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 Heterogeneous cloud-edge computing environments present unique challenges 

in resource allocation due to their distributed nature, varying computational 

capabilities, and dynamic workload patterns. This paper presents a 

comprehensive analysis of machine learning approaches for optimizing resource 

allocation in these environments. I categorize and evaluate various ML 

techniques including reinforcement learning, deep learning, and federated 

learning approaches, highlighting their strengths and limitations. A comparative 

analysis of these techniques demonstrates that hybrid approaches combining 

reinforcement learning with deep neural networks achieve 18-22% better 

resource utilization and 15% lower latency compared to traditional heuristic 

methods. I also propose a novel adaptive resource allocation framework that 

dynamically adjusts allocation policies based on changing network conditions 

and application requirements, demonstrating superior performance in real-world 

testbeds. 
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Introduction 

The rapid proliferation of Internet of Things (IoT) 

devices, coupled with the increasing demand for low-

latency services, has driven the evolution of 

computing paradigms from centralized cloud 

computing to more distributed edge computing 

architectures [1]. This shift has given rise to 

heterogeneous cloud-edge computing environments 

where computing resources are distributed across 

different layers of the network hierarchy, from 

powerful cloud data centers to resource-constrained 

edge devices located closer to end-users. 

In these heterogeneous environments, efficient 

resource allocation becomes crucial yet challenging 

due to several factors: 

1. Heterogeneity in computational capabilities, 

energy constraints, and network connectivity 
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2. Unpredictable and dynamic workload patterns 

across different network segments 

3. Varying application requirements regarding 

latency, reliability, and quality of service (QoS) 

4. Limited resources at edge nodes compared to 

cloud data centers 

5. Energy efficiency concerns, particularly for 

battery-powered edge devices 

Traditional resource allocation approaches that rely 

on static policies or simple heuristics often fail to 

adapt to these dynamic conditions, resulting in 

suboptimal resource utilization, increased latency, or 

excessive energy consumption [2]. This has motivated 

researchers to explore machine learning (ML) 

approaches that can learn from historical data, adapt 

to changing conditions, and make intelligent 

allocation decisions in real-time. 

This paper provides a comprehensive analysis of 

machine learning approaches for resource allocation 

in heterogeneous cloud-edge computing 

environments. I categorize various ML techniques, 

evaluate their effectiveness in different scenarios, and 

propose a novel adaptive resource allocation 

framework that outperforms existing approaches in 

real-world testbeds. 

 

RELATED WORK 

2.1 Traditional Resource Allocation Approaches 

Traditional resource allocation in distributed 

computing environments has relied on various 

techniques including queuing theory [3], 

mathematical optimization [4], and heuristic 

algorithms [5]. While these approaches have been 

effective in relatively static environments, they often 

lack the adaptability required for dynamic cloud-edge 

scenarios. 

2.2 Machine Learning for Resource Management 

The application of machine learning in computing 

resource management has gained significant attention 

in recent years. Mao et al. [6] presented a 

comprehensive survey of reinforcement learning 

approaches for resource management in cloud and 

edge computing. Similarly, Wang et al. [7] explored 

the use of deep learning for workload prediction and 

resource provisioning in cloud environments. 

2.3 Heterogeneous Cloud-Edge Computing 

Several recent works have addressed the specific 

challenges of heterogeneous cloud-edge environments. 

Li et al. [8] proposed a framework for service 

placement across cloud and edge resources using game 

theory. Yu et al. [9] introduced a QoS-aware resource 

allocation scheme for edge computing based on multi-

objective optimization. 

Despite these advances, there remains a need for a 

systematic analysis of machine learning approaches 

specifically tailored for resource allocation in 

heterogeneous cloud-edge environments, which is the 

focus of this paper. 

 

TAXONOMY OF MACHINE LEARNING 

APPROACHES FOR RESOURCE ALLOCATION 

This section presents a taxonomy of machine learning 

approaches for resource allocation in heterogeneous 

cloud-edge computing environments.   

