0, it degrades into a random perceptron [42,

p.12]. The second type of neuron outputs spatial or place encoding, e.g., neurons in

the visual cortex [72]. The output shows the degree of the matching between the input

stimuli and the receptive field and is simulated by non-monotonic activation functions.

We may represent the input stimuli and the receptive field as two spheres O1 and O2,

with the non-monotonic activation function f(O1,O2) ≜max{0, ∥O⃗1−O⃗2∥+r1−r2},
as illustrated in Figure 6. When f(O1,O2) = 0,O1 is insideO2; the larger the value of

f(O1,O2) is, the further away is O1 from O2. This way, Sphere Neural Networks can

explicitly signal spatial relations between two spheres, e.g., inside, partial overlapping.

The non-monotonic activation function ∆(O1,O2) ≜max(0, ∥O⃗1 − O⃗2∥+ r1 − r2)
is a deviation of the non-monotonic activations of traditional neural networks and better

described as a kind of Kolmogorov–Arnold Networks (KANs) [74], whose learnable

activation functions are on edges, as shown in Figure 7.
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Figure 7: The Kolmogorov-Arnold neural architecture of ∆(O1,O2) ≜ max(0, ∥O⃗1 − O⃗2∥ + r1 − r2).

Given two n + 1-dimensional vectors x⃗ and y⃗ representing n-dimensional spheres, the fr(⋅) selects the

n + 1th element xn+1 and yn+1, and returns the radius exn+1 and eyn+1 of O1 and O2, respectively;

fO⃗(⋅) selects the first n elements as the centre of a sphere; f∥ ∥(⋅) computes the Euclidean norm of a vector;

the output of the first hidden layer is O⃗1 − O⃗2; the output of the second hidden layer is ∥O⃗1 − O⃗2∥+r1 −r2;

the final output is this network is zero, ifO1 is insideO2, otherwise the output is greater than zero.

2.7. What is SphNN about, and not about?

Reason is not a superpower implausibly grafted onto an animal mind; it

is, rather, a well integrated component of the extraordinarily developed

mind that characterizes the human animal.

— Mercier and Sperber [37]

SphNN is the first neural model to determine the validity (valid or invalid) and

the satisfiability (satisfiable or unsatisfiable) of syllogistic reasoning. It only con-

structs configurations of spheres whose radii are greater than zero and does not con-

struct abstract concepts, such as empty sphere [75] or point [76]. Its control pro-

cesses suffice to determine the satisfiability of long-chained syllogistic reasoning in

the psychological literature [35, 77], which is slightly different from the usual de-

scription in the logic textbooks [35]. A syllogistic reasoning being valid means that
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Figure 8: Basic diagrammatic representation for syllogistic statements. (1) that all X are Y is represented by

(a) X ⊂ Y ; (2) that some X are Y is represented by (a) X ⊂ Y or (b) Y ⊂ X or (c) X ∩ Y ≠ ∅; (3) that

no X are Y is represented by (d) X ∩ Y = ∅; (4) that some X are not Y is represented by (b) Y ⊂ X or (c)

X ∩ Y ≠ ∅ or (d) X ∩ Y = ∅.

Figure 9: (a) SphereOX is is an open sphere; (b) SphereOX disconnects from SphereOY ; (c) SphereOX

partially overlaps with SphereOY ; (d) SphereOX is part of SphereOY .

the conclusion is true in every case in which all its premises are true [78, p.1]: that

r1(X, Y ) r2(Y, Z) ∴ r3(X, Z) is valid means that r3(X, Z) is true in every case in

which r1(X, Y ) and r2(Y, Z) are true. SphNN can evolve into a variety of rational

reasoning, and can seamlessly integrate latent feature vectors learned by traditional

neural networks.

3. Spatialising syllogistic statements in the vector space

Spatial thinking is the foundation of abstract thought.

— Barbara Tversky [9]

3.1. Spatialising syllogistic statements

Classic syllogistic reasoning [78] is a form of deductive reasoning with only two

premises, three terms, and four possible relations (or “moods” used in the psycholog-
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ical literature): (1) universal affirmative: all X are Y , all(X, Y ); (2) particular affir-

mative: some X are Y , some(X, Y ); (3) universal negative: no X are Y , no(X, Y );
(4) particular negative: some X are not Y , some not(X, Y ). Moods can be reduced

to four basic set relations in the forms of Euler diagrams [79]: (a) X is part of Y

(X ⊂ Y ), (b) X contains Y (Y ⊂ X), (c) X partially overlaps with Y (X ∩ Y ≠ ∅),

and (d) X is disjoint from Y (X ∩ Y = ∅), as shown in Figure 8. If we fix moods and

allow terms to exchange places in the premises, there will be four kinds of syllogistic

reasoning, and enumerating moods will total 256 different syllogistic reasoning types.

r1(X,Y ) r2(Y,Z) ∴ r3(X,Z)

r1(Y,X) r2(Y,Z) ∴ r3(X,Z)

r1(X,Y ) r2(Z,Y ) ∴ r3(X,Z)

r1(Y,X) r2(Z,Y ) ∴ r3(X,Z)

where ri ∈ {all, some,no, some not} (i = 1,2,3). We map each syllogistic relation to

spatial relations and define them in vector space, so that we can use neural operations

to update them. We ground a syllogistic term X to an n-dimensional sphere OX , with

the central vector O⃗X = [x1, . . . , xn], and the radius rX = exn+1 . SphereOX is defined

as open, that is, a point P⃗ is inside a sphere OX , if and only if ∥P⃗ − O⃗X∥ < rX , as

shown in Figure 9(a). Sphere OX disconnects from sphere OY , D(OX ,OY ), if and

only if the distance between their central vectors is greater than or equal to the sum of

their radii4, as shown in Figure 9(b).

D(OX ,OY ) holds, if and only if ∥O⃗X − O⃗Y ∥ − (rX + rY ) ≥ 0.

To reach the disconnectedness relation, we shall either increase the distance disX,Y =
∥O⃗X − O⃗Y ∥ or decrease the radius, rX , or rY , or both. We define ID(OX ,OY ) =

4By defining spheres as open, the externally connected relation EC (∥O⃗X − O⃗Y ∥ − (rX + rY ) = 0) in

[55] is included into the D relation. This way, we do not explicitly introduce the EC relation. This reduces

the number of neighbourhood transitions and makes the proofs of theorems clean.
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max{0,−disX,Y + rX + rY }, such that OX disconnects from OY , if and only if

ID(OX ,OY ) = 0, otherwise, ID(OX ,OY ) > 0. Generally, we design an inspec-

tion function IR(OX ,OY ) to inspect whether the relation R is held between OX and

OY . It returns zero, if and only if the relation R(OX ,OY ) is satisfied; otherwise, it

returns a positive real number. So, a target configuration is reached when the sum of

all inspection functions equals zero.

OX is part of OY , P(OX ,OY ), if and only if the distance between their centres

plus rX is less than or equals to rY , as illustrated in Figure 9(d). OY containing OX ,

P(OY ,OX), is equivalent to OX being part of OY .

P(OX ,OY ) holds, if and only if ∥O⃗X − O⃗Y ∥ + rX ≤ rY

P(OY , OX) ≡ P(OX , OY )

To reach the relation P(OX ,OY ), we shall either decrease the distance disX,Y or de-

crease rX , or increase rY . The inspection function IP(OX ,OY ) ≜ max{0, disX,Y +
rX − rY }, and IP(OX ,OY ) ≜ max{0, disX,Y + rY − rX}. We call P and P being

inverse, written as P−1 = P and P
−1 = P. In general, the inverse of R(OX ,OY ) is to

switch the order of the parameters and name the new relation as R−1(OY ,OX), e.g.,

D−1(OY ,OX) = D(OX ,OY ), ¬D−1(OY ,OX) = ¬D(OX ,OY ). R−1−1(OX ,OY )
is to switch two times the order ofOX andOY , that will be the same as before switch-

ing, so, R−1−1(OX ,OY ) = R(OX ,OY ). A syllogistic statement can be spatialised

to exactly one qualitative spatial relation if the order of two spheres is fixed. This

one-to-one mapping prevents the complexity of the model construction process from

exploding exponentially. Thus:

• All X are Y , all(X, Y ), is spatialised to P(OX , OY ).

• Some X are Y , some(X,Y ), is spatialised to ¬D(OX , OY ).

• No X are Y , no(X, Y ), is spatialised to D(OX , OY ).

• Some X are not Y , some not(X, Y ), is spatialised to ¬P(OX , OY ).

We introduce the spatialisation function ψ that maps {all, some,no, some not} to

{P,D,¬P,¬D}, namely, ψ(all) = P, ψ(some) = ¬D, ψ(no) = D, ψ(some not) =
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¬P.

Remark 1. Two spheres are coincided EQ(OX ,OY ), if and only if O⃗X = O⃗Y and

rX = rY . Sphere OX is a proper part of Sphere OY PP(OX ,OY ), if and only if

OX is part of OY and they are not coincided, that is, PP(OX ,OY ) ≜ P(OX ,OY ) ∧
¬EQ(OX ,OY ). Its inverse relation is written as PP(OX ,OY ) ≜ PP(OY ,OX).
That sphere OX partially overlaps with Sphere OY PO(OX ,OY ), if and only if the

distance between their centres is (1) greater than the absolute difference between their

radii, and (2) less than the sum of their radii, that is, PO(OX ,OY ) ≜ ∣rX − rY ∣ <
∥O⃗X − O⃗Y ∥ < rX + rY . If some X are Y , OX can either be proper part of PP, or

partially overlap with PO, or equal to EQ, or be inverse proper part PP of OY .

We can prove PP(OX ,OY ) ∨ PO(OX ,OY ) ∨ EQ(OX ,OY ) ∨ PP(OX ,OY ) is

equivalent to ¬D(OX ,OY ). If some X are not Y , OX can either partially overlap

with (PO), or be inverse proper part of (PP), or disconnect from (D) OY . We can

prove PO(OX ,OY ) ∨PP(OX ,OY ) ∨D(OX ,OY ) is equivalent to ¬P(OX ,OY ).

3.2. Syllogistic reasoning through model construction in the vector space

With the above spatialisation, we transform the task of syllogistic reasoning into

the task of model construction in the vector space as follows. A syllogistic reasoning

r1(X,Y ).
r2(Y,Z).

r3(X,Z). ∴

is satisfiable, where ri ∈ {all, no, some, some not}, if and only if there are three

spheres OX , OY , and OZ that satisfy spatial relations as follows: ψ(r1)(OX , OY ),
ψ(r2)(OY , OZ), and ψ(r3)(OX , OZ). This syllogistic reasoning is valid, if and only

if, there are no spheres OX , OY , and OZ that satisfy all spatial relations as follows:

ψ(r1)(OX , OY ), ψ(r2)(OY , OZ), and ¬ψ(r3)(OX , OZ). SphNN determines the

original reasoning valid, if after M epochs, it cannot construct a configuration ofOX1 ,

OX2 , and OX3 satisfying all relations ψ(r1)(OX1 , OX2), ψ(r2)(OX2 , OX3), and

¬ψ(r3)(OX1 , OX3).
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4. SphNN: A hierarchical GNN

We conceive GPS as moving through a large maze. The nodes of the maze

represent situations, described afferently; the paths joining one node to

another are the actions, described as motor sequences, that will transform

the one situation into the other. At any given moment GPS is always faced

with a single question: “What action shall I try next?”

— Herbert A. Simon [18]

SphNN is a hierarchical neuro-symbolic Kolmogorov-Arnold [74] Geometric [80]

Graph Neural Network that explicitly constructs sphere configurations in the vector

space. SphNN has three layers – the top symbolic layer, the spatial transition layer,

and the geometric sphere layer, as illustrated in Figure 10(a). The top symbolic layer

is a symbolic graph of neighbourhood relations [55, 39]. These relations are jointly

exhaustive and pairwise disjoint – at any time, there is one and only one relation be-

ing true. The bottom geometric sphere layer is the current sphere configuration, each

sphere is represented by an n + 1 dimensional vector whose first n elements repre-

sent the centre and whose last element represents the radius; between the top and the

bottom layers is the spatial transition layer that transforms the current sphere con-

figuration to the target configuration through neighbourhood transitions. The spatial

transition layer is the graph neighbourhood network whose nodes are spatial rela-

tions and whose edges are spatial neighbourhood relations. Every node in the spa-

tial transition layer corresponds to a node in the symbolic layer and has a function

that determines whether the symbolic spatial relation is held between the correspond-

ing spheres in the bottom layer. The values of this function are non-minus, it returns

zero if and only if this spatial relation is held between the two spheres. For example,

ID(OX ,OV ) is the function that inspects locations and sizes of OX and OV and de-

cides whetherOX disconnects fromOV . We call ID an inspection function and define

ID(OX ,OV ) ≜max{0, (rX +rV )−∥O⃗X − O⃗V ∥} and implement it in a Kolmogorov-

Arnold-styled architecture, in the sense that each edge is associated with a gradual

descent function that can transform the current spatial relation into the neighbourhood

relation, as shown in Figure 10(b). We introduce ∆T
T1∶T2

(OX ,OV ) as the gradual
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descent function that realises the neighbourhood transition from the current relation

T1(OX ,OV ) to its neighbourhood relation T2(OX ,OV )with the target T(OX ,OV ).
If the context is clear, ∆T

T1∶T2
(OX ,OV ) can be written as ∆T

T1
(OX ,OV ), for ex-

ample, ∆T2

T1∶T2
(OX ,OV ) = ∆T2

T1
(OX ,OV ). Each ∆T

T1∶T2
(OX ,OV ) satisfies three

conditions as follows:

1. non-negative, ∆T
T1∶T2

(OX ,OV ) ≥ 0;

2. strict monotonic, when ∆T
T1∶T2

(OX ,OV ) > 0;

3. if the target relation is reached, ∆T
T1∶T2

(OX ,OV ) = 0.

The three features make ∆T
T1∶T2

(OX ,OV ) work like a slide where OX slips at the

height status of T1(OX ,OV ), where IT1(OX ,OV ) = 0 and IT2(OX ,OV ) > 0,

downward to the status of T2(OX ,OV ), where IT2(OX ,OV ) = 0, towards the fi-

nal status (the target value) of T(OX ,OV ), where IT(OX ,OV ) = 0. Each transi-

tion (∆ function) starting from T1 targeting T with the next neighbourhood transition

T2 can be realised by a linear combination of the radii and the distance between the

centre points and implemented in Kolmogorov-Arnold-styled neural architecture. The

neighbourhood relations structure a graph structure that allows SphNN to construct

the target sphere configuration through neighbourhood transitions. For example, sup-

pose the current graph is G = (V,E), where V = {OX ,OV } and E = {D(OX ,OV )},
and the target graph is G′ = (V,E ′), where E ′ = {PP(OX ,OV )}. SphNN firstly

uses ∆PP
D∶PO(OX ,OV ) to transform into the neighbourhood relation PO, then uses

∆PP
PO(OX ,OV ) to transform the PO relation into its neighbourhood relation PP, as

illustrated in Figure 10(c).

4.1. Geometric operations on spheres

We introduce a set of geometric operations on a sphere OX to update its rela-

tion referenced to a fixed Sphere OV : δ(OX ∣OV ) = {dis↓X,V , r
↓
X , dis

↑
X,V , r

↑
X}, where

disX,V is the distance between their centres disX,V = ∥O⃗X − O⃗V ∥, ↓ represents to

decrease a value, ↑ represents to increase a value. The target relation T determines

possible operations, either to preserve the already reached target relation or to trans-

form it into a neighbourhood relation towards the target. For example, to preserve
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OX being inside OV , P(OX ,OV ), the possible operations on OX are either to de-

crease the distance between their centres, or to decrease the radius of OX , written

as δP(OX ∣OV ) = {dis↓X,V , r
↓
X}; to transform OX from being disjoint with OV to

partially overlapping with OV , the possible operations on OX are either to decrease

the distance, or to increase rX , so, δD∶PO(OX ∣OV ) = {dis↓X,V , r
↑
X}. If this neigh-

bourhood transition is targeted at OX being inside OV , the current operation of in-

creasing rX will violate the possible operations of the target relation and may intro-

duce unnecessary back-and-forth updates of OX , so, r↑X will not be selected. The

set of possible operations on OX to transform D(OX ,OV ) to PO(OX ,OV ) with

the target P(OX ,OV ), δPD∶PO(OX ∣OV ), are the intersections of δP(OX ∣OV ) and

δD∶PO(OX ∣OV ), written as δPD∶PO(OX ∣OV ) ≜ δP(OX ∣OV ) ∩ δD∶PO(OX ∣OV ) =
{dis↓X,V , r

↑
X} ∩ {dis

↓
X,V , r

↓
X} = {dis

↓
X,V }. Possible operations are implemented by

gradual descent functions as follows: x↓ is implemented by +x, written as ζ(x↓) = +x;

x↑ is implemented by −x, written as ζ(x↓) = −x, where x ∈ {disX,V , rX , rV }. This

transforms a set of operations into a gradual descent function. ∆T
T1∶T2

(OX ,OV ) is im-

plemented by max{0,C +∑ ζ(op)}, where op ∈ δTT1∶T2
(OX ∣OV ) and C is a constant

such that T2 is reached, exactly when C +∑ ζ(op) = 0.