Figure 1: Taxonomy of machine learning approaches for resource allocation 

 



Volume 11, Issue 2, March-April-2025 | http://ijsrcseit.com 

Ramesh Krishna Mahimalur Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., March-April-2025, 11 (2) : 2739-2748 

 

 

 

 
2741 

3.1 Reinforcement Learning Approaches 

Reinforcement learning (RL) has emerged as a 

powerful paradigm for resource allocation due to its 

ability to learn optimal policies through interaction 

with the environment without requiring explicit 

models. 

3.1.1 Q-Learning and Deep Q-Networks 

Q-learning is a model-free RL algorithm that has been 

applied to resource allocation problems [10]. However, 

traditional Q-learning suffers from the curse of 

dimensionality when the state and action spaces are 

large, as is common in cloud-edge environments. 

Deep Q-Networks (DQN) address this limitation by 

using deep neural networks to approximate the Q-

function [11]. 

Chen et al. [12] proposed a DQN-based approach for 

service placement and resource allocation in edge 

computing environments. Their approach formulates 

the resource allocation problem as a Markov Decision 

Process (MDP) where the state represents the current 

resource utilization and service demands, while 

actions correspond to allocation decisions. The reward 

function incorporates metrics such as latency, energy 

consumption, and resource utilization. 

3.1.2 Policy Gradient Methods 

Policy gradient methods directly optimize the policy 

representation, making them suitable for continuous 

action spaces that are common in resource allocation 

problems [13]. Zhang et al. [14] employed a policy 

gradient approach for dynamic resource provisioning 

in heterogeneous edge environments, demonstrating 

better adaptability to changing workloads compared 

to heuristic approaches. 

3.1.3 Multi-Agent Reinforcement Learning 

In large-scale distributed environments, multi-agent 

reinforcement learning (MARL) allows multiple 

agents to learn collaborative policies [15]. Wang et al. 

[16] proposed a MARL framework where each edge 

node acts as an agent making local allocation decisions 

while cooperating with other nodes to optimize global 

objectives. Their experiments showed a 25% 

improvement in task completion times compared to 

centralized approaches. 

3.2 Deep Learning Approaches 

Deep learning approaches leverage the power of 

neural networks to learn complex patterns in 

workload data and make predictions that inform 

resource allocation decisions. 

3.2.1 Recurrent Neural Networks for Workload 

Prediction 

Accurate workload prediction is essential for 

proactive resource allocation. Recurrent Neural 

Networks (RNNs), particularly Long Short-Term 

Memory (LSTM) networks, have shown promising 

results in capturing temporal patterns in workload 

data [17]. Liu et al. [18] used LSTM networks to 

predict CPU and memory demands in cloud-edge 

environments, achieving prediction accuracy of over 

90%. 

3.2.2 Convolutional Neural Networks for Spatial-

Temporal Analysis 

Convolutional Neural Networks (CNNs) can capture 

spatial-temporal patterns in resource usage across 

distributed nodes [19]. This is particularly useful in 

edge computing scenarios where workloads exhibit 

both spatial and temporal correlations, such as in 

smart city applications. 

3.2.3 Auto-encoders for Anomaly Detection 

Auto-encoders can identify anomalous resource usage 

patterns that might indicate inefficient allocation or 

potential failures [20]. Detecting and addressing these 

anomalies proactively can improve overall system 

reliability and performance. 

3.3 Federated Learning Approaches 

Federated learning enables collaborative model 

training across distributed nodes without sharing raw 

data, addressing privacy concerns in multi-tenant 

edge environments [21]. 

3.3.1 Federated Resource Prediction 

Federated learning can be used to build collaborative 

prediction models for resource demands across edge 

nodes. Each node trains a local model using its own 

data, and only model updates are shared with a 
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central coordinator that aggregates them into a global 

model [22]. 

3.3.2 Privacy-Preserving Allocation 

In multi-tenant edge environments, privacy concerns 

may limit the sharing of workload data. Federated 

learning provides a privacy-preserving approach to 

resource allocation by keeping sensitive data local 

while still benefiting from collaborative learning [23]. 

3.4 Hybrid Approaches 

Hybrid approaches combine different machine 

learning techniques to leverage their complementary 

strengths. 

3.4.1 Reinforcement Learning with Deep Neural 

Networks 

Combining reinforcement learning with deep neural 

networks for function approximation has proven 

effective for complex resource allocation problems 

[24]. Deep Reinforcement Learning (DRL) approaches, 

such as the one proposed by Xu et al. [25], use neural 

networks to approximate value functions or policies, 

enabling RL to scale to high-dimensional state and 

action spaces. 

3.4.2 Transfer Learning for Cross-Environment 

Optimization 

Transfer learning enables knowledge transfer across 

different environments, reducing the need for 

extensive training in new deployments [26]. This is 

particularly valuable in heterogeneous environments 

where resources and workload patterns vary across 

nodes. 

 

PROPOSED ADAPTIVE RESOURCE ALLOCATION 

FRAMEWORK 

Based on my analysis of existing approaches, I propose 

an adaptive resource allocation framework for 

heterogeneous cloud-edge environments. The 

framework, illustrated in Figure 2, combines the 

strengths of reinforcement learning, deep learning, 

and federated learning to address the unique 

challenges of these environments. 

 
Figure 2: Proposed adaptive resource allocation 

framework for heterogeneous cloud-edge 

environments 

 

4.1 Framework Architecture 

The proposed framework consists of the following key 

components: 

1. Distributed Monitoring System: Collects real-

time data on resource utilization, workload 

characteristics, and QoS metrics across cloud and 

edge nodes. 

2. Workload Prediction Module: Uses LSTM 

networks to predict future resource demands 

based on historical workload patterns. 

3. Resource Profiling Module: Characterizes the 

capabilities and constraints of available resources 

using a combination of static specifications and 

dynamic performance metrics. 

4. Adaptive Allocation Agent: Employs a DRL 

approach to make allocation decisions based on 

current system state, predicted workloads, and 

application requirements. 

5. Federated Knowledge Sharing: Enables 

collaborative learning across nodes without 

sharing sensitive workload data. 

6. QoS Feedback Mechanism: Continuously 

monitors application performance and provides 

feedback to the allocation agent for policy 

refinement. 
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4.2 Algorithmic Approach 

The core of the framework is an adaptive allocation 

agent based on the Proximal Policy Optimization 

(PPO) algorithm [27], which has shown good stability 

and sample efficiency in complex environments. The 

PPO-based agent is augmented with a neural network 

architecture that captures both temporal dynamics 

and spatial correlations in resource usage patterns. 

Algorithm 1 presents the pseudocode for the adaptive 

resource allocation approach. 

def adaptive_resource_allocation(): 

    # Initialize environment, policy, and value 

networks 

    env = CloudEdgeEnvironment() 

    policy_network = PolicyNetwork() 

    value_network = ValueNetwork() 

     

    # Training parameters 

    epochs = 100 

    batch_size = 64 

    clip_param = 0.2 

     

    for epoch in range(epochs): 

        # Collect trajectories using current policy 

        states, actions, rewards, values, log_probs = 

collect_trajectories(env, policy_network) 

         

        # Compute advantages and returns 

        advantages = compute_advantages(rewards, 

values) 

        returns = compute_returns(rewards) 

         

        # Policy update 

        for _ in range(4):  # Multiple optimization steps 

            # Sample mini-batches 

            mini_batches = generate_mini_batches(states, 

actions, log_probs, advantages, returns, batch_size) 

             

            for mini_batch in mini_batches: 

                mb_states, mb_actions, mb_old_log_probs, 

mb_advantages, mb_returns = mini_batch 

                 

                # Get current log probabilities and values 

                new_log_probs, entropy = 

policy_network.evaluate(mb_states, mb_actions) 

                values = value_network.predict(mb_states) 

                 

                # Compute policy and value losses 

                policy_loss = 

compute_ppo_loss(new_log_probs, mb_old_log_probs, 

mb_advantages, clip_param) 

                value_loss = compute_value_loss(values, 

mb_returns) 

                 

                # Update networks 

                total_loss = policy_loss - 0.01 * entropy + 0.5 

* value_loss 

                update_networks(total_loss) 

         

        # Evaluate and adapt learning parameters 

        performance = evaluate_policy(env, 

policy_network) 

        adapt_learning_parameters(performance) 

     

    return policy_network 

The Cloud Edge Environment class models the 

heterogeneous cloud-edge computing environment, 

capturing resource states, application requirements, 

and network conditions. The environment provides 

feedback in the form of rewards that reflect multiple 

objectives including latency, energy consumption, 

and resource utilization. 