4.2. Atomic neighbourhood transition

As a neighbourhood transition, ∆T
T1∶T2

(OX ,OV ) needs to guarantee that on the

way from T1(OX ,OV ) to its neighbour T2(OX ,OV ), there will not appear a third re-

lation T3(OX ,OV ), where T3 ∉ {T1,T2}. That is, neighbourhood transitions should

be atomic. However, as gradual descent functions update independently the centre

and the radius of OX , a neighbourhood transition, under some situations, may not be

atomic. For example, the transition from the partial overlapping relation PO(OX ,OV )
to the disconnectedness relation D(OX ,OV ) is realised by the gradual descent func-

tion ∆D
PO∶D(OX ,OV ) = ∆D

PO(OX ,OV ) = max{0, rX + rV − disX,V }, as shown in

Figure 11(a). To reach the target, ∆D
PO(OX ,OV ) will either reduce rX or increase

disX,V or both (Sphere OV is fixed). When the centre of OX is inside OV , reducing

rX too fast may cause OX being inside OV , as shown in Figure 11(b). To avoid this

situation, we partition PO into two sub-relations: PO1 and PO2: PO1(OX ,OV ) is
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Figure 11: (a) ∆D
PO∶D(OX ,OV ) implements a neighbourhood transition from PO(OX ,OV ) to

D(OX ,OV ). (b) If the centre of OX is inside OV , reducing rX too fast will cause OX being inside

OV ; (c) Solution: when the centre ofOX is insideOV ,OX will be moved away fromOV till its centre is

at the boundary ofOV .

the sub-relation of PO when the centre of OX is outside OV ; PO2(OX ,OV ) is the

sub-relation of PO when the centre of OX is inside or at the border of OV . We define

∆D
PO2∶PO1

(OX ,OV ) as moving OX away from OV till PO1(OX ,OV ), while fixing

rX . ∆D
PO1
(OX ,OV ) is atomic even if its centre and radius are optimised indepen-

dently, as shown in Figure 11(c). In this way, ∆D
PO(OX ,OV ) is replaced by either

∆D
PO1
(OX ,OV ) or ∆D

PO2∶PO1
(OX ,OV ) followed with ∆D

PO1
(OX ,OV ). Each case

is atomic.

Another case is the transition from the partial overlapping relation to the contain-

ing relation, ∆PP
PO∶PP

(OX ,OV ) = ∆PP
PO(OX ,OV ), whose geometric operations are

enlarging rX and decreasing disX,V , as shown in Figure 12(a). If rX < rV and rX

is enlarged too slow, OX will be part of OV , instead of containing OV , as shown in

Figure 12(b). To avoid this situation, we split the PO relation into PO3 and PO4:

PO3(OX ,OV ) is the sub-relation of PO(OX ,OV ) with the condition that rX < rV ;

PO4(OX ,OV ) is the sub-relation of PO(OX ,OV ) with the condition that rX ≥ rV .
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Figure 12: (a) ∆PP
PO∶PP

(OX ,OV ) implements a neighbourhood transition PO(OX ,OV ) to

PP(OX ,OV ). (b) If rX < rV , enlarging rX too slow will cause OX being inside OV ; (c) Solution:

when rX < rV , firstly enlarge rX to rV while fixing the centre ofOX .

If PO3(OX ,OV ) holds, rX will be enlarged to reach the same length as rV , while

fixing the centre of OX , resulting in PO4(OX ,OV ). After that, ∆PP
PO4

will trans-

form PO4(OX ,OV ) into PP(OX ,OV ), as illustrated in Figure 12(c). In this way,

∆PP
PO∶PP

(OX ,OV ) is replaced by either ∆PP
PO4
(OX ,OV ) or ∆PP

PO3∶PO4
(OX ,OV )

followed with ∆PP
PO4
(OX ,OV ). Each case is atomic.

5. Transition functions between two spheres

All mathematical derivation can be viewed simply as change in represen-

tation, making evident what was previously true but obscure.

— Herbert A. Simon [18]

In this section, we list all transition functions for OX and OV , where OV is fixed.

5.1. Targeting at D(OX ,OV )

Let OX should disconnect from OV , D(OX ,OV ). Whether this target relation is

satisfied can be measured geometrically by the truth value of (rX + rV ) − disX,V ≤ 0,
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Figure 13: If the centre of OX is inside OV , SphNN will move OX away from OV while fixing rX , till

the centre of OX is located at the boundary of OV . Then, SphNN will continue to move OX away from

OV while independently decreasing rX , till reaching the target relation D(OX ,OV ).

where disX,V = ∥O⃗X − O⃗V ∥. To make the formula true, SphNN can either grad-

ually descent rX or gradually ascent disX,V , therefore, the possible operations are

dis↑X,V and r↓X , δD(OX ∣OV ) = {dis↑X,V , r
↓
X}. The inspection function is defined as

ID(OX ,OV ) ≜max{0, (rX + rV ) − disX,V }.
If OX and OV are currently partially overlapped and the centre of OX is inside

OV , it may happen that uncoordinated optimising the centre and rX will not lead OX

to disconnect from OV . Following the analysis in Section 4.2, we partition the PO

relation into PO1 and PO2 and list the related formulas as follows and illustrated in

Figure 13.

PO1(OX ,OV ) ≜ PO(OX ,OV ) ∧ disX,V > rV

PO2(OX ,OV ) ≜ PO(OX ,OV ) ∧ disX,V ≤ rV

IPO(OX ,OV ) ≜max{0, ∣rX − rV ∣ − disX,V + ϵ} +max{0, disX,V − rV − rX + ϵ}

IPO1(OX ,OV ) ≜ IPO(OX ,OV ) +max{0, rV − disX,V + ϵ}

IPO2(OX ,OV ) ≜ IPO(OX ,OV ) +max{0, disX,V − rV }

∆D
PO2∶PO1

(OX ,OV ) ≜max{0, rV − disX,V }

∆D
PO1
(OX ,OV ) ≜max{0, rX + rV − disX,V }

5.2. Targeting at P(OX ,OV )

Let OX should contain OV , P(OX ,OV ). Whether this target relation is satisfied

can be measured geometrically by the truth value of disX,V +rV −rX ≤ 0. The inspec-

tion function IP(OX ,OV ) ≜ max{0, disX,V + rV − rX}. When OX contains OV ,
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Figure 14: If rX is shorter than rV , SphNN will enlarge rX till rX = rV . Then, SphNN will continue to

moveOX towardsOV while independently increasing rX , till reaching the target relation P(OX ,OV ).

the value is 0; otherwise, the value is greater than 0. To reduce the value, SphNN shall

increase rX or reduce disX,V , therefore, the allowed operations are r↑X and dis↓X,V .

If OX and OV are partially overlapped, and rX is shorter than rV , it may happen

that uncoordinated optimising the centre and the radius of OX will not lead OX to

cover OV . Following the analysis in Section 4.2, we partition the PO relation into

PO3 and PO4 and list the related formulas as follows and illustrated in Figure 14.

PO3(OX ,OV ) ≜ PO(OX ,OV ) ∧ rV < rX

IPO3(OX ,OV ) ≜ IPO(OX ,OV ) +max{0, rV − rX + ϵ}

PO4(OX ,OV ) ≜ PO(OX ,OV ) ∧ rV ≥ rX

IPO4(OX ,OV ) ≜ IPO(OX ,OV ) +max{0, rX − rV }

∆P
PO3∶PO4

(OX ,OV ) ≜max{0, rV − rX}

∆P
PO4
(OX ,OV ) ≜max{0, disX,V + rV − rX}

5.3. Targeting at PO(OX ,OV )

Two spheres being partially overlapped means that the distance between their cen-

tres is (1) shorter than the sum of their radii, and (2) longer than the difference between

their radii. That is ∣rX − rV ∣ < disX,V < rX + rV . The partial overlapping relation

PO is not a final target relation but rather an intermediate target to reach other target

relations. It can be reached from four other relations. If OX currently disconnects

from OV , SphNN can perform both dis↓X,V and r↑X operations; if OX currently is a

proper part of OV , SphNN can perform dis↑X,V and r↑X operations; if OV is a proper

part ofOX , SphNN can perform dis↑X,V and r↓X operations; ifOX coincides withOV ,
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Figure 15: The target relation PO(OX ,OV ) can be reached from D(OX ,OV ), PP(OX ,OV ), and

PP(OX ,OV ) by independently optimising rX and dis. If the current relation is EQ(OX ,OV ), SphNN

will increase dis by slightly changing the centre ofOX to reach the target relation.

SphNN only need to randomly shift OX away from its current location, as illustrated

in Figure 15.

∆PO
PP
(OX ,OV ) ≜max{0, rX − rV − disX,V }

∆PO
PP(OX ,OV ) ≜max{0, rV − rX − disX,V }

∆PO
D (OX ,OV ) ≜max{0, disX,V − rV − rX}

∆PO
EQ(OX ,OV ) ≜ O⃗X + ϵ⃗

5.4. Target at P(OX ,OV )

Let OX should be part of OV , P(OX ,OV ). Whether this target relation is sat-

isfied can be measured geometrically by the truth value of disX,V + rX − rV ≤ 0.

IP(OX ,OV ) ≜ max{0, disX,V + rX − rV }. To observe IP(OX ,OV ) = 0, SphNN

can perform dis↓X,V and r↓X operations. In PO2 status, performing either dis↓X,V

or r↓X operation will lead to the target status, as illustrated in Figure 16. We define

∆P
PO2
(OX ,OV ) ≜ max{0, disX,V + rX − rV }. In PO1 status, only doing gradually

descent of rX may lead OX to disconnect from OV . To prevent this situation, SphNN

fixes rX and only performs the dis↓X,V operation. We introduce ∆P
PO1∶PO2

(OX ,OV ) ≜
max{0, disX,V } to transform the relation from PO1 to PO2.

The condition for ∆P
PO1∶PO2

(OX ,OV ) to reach PO2(OX ,OV ) is that the radius

of OX should be less than the diameter of OV , that is, rX < 2rV . If the condition
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Figure 16: If the centre of OX is outside OV , SphNN will move OX towards OV while fixing rX , till

the centre of OX is located at the boundary of OV . Then, SphNN will continue to move OX towards OV

while independently decreasing rX , till reaching the target relation P(OX ,OV ).

Figure 17: If rX > 2rV , it may happen that reducing the distance between their centres causesOX contain-

ing OV , as shown by the blue dotted line. Then, ∆P
PP∶PO

(OX ,OV ) will reduce the value of rX . This

loop repeats till PO2(OX ,OV ) is reached.

is not satisfied, repeated operations of ∆P
PO1∶PO2

(OX ,OV ) will push OX to contain

OV , P(OX ,OV ), and trigger ∆P
PP∶PO

(OX ,OV ), whose possible operation is r↓X .

This operation is the intersection of the possible operations from PP to PO1 and the

possible operations of the target relation P, as shown in Figure 17. This works like

that ∆P
PO1∶PO2

(OX ,OV ) borrows ∆P
PP∶PO

(OX ,OV ) to reduce the radius of OX .

∆P
PO1∶PO2

(OX ,OV ) is the only ∆ function with a condition. So, we use the red

colour to demarcate this feature. To avoid this loop and make all ∆ operations atomic,

we can introduce an additional operation: cut rX to rV , if rX > rV and P(OX ,OV )
is targeted. This additional operation might make OX disconnect from OV .
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Figure 18: The full version of the neuro-symbolic transition map of neighbourhood spatial relations. OV is

fixed, dis is shortened for disX,V . Here, EQ is set as the initial status, and only takes PO as its neighbour.

Two ways to partition PO: (1) PO is partitioned into PO1 and PO2, and (2) PO is partitioned into PO3

and PO4. Allowed operations between neighbourhood relations are labelled. The target relation determines

which of them can be chosen.

5.5. Targeting at negative relations

If the target is a negative relation R ∈ {¬D,¬P,¬P}, there will be only one non-

target relation ¬R ∈ {D,P,P}. If the relation between OX and OV is D(OX ,OV ),
P(OX ,OV ), or P(OX ,OV ), following three transition functions will optimise OX

to reach the target relation with OV .

∆¬D
D (OX ,OV ) ≜max{0, disX,V − rV − rX + ϵ}

∆¬P
P (OX ,OV ) ≜max{0, rV − disX,V − rX + ϵ}

∆¬P
P
(OX ,OV ) ≜max{0, rX − disX,V − rV + ϵ}
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5.6. Target-oriented spatial partition

For syllogistic reasoning, there are six target spatial relations T ≜ {D,¬D,P,¬P,
P,¬P}, and a target relation determines the qualitative partition of the space. For

a negative target, e.g., ¬D,¬P, and ¬P, SphNN only needs to partition the space

into two parts: D and ¬D, or P and ¬P, or P and ¬P. Each case only needs

one transition function ∆¬D
D (OX ,OV ), ∆¬P

P (OX ,OV ), and ∆¬P
P
(OX ,OV ), respec-

tively. When the target relation is D, P, or P, the space will be partitioned hier-

archically into two layers, at the top layer are five jointly-exhaustive-and-pairwise-

disjoint relations: {D,EQ,PO,PP, PP} = T5; at the second layer, PO will be

partitioned either into PO1 and PO2, or PO3 and PO4. The transition map is thus

hierarchical, as illustrated in Figure 18. The whole can be organised into a neuro-

symbolic map for the transition of neighbourhood relations and formalised as a six-

tupleM≜ (T , ftsp,I,S, ftn,∆).

• T : the set of six target relations;

• ftsp: the function that maps a target relation to a set of jointly-exhaustive-and-

pairwise-disjoint qualitative spatial partitions, where tsp stands for target-oriented

spatial partitions. For example, ftsp(D) ≜ {D,EQ,PO1,PO2,PP,PP};

• I: a family of inspection functions. Let O1 and O2 be two spheres. We distin-

guish three kinds of inspection functions.

1. inspecting relations with an explicit target relation. I(O1,O2∣T) returns

the relation R ∈ ftsp(T) and T ∈ T ;

2. inspecting relations with default target relations. I(O1,O2) returns the

relation R ∈ T5 = {D,EQ,PO,PP,PP};

3. inspecting whether a given relation holds. IR(O1,O2) returns 0 if R(O1,O2)
holds, otherwise, returns a positive real number.

• S: the set of all relations between two spheres. S ≜ ⋃ ftsp(T), T ∈ T . S is

closed for inverse relations. That is, for any R ∈ S, R−1 ∈ S;
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Table 1: Target oriented neighbourhood transition table. ‘∅’ means that the target relation is reached; ‘-’

means that the current relation is not in the domain of spatial partition.

(OX ,OV ) D P P ¬D ¬P ¬P

D ∅ ∆P
D∶PO ∆P

D∶PO ∆¬D
D ∅ ∅

PO1 ∆D
PO1

∆P
PO1∶PO2

- ∅ ∅ ∅
PO2 ∆D

PO2∶PO1
∆P

PO2
- ∅ ∅ ∅

PO3 - - ∆P
PO3∶PO4

∅ ∅ ∅
PO4 - - ∆P

PO4
∅ ∅ ∅

PP ∆D
PP∶PO ∅ ∆P

PP∶PO ∅ - ∅
EQ ∆D

EQ∶PO ∅ ∅ ∅ - -

PP ∆D
PP∶PO

∆P
PP∶PO

∅ ∅ ∅ −
P - ∅ - ∅ ∆¬P

P -

P - - ∅ ∅ - ∆¬P
P

¬D - - - ∅ - -

¬P - - - - ∅ -

¬P - - - - - ∅

• ftn: the function maps the current relation R to its neighbourhood relation R′,

towards the target T, namely, R′ = ftn(T,R), tn stands for target-oriented

neighbourhood;

• ∆: the set of neighbourhood transition functions. Let T ∈ T be the target

relation and let O1 and O2 be two spheres. R = I(O1,O2∣T), where R ∈
ftsp(T). The neighbourhood transition function will be ∆T

R∶ftn(T,R)(O1,O2)
or ∆T

R(O1,O2) for short. All neighbourhood transition functions are listed in

Table 1.
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6. Sequential control processes

When we recall that the process will generally be concerned with finding a

satisfactory design, rather than an optimum design, we see that sequence

and the division of labor between generators and tests can affect not only

the efficiency with which resources for designing are used but also the

nature of the final design as well.

— Herbert A. Simon [18]

The control process that realises deterministic reasoning is a process to determine

(1) the start and the end of the construction process; (2) the dynamic and static spheres;

and (3) the current neighbourhood transition. This process allows us to prove the exis-

tence of the maximum iteration number M and to identify the value of M if the target

configuration exists. Thus, this control process is “good enough” according to Herbert

A. Simon’s criterion [18]. We inspire decision-making of the control process from the

Cumulative Prospect Theory [81]: Instead of using an absolute magnitude of welfare

for decision-making, people prefer relative reference points to measure the change in

values; people are more sensitive to losses than gains of the same magnitude. Thus,

between two choices with the same gain, people will choose the one that won’t in-

cur losses. Decision-making in abstract domains, e.g., economics, has its root in the

spatial domain [9]. SphNN does not measure the loss with respect to the final target

but measures whether closer to the neighbourhood (Control process 1). SphNN will

not improve the relations of a sphere with two other spheres, as this may cause the

loss of one relation, which equals the gain of the other relation. Instead, SphNN first

improves one relation till it is satisfied, then improves both relations. If the already

satisfied relation is impaired, SphNN will repair it immediately (Control process 2).

6.1. Control process 1: neighbourhood transition without constraints

Let p1, . . . , pN−1 be N − 1 premises of a long-chained syllogistic reasoning, where

pi can be either ri(Xi, Xi+1) or ri(Xi+1, Xi), ri ∈ {all, some, no, some not}. With-

out loss of generality, they can be spatialised intoN −1 spatial statements ψ1(O1,O2),
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Algorithm 1: The procedure to realise T(OX ,OV )
Input: Two spheres OX and OV , the target relation: T(OX ,OV ), OV fixed.

Output: Two spheres OX and OV , satisfying T(OX ,OV )
1 T1(OX ,OV ) ← I(OX ,OV ∣T);
2 while T1(OX ,OV ) ≠ T(OX ,OV ) do

3 one step ∆T
T1∶T2

(OX ,OV ); ▷ Corollary 1

4 T1(OX ,OV ) ← I(OX ,OV ∣T);

5 return OX and OV

. . . , ψN−1(ON−1, ON), where

ψi =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ψ(ri) ri(Xi, Xi+1)

ψ−1(ri) ri(Xi+1, Xi)

ψi ∈ {D,P,P,¬D,¬P,¬P}. It is easy to constructN−1 spheres satisfyingψ1(O1, O2),
. . . , ψN−1(ON−1, ON) in one epoch as follows: We initialiseN −1 coincided spheres;

then, we fix the first one and move the second one till the relation ψ1(O1,O2) is

satisfied; then we fix the second sphere and move the third sphere till the relation

ψ2(O2,O3) is satisfied, . . . . Each step can be designed as a gradual descent process

(Corollary 1). This describes the first control process, namely neighbourhood trans-

formation without constraints. It determines the neighbourhood relation of the current

relation and triggers a ∆ function (in Table 1) that gradually optimises the size and the

location of a sphere to reach the neighbourhood relation. After one step of optimisa-

tion, the control process will inspect whether the neighbourhood relation is reached.

This process repeats till the target is reached, as outlined in Algorithm 1. Without con-

straints, SphNN can realise every neighbourhood transition. This follows that SphNN

can correctly construct an Euler diagram (in the form of a sphere configuration) for

non-cyclic syllogistic statements. We formally describe this in Theorem 1.

Corollary 1. Each ∆ function is linear concerning the radius and monotonic concern-

ing the distance between the centres.
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Figure 19: (a) OZ disconnects from OX ; (b) when OZ is approaching to OX , a non-zero local minimum

will be reached; (c)COPP(OZ ,OX)
D(OZ ,OY )

(OZ ∣OX ;OY ) forcesOZ to rotate aroundOY to decrease the global

loss; (d)OZ successfully arrived at a location of a target configuration.

Theorem 1. Let p1, . . . , pN−1 be N − 1 premises of a long-chained syllogistic reason-

ing system, where pi can be either ri(Xi,Xi+1) or ri(Xi+1,Xi), (1 ≤ i ≤ N − 1),
ri ∈ {all, some,no, some not}. SphNN can construct a configuration of N spheres

as an Euler diagram of the N − 1 syllogistic statements, such that Xi maps to Oi,

and pi maps to ψi(Oi,Oi+1), where ψi = ψ(ri) if ri(Xi,Xi+1) or ψi = ψ−1(ri) if

ri(Xi+1,Xi), and ψi ∈ {D,P,P,¬D, ¬P,¬P}.

6.2. Control process 2: neighbourhood transition with constraints

What we will put to you, then, is an interactionist approach to reason that

contrasts with standard intellectualist approaches.

— Mercier and Sperber [37]

Let p1, . . . , pN−1 ∴ q be a long-chained syllogistic reasoning with N − 1 premises,

where pi can be either ri(Xi,Xi+1) or ri(Xi+1,Xi), q is fixed to the form rn(X1,XN),
(1 ≤ i ≤ N), where ri ∈ {all, some,no, some not}. Without loss of generality, p1, . . . ,

pN−1 ∴ q can be spatialised intoN spatial statementsψ1(O1,O2), . . . , ψN−1(ON−1,ON),
ψN(ON ,O1), where ψi = ψ(ri) if ri(Xi,Xj) or ψi = ψ−1(ri) if ri(Xj ,Xi), and

ψi ∈ {D,P,P,¬D, ¬P,¬P}. SphNN determines the validity of the reasoning by

trying to construct a counter-example, namely, to construct a sphere configuration

satisfying N relations ψ1(O1,O2) . . .ψN−1(ON−1,ON), and ¬ψN(ON ,O1), where

ψi ∈ {D,P,P,¬D,¬P,¬P}.
We first use Algorithm 1 to constructN spheres satisfying all premises, and observe

the relation between O1 and ON : If ψN(ON ,O1) holds, the current configuration is a
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Algorithm 2: Update OZ to optimise its relation with OX while preserving

its relation with OY .
Input: The target relations: TZX(OZ ,OX), TZY (OZ ,OY ),

TZX ,TZY ∈ {P,P,¬P,¬P,D,¬D}
Output: gLoss, OZ

1 Fix OX , optimise OZ to satisfy TZY (OZ ,OY );
2 SZX(OZ ,OX) ← I(OZ ,OX ∣TZX) and SZY (OZ ,OY ) ← I(OZ ,OY ∣TZY );
3 last gLoss← +∞;

4 gLoss← get the loss of ∆TZX

SZX
(OZ ,OX);

5 while gLoss < last gLoss do

6 last gLoss← gLoss; ▷ ln 5-12: Corollary 1, Theorem 2, Lemma 5, 6

7 one step gradual descent ∆TZX

SZX
(OZ ,OX) +∆TZY

SZY
(OZ ,OY );

8 while ∆TZY

SZY
(OZ ,OY ) > 0 do

9 Gradual descent ∆TZY

SZY
(OZ ,OY );

10 SZY (OZ ,OY ) ← I(OZ ,OY ∣TZY );

11 SZX(OZ ,OX) ← I(OZ ,OX ∣TZX);
12 gLoss← get the loss of ∆TZX

SZX
(OZ ,OX);

13 return gLoss, OZ

target configuration. Otherwise, SphNN tries to updateON to see whether the relation

¬ψN(ON ,O1) can be satisfied without breaking the relation ψN−1(ON−1,ON).
We design a constraint optimisation process, whose function can be described as

follows: GivenOX ,OY , andOZ , with target relations TXY (OX ,OY ), TY Z(OY ,OZ),
and TZX(OZ ,OX), where TXY ,TY Z ,TZX ∈ T = {D,P,P,¬D,¬P,¬P}. Sup-

pose that relations TXY (OX ,OY ) and TY Z(OY ,OZ) are satisfied, this control pro-

cess will fix the two spheresOX andOY , and optimisesOZ to satisfy the target relation

TZX(OZ ,OX), while keeping TY Z(OY ,OZ), written as COPTZX

TZY
(OZ ∣OX ;OY ),

where TZY is the inverse relation of TY Z , or COP (OZ ∣OX ;OY ) for short. SphNN

optimises the relation between OZ and OX by rotating OZ around OY , as rotating

a sphere around another sphere preserves their qualitative spatial relations (Corol-
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lary 3). Concretely, let SZY and SZX be the current inspected relations between OZ

and OY , and between OZ and OX , respectively, that is, SZY = I(OZ ,OY ∣TZY ),
SZX = I(OZ ,OX ∣TZX). COPTZX

TZY
(OZ ∣OX ;OY ) gradually reduces the value of

∆TZX

SZX
(OZ ,OX) + ∆TZY

SZY
(OZ ,OY ); After each step, if TZY (OZ ,OY ) is broken,

that is, ∆TZY

SZY
(OZ ,OY ) > 0, OZ will be optimised to recover TZY (OZ ,OY ) till

∆TZY

SZY
(OZ ,OY ) reaches zero (Theorem 1).

The whole process can be understood as such an interactive motion ofOZ that step-

by-step improves the relation with OX and immediately repairs the broken relation

with OY . For example, suppose that OZ needs to be inside OX and disconnect from

OY , shown in Figure 19(a). While OZ optimises the relation with OX by moving

towards it, OZ may connect with OY and get stuck at a non-zero global loss (due

to the broken relation with OY ), shown in Figure 19(b). COPP
D(OZ ∣OX ;OY ) will

repair the broken relation first. If the central points of the spheres are not collinear,

COPP
D(OZ ∣OX ;OY ) will force OZ rotating around OY , and improve the relation

with OX , shown in Figure 19(c, d). This procedure is outlined in Algorithm 2. We

prove that COPTZX

TZY
(OZ ∣OX ;OY ) is gradual descent and will find a model if the

target relation TZY and the constraint relation TZX are consistent (Theorem 2 and

Theorem 3).

Corollary 2. For any spheres OX and OV , rotating OX around the centre of OV

preserves the qualitative spatial relation between them.

Theorem 2. Let OX and OY be two fixed non-concentric spheres; OZ be a movable

sphere; TZY and TZX be the target relations of OZ to OY and OX , respectively,

TZY ,TZX ∈ T = {D,P,P,¬D,¬P,¬P}. COPTZX

TZY
(OZ ∣OX ;OY ) is monotonic.

Theorem 3. Let R1, T2, and T3 be satisfiable, where R1 ∈ {D,P,PO,P}, T2,T3 ∈
T = {D,P,P,¬D,¬P,¬P}. Let OX and OY be fixed and satisfying R1(OX ,OY ).
SphNN can construct OZ such that T2(OY ,OZ), and T3(OZ ,OX).

6.3. Control process 3: neighbourhood transition with restart

With the two control processes above, SphNN may mistakenly choose an unin-

tended positive relation to spatialise a negative one. We illustrate this using the follow-
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Figure 20: (a) OX and OY are incorrectly fixed to the partial overlapping relation; (b) after restart the

process by fixingOZ at the beginning, the relation betweenOX andOY will be correct.

ing example: ¬P can be spatialised by three possible positive spatial relations, namely,

D, PO, PP, but only the relation D is correct between OX and OZ if D(OX ,OZ)
and P(OY ,OZ). If ¬P is mistakenly spatialised as PO, SphNN will not be success-

ful in constructing a target configuration. The remedy is to restart the process once by

choosing a different sphere as the first fixed sphere (Lemma 7, 8). Because an unin-

tended relation is inconsistent with the other two relations, this unintended relation can-

not appear, when the other two relations are realised first. For example, PO(OX ,OY )
is inconsistent with D(OX ,OZ) (no X are Z) and P(OY ,OZ) (all Y are Z). If we fix

OZ , and realise OX disconnecting from OZ , and realise OY being part of OZ , OX

will disconnect from OY , as illustrated in Figure 20. We outline the control process

with this remedy in Algorithm 3. We prove that for any three satisfiable syllogistic

statements, this algorithm can construct a sphere configuration with one epoch and a

maximum of one restart (Theorem 4).

Theorem 4. Let p1, p2, p3 be three syllogistic statements, where p1 can be either

r1(X1,X2) or r1(X2,X1), p2 can be either r2(X2,X3) or r2(X3,X2), and p3 can

be either r3(X1,X3) or r3(X3,X1), r1, r2, r3 ∈ {all, some,no, some not}. SphNN

can determine the satisfiability of p1, p2, p3 in the first epoch, with at most one restart.

6.4. SphNN determines the validity of a long-chained syllogistic reasoning

Let p1, . . . , pN−1 ∴ q be a long-chained syllogistic reasoning with N − 1 premises,

where pi can be either ri(Xi,Xi+1) or ri(Xi+1,Xi), q is fixed to rn(X1,XN), ri ∈
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Algorithm 3: SphNN for Classic Syllogistic Reasoning (S3)
Input: Three target relations: T12(O1,O2), T23(O2,O3), T31(O3,O1),

where Tij ∈ {P,P,¬P,¬P,D,¬D}, 1 ≤ i, j ≤ 3.

Output: SAT or UNSAT

1 Initialise O1, O2, and O3 as being coincided;

2 if all three relations are satisfied then return SAT

3 break coincide relations with a small random fluctuation;

4 fix O1, update O2 to satisfy T12(O1,O2) = T−1
21(O2,O1); ▷ Algorithm 1

5 fix O1, update O3 to satisfy T31(O3,O1); ▷ Algorithm 1

6 do COPT32

T31
(O3∣O2,O1); ▷ Algorithm 2

7 if not all three relations are satisfied then

8 fix O2, update O3 to satisfy T−1
23(O3,O2); ▷ Algorithm 1

9 fix O2, update O1 to satisfy T12(O1,O2); ▷ Algorithm 1

10 do COPT13

T12
(O1∣O3,O2); ▷ Algorithm 2

11 if all three relations are satisfied then return SAT ▷ Theorem 4

12 else return UNSAT

{all, some,no, some not}. Without loss of generality, p1, . . . , pN−1 ∴ q can be spa-

tialised into N spatial statements ψ1(O1,O2), . . . , ψN−1(ON−1,ON), ψN(ON ,O1),
whereψi = ψ(ri) if ri(Xi,Xj) orψi = ψ−1(ri) if ri(Xj ,Xi), andψi ∈ {D,P,P,¬D,
¬P,¬P}. It will be easy to construct N − 1 spheres satisfying ψ1(O1,O2), . . . ,

ψN−1(ON−1,ON) in one epoch as follows: We initialiseN−1 coincided spheres; then,

we fix the first one and move the second one till the relation ψ1(O1,O2) is satisfied;

then we fix the second sphere and move the third sphere till the relation ψ2(O2,O3)
is satisfied, . . . . Each step can be designed as a gradual descent process (Corollary 1).

This process repeats till the target is reached. In this way, SphNN can correctly con-

struct an Euler diagram (in the form of a sphere configuration) for non-cyclic syllogistic

statements. We formally describe this in Theorem 1.

SphNN determines the validity of the reasoning by trying to construct a counter-

example, namely, to construct a sphere configuration satisfyingN relationsψ1(O1,O2)

46



. . .ψN−1(ON−1,ON), and ¬ψN(ON ,O1), where ψi ∈ {D,P,P,¬D,¬P,¬P}. We

show that SphNN can construct a sphere configuration if theN relations are satisfiable,

with the worst computational complexity O(N2).
Firstly, SphNN initialises N coincided spheres (all relations are EQ). If this triv-

ial configuration is a counter-example, the validity of the original reasoning is re-

futed. We prove that for satisfiable relations, if one relation must be the EQ rela-

tion, all relations will be the EQ relation. Thus, after refuting the trivial configuration

(all relations are the EQ relation), SphNN restricts the target spatial relations to be

{D,PP,PP,¬D,¬PP,¬PP}. Because suppose that several EQ relations are in a

satisfiable configuration, each EQ shall be replaced by a non-EQ relation. Otherwise,

all relations must be EQ relations.

Suppose that SphNN has successfully constructed N spheres O1, . . . ,ON satis-

fying ψ1(O1,O2), . . . , ψN−1(ON−1,ON) (Theorem 1). Let ψ̃N−1,1 be the inspected

spatial relation between ON−1 and O1, that is, ψ̃N−1,1 ∈ {D,PO,PP,PP}. SphNN

determines the satisfiability of the three spheres ON−1, O1, and ON with the rela-

tions ψ̃−1N−1,1(O1,ON−1), ψN−1(ON−1,ON), and ¬ψN(ON ,O1) as follows: It fixes

O1 and ON−1, and rotates ON around ON−1 to reach the relation ¬ψN(ON ,O1).
If ¬ψN(ON ,O1) is satisfied, SphNN will find a counter-example. Otherwise, the

relations ψ̃−1N−1,1(O1,ON−1), ψN−1(ON−1,ON), and ¬ψN(ON ,O1) are unsatisfi-

able, which follows that ψN−1(ON−1,ON) and ¬ψN(ON ,O1) will deduce the rela-

tion ¬ψ̃−1N−1,1(O1,ON−1). Accordingly, SphNN starts the backward process by up-

dating the relation between O1 and ON−1: It fixes O1 and updates ON to satisfy

¬ψN(ON ,O1), then fixes ON and updates ON−1 to satisfy ψN−1(ON−1,ON). After

the two operations, the relation between ON−1 and O1 will be inspected and updated.

Let R be the inspected relation, R(ON−1,O1), where R ∈ {D,PP,PP,PO}. The
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Algorithm 4: SphNN for long Syllogistic Reasoning (SN)
Input: N target relations: T1,2(O1,O2). . .TN−1,N(ON−1,ON),

TN,1(ON ,O1), Ti ∈ {P,P,¬P,¬P,D,¬D}
Output: SAT or UNSAT ▷ return SAT if N relations are satisfiable.

1 Initialise all Oi as being coincided (1 ≤ i ≤ N);
2 if N coincided spheres satisfy the N relations then return SAT;

3 if N == 3 then return S3 for T1,2(O1,O2), T2,3(O2,O3), T3,1(O3,O1);
4 for i = 1 . . .N do

5 fix Oi, update Oi+1 to satisfy Ti,i+1(Oi,Oi+1); ▷ Algorithm 1

6 do COPTN,1

TN,N−1
(ON ∣O1,ON−1); ▷ Algorithm 2

7 if TN,1(ON ,O1) then return SAT;

8 R← I(O1,ON−1), R ∈ T5;

9 fix O1, update ON to satisfy TN,1(ON ,O1); ▷ Algorithm 1

10 fix ON , update ON−1 to satisfy TN−1,N(ON−1,ON); ▷ Algorithm 1

11 i← N − 1;

12 while i > 3 do

13 R′ ← I(O1,Oi), R′ ∈ T5;

14 if R′ ∈ {D,PP,PP} then T1,i ←R′

15 else if R ==D then T1,i ← ¬D
16 else if R == PP then T1,i ← ¬P
17 else if R == PP then T1,i ← ¬P
18 fix O1, update Oi to satisfy T1,i(O1,Oi); ▷ Algorithm 1

19 if Ti−1,i(Oi−1,Oi) holds then return SAT;

20 R← I(O1,Oi−1), R ∈ T5;

21 fix Oi, update Oi−1 to satisfy Ti−1,i(Oi−1,Oi); ▷ Algorithm 1

22 i← i − 1

23 return S3 of T1,2(O1,O2), T2,3(O2,O3), and R(O1,O3)

relation between ON−1 and O1, ψ′N−1,1, will be updated as follows.

ψ′N−1,1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R, if R ∈ {D,PP,PP}

¬D, if R = PO ∧ ψ̃N−1,1 =D

¬PP, if R = PO ∧ ψ̃N−1,1 = PP

¬PP, if R = PO ∧ ψ̃N−1,1 = PP
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In all cases, ψ′N−1,1 is a syllogistic relation. This way, SphNN reduces the task into the

case ofN−1. . . . If ψ
′−1
2,1 contradicts with ψ1, SphNN will conclude there is no counter-

example and the original syllogistic reasoning is valid. The construction process is

illustrated in Figure 21 and listed in Algorithm 4. The following corollary and theorem

guarantee the determinacy of SphNN for long-chained syllogistic reasoning.

Corollary 3. For any spheres OX and OV , rotating OX around the centre of OV

preserves the qualitative spatial relation between them.

Theorem 5. (The principle of deterministic neural reasoning) Let p1, . . . , pN−1 ∴ q
be a long-chained syllogistic reasoning with N − 1 premises, where pi can be ei-

ther ri(Xi,Xi+1) or ri(Xi+1,Xi) (1 ≤ i ≤ N − 1), q is fixed to rn(X1,XN), rj ∈
{all, some,no, some not} (1 ≤ j ≤ N ). SphNN can determine its validity (or satisfi-

ability) with the computational complexity of O(N).

7. The proofs of the theorems

It seems impossible to reach any definitive conclusions concerning human

rationality in the absence of a detailed analysis of the sensitivity of the

criterion and the cost involved in evaluating the alternatives.

— Amos Tversky [82]

We outline theorems and proofs whose dependency relations are diagrammed in

Figure 22. Proofs are independent of the dimension of spheres, so theorems hold for

n-dimensional space (n ≥ 2) (Corollary 3). With these theorems and proofs, SphNN

becomes the first neural model for deterministic logical reasoning.

7.1. Basic theorems

Corollary 1. Each ∆ function is linear concerning the radius and monotonic concern-

ing the distance between the centres.

Proof (corollary) 1. Each ∆ function updates the radius rX and the centre O⃗X of

sphere OX . So, it is linear concerning the radius rX and monotonic concerning the
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distance between the centres disX,V = ∥O⃗X − O⃗V ∥, except ∆T
EQ∶PO(OX ,OV ), where

T ∈ T . When OX coincides with OV (EQ), one step of update the length of ∥O⃗X∥
(∥O⃗X∥ ≠ 0) will push OX to be partially overlapped with OV , so ∆T

EQ∶PO(OX ,OV )
can also be understood as monotonic. ◻

7.2. The satisfiability theorem for non-cyclic statements

Theorem 1. Let p1, . . . , pN−1 be N − 1 premises of a long-chained syllogistic reason-

ing system, where pi can be either ri(Xi,Xi+1) or ri(Xi+1,Xi), (1 ≤ i ≤ N − 1),
ri ∈ {all, some,no, some not}. SphNN can construct a configuration of N spheres

as an Euler diagram of the N − 1 syllogistic statements, such that Xi maps to Oi,

and pi maps to ψi(Oi,Oi+1), where ψi = ψ(ri) if ri(Xi,Xi+1) or ψi = ψ−1(ri) if

ri(Xi+1,Xi), and ψi ∈ {D,P,P,¬D, ¬P,¬P}.

Proof 1. We show ψ1(O1,O2), . . . , ψN−1(ON−1,ON) are satisfiable. We prove this

by inducting on the length of the sequence.

1. N = 1. For any initial relation between O1 and O2, SphNN can realise the

target relation by using ∆ functions in the neural transition map of qualitative

spatial relations.

2. Suppose that it holds for N ≤K − 1.

3. N = K. Assume that SphNN has constructed K − 1 spheres O1,. . . , OK−1

satisfying first K − 1 constraints. To optimise OK , SphNN repeats the method

used for N = 1, as optimising ψK−1(OK−1,OK) will not hurt other relations. ◻

7.3. Existence theorems

Lemma 1. Given R1,R2,R3 ∈ {D,EQ,PO,PP,PP}. If the three relations are

satisfiable, that is, ∃O1,O2,O3[R1(O1,O2) ∧R2(O2,O3) ∧R3(O3,O1)], then for

any fixedOX andOY satisfying R1(OX ,OY ), there will beOZ such that R2(OY ,OZ)
and R3(OZ ,OX).

Proof (lemma) 1. We enumerate the combination of relations of R2 and R3.

1. R3(OZ ,OX) = EQ(OZ ,OX). A trivial case of Theorem 1.
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Figure 23: (a) OY is proper proper part of OX ; (b) OX is proper part of OY ; (c) OX disconnects from

OY ; (d)OX partially overlaps withOY . In any situation, there isOZ disconnecting fromOX andOY .

2. R2(OY ,OZ) = EQ(OY ,OZ). A trivial case of Theorem 1.

3. R2(OY ,OZ) = D(OY ,OZ) and R3(OZ ,OX) = D(OZ ,OX). For any fixed

OX and OY , if

(a) PP(OX ,OY ). Any OZ disconnecting from OX disconnects from OY ,

shown in Figure 23(a).

(b) PP(OX ,OY ). Any OZ disconnecting from OY disconnects from OX ,

shown in Figure 23(b).

(c) D(OX ,OY ). Let both OX and OY be inside OM , any OZ disconnecting

from OM disconnects from OX and OY , shown in Figure 23(c).

(d) PO(OX ,OY ). The same as (c), shown in Figure 23(d).

4. R2(OY ,OZ) = PO(OY ,OZ) and R3(OZ ,OX) =D(OZ ,OX). For any fixed

OX and OY , if

(a) PO(OX ,OY ). Let O⃗Z (the centre of OZ) be located at the boundary

of OY and be the apogee to OX . As OX partially overlaps with OY ,

PO(OX ,OY ), they cannot be concentric, so there is rZ = ϵ such that

OZ disconnects from OX and partially overlaps with OZ , shown in Fig-
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Figure 24: (a-c) OY partially overlaps with OZ and OZ disconnects from OX ; (d) OX contains OY ,

therefore, if OZ connects with OY , it will connect with OX . The grey background means an unsatisfiable

case.

ure 24(a).

(b) D(OX ,OY ). The same as (a), shown in Figure 24(b).

(c) PP(OX ,OY ). If OX and OY are not concentric, the case is the same as

(a); otherwise, OX is a proper part of OY (rY > rX ), let rZ < rY − rX .

shown in Figure 24(c).

(d) PP(OX ,OY ). Any OZ connecting with OY connects with OX . This

contradicts with D(OZ ,OX), shown in Figure 24(d).

5. R2(OY ,OZ) = PP(OY ,OZ) and R3(OZ ,OX) =D(OZ ,OX). For any fixed

OX and OY , if

(a) PO(OX ,OY ). As OX partially overlaps with OY , let the line L pass the

centres of OX and OY , intersect with the boundary of OX at P⃗0 (P⃗0 is

inside OY ), intersect with the boundary of OY at P⃗1 (P⃗1 is outside OX ).

LetOZ be a sphere whose diameter is a segment between P⃗0 and P⃗1, shown

in Figure 25(a).

(b) D(OX ,OY ). Let OZ be any sphere inside OY , shown in Figure 25(b).
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Figure 25: (a-c) As long asOX does not totally coverOY , there will beOZ that is proper part ofOY , and

disconnects fromOX ; (d)OX totally coversOY , ifOZ is insideOY , it will be insideOX .

(c) PP(OX ,OY ). AsOX is proper part ofOY , let the line L pass the centres

of OX and OY , intersect with the boundary of OX at P⃗1 and P⃗2, intersect

with the boundary of OY at P⃗0 and P⃗3. Without the loss of generality, let

∣P⃗0P⃗1∣ ≥ ∣P⃗2P⃗3∣ ≥ 0. As PP(OX ,OY ), it is not possible that ∣P⃗0P⃗1∣ =
∣P⃗2P⃗3∣ = 0. Let OZ be a sphere whose diameter is a segment between P⃗0

and P⃗1, shown in Figure 25(c).

(d) PP(OX ,OY ). As OZ is part of OY , OZ will be inside OX , which con-

tradicts with D(OX ,OZ), shown in Figure 25(d).

6. R2(OY ,OZ) = PP(OY ,OZ) and R3(OZ ,OX) =D(OZ ,OX). For any fixed

OX and OY , if

(a) D(OX ,OY ). Let the line L pass the centres of OX and OY , intersect

with the boundary of OY at P⃗0, the perigee of OX . Let OZ be the sphere

that tangentially contains OY and P⃗0 be the tangential point, shown in

Figure 26(a).

(b) PO(OX ,OY ) ∨ PP(OX ,OY ) ∨ PP(OX ,OY ). As OY is part of OZ ,

any sphere OX , if OX connects with OY , OX connects with OZ , which

contradicts with D(OZ ,OX), shown in Figure 26(b-d).
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Figure 26: OY is proper part of OZ and OZ disconnects from OX . This case is only possible when OX

disconnects fromOY (a).

7. R2(OY ,OZ) =D(OY ,OZ) and R3(OZ ,OX) = PO(OZ ,OX). Case 4.

8. R2(OY ,OZ) = PO(OY ,OZ) and R3(OZ ,OX) = PO(OZ ,OX). For any

fixed OX and OY , if

(a) PO(OX ,OY ). Let the boundaries of OX and OY intersect at P⃗0 and P⃗1.

Any sphere OZ with P⃗0 as the centre and with rZ less than min{rX , rY }
will partially overlap with OX and OY , shown in Figure 27(a).

(b) D(OX ,OY ). Let OZ be the sphere with the segment ∣O⃗XO⃗Y ∣ as the di-

ameter, shown in Figure 27(b).

(c) PP(OX ,OY ). LetOZ be a sphere whose centre is at the boundary ofOY

and whose boundary passes the centre of OX , shown in Figure 27(c).

(d) PP(OX ,OY ). LetOZ be a sphere whose centre is at the boundary ofOX

and whose boundary passes the centre of OY , shown in Figure 27(d).

9. R2(OY ,OZ) = PP(OY ,OZ) and R3(OZ ,OX) = PO(OZ ,OX). For any

fixed OX and OY , if

(a) PO(OX ,OY ). Let the line L pass the centres of OX and OY , intersect

with the boundary ofOX at points P⃗0 and P⃗3, and intersect with the bound-

ary of OY at points P⃗1 and P⃗2, P⃗M is located between P⃗0 and P⃗2. OZ is
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Figure 27: (a)OX partially overlaps withOY , and their boundaries intersect at P⃗0 and P⃗1; (b)OX discon-

nects fromOY ; (c)OX is proper part ofOY ; (d)OY is proper part ofOX .

Figure 28: (a) OX partially overlaps with OY ; (b) OX is proper part of OY ; (c) OX disconnects from

OY ; (d)OY is proper part ofOX .
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Figure 29: (a) OX disconnects from OY ; (b) OX partially overlaps with OY ; (c) OY is proper part of

OX ; (d)OX is part ofOY .

the sphere with ∣P⃗1P⃗M ∣ as the diameter. It is easy to prove thatOZ partially

overlaps with OX and is a proper part of OY , as shown in Figure 28(a).

(b) PP(OX ,OY ). Let the line L pass the centres ofOX andOY and intersect

with the boundary of OY at points P⃗0 and P⃗1. Let O⃗X be closer to P⃗0

than to P⃗1. Let OZ be the sphere whose diameter is ∣P⃗1O⃗X ∣, shown in

Figure 28(b).

(c) D(OX ,OY ). As OX disconnects from OY , OX will disconnect from any

sphere inside OY . This contradicts with PO(OZ ,OX), shown in Fig-

ure 28(c).

(d) PP(OX ,OY ). As OX contains OY , OX will contains any sphere inside

OY . This contradicts with PO(OZ ,OX), shown in Figure 28(d).

10. R2(OY ,OZ) = PP(OY ,OZ) and R3(OZ ,OX) = PO(OZ ,OX). For any

fixed OX and OY , if

(a) D(OX ,OY ). Let P⃗0 be located at the boundary of OY and be the apogee

to OX . Let OZ be the sphere takes the segment ∣O⃗X P⃗0∣ as the diameter.

Then, OZ contains OY and partially overlaps with OX , shown in Fig-

ure 29(a).
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Figure 30: (a)OX is proper part ofOY ; (b)OX partially overlaps withOY ; (c)OY is proper part ofOX ;

(d)OX disconnects fromOY .

(b) PO(OX ,OY ). The same as (a), shown in Figure 29(b).

(c) PP(OX ,OY ). Let the line L pass the centres of OX and OY , intersect

with the boundary of OX at P⃗0 and P⃗1, and intersect with the boundary of

OY at P⃗2 and P⃗3, as shown in Figure 29(c). Let OZ take P⃗1 as the centre,

and ∣P⃗1P⃗2∣ as the radius, where ∣P⃗1P⃗2∣ > ∣P⃗1P⃗3∣ .
(d) PP(OX ,OY ). For any OZ containing OY , OZ will contain OX . This

contradicts with PO(OZ ,OX), shown in Figure 29(d).

11. R2(OY ,OZ) =D(OY ,OZ) and R3(OZ ,OX) = PP(OZ ,OX). Case 5.

12. R2(OY ,OZ) = PO(OY ,OZ) and R3(OZ ,OX) = PP(OZ ,OX). Case 9.

13. R2(OY ,OZ) = PP(OY ,OZ) and R3(OZ ,OX) = PP(OZ ,OX). For any

fixed OX and OY , if

(a) PP(OX ,OY ). Let the line L pass the centres of OX and OY , intersect

with the boundary of OX at P⃗2 and P⃗3, and intersect with the boundary

of OY at P⃗0 and P⃗1, where P⃗0 is nearer to P⃗2 than to P⃗3. Let P⃗M be a

point between P⃗0 and P⃗2; P⃗N be a point between P⃗1 and P⃗3. Let OZ be

the sphere with ∣P⃗M P⃗N ∣ as the diameter, as shown in Figure 30(a).

(b) From PP(OY ,OZ) and PP(OZ ,OX) we have PP(OY ,OX), which is
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Figure 31: WhenOY is proper part ofOZ andOZ containsOX ,OY andOX can be of any relation.

equivalent with PP(OX ,OY ). Therefore, other relations betweenOX and

OY are not possible, shown in Figure 30(b-d).

14. R2(OY ,OZ) = PP(OY ,OZ) and R3(OZ ,OX) = PP(OZ ,OX). For any

OX , OY , let OZ be large enough to contain both OX and OY , as shown in

Figure 31.

15. R2(OY ,OZ) =D(OY ,OZ) and R3(OZ ,OX) = PP(OZ ,OX). Case 6.

16. R2(OY ,OZ) = PO(OY ,OZ) and R3(OZ ,OX) = PP(OZ ,OX). Case 10.

17. R2(OY ,OZ) = PP(OY ,OZ) and R3(OZ ,OX) = PP(OZ ,OX). Case 14.

18. R2(OY ,OZ) = PP(OY ,OZ) and R3(OZ ,OX) = PP(OZ ,OX). Case 13. ◻

Lemma 2. Given R1,R2 ∈ {D,EQ,PO,PP,PP} and R3 ∈ {¬D,¬P,¬P}. If

the three relations are satisfiable, that is, ∃O1,O2,O3[R1(O1,O2) ∧R2(O2,O3) ∧
R3(O3,O1)], for any fixed OX and OY satisfying R1(OX ,OY ), there will be OZ

such that R2(OY ,OZ) and R3(OZ ,OX).

Proof (lemma) 2. We enumerate the relations of R1 and R2. The negative value of
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Figure 32: OY can partially overlap withOX andOZ in each case: (a)OX disconnects fromOZ , (b)OX

partially overlaps withOZ , (c)OX is proper part ofOZ , (d)OZ is proper part ofOX .

R3 can be understood as the grouping of several positive relations, as follows.

¬D = EQ ∨PO ∨PP ∨PP

¬P =D ∨PO ∨PP

¬P =D ∨PO ∨PP

The rest of the part is similar to Proof(lemma) 1. ◻

Lemma 3. Relations T1, T2, and T3 are satisfiable (∃O1,O2,O3[R1(O1,O2) ∧
R2(O2,O3)∧R3(O3,O1)]), where T1,T2 ∈ {¬D,¬P,¬P} and T3 ∈ {D,P,P,PO}.
For any fixedOZ andOX satisfying T3(OZ ,OX), there isOY satisfying T1(OX ,OY ),
T2(OY ,OZ).

Proof (lemma) 3. 1. T3(OZ ,OX) =D(OZ ,OX).
LetOY be such a sphere whose centre is outsideOX andOZ and whose bound-

ary passes the centres of OX and OZ . In this way, OY partially overlaps with

OX andOZ . Therefore, for all T1,T2 ∈ {¬D,¬P,¬P}, we have T1(OX ,OY )
and T2(OY ,OZ), as illustrated in Figure 32(a).
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2. T3(OZ ,OX) = PO(OZ ,OX)∨P(OZ ,OX)∨P(OZ ,OX). The same as case

1, illustrated in Figure 32(b-d). ◻

7.4. The relative qualitative space

Figure 33: (a) UD,O0
rX occupies the whole space except an open sphere with the centre O⃗0 and the radius

of r0 + rX . UD,O0
rX is concave; (b) UPO,O0

rX is an open ring concentric with O0 whose radius within the

range of ∣r0 − rX ∣ and r0 + rX . UPO,O0
rX is concave, if rX < r0; (c) UP,O0

rX is a closed sphere with the

centre O⃗0 and the radius of r0 − rX . It is convex; (d) UP,O0
rX is a closed sphere that is concentric with O0

and with the radius of rX − r0. It is convex.

Definition 1. Let O0 be a fixed sphere with radius r0 and the centre O⃗0, and let

OX be a moving sphere with fixed radius rX , satisfying R(OX ,O0), where R ∈
{D,PO,P,P}. All possible locations of the centre of OX form a relative qualita-

tive space UR,O0
rX

as follows.

1. R(OX ,O0) =D(OX ,O0). UD,O0
rX

is the space of all points O⃗X whose distance

to O⃗0 is greater than or equal to rX + r0. UD,O0
rX

= {O⃗X ∶ ∥O⃗XO⃗0∥ ≥ rX + r0},
as illustrated in Figure 33(a).

2. R(OX ,O0) = PO(OX ,O0). UPO,O0
rX

is the space of all points O⃗X whose

distance to O⃗0 is less than rX + r0 and greater than the absolute difference
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Figure 34: (a) U¬D,O0
rX is the complement space of UD,O0

rX ; (b) U¬P,O0
rX is the complement space of UP,O0

rX ;

(c) U¬P,O0
rX is the complement space of UP,O0

rX .

between rX and r0. UPO,O0
rX

= {O⃗X ∶ ∣rX−r0∣ < ∥O⃗XO⃗0∥ < rX+r0}. If rX < r0,

UPO,O0
rX

will be a ring, and thus is concave, as illustrated in Figure 33(b).

3. R(OX ,O0) = P(OX ,O0). If r0 ≥ rX , UP,O0
rX

is the space of all points O⃗X

whose distance to O⃗0 is less than or equal to r0−rX . UP,O0
rX

= {O⃗X ∶ ∥O⃗XO⃗0∥ ≤
r0 − rX}, as illustrated in Figure 33(c). If r0 < rX , UP,O0

rX
is empty ∅.

4. R(OX ,O0) = P(OX ,O0). If rX ≥ r0, UP,O0
rX

is the space of all points O⃗X

whose distance to O⃗0 is less than or equal to rX−r0. UP,O0
rX

= {O⃗X ∶ ∥O⃗XO⃗0∥ ≤
rX − r0}, as illustrated in Figure 33(d). If rX < r0, UP,O0

rX
is empty ∅.

Definition 2. U¬D,O0
rX

, U¬P,O0
rX

, and U¬P,O0
rX

are complement regions of UD,O0
rX

, UP,O0
rX

,

and UP,O0
rX

, respectively.

1. U¬D,O0
rX

is the space of all points O⃗X whose distance to O⃗0 is less than rX + r0.

U¬D,O0
rX

= {O⃗X ∶ ∥O⃗XO⃗0∥ < rX + r0}, as illustrated in Figure 34(a).

2. If r0 ≥ rX , U¬P,O0
rX

is the space of all points O⃗X whose distance to O⃗0 is greater

than r0 − rX . U¬P,O0
rX

= {O⃗X ∶ ∥O⃗XO⃗0∥ > r0 − rX}, as illustrated in Fig-

ure 34(b). If r0 < rX , U¬P,O0
rX

is the whole space Ω.

3. If rX ≥ r0, U¬P,O0
rX

is the space of all points O⃗X whose distance to O⃗0 is greater

than rX−r0. U¬P,O0
rX

= {O⃗X ∶ ∥O⃗XO⃗0∥ > rX−r0}, as illustrated in Figure 34(c).

If rX < r0, U¬P,O0
rX

is the whole space Ω.

7.5. The rotation theorem in a relative qualitative space

Corollary 2. For any spheres OX and OV , rotating OX around the centre of OV

preserves the qualitative spatial relation between them.
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Figure 35: (a) UP,O
rX and UP,O

rX are convex spheres; (b) UD,O
rX is concave (UPO,O

rX can be concave), with

a spherical hole; (c) this hole can be circumvented by rotating around it.

Proof (corollary) 2. Each qualitative spatial relation is a function of the distance be-

tween their centres, disX,V = ∥O⃗X − O⃗V ∥, and the radii. Rotating OX around the

centre of OV preserves disX,V , and their radii rX and rV . Therefore, it preserves the

qualitative spatial relation. ◻

Lemma 4. For any two different spheres O1 and O2 with the same radius rX and

satisfying R(O1,O0) and R(O2,O0), if R ∈ {P,P}, directly move O1 to O2, the

relation R will always hold during the movement process; if R ∈ {D,PO}, directly

shiftingO1 toO2 may violate the relation R during the movement process. To preserve

R(O1,O0) during the process of shifting, O1 may need to rotate around the centre of

O0.

Proof (lemma) 4. 1. R ∈ {P,P}. UR,O0
rX

is a close sphere O concentric with O0.

Let the centre of O1 move from O⃗1 to O⃗2. Then, both O⃗1 and O⃗2 are inside O,

as shown in Figure 35(a). Let O⃗P be any point along the segment ∣O⃗1O⃗2∣. Let

α = ∠O⃗0O⃗P O⃗1 and β = ∠O⃗0O⃗P O⃗2, α + β = 180○, one of them is greater than

or equal to 90○, therefore, ∥O⃗0−O⃗P ∥ is less than max{∣O⃗0O⃗1∣, ∣O⃗0O⃗2∣}, so, O⃗P

is inside O.

2. R ∈ {D,PO}. UR,O0
rX

encompasses a concentric sphere that does not belong

to UR,O0
rX

. Suppose that direct shifting O1 to O2 intersects with this concentric

sphere at points P⃗1 and P⃗2, as illustrated in Figure 35(b). At point P⃗1 the relation

R exactly holds, with Corollary 3, rotating O1 at point P⃗1 around the centre of

O0 to point P⃗2 will preserve the relation R, as illustrated in Figure 35(c). ◻
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Figure 36: The gradual descent along the line segment ∥O⃗ZO⃗
′
Z∥ may cause the gradual ascent of

∣∥O⃗XO⃗
′
Z∥ − ∥O⃗XO⃗Z∥∣, however, ∣∥O⃗XO⃗

′
Z∥ − ∥O⃗XO⃗Z∥∣ ≤ ∥O⃗ZO⃗

′
Z∥.

7.6. The monotonicity of the constraint optimisation

Theorem 2. Let OX and OY be two fixed non-concentric spheres; OZ be a movable

sphere; TZY and TZX be the target relations of OZ to OY and OX , respectively,

TZY ,TZX ∈ T = {D,P,P,¬D,¬P,¬P}. COPTZX

TZY
(OZ ∣OX ;OY ) is monotonic.

Proof 2. SZY and SZX be the actual relations of OZ to OY and OX , respectively.

SZX ∈ ftsp(TZX) and SZY ∈ ftsp(TZY ); the relation R̃2(OZ ,OY ) and R3(OZ ,OX)
be the next target relations of OZ to OY and to OX , respectively, where R̃2, R3 ∈ S .

COPTZX

TZY
(OZ ∣OX ;OY ) repeatedly performs two steps as follows: (1) it gradually

decreases the value of the function ∆R3

SZX
(OZ ,OX) + ∆R̃2

SZY
(OZ ,OY ); (2) while

∆R̃2

SZY
(OZ ,OY ) > 0, gradual descent operations will be applied for ∆R̃2

SZY
(OZ ,OY ).

Consider the case that the radius of OZ is fixed, and repeatedly perform gradual

descent operation on ∆R̃2

SZY
(OZ ,OY ) until it equals zero, at this time ∆R3

SZX
(OZ ,OX)

may increase a value δ∗0 . We need to prove that the decreased value related to OY , is

no less than δ∗0 .

WhenOY is fixed, with Theorem 1, the gradual descent operation on ∆R̃2

SZY
(OZ ,OY )

will move OZ along the straight line O⃗Y O⃗Z , with the decrease of δ
′

1 = ∥O⃗ZO⃗
′
Z∥. This

may cause a maximum increase of ∆R3

SZX
(OZ ,OX) with the value of δ∗0 = ∣∥O⃗XO⃗

′
Z∥−

∥O⃗XO⃗Z∥∣, shown in Figure 36. We have δ
′

1 = ∥O⃗ZO⃗
′
Z∥ ≥ ∣∥O⃗XO⃗

′
Z∥ − ∥O⃗XO⃗Z∥∣ = δ∗0 .
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The equal relation holds if O⃗X , O⃗Z , and O⃗′
Z are collinear.

Consider the case that the gradual descent operation on ∆R̃2

SZY
(OZ ,OY ) also up-

date the radius of OZ , with the change of δrZ . This value helps to reduce the value

of ∆R̃2

SZY
(OZ ,OY ). With Corollary 1, the same amount of the value may increase

the value of ∆R3

SZX
(OZ ,OX), which exactly counteracts the decreased value from the

relation to OY . Therefore, COPTZX

TZY
(OZ ∣OX ;OY ) is monotonic. ◻

7.7. Theorems about constraint optimisation

Lemma 5. Let R1, R2, and R3 be satisfiable, where R1,R2 ∈ {D,P,PO,P}, R3 ∈
{D,P,P,¬D,¬P,¬P}. Let spheres OX and OY be fixed and satisfying the relation

R1(OX ,OY ). SphNN can construct OZ such that R2(OY ,OZ) and R3(OZ ,OX).

Proof (lemma) 5. With Theorem 1, SphNN can constructOZ such that R2(OY ,OZ).
With Theorem 2, COP (OZ ∣OX ;OY ) is gradual descent.

1. R3 ∈ {D,P,P}.
With Lemma 1, there is O∗Z satisfying R2(OY ,O∗Z) and R3(O∗Z ,OX). That is,

COP (O∗Z ∣OX ;OY ) = 0.

2. R3 ∈ {¬D,¬P,¬P}.
With Lemma 2, there is O′Z satisfying R2(OY ,O′z) and R3(O′Z ,OX). That is,

COP (O′Z ∣OX ;OY ) = 0.

In both cases, COP (OZ ∣OX ;OY ) will reach 0. Therefore, SphNN can construct

OZ such that R2(OY ,OZ) and R3(OZ ,OX) by gradual descending the function

COP (OZ ∣OX ;OY ). ◻

Lemma 6. LetOX ,OY , andOZ be spheres that satisfy three relations T1(OX ,OY ),
T2(OY ,OZ) and T3(OZ ,OX), where T1,T2 ∈ {¬D,¬P,¬P}, T3 ∈ {D,P,P,PO}.
SphNN can construct an Euler Diagram by first realising T3(OZ ,OX), then fix OZ

and OX , and constructs OY to satisfy both T1(OX ,OY ) and T2(OY ,OZ).

Proof (lemma) 6. Let S1 be the actual relation between OX and OY , and S2 be

the actual relation between OY and OZ , in which S1 ∈ ftsp(T1) = {T1,¬T1},
S2 ∈ ftsp(T2) = {T2,¬T2}, where T1,T2 ∈ {¬D,¬P,¬P}, with Lemma 3, for any
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fixed OZ and OX satisfying T3(OZ ,OX), there exists O∗Y satisfying T1(OX ,O∗Y )
and T2(O∗Y ,OZ), in which T1,T2 ∈ {¬D,¬P,¬P}. So, COP (O∗Y ∣OX ;OZ) = 0.

Therefore, SphNN can construct an Euler Diagram by first realising T3(OZ ,OX)
(Theorem 1), then fix OZ and OX , and constructs OY to satisfy both T1(OX ,OY )
and T2(OY ,OZ) by gradual descending the function COP (OY ∣OX ;OZ). ◻

Theorem 3. Let R1, T2, and T3 be satisfiable, where R1 ∈ {D,P,PO,P}, T2,T3 ∈
T = {D,P,P,¬D,¬P,¬P}. Let OX and OY be fixed and satisfying R1(OX ,OY ).
SphNN can construct OZ such that T2(OY ,OZ), and T3(OZ ,OX).

Proof 3. Lemma 5 and Lemma 6. ◻

7.8. The restart theorem

Lemma 7. Let OX and OY be fixed, satisfying T1(OX ,OY ), and OZ be movable,

satisfying T2(OY ,OZ), where T1,T2 ∈ {D,P,P}. Let the relation between OZ

and OX be R3(OZ ,OX) and the three relations T1,T2,R3 are satisfiable, where

R3 ∈ {D,PO,P,P}. The number of possible relations of R3 can not be 2.

Proof (lemma) 7. We enumerate relations of T1 and T2.

1. T1(OX ,OY ) =D(OX ,OY ) and T2(OY ,OZ) =D(OY ,OZ).

(a) Let OM be a sphere that contains OX and OY . Any OZ that discon-

nects from OM disconnects from OX and OY , D(OZ ,OX) shown in Fig-

ure 37(a).

(b) P⃗0 be the apogee to OY at the boundary of OX . Let OZ take P⃗0 as the

centre and have the same radius as OX , then OZ partially overlaps with

OX and disconnects from OY , PO(OZ ,OX) shown in Figure 37(b).

(c) Let OZ be part of OX , OZ will disconnect from OY , P(OZ ,OX), shown

in Figure 37(c).

(d) P⃗0 be the apogee to OY at the boundary of OX . Let OZ take P⃗0 as the

centre and the diameter of OX as the radius, then OX is part of OZ and

disconnects from OY , P(OZ ,OX), shown in Figure 37(d).

So, the number of possible relations of R3 is 4.
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Figure 37: When OX disconnects from OY , and OY disconnects from OZ , all 4 qualitative relations

betweenOX andOZ are possible.

Figure 38: (a-c) OX disconnects from OY and OY is proper part of OZ , then, OZ cannot be part of OX ,

and other qualitative relations between OX and OZ are possible; (d) if OX disconnects from OY and OZ

is proper part ofOY ,OX will disconnect fromOZ .
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Figure 39: IfOY contains bothOX andOZ ,OX andOZ can be of any relations.

2. T1(OX ,OY ) =D(OX ,OY ) and T2(OY ,OZ) = P(OY ,OZ).

(a) Let the line L pass the centres of OX and OY , intersect with boundaries

of OX and OY at P⃗0, P⃗1, P⃗2, and P⃗3, respectively, shown in Figure 38(a).

Let OZ be the sphere with P⃗0P⃗3 as diameter, P(OZ ,OX);
(b) Let the line L pass the centres of OX and OY , intersect with the bound-

ary of OY at P⃗3, the apogee to OX . Let OZ take P⃗3 as the centre and

OZ’s boundary pass the centre ofOX , thenOZ containsOY and partially

overlaps with OX , PO(OZ ,OX), shown in Figure 38(b);

(c) Let OZ take P⃗3 (created in case (b)) as the centre and take the diameter

of OY as the radius, then OZ contains OY and disconnects from OX ,

D(OZ ,OX), shown in Figure 38(c).

(d) If OZ is proper part of OX , OX disconnects from OY , OZ will disconnect

from OY . This contradicts with the relation that OY is proper part of OZ ,

P(OY ,OZ).

So, the number of possible relations of R3 is 3.

3. T1(OX ,OY ) =D(OX ,OY ) and T2(OY ,OZ) = P(OY ,OZ). As OX discon-

nects from OY and OZ is inside OY , so OX disconnects from OZ , as shown in
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Figure 40: (a) ifOX is proper part ofOY andOY is proper part ofOZ ,OX will be part ofOZ ; switching

OX andOZ will result in the case (b).

Figure 38(d). So, the number of possible relations of R3 is 1.

4. T1(OX ,OY ) = P(OX ,OY ) and T2(OY ,OZ) =D(OY ,OZ). Case 2.

5. T1(OX ,OY ) = P(OX ,OY ) and T2(OY ,OZ) = P(OY ,OZ). OX and OZ

are part of OY , OX and OZ can be of any relations, as shown in Figure 39. So,

the number of possible relations of R3 is 4.

6. T1(OX ,OY ) = P(OX ,OY ) and T2(OY ,OZ) = P(OY ,OZ). When OX is

proper part of OY and OY is proper part of OZ , OX will be part of OZ , as

shown in Figure 40(a). So, the number of possible relations of R3 is 1.

7. T1(OX ,OY ) = P(OX ,OY ) and T2(OY ,OZ) =D(OY ,OZ). Case 3.

8. T1(OX ,OY ) = P(OX ,OY ) and T2(OY ,OZ) = P(OY ,OZ). Case 5.

9. T1(OX ,OY ) = P(OX ,OY ) and T2(OY ,OZ) = P(OY ,OZ). This is equiva-

lent to Case 6, as shown in Figure 40(b). So, the number of possible relations of

R3 is 1.

Therefore, the number of possible relations of R3 can not be 2. ◻

Lemma 8. Let three relations T0, T1, and T2 be satisfiable, which means that there

are three spheres O0, O1, and O2 satisfying the relations T0(O0,O1), T1(O1,O2),
and T2(O2,O0), where T0,T1,T2 ∈ {D,P,P,¬D,¬P,¬P}. Let i ∈ {0,1,2},
j = (i + 1) mod 3, k = (j + 1) mod 3. SphNN can successfully construct a

sphere configuration with a maximum of one restart: first construct Oi and Oj sat-

isfying Ti(Oi,Oj); fix Oj and construct Ok satisfying Tj(Oj ,Ok); fix Oi and Oj

and update Ok to satisfy Tk(Ok,Oi) while preserving Tj(Oj ,Ok). If the last step
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fails, SphNN restarts the process by firstly fixing Ok and realising Tk(Ok,Oi) and

Tj(Oj ,Ok).

Proof (lemma) 8. 1. Ti ∈ {D,P,P}.

(a) at most one of Tj and Tk is a member of {¬D,¬P,¬P}. T1, T2, and

T3 are satisfiable, with Lemma 5, SphNN will construct an Euler diagram

without error.

(b) Tj ,Tk ∈ {¬D,¬P,¬P}. With Lemma 6, SphNN will construct an Euler

diagram without error.

2. Ti ∈ {¬D,¬P,¬P}.
Ti is consistent with three relations in the set {D,PO,P,P}. Let consis(Ti)
denote the three consistent relations: consis(¬D) = {PO,P,P}, consis(¬P) =
{PO,D,P}, and consis(¬P) = {PO,P,D}.
Let the relation between Oi and Oj be Ri(Oi,Oj), Ri ∈ {D,PO,P,P} and

Ri is consistent with Ti.

(a) If Ri, Tj , and Tk are satisfiable, the same proof structure as case 1, as

Lemma 5 and Lemma 6 hold for {D,P,PO,P}.
(b) If Ri, Tj , and Tk are unsatisfiable, then the following syllogistic reasoning

is valid.
Tj(Oj ,Ok)
Tk(Ok,Oi)

¬Ri(Oi,Oj) ∴
i. Tj ,Tk ∈ {D,P,P}.

Only relations in consis(Ti) except Ri can be consistent with Tj and

Tk. The size of consis(Ti)/Ri is less than or equals to 2. With

Lemma 7, exactly one relation R∗
i ∈ consis(Ti)/Ri is consistent with

Ti and Tj and Tk. With Theorem 1, let SphNN fix Ok, then opti-

mise Oj to the relation Tj(Oj ,Ok), and optimise Oi to the relation

Tk(Ok,Oi), then the relation between Oi and Oj can only be R∗
i .

ii. Tj ,Tk ∈ {¬D,¬P,¬P}. There is no valid syllogism with three nega-

tive forms (All valid syllogisms are listed in Appendix A).

So, Tj ,Tk ∈ {¬D,¬P,¬P} is not possible.
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Figure 41: Case N = k + 1: (a) ψ1 or ψ2 is EQ. The k + 1 spheres are partitioned into two circular chains

(1)O1,O2 andO3, and (2)O1,O3 . . . ; (b) ψk or ψk+1 is EQ. The k + 1 spheres are partitioned into two

circular chains (1) O1, Ok and Ok+1, and (2) Ok , O1, O2 . . .Ok−1; (c) ψj is EQ (2 < j < k). The k + 1

spheres are partitioned into three circular chains (1) O1, Oj and Oj+1, (2) Oj , O1, O2 . . .Oj−1, (3) O1,

Oj+1, . . . .

iii. exactly one of Tj and Tk is the member of {¬D,¬P,¬P}.
Without the loss of generality, let Tj ∈ {¬D,¬P,¬P}. Therefore,

Tk ∈ {D,P,P}, and Ti,Tj ∈ {¬D,¬P,¬P}. With Lemma 6, SphNN

will construct an Euler diagram without error. ◻

Lemma 9. Letψ1(O1,O2). . .ψN−1(ON−1,ON), ψN(ON ,O1) beN syllogistic state-

ments, where ψi ∈ {D,P,P,¬D,¬P,¬P}. If the N statements are satisfiable, and

one of ψk must be EQ, then, every ψi must be EQ.

Proof (lemma) 9. We induct on N .

1. N = 3. Without loss of generality, let ψ3(O3,O1) must be EQ(O3,O1). That

is, P(O3,O1) and P(O1,O3) are valid. From P(O3,O1), we infer P(O3,O2)
and P(O2,O1) and from P(O1,O2), we infer P(O1,O2) and P(O2,O3), as

for valid conclusion P(OS ,OP ) there is only one kind of premises P(OS ,OM)
and P(OM ,OP ) (All valid syllogisms are listed in Appendix A).
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2. If the theorem holds, when N ≤ k.

3. N = k + 1. Let ψj must be EQ.

(a) Case j = 1 or j = 2. As N statements are satisfiable, there will be an

Euler diagram in terms of a configuration with N spheres. Consider three

spheres O1, O2 and O3. They form an Euler diagram for three syllogistic

statements (ψ3,1 ∈ T is an observed syllogistic relation), and ψj must be

EQ. So, three relations among O1, O2 and O3 must be EQ. Consider k

relations among k spheres: O1, O3, . . .Ok+1, where ψ1,3 ∈ T is an ob-

served syllogistic relation. The relation between O1 and O3 must be EQ.

With the inductive assumption, all relations must be EQ. Figure 41(a).

(b) Case j = k or j = k + 1. Consider three spheres Ok, Ok+1 and O1. Three

relations among them must be EQ. The rest proof is similar to the Case of

j = 1 or j = 2. Figure 41(b).

(c) Case 2 < j < k. Consider three spheres O1, Oj and Oj+1, where ψ1,j ,

ψj+1,1 ∈ T are observed syllogistic relations. They form an Euler diagram

for three syllogistic statements, and ψj must be EQ. So, three relations

among O1, Oj and Oj+1 must be EQ. Consider j (< k) relations among j

spheres: O1, . . .Oj . The relation between O1 and Oj must be EQ. With

the inductive assumption, all j relations must be EQ. Consider k − j + 2

(< k) relations among O1, Oj+1. . .Ok+1. The relation between O1 and

Oj+1 must be EQ. With the inductive assumption, all k − j + 2 relations

must be EQ. Figure 41(c). ◻

7.9. The theorem of deterministic neural syllogistic reasoning

Theorem 4. Let p1, p2, p3 be three syllogistic statements, where p1 can be either

r1(X1,X2) or r1(X2,X1), p2 can be either r2(X2,X3) or r2(X3,X2), and p3 can

be either r3(X1,X3) or r3(X3,X1), r1, r2, r3 ∈ {all, some,no, some not}. SphNN

can determine the satisfiability of p1, p2, p3 in the first epoch, with at most one restart.

Proof 4. We map Xi to Oi (i = 1,2,3) and map pi to Tij(Oi,Oj), where i, j =
1,2,3, i ≠ j, Tij = ψ(ri) if ri(Xi,Xj) or Tij = ψ−1(ri) if ri(Xj ,Xi), and Tij ∈
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{D,P,P,¬D, ¬P,¬P}. SphNN first initialises three coincided spheres (line 1 in

Algorithm 3); if this configuration is a model that satisfies the three target relations,

done (line 2 in Algorithm 3). If not, SphNN fixes O1, then updates O2 and O3, to

satisfy T12(O1,O2) and T31(O3,O1), respectively (line 3, 4 in the algorithm), then

SphNN performs COPT32

T31
(O3∣O2,O1) (line 5 in the algorithm). If the global loss

reaches zero, done; otherwise, SphNN repeats the process by fixing O3 (line 6 - 9,

in the algorithm). COPT13

T12
(O1∣O3,O2) will reach zero, if the input is satisfiable

(Theorem 2 and Lemma 8). ◻

Theorem 5. (The principle of deterministic neural reasoning) Let p1, . . . , pN−1 ∴ q
be a long-chained syllogistic reasoning with N − 1 premises, where pi can be ei-

ther ri(Xi,Xi+1) or ri(Xi+1,Xi) (1 ≤ i ≤ N − 1), q is fixed to rn(X1,XN), rj ∈
{all, some,no, some not} (1 ≤ j ≤ N ). SphNN can determine its validity (or satisfia-

bility) in the first epoch, with maximum once restart, with the computational complexity

of O(N).

Proof 5. Without loss of generality, p1, . . . , pN−1 ∴ q can be spatialised into N spatial

statements ψ1(O1,O2), . . . , ψN−1(ON−1,ON), ψN(ON ,O1), where ψi = ψ(ri) if

ri(Xi,Xj) or ψi = ψ−1(ri) if ri(Xj ,Xi), and ψi ∈ {D,P,P,¬D, ¬P,¬P}.
Any non-cyclic chain r1(X1,X2). . . rN−1(XN−1,XN) is satisfiable (Theorem 1).

Consequently, SphNN can construct a satisfiable model with N − 1 steps (line 4-5 in

Algorithm 4). SphNN determines the satisfiability of relations among ON−1, ON , and

O1, if not, SphNN will determine the relation between O1 and ON−1 (line 11 -17).

With Theorem 4, the complexity of this part is O(1). This way, SphNN reduces the

satisfiability withN terms to the case ofN−1 terms, and starts the backward procedure

(line 22 in Algorithm 4) whose worst complexity (backwards to the first three spheres

O1, O2, O3) is the same as the forward procedure. Therefore, the worst complexity is

proportional to [(N −1)∗O(1)]+ [(N −1)∗O(1)], which is proportional toO(N).
◻

Corollary 3. If SphNN can construct an Euler diagram in 2-dimensional space, it can

construct an Euler diagram in n-dimensional space (n > 2), and vice versa.
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Proof (corollary) 3. Trivial, as all proofs hold for dimension n ≥ 2. ◻

For the question of how the standard theories of global rationality can be simplified

to render them more tractable, Herbert A. Simon proposed to use a simpler decision

criterion that he called satisficing and models with better predictive power. Compared

with traditional neural models, SphNN adopts a simple and strict criterion, namely,

SphNN shall reach the global loss of zero within one epoch for satisfiable long-chained

syllogistic statements. This endows SphNN with the ability to achieve the rigour of

syllogistic reasoning.

8. SphNN and human rational reasoning

The central task of a natural science is to make the wonderful common-

place: to show that complexity, correctly viewed, is only a mask for sim-

plicity; to find pattern hidden in apparent chaos.

— Herbert A. Simon [18]

Geometrically, a sphere can be understood as a set of points in a universe, whose

distances to a fixed point (the centre of the sphere) is within a constant (the radius).

Sphere configurations may represent a variety of conceptual structures. If the universe

is a line, spheres turn out to be line segments and can represent temporal relations.

If the universe is a circle, spheres turn out to be arcs and can represent complement

concepts and evolve to spatial semantics for logical reasoning with negation, Bayesian

reasoning. Descartes’s product of spheres represents heterogeneous knowledge and

serves as spatial semantics for neuro-symbolic spatio-temporal reasoning, pure neuro-

symbolic unification, and event reasoning. All these lead to a neural model of System 2

that can examine, instruct, and govern hallucinative LLMs. Synergistic collaboration of

neural models of System 1 and System 2 can be represented by rotating spheres, which

shapes a way for humour understanding (the highest-level cognition), as illustrated in

Figure 42.
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8.1. Logical reasoning with negation and disjunctions

If the universe is a circle, a sphere becomes an arc. Geometrically, we can represent

a set F as an arc, with the centre O⃗F and the radius r
F

, the complement set ¬F as the

arc with the centre O⃗¬F and the radius r
¬F

(O⃗F and O⃗¬F have the same length and

point at the opposite direction, the sum of r
F

and r
¬F

is half of the perimeter), as shown

in Figure 43(a-c).

The arc embedding (Descartes’s product of several 2-dimensional arcs) can repre-

sent logical reasoning with negations and disjunctions. We illustrate this by using a

first-order logic deduction with disjunction and negation, as follows.

∀x ⋅ F (x) → G(x) ∨H(x).
∀x ⋅ F (x) → ¬G(x).

∀x ⋅ F (x) →H(x). ∴

Geometrically, the first premise describes the relation that each component of Descartes’s

product of F arcs is part of the union of corresponding components of G arcs and H

arcs, read as for any x, if x is a member of F , x is either a member of G or a member

of H , as shown in Figure 43(d-e); the second premise describes the relation that each

component of Descartes’s product of F arcs is part of the corresponding component of

¬G arcs, read as for any x, if x is a member of F , x is not a member of G, as shown in

Figure 43(f). The conclusion describes the relation that each component of Descartes’s

product of F arcs is part of the corresponding component of H arcs, read as for any x,

if x is a member of F , x is a member of H . In this way, SphNN realises logical reason-

ing with negation and disjunction as motions (rotation and resizing) of arcs targeting

an arc configuration. Arc embedding and the methodology of reasoning through model

construction may simulate “reasoning as the motion of mind” [9] and pave a new way

of cognitive modelling. For example, it can be used to simulate how clever monkeys

perform disjunctive syllogistic reasoning [83].

8.2. Bayesian reasoning and probability judgment

Learning of new concepts may fall into the paradigm of Bayesian induction [84].

Like syllogistic reasoning having the Euler diagram as its spatial semantics, Bayesian
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Figure 43: Arc embedding can be used to decide the validity of logical reasoning with negation and disjunc-

tions. (a)-(c) illustrates the arc embedding of F (x), G(x), and H(x); (d) illustrates the arc embedding

of G(x) ∨H(x); (e) ∀x ⋅ F (x) → G(x) ∨H(x): the F (x) arc is part of the arc of G(x) ∨H(x); (f)

∀x ⋅F (x) → ¬G(x): the arc of F (x) disconnects from the arc of G(x); As the F (x) arc is part of the arc

of G(x) ∨H(x), it will be part of the H(x) arc. Thus, ∀x ⋅ F (x) → H(x).

rules can have a configuration of arcs as its spatial semantics as follows. Let arc A

with the centre αA and the offset angle ϕA represent event A. The intersection of arc

A and arc D represents the part that event A co-occurs with event D, which consists of

two parts: (1) γ1 =max{0, ϕA +ϕD − arccos cos(α1, α2)}, and (2) γ2 =max{0, ϕA +
ϕD − (2π − arccos cos(α1, α2))} (see Figure 44). Let αx be a ray starting from the

centre O⃗. The chance of αx to hit both arcs is γ1+γ2

2π
, written as P (A ∩D). We can

decompose the hit into two steps: αx hits arc A with the chance 2ϕA

2π
, written as P (A),

then under this condition, hit arc D with the chance γ1+γ2

2ϕA
, written as P (D∣A). We

have P (A ∩ D) = γ1+γ2

2π
= 2ϕA

2π
γ1+γ2

2ϕA
= P (A)P (D∣A). In the same way, we have

P (D)P (A∣D) = γ1+γ2

2π
. Put together, we have the Bayesian rule:

P (D∣A) = P (A∣D)P (D)
P (A) .

This introduces a novel neural approach to solving statistical problems. We illustrate

this by using the flying bird problem in [85]: One-quarter of all animals are birds.
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Figure 44: The blue arc represents Event A; the red arc represents Event D; the probability that “Event D

occurs if Event A occurs” is the length of the intersection of both arcs divided by the length of arc A. Both

red and blue arcs shall be part of the same circle.

(a) (b)

Figure 45: (a) Initializing two arcs, one representing the set of birds and the other representing the set of

animals that can fly; (b) A final configuration of the two arcs, after SphNN updates the locations and the

sizes of the arcs.
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Two-thirds of all birds can fly. Half of all flying animals are birds. Birds have feathers.

If X is an animal, what is the probability that it’s not a bird, and it cannot fly? We

represent the set of birds and the set of animals that can fly as two arcs: arc bird

with the centre αb and the offset angle ϕb and arc flying with the centre αf and the

offset angle ϕf , as shown in Figure 45(a). Animals except birds will be the arc with the

centre π+αb and the offset angle π−ϕb. Animals that cannot fly will be the arc with the

centre π + αf and the offset angle π − ϕf . We have three relations as follows: (1) one-

quarter of all animals are birds, that is, 2ϕb = π
2

; (2) two-thirds of all birds can fly,

that is, 2
3
2ϕb = γ, where γ is the sum of the angle(s) of the intersected sectors, and γ =

max{0, ϕb+ϕf −arccos cos(αb−αf)} +max{0, ϕb+ϕf −(2π−arccos cos(αb−αf))};
and (3) half of all flying animals are birds, that is, 1

2
2ϕf = γ. The arc for the set of an

animal that is not a bird and cannot fly will be 2π − 2ϕb − ϕf = 2π − π
2
− 4

3
π
4
= 7π

6
,

shown in Figure 45(b).

We revisit Tversky and Kahneman’s Taxi-cab problem [86] to show how SphNN

may explain and simulate heuristic reasoning.

A cab was involved in a hit-and-run accident at night. Two cab companies,

the Green and the Blue, operate in the city. You are given the following

data:

1. 85% of the cabs in the city are Green and 15% are Blue.

2. A witness identified the cab as a Blue cab. The court tested his ability

to identify cabs under the appropriate visibility conditions. When

presented with a sample of cabs (half of which were Blue and half of

which were Green) the witness made correct identifications in 80%

of the cases and erred in 20% of the cases.

Question: What is the probability that the cab involved in the accident was

Blue rather than Green?

We represent blue cabs and green cabs as two arcs in a circle, as shown in Fig-

ure 46(a). Probabilities of human judgements are represented by arcs of a concentric

circle, as shown in Figure 46(b). That the witness made correct identifications in 80%
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of the cases and erred in 20% of the cases covers two cases - the cab is Blue, and the cab

is Green. So the probability that the cab involved in the accident was Blue shall count

in the case when the involved cab is Green and mistakenly identified as Blue. Tversky

and Kahneman’s experiments reported that people ignored this and gave the probability

80%, as shown in Figure 46(c). In this way, a judgement process can be simulated as a

process of creating and rotating arcs to reach a configuration and computing relations

among them.

8.3. Descartes’s product of spheres to embed heterogeneous knowledge

Descartes’s product of spheres may represent heterogeneous knowledge. In the

knowledge graph in Figure 47(a), there are two different types: (1) geospatial rela-

tions, e.g., San Diego is in California; (2) category relations, e.g., Nevada is a state.

Geographically, Reno is inside Nevada, and San Diego is inside California. Categor-

ically, so, Reno and San Diego are inside the city sphere; Nevada and California are

inside the state sphere. Both the city sphere and the state sphere are inside the admin-

istrative sphere. Let each entity e can be represented by a Descartes product of two

spheres (O(1)e ,O(2)e ). Spheres in the first position represent geospatial relations; for

example, O(1)CA is inside O(1)USA, as California is part of the USA; spheres in the sec-

ond position represent category relations, for example, O(2)CA is inside O(2)state.n.01, as

illustrated in Figure 47(b, c).

8.4. Neuro-symbolic temporal reasoning

Automatic driving will come, but not in the way we have been led to be-

lieve.

— Gerd Gigerenzer[19]

If we project two closed spheres into the temporal line, they will become temporal

intervals. The neighbourhood transition map in Section 4 will become a transition map

for temporal relations with two additional properties: (1) the temporal arrow will in-

troduce the order between two intervals; (2) temporal intervals introduce new relations

by the coincide relation of their endpoints. With the two properties, the five qualita-

tive spatial relations between spheres in Figure ?? turn out to be 13 relations between
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Figure 48: The five qualitative spatial relations turn into 13 temporal interval relations in [60].

temporal intervals [60], as illustrated in Figure 48 . This way, SphNN can reason with

spatio-temporal relations by using a transition map structured as a Descartes product

of a spatial transition map and a temporal transition map, as illustrated in Figure 42(B).

This spatio-temporal reasoning is neuro-symbolic and will bring advantages of neu-

ral computing into the symbolic qualitative spatio-temporal reasoning5 and solve tasks

in real applications that must be addressed from both perspectives [87], for example,

complex traffic scenarios of self-driving cars 6 [88].

8.5. Event reasoning

Events are four-dimensional entities in three-dimensional physical space and one-

dimensional temporal space and are closely tied with causalities and goals [62]. Spatio-

temporal reasoning is the foundation of the reasoning of events. Temporally, an event

can be partitioned into three parts: a start, a middle, and an end. Spatially, it can

5The literature of symbolic qualitative spatio-temporal has some limitations: there has been active work

in this area [qualitative spatial reasoning] for more than 20 years, and more than 1,000 research papers

have been published, but very little connects to any common-sense reasoning problem that might ever arise

[57], in part because symbolic rules have not completely governed the connection relation – The two axioms

in the main-stream literature of qualitative spatial reasoning also allows distance comparison relation [39].

SphNN suggests that it would be easier to solve the problems in the vector space.
6Is self-driving car smarter than a seven-month-old? The Economist, September 4, 2021.
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be partitioned into objects and spatial relations among objects. Driven by goals or

forced by certain causality, agents within an event may perform actions that transform

the event’s start to the end through the middle. As spatiotemporal relations among

events are the backbone of an event structure and closely related to causal relations

[9], SphNN can be developed to reason relations among components of events, as

illustrated in Figure 42(E), and further develop causal reasoning, e.g., [89].

8.6. Towards a neural model of System 2

The simplest scheme of evolution depends on two processes: a generator

and a test. The generator produces variety, new forms that have not existed

previously, whereas the test culls out the generated forms so that only those

that are well fitted to the environment will survive.

— Herbert A. Simon [18]

LLMs hallucinate and can neither stop nor notice it by itself. Their rationality

can be improved by dividing a reasoning task into several subtasks, such as Chain-of-

Thought [23, 1] (Multiple CoT [90]), Tree-of-Thought, and Graph-of-Thought [91].

Though this divide-and-conquer strategy improves performances, each sub-thought

and atomic reasoning are still carried out within the black box paradigm of traditional

deep learning [23, 92, 93], which lack determinacy and responsibility. For example,

each sub-thought in the chain of reasoning utilises supervised reward model processes

[92, 93]. Challenging research in AI is to move from simulating associative thinking

(System 1) to simulating higher-level cognition (rational reasoning of System 2) [5].

Theorem 5 guarantees SphNN to be a neural simulation of System 2 for deterministic

syllogistic reasoning and can examine the reasoning results of LLMs in two different

ways: (1) if LLMs can prompt the steps of its reasoning process, SphNN checks the

existence of the final sphere configuration by following the reasoning steps; (2) LLMs

provide internal vector embeddings of the reasoning results. SphNN checks the ex-

istence of the final sphere configuration by using these vectors as the orientations of

sphere centres. The non-existence of the final configuration refutes the reasoning re-

sult of LLMs. The interaction between SphNN and ChatGPT mirrors a micro-world of
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the neural dual-process model of the mind. When SphNN evolves to various kinds of

rational reasoning, it will serve as the deterministic neural reasoners that examine and

instruct the outputs of LLMs, as illustrated in Figure 42(F).

8.7. Neuro-symbolic unification, supporting both heuristic and deliberative reasoning

Our ambition, anyhow, is to offer something clearly better. More rele-

vant to us than the varieties of dual-process theories is the way the whole

approach has shaken and in some sense shattered the psychology of rea-

soning.

— Mercier and Sperber [37]

In the main literature of neural-symbolic AI [94], the neural module and the sym-

bolic module are two separate modules with incompatible semantics. They are loosely

bridged in a probabilitistic way that the symbolic module provides semantic loss func-

tions to optimise the neural module [95, 96, 97, 98]. In contrast, SphNN demonstrates

the possibility of creating continuous set-theoretic semantics that explicitly cohabit

with the latent vector semantics of the neural module. Thus, SphNN can genrate to

pure neuro-symbolic unification [94], a new artifact [18], described as follows: Firstly,

it initialises the orientations of sphere centres by using latent feature vectors provided

by LLMs. Then, it tries to optimise the lengths of the centre vectors and radii of spheres

to reach the target sphere configuration with minimal rotations of sphere centres. If no

satisfiable configuration is found, it refutes the output of LLMs; if there is a satisfiable

configuration, it confirms the outputs of LLMs, meanwhile directly updating the vec-

tor outputs of LLMs and, consequently, forcing LLMs to gear their parameters. This

way, sphere semantics can be viewed as being promoted and specified from the latent

vector semantics. The existence of such pure neuro-symbolic spheres has been created

and explored by utilising geometric construction [99, 100]. They loyally inherit the

preciseness of symbolic structure and heuristics of vector embedding, so that symbolic

structures can govern out-of-distribution data. This frees neural computing from the

stable world assumption and can solve hard AI problems with performances beyond

the glass ceiling of traditional deep learning neural networks [101, 102], as illustrated

in Figure 42(D).
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8.8. Towards humour understanding, the highest level of cognition

Automatic inference in perception and deliberate inference in reasoning

are at the two ends of a continuum. Between them, there is a great variety

of inferential processes doing all kinds of jobs.

— Mercier and Sperber [37]

Humour is usually regarded as the highest level of cognition that interweaves both

heuristic and rational reasoning – if an AI system can simulate humour, it can simu-

late any cognitive activity [14]. The understanding of humour can be described by the

Script-Based Semantic Theory Of Humour (SSTH) [103] and its improved versions

[104, 105, 106, 107], as follows: A humour encodes two scripts; the first schematizes a

normal event appearing with high frequency in everyday life, and then a punch triggers

the second event. The new event schematizes an abnormal story (out-of-distribution)

in which an object in the first event has an opposite feature that surprises the reader. A

computation model for humour understanding shall be capable of acquiring both nor-

mal and abnormal events from the same text. Though this may frustrate both classic

AI and traditional neural networks, we propose that the two inconsistent scripts can

be synergistically unified by rotating spheres [108, 109]. We show that humour under-

standing also has the root in spatial reasoning by using the classic joke of the SSTH

theory [103] as follows.

- “Is the doctor at home?” the patient asked in his bronchial whisper.

- “No”, the doctor’s young and pretty wife whispered in reply, “Come right in.”

We transform the Euler diagram of San Diego and Reno scenario into a diagram of

a street scene: a doctor and his wife are at home, and a patient is in a car, as shown in

Figure 49(a). This is the start of a patient-visit-doctor event. The expected end of the

event is the patient at home with the doctor, as shown in Figure 49(b). However, the

wife tells the patient, “The doctor is not at home.” The expected end part of this event

is that the patient gets in his car and leaves, as shown in Figure 49(c). The pretty wife

continues, “Come right in.” This triggers the start of an affair event between the wife

and the patient, as shown in Figure 49(d), in which the target of the patient switches
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from “no sex” to “sex”, the doctor loses the superiority and becomes the loser to the

patient. We represent the features of an object as Descartes’s product of 2-dimensional

arcs, as shown in Figure 49(e), and assemble them into an n-dimensional sphere. The

centre vector of an arc can be represented by a rotating axis of the n-dimensional

sphere, and the switching of features will be physically simulated by the rotation of an

axis7, as shown in Figure 49(f). Let H be the signature of a humour script, then H will

be structured as a pair of event scripts (S,S). An event script has temporal parts (the

start, mid, and end of an event); each can be represented as a configuration sphere E.

Thus, H has a form of ((E,E,E), (E,E,E)).

9. Conclusions

The intuitive mind is a sacred gift and the rational mind is a faithful ser-

vant.

—Albert Einstein

We adopt the minimalist approach to qualitatively extending traditional neural net-

works by generalising the computational building block from vectors to spheres, and

develop SphNN for deterministic syllogistic reasoning. SphNN has the genealogy of

the diameter-limited perceptron, in the sense that the input of SphNN is the input do-

main of a diameter-limited perceptron, as illustrated in Figure 50(E). SphNN can also

be understood as a deviation of the set-diagram network architecture, in the sense the

SphNN utilises Euler diagram configuration in the vector space, Figure 50(C), while

Rosenblatt’s set-diagram network used Venn diagram, as illustrated in Figure 50(F).

Traditional deep neural networks learn latent feature vectors from corpora, and SphNN

can host these vectors in sphere centres. In this way, traditional neural networks can be

a part of Sphere Neural Networks, which optimise orientations of sphere centres from

data, Figure 50(G). Domain-general reasoning is rooted in spatial reasoning, which

can be realised by constructing iconic mental models, Figure 50(B). The construction

7A complete demo with animation is available for public access at https://www.ml2r.de/joke/

#title. Rotating spheres are illustrated at https://www.ml2r.de/joke/#science.
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process is carried out by repeatedly transforming the current sphere configuration to its

neighbour till the target is achieved, Figure 50(H). We develop SphNN, Figure 50(A),

the first neural model that achieves the determinacy of long-chained syllogistic rea-

soning, the microcosm of human rationality and can evolve into simulate humour rea-

soning, the highest level of cognition. Syllogism and humour serve as the ends of

the continuum of high-level cognition [111, 112]. Sphere Neural Networks promise

to simulate a variety of rational reasoning in between, pave neural ways to implement

Herbert A. Simon’s scissors [15, 16, 17, 18] for heuristic reasoning under uncertainty

and bounded resources (shown in Figure 51) and create a neural path for psychological

AI that process rules faster and without errors [19, p.26].

The world of AI is filled with deep-learning skyscrapers, among which Foundation

Models and Large Language Models (FM/LLMs) are the highest. They have demon-

strated remarkable success in simulating various human intelligence, and when their

parameters reach a large scale, e.g., 100 billion, the reasoning phenomenon can be ob-

served [1, 113]. This seems to suggest that the larger the number of parameters is, the

more powerful reasoning LLMs will have. But, this may be a mirage [114]. Enhanc-

ing the decision-making capability of foundation models faces significant challenges,

and certain components may be missing in current foundation models and decision-

making paradigms [115]. Deterministic syllogistic reasoning, the microcosm of hu-

man rationality that dominated logical research for over 2000 years, will probably be

an unreachable horizon for deep learning skyscrapers for another thousand years, let

alone other rational reasoning. Alternatively, if we use spheres as the computational

building block and adopt the methodology of reasoning by model construction and

inspection, a very small-scaled neural network (SphNN) already achieves human-like

determinate logical deduction without training data, in which spheres play the role of

the hub to connect with (1) traditional neural computing, (2) set-theoretic knowledge

representation, (3) mental model theories, and (4) qualitative spatial reasoning. Tradi-

tional neural networks can be understood as special Sphere Neural-Networks where all

radii are fixed to zero. The non-zero radii turn out to be the missing stakes that cause

deep-learning skyscrapers to be trapped in the swamp of hallucination and prevent them

from marching to the realm of rationality.
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10. Experiments

10.1. Experiment 1

This experiment examines whether SphNN can determine every valid classic syl-

logistic reasoning among 256 possibilities using the method of reasoning by model

construction.

10.1.1. Method

To determine the validity of a classic syllogistic deduction

r1(S,M).
r2(M,P ).

r3(S,P ). ∴

SphNN will try to refute it by constructing three spheres OS , OM , and OP , satisfying

ψ(r1)(OS ,OM), ψ(r2)(OM ,OP ), and ¬ψ(r3)(OS ,OP ). If it fails, SphNN will

conclude the original deduction is valid. The determinacy of validity requires SphNN

to construct a sphere model for each satisfiable syllogistic reasoning correctly.

10.1.2. Setting of experiments

We set the learning rate to 0.05, the maximum number of epochs to 1, and set

different dimensions of spheres (dim) = 2,3,15,30,100,200,2000,10000. All spheres

are initialised as being coincided, the radius being one and the length of the centre

point being 10. All experiments were conducted on MacBook Pro Apple M1 Max

(10C CPU/24C GPU), 32 GB memory.

10.1.3. Experiment results

Experiment results show that SphNN accurately constructs Euler diagrams for each

satisfiable syllogistic reasoning in the first epoch. For any syllogistic structure whose

global loss is greater than zero, SphNN concludes the premises and the negation of

the conclusion is valid. This totals exactly 256 − 232 = 24 valid syllogistic reasoning

structures. This shows that the transition map of neighbourhood relations successfully

guides SphNN to construct target sphere configurations and that three control processes

are effective and efficient.

92



10.1.4. Discussions

If spheres were randomly initialised, SphNN can successfully construct Euler dia-

grams for all satisfiable syllogistic statements, except one as follows.

all M are S.

all P are M.

all S are P. ∴

The only model of this syllogism is all three spheres being coincided. Our strict cri-

terion (the global loss of zero) requires SphNN to optimise the three spheres to have

the same size and to be located at the same place, which gradual descent operations

are hard to construct. Consequently, SphNN mistakenly concluded the negation of the

conclusion, namely, “some S are not P ”, is valid.

10.2. Experiment 2

This experiment evaluates the performance of SphNN for long-chained syllogistic

reasoning, compared with ChatGPT (“gpt-3.5-turbo”).

10.2.1. Testing datasets

For syllogistic reasoning with N terms, we create 24 multiple choice tasks; each

task has one valid and four invalid syllogistic reasoning, totalling 24 × 5 = 120 syllo-

gistic reasoning tasks. We range N from 3 to 12, totalling 1200 tasks.

10.2.2. Testing with ChatGPT and SphNN

We ask ChatGPT to decide the validity of syllogistic reasoning.

For example, “Is this reasoning always true? some M1 are not S, some M2 are not

M1, no M3 are M2, all P are M3, therefore, no S are P.” A typical answer of ChatGPT

starts with its decision, followed by an explanation.

The reasoning is valid, and the conclusion is logically correct. To see why,

we can draw a diagram (shown in Figure 52(a)). The diagram shows that

there is no overlap between the S circle and the P circle and that all S are

outside the P circle. This means that the statement ”no S are P” is true

based on the given premises.
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We feed the same syllogistic reasoning to SphNN, and let it decide the validity. SphNN

first negates the conclusion into some S are P, then tries to construct an Euler diagram.

Finally, SphNN successfully constructs a counter-model to refute the validity of the

input syllogistic reasoning, shown in Figure 52(b).

(a) ChatGPT argues for

the validity by showing a

diagram.

(b) SphNN refutes the validity by finding a

counter Euler diagram. The circle of P, centred at

(4.4659342765808105,1.0935691595077515) with the ra-

dius 0.5761237553232794, is part the circle of M3 that is centred

at (4.465934753417969,1.09356689453125) with the radius

0.5761421616706572.

Figure 52: Both ChatGPT and SphNN use diagrams to check the validity of the syllogistic reasoning: some

M1 are not S, some M2 are not M1, no M3 are M2, all P are M3, ∴ no S are P, which is invalid.

10.2.3. Testing results

If we strictly evaluate the correctness of a multiple choice task as correctly selecting

the one valid syllogism (without selecting any invalid ones), the best performance of

ChatGPT is 20.1% (5 among 24 tasks) when N = 3 (classic syllogistic reasoning).

If we treat one multiple choice task as five yes-no decision tasks (to decide whether

syllogistic reasoning is valid), the best performance of ChatGPT is 75.0% (90 among

120 tasks when N = 3), and the performances drop to 55.0% (66 among 120 tasks) as
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the length of chains increases, as listed in Table 2.

In contrast, without a time limit, the performance of SphNN is perfect. SphNN

does reasoning by constructing models, so generally, it needs more time for longer

chained reasoning. This is also well revealed in the experiments. Table 3 listed the per-

formance with time limits in making yes-no decisions. SphNN can reach the perfor-

mance of ChatGPT for short-chained reasoning (N = 3,4) within 15 seconds, for rea-

soning withN = 5,6 within 20 seconds. Within 45 seconds, SphNN outperforms Chat-

GPT in all reasoning task groups. After around 20 minutes (1200 seconds), SphNN

can finish each reasoning task with 100% accuracy. The random mechanism to break

the coincide relations causes the construction time not proportional to the length of

the reasoning task. For the task of multiple choices, SphNN continues to outperform

ChatGPT within 45 seconds. One speciality of multiple choice is that there is one and

only one valid reasoning among five candidate choices. This allows SphNN to select

the right choice if it determines four among the five and reaches 100% accuracy within

a time limit of 375 seconds for each candidate choice. Table 4 listed the performance

with time limits for multiple-choice tasks.

10.2.4. Analysis

The number of possible syllogistic structures increases exponentially with the num-

ber of terms – there are 23N−1 different syllogistic reasoning structures for N terms.

It is not possible for supervised deep learning to reach the rigour of syllogistic rea-

soning by increasing the amount of training data. A promising alternative approach

is to construct models, as advocated by main-stream cognitive psychologists, e.g.,

[12, 13, 31, 116], which ChatGPT has often used in its answers. The limitation seems

to be that ChatGPT does not examine whether a model is correctly constructed. De-

spite this, the model-construction-styled human-like answering makes ChatGPT look

Table 2: Performances of ChatGPT.

Syllogism with N terms 3 4 5 6 7 8 9 10 11 12 total

Num. of correct multiple choices 5 5 2 3 5 3 2 1 0 1 24

Num. of correct yes-no decision 90 85 75 74 83 76 71 66 66 67 120
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Table 3: 1200 tasks are grouped by the number of termsN in a reasoning task. Each group has 120 reasoning

tasks. The time limit affects the performance of SphNN.

time limit N = 3 4 5 6 7 8 9 10 11 12

15 (seconds) 87 80 60 61 48 30 27 21 12 7

20 91 88 78 78 64 49 46 39 25 20

45 109 99 89 91 87 87 84 76 88 77

435 120 120 118 119 118 114 109 108 101 101

555 - - 119 120 119 119 115 115 108 107

1080 - - 120 - 119 120 120 120 120 120

1200 - - - - 120 - - - - -

professional and easily accepted.

10.3. Experiment 3

This experiment evaluates whether SphNN can simulate the function of System 2

to provide feedback to ChatGPT, through prompt engineering to improve the perfor-

mance.

10.3.1. The design of the experiment

Through a well-designed prompt, we let ChatGPT decide the satisfiability of 256

types of classic syllogistic reasoning. This prompt describes the task, content, and

output format in detail, so that SphNN can easily parse the output to construct a model.

The result of SphNN will be passed to ChatGPT by appending the result to the end of

the prompt. For example, to check the satisfiability of ’no M0 are S’, ’all P are M0’,

’some S are not P’, we feed ChatGPT the original prompt, as follows.

Table 4: The performance of SphNN in doing multiple choice tasks.

time limit N = 3 4 5 6 7 8 9 10 11 12

15 (seconds) 17 10 3 3 2 0 0 0 0 0

20 19 16 9 10 7 0 0 0 0 0

45 23 24 18 19 17 16 13 11 17 10

375 24 - 24 24 24 24 24 24 24 24

96



f"""We represent ’’’all X are Y’’’ as circle X being inside

circle Y, ’’’no X are Y’’’ as circle X disconnecting from

circle Y. ’’’some X are Y’’’ as one of the three possible

configurations: (1) circle X is inside circle Y; (2) circle

X partially overlaps with circle Y; (3) circle Y is inside

circle X. ’’’some X are not Y’’’ as one of the three possible

configurations: (1) circle X disconnects from circle Y;

(2) circle X properly contains circle Y; (3) circle X partially

overlaps with circle Y. If ’’’all X are Y’’’, then ’’’some X are Y’’’.

Can the statements ’’’no M0 S’, ’all P M0’, ’some S are not P’’’ be

represented by relations among three circles?

If they cannot be represented by relations among three circles,

only reply ’’’cannot’’’, otherwise, reply ’’’yes’’’, and give

the relations in the list of triple forms:

(circle X, inside, circle Y).

Do not reply both ’’’cannot’’’ and ’’’yes’’’.

ChatGPT replied as follows.

yes (circle s, disconnects from, circle m0), (circle p, inside,

circle m0), (circle s, partially overlaps with, circle p)

SphNN checks the correctness by constructing a model8 for this output, and failed.

This information is fed back to ChatGPT by adding the following line to the end of the

above prompt.

It is not correct that ’’’(circle s, disconnects from,

8For this experiment, we extended the neuro-symbolic transition map to have the partial overlapping

relation as a target relation.
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circle m0), (circle p, inside, circle m0), (circle s, partially

overlaps with, circle p)’’’

With this feedback from SphNN, ChatGPT repeats the task and replied, cannot.

SphNN then checks the satisfiability of the three original syllogistic statements ‘no

M0 are S’, ‘all P are M0’, ‘some S are not P’, and concludes that they are satisfiable,

so, append the following line to the end of the last prompt.

It is not correct that ’’’cannot’’’.

With continued feedback from SphNN, ChatGPT replied as follows.

Yes, the statements can be represented by relations among

three circles. The relations in the triple form are:

(circle m0, inside, circle p)

(circle s, disconnects from, circle p)

(circle s, disconnects from, circle m0)

This time, SphNN successfully constructed a model for the three statements from Chat-

GPT. After two rounds of communication with SphNN, ChatGPT correctly answered

the question.

10.3.2. Testing results

We set the maximum number of communications between ChatGPT and SphNN

to 10. Without the feedback from SphNN, ChatGPT made 207 (among 256) cor-

rect answers (80.86%); with SphNN’s feedback, ChatGPT made 240 correct answers

(93.75%). ChatGPT’s first-round answer for every 24 unsatisfiable cases was incor-

rect (0%). With the first feedback from SphNN, ChatGPT successfully identified 22

unsatisfiable cases (91.67%). ChatGPT failed to identify the other two unsatisfiable

cases, even with ten times feedback from SphNN. For 232 satisfiable cases, ChatGPT

made 207 correct answers in the first round (89.24%), and after ten times’ feedback

from SphNN, ChatGPT made 11 more correct answers (reaching 93.97% in accuracy),

details are listed in Table 5.
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Table 5: The performance of ChatGPT supported by SphNN.

232 satisfiable cases 24 unsatisfiable cases

num. of SphNN’s feedback 0 1 2 3 4 5 6 7 9-10 0-10 0 1 2-10 0-10

num. of correct answers 207 0 5 3 1 1 0 1 0 218 0 22 0 22

10.3.3. Conclusion

SphNN not only successfully improves the performance of ChatGPT in deciding

the satisfiability of syllogistic reasoning with three terms but also confirms the outputs

of ChatGPT – those approved by SphNN are no more hallucinations. Our experiments

show that ChatGPT is prone to answer optimistically – for ChatGPT there are no un-

satisfiable cases. Our experiments also show the first one or two rounds of feedback are

especially effective and that for some tasks (16 tasks among 256), SphNN failed to in-

fluence ChatGPT through prompt engineering. This suggests that in addition to prompt

engineering, there should be other communication channels between LLMs and neural

models of System 2.

10.4. Experiment 4

This experiment examines whether (how well) pre-trained vector embeddings can

approximate orientations of the centres of spheres to construct sphere configurations.

Positive experiment results will suggest three things: (1) a novel representation for

neuro-symbolic unification whose centre orientations are pre-trained vectors and whose

boundary relations encode symbolic relations; (2) a faster method for model construc-

tion by restricting centre orientations of spheres the same as or close to pre-trained

vectors; (3) a new method of tuning pre-trained vectors by aligning them to centre

orientations of a constructed model. This may lead to another effective way to commu-

nicate between LLMs and computational models of System 2.

10.4.1. Testing dataset

We group 24 valid syllogism types into 14 groups, as “no X are Y” has the same

meaning as “no Y are X” and “some X are Y” has the same meaning as “some Y are X”.
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We find 500 interpretations for each group using the hypernym relations in WordNet-

3.0 [117], totalling 7000 syllogism reasoning tasks. For example,

all clarinetist.n.01 are musician.n.01.

all musician.n.01 are performer.n.01.

all clarinetist.n.01 are performer.n.01. ∴

is an interpretation of the valid syllogistic reasoning

all S are M.

all M are P.

all S are P. ∴

From the 7000 syllogistic reasoning tasks, we select those whose word stems, e.g.,

clarinetist, musician, performer, have different vector embeddings in 50-D GLOVE,

in 1024-D BER, and in OpenAI text-embedding ada-002, totalling 2537 tasks. Next,

for each task, we enumerate the other three possible conclusions. The other three

conclusions in the above example are as follows.

i some clarinetist.n.01 are not performer.n.01

ii no clarinetist.n.01 are performer.n.01

iii some clarinetist.n.01 are performer.n.01

This totals 2537 × 4 = 10148 syllogistic reasoning tasks, among which, 6479 tasks are

satisfiable, and 145 tasks are interpretations of the syllogistic structure

all S are M.

all M are P.

all P are S. ∴

or

all M are P.

all S are M.

all P are S. ∴

As observed in Experiment 10.1, SphNN cannot construct correct models for these 145

tasks.
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Figure 53: IfOV and the orientation of the centre ofOX are fixed,OX cannot be insideOV .

Table 6: The orientation of pre-trained vectors very well approximates the orientation of spheres

using pre-trained vectors as the orientations of centres no restrictions

GLOVE 50-D BERT 1024-D OpenAI text-embedding ada-002 all spheres are initialised as being coincided

6479/6624 6479/6624 6479/6624 6624/6624

97.81% 97.81% 97.81% 100.00%

10.4.2. The design of the experiment

We create two experiment settings: (1) fix the orientation of a sphere centre to

the pre-trained vector; (2) no orientation restriction and all spheres are initialised as

being coincided. When the orientations of two spheres are fixed, we cannot use the

constraint optimisation algorithm (Algorithm 2), as it will cause one sphere to rotate

around another sphere and change its centre orientation. We also notice that not each

relation can be achieved by fixing one sphere. For example, if we fix OV and the

orientation of the centre ofOX ,OX cannot be optimised to be insideOV , as illustrated

in Figure 53. For this reason, the single relation optimisation may not be realised (in

Algorithm 3). To solve this problem, we allow iterations and set the maximum iteration

number to 9. This way,OX being insideOV will be realised in the next iteration, where

OX is fixed, and OV enlarges its radius to contain OX .

10.4.3. Experiment results and analysis

Without restriction, SphNN successfully constructed models for every satisfiable

syllogistic reasoning (6624 tasks). When orientations of sphere centres are fixed to

pre-trained vectors, SphNN successfully constructed models for all 6479 tasks, with

145 unsuccessful cases, as expected. Results are listed in shown in Table 6.
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soning, in: M. Singh, L. Travé-Massuyès (Eds.), Decision Support Systems and

Qualitative Reasoning, Elsevier Science Publishers, North-Holland, 1991, pp.

181–187.

[70] J. M. Gooday, A. G. Cohn, Conceptual Neighbourhoods in Spatial and Tem-

poral Reasoning, in: Proceedings ECAI-94 Workshop on Spatial and Temporal

Reasoning, Rodrı́guez, R, 1994.

[71] P. N. Johnson-Laird, Mental models: Towards a cognitive science of language,

inference, and consciousness, Harvard University Press, Cambridge, MA, 1983.

[72] D. H. Ballard, Cortical connections and parallel processing: Structure and func-

tion, Behavioral and Brain Sciences 9 (1) (1986) 67–90.

[73] J. A. Anderson, An introduction to neural networks, MIT Press, Cambridge,

Mass, 1995.

[74] Z. Liu, Y. Wang, S. Vaidya, F. Ruehle, J. Halverson, M. Soljačić, T. Y. Hou,
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Appendix A. 24 valid types of classic syllogistic reasoning

The four moods of syllogistic reasoning are as follows: (1) universal affirmative

[A]: all X are Y ; (2) particular affirmative [I]: some X are Y ; (3) universal negative

[E]: no X are Y ; (4) particular negative [O]: some X are not Y . Each valid syllogism

is given a name whose vowels indicate types of moods, e.g., ‘CELARENT’ indicates

types of moods are ‘E’, ‘A’, ‘E’, respectively.

Table A.7: List of all valid syllogisms, each is mapped to a qualitative spatial statement.

Num Name Premise Conclusion Qualitative spatial relations statement

1 BARBARA all s are m, all m are p all s are p P(Os,Om) ∧P(Om,Op) → P(Os,Op)
2 BARBARI all s are m, all m are p some s are p P(Os,Om) ∧P(Om,Op) → ¬D(Os,Op)
3 CELARENT no m is p, all s are m no s is p D(Om,Op) ∧P(Os,Om) →D(Os,Op)
4 CESARE no p is m, all s are m no s is p D(Op,Om) ∧P(Os,Om) →D(Os,Op)
5 CALEMES all p are m, no m is s no s is p P(Op,Om) ∧D(Om,Os) →D(Os,Op)
6 CAMESTRES all p are m, no s is m no s is p P(Op,Om) ∧D(Os,Om) →D(Os,Op)
7 DARII all m are p, some s are m some s are p P(Om,Op) ∧ ¬D(Os,Om) → ¬D(Os,Op)
8 DATISI all m are p, some m are s some s are p P(Om,Op) ∧ ¬D(Om,Os) → ¬D(Os,Op)
9 DARAPTI all m are s, all m are p some s are p P(Om,Os) ∧P(Om,Op) → ¬D(Os,Op)

10 DISAMIS some m are p, all m are s some s are p ¬D(Om,Op) ∧P(Om,Os) → ¬D(Os,Op)
11 DIMATIS some p are m, all m are s some s are p ¬D(Op,Om) ∧P(Om,Os) → ¬D(Os,Op)
12 BAROCO all p is m, some s are not m some s are not p P(Op,Om) ∧ ¬P(Os,Om) → ¬P(Os,Op)
13 CESARO no p is m, all s are m some s are not p D(Op,Om) ∧P(Os,Om) → ¬P(Os,Op)
14 CAMESTROS all s are m, no m is p some s are not p P(Os,Om) ∧D(Om,Op) → ¬P(Os,Op)
15 CELARONT no s is m, all p are m some s are not p D(Os,Om) ∧P(Op,Om) → ¬P(Os,Op)
16 CALEMOS all p are m, no m is s some s are not p P(Op,Om) ∧D(Om,Os) → ¬P(Os,Op)
17 BOCARDO some m are not p, all m are s some s are not p ¬P(Om,Op) ∧P(Om,Os) → ¬P(Os,Op)
18 BAMALIP all m are s, all p are m some s are p P(Om,Os) ∧P(Op,Om) → ¬D(Os,Op)
19 FERIO some s are m, no m is p some s are not p ¬D(Os,Om) ∧D(Om,Op) → ¬P(Os,Op)
20 FESTINO some s are m, no p is m some s are not p ¬D(Os,Om) ∧D(Op,Om) → ¬P(Os,Op)
21 FERISON some m are s, no m is p some s are not p ¬D(Om,Os) ∧D(Om,Op) → ¬P(Os,Op)
22 FRESISON some m are s, no p is m some s are not p ¬D(Om,Os) ∧D(Op,Om) → ¬P(Os,Op)
23 FELAPTON all m are s, no m is p some s are not p P(Om,Os) ∧D(Om,Op) → ¬P(Os,Op)
24 FESAPO all m are s, no p is m some s are not p P(Om,Os) ∧D(Op,Om) → ¬P(Os,Op)
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Appendix B. The neuro-symbolic map for neighbourhood transition

Here, we list the complete structure ofM≜ (T , ftsp,I,S, ftnt,∆).
T is the set of target relations. T ≜ {D,¬D,P,¬P,P,¬P}.
ftsp is the function of target-oriented spatial partitions. Given a target T ∈ T ,

ftsp(T) returns the set of qualitative spatial relations, as follows.

ftsp(¬D) ≜ {¬D,D}

ftsp(¬P) ≜ {¬P,P}

ftsp(¬P) ≜ {¬P,P}

ftsp(P) ≜ {P,D,PO1,PO2,PP}

ftsp(D) ≜ {D,EQ,PO1,PO2,PP,PP}

ftsp(P) ≜ {P,D,PO3,PO4,PP}

I is the set of inspection functions. Its element takes the form of IR(O1,O2). If

R(O1,O2), IR(OX ,OV ) = 0, otherwise IR(OX ,OV ) > 0.

ID(OX ,OV ) =max{0,−disX,V + rW + rV }

I¬D(OX ,OV ) =max{0, disX,V − rW − rV }

IP(OX ,OV ) ≜max{0, disX,V + rX − rV }

I¬P(OX ,OV ) ≜max{0, rV − disX,V − rX}

IP(OX ,OV ) ≜max{0, disX,V + rV − rX}

I¬P(OX ,OV ) ≜max{0, rX − disX,V − rV }

IPO(OX ,OV ) ≜max{0, ∣rX − rV ∣ − disX,V + ϵ} +max{0, disX,V − rV − rX + ϵ}

IPO1(OX ,OV ) ≜ IPO(OX ,OV ) +max{0, rV − disX,V + ϵ}

IPO2(OX ,OV ) ≜ IPO(OX ,OV ) +max{0, disX,V − rV }

IPO3(OX ,OV ) ≜ IPO(OX ,OV ) +max{0, rV − rX + ϵ}

IPO4(OX ,OV ) ≜ IPO(OX ,OV ) +max{0, rX − rV }
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Table B.8: Possible operations of the ∆ functions in Table 1. OV is fixed.

∆−
−(OX ,OV ) operations ∆P

PP∶PO
dis↓, r↓X ∆P

PO3∶PO4
r↑X

∆D
PO1

dis↑, r↓X ∆P
PO1∶PO2

dis↓ ∆P
PP∶PO r↑X

∆D
PO2∶PO1

dis↑ ∆P
D∶PO dis↓ ∆P

PO4
dis↑, r↓X

∆D
PP∶PO dis↑ ∆P

PO2
dis↓, r↓X ∆P

D∶PO dis↓, r↑X

∆D
EQ∶PO dis↑ ∆¬P

EQ∶PO dis↑ ∆¬P
EQ∶PO dis↑

∆D
PP∶PO

dis↑, r↓X ∆¬P
P dis↑, r↑X ∆¬P

P
dis↑, r↓X

∆¬D
D dis↓, r↑X ∆¬P

PP∶PO
dis↑, r↑X ∆¬P

PP∶PO dis↑, r↓X

IEQ(OX ,OV ) ≜ ∥rX − rV ∥ + disX,V

IPP(OX ,OV ) ≜max{0, disX,V + rX − rV + ϵ}

IPP(OX ,OV ) ≜max{0, disX,V + rV − rX + ϵ}

S is the set of all qualitative spatial relations inM. S = ⋃ ftsp(T), T ∈ T .

Given a target relation T ∈ T , SphNN inspects the current relation R ∈ ftsp(T),
and looks up the table of neighbourhood transitions to get the transformation function

ftnt(T,R), as listed in Table 1. Possible operation sets of each transformation function

are listed in Table B.8.

∆ is the set of neighbourhood transition functions. Each transforms the current

relation to the neighbourhood on the route to the target relation.

∆D
PO1
(OX ,OV ) ≜max{0, rX + rV − disX,V }

∆D
PO2∶PO1

(OX ,OV ) ≜max{0, rV − disX,V }

∆D
EQ∶PO(OX ,OV ) ≜∆PO

EQ(OX ,OV )

∆D
PP∶PO(OX ,OV ) ≜∆PO

PP(OX ,OV )

∆D
PP∶PO

(OX ,OV ) ≜∆PO
PP
(OX ,OV )

∆PO
EQ(OX ,OV ) ≜ O⃗X + δ⃗
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∆PO
PP
(OX ,OV ) ≜max{0, rX − rV − disX,V }

∆PO
PP(OX ,OV ) ≜max{0, rV − rX − disX,V }

∆P
D∶PO(OX ,OV ) ≜∆PO

D (OX ,OV )

∆P
PO4
(OX ,OV ) ≜max{0, disX,V + rV − rX}

∆P
PO3∶PO4

(OX ,OV ) ≜∆PO4

PO3
(OX ,OV )

∆P
PP∶PO(OX ,OV ) ≜∆PO

PP(OX ,OV )

∆PO
D (OX ,OV ) ≜max{0, disX,V − rV − rX}

∆PO4

PO3
(OX ,OV ) ≜max{0, rV − rX}

∆P
D∶PO(OX ,OV ) ≜∆PO

D (OX ,OV )

∆P
PO1∶PO2

(OX ,OV ) ≜∆PO2

PO1
(OX ,OV )

∆PO2

PO1
(OX ,OV ) ≜max{0, ∥O⃗X − O⃗V ∥ − rV }

∆P
PO2
(OX ,OV ) ≜max{0, ∥O⃗X − O⃗V ∥ + rX − rV }

∆P
PP∶PO

(OX ,OV ) ≜∆PO
PP
(OX ,OV )

∆¬D
D (OX ,OV ) ≜max{0, ∥O⃗X − O⃗V ∥ − rV − rX + ϵ}

∆¬P
P (OX ,OV ) ≜max{0, rV − ∥O⃗X − O⃗V ∥ − rX + ϵ}

∆¬P
P
(OX ,OV ) ≜max{0, rX − ∥O⃗X − O⃗V ∥ − rV + ϵ}
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