4.3 State and Action Representation 

The state representation in the framework captures 

the following aspects: 

1. Current resource utilization across all nodes 

(CPU, memory, bandwidth) 

2. Queue length and waiting time for pending tasks 

3. Network conditions (latency, bandwidth, packet 

loss) 

4. Energy consumption and battery levels for edge 

nodes 

5. Application-specific QoS requirements 
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The action space includes: 

1. Task placement decisions (which node to execute 

a task) 

2. Resource allocation decisions (how much CPU, 

memory, etc. to allocate) 

3. Task scheduling decisions (execution order and 

priorities) 

4. Migration decisions (when to move tasks 

between nodes) 

4.4 Reward Function Design 

The reward function is a critical component that 

guides the learning process. I design a multi-objective 

reward function that balances several competing 

objectives: 

def compute_reward(state, action, next_state): 

    # Latency component 

    latency_reward = compute_latency_reward(state, 

next_state) 

     

    # Energy efficiency component 

    energy_reward = compute_energy_reward(state, 

next_state) 

     

    # Resource utilization component 

    utilization_reward = 

compute_utilization_reward(state, next_state) 

     

    # QoS satisfaction component 

    qos_reward = compute_qos_reward(state, 

next_state) 

     

    # Weighted sum of components 

    total_reward = (w1 * latency_reward +  

                   w2 * energy_reward +  

                   w3 * utilization_reward +  

                   w4 * qos_reward) 

     

    return total_reward 

The weights (w1, w2, w3, w4) can be adjusted based 

on deployment-specific priorities or dynamically 

adapted based on system conditions. 

 

EXPERIMENTAL EVALUATION 

I conducted extensive experiments to evaluate the 

performance of the proposed framework and compare 

it with existing approaches. This section presents the 

experimental setup and results. 

5.1 Experimental Setup 

5.1.1 Testbed Configuration 

I implemented a testbed consisting of: 

 Cloud layer: 4 high-performance serv- ers with 

32 CPU cores and 128GB RAM each 

 Edge layer: 12 edge nodes with varying 

capabilities (2-8 CPU cores, 4-16GB RAM) 

 IoT layer: 50 simulated IoT devices generating 

diverse workloads 

The network topology included both wired and 

wireless connections with varying bandwidth and 

latency characteristics. 

5.1.2 Workload Characteristics 

I used a combination of synthetic and real-world 

workloads: 

 Synthetic workloads following Poisson arrival 

patterns with varying intensities 

 Real-world traces from the Azure public dataset 

[28] 

 IoT application workloads including video 

analytics, sensor data processing, and real-time 

monitoring 

5.1.3 Comparison Baselines 

I compared the approach with the following baselines: 

 Greedy: Tasks are allocated to the node with the 

highest available resources 

 Round Robin: Tasks are distributed in a round-

robin fashion across available nodes 

 First Fit: Tasks are allocated to the first node that 

satisfies resource requirements 

 DQN-based: A deep Q-network approach as 

proposed in [12] 

 LSTM-based: An LSTM prediction-based 

approach as described in [18] 

5.2 Performance Metrics 

I evaluated the approaches using the following 

metrics: 
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1. Average task completion time 

2. Energy consumption 

3. Resource utilization efficiency 

4. QoS satisfaction rate 

5. Adaptability to changing conditions 

5.3 Results and Analysis 

5.3.1 Task Completion Time 

Figure 3 shows the average task completion time for 

different approaches under varying workload 

intensities. 

 
Figure 3: Average task completion time under varying 

workload intensities 

 

The proposed approach achieved 18-25% lower 

average completion times compared to the baseline 

approaches, with the improvement becoming more 

significant under higher workload intensities. This 

demonstrates the effectiveness of the adaptive 

allocation strategy in handling peak loads. 

5.3.2 Energy Efficiency 

Energy consumption is a critical metric, particularly 

for battery-powered edge devices.  

 
Figure 4: Normalized energy consumption for 

different resource allocation approaches 

 

The approach reduced energy consumption by 22% 

compared to the greedy approach and 15% compared 

to the DQN-based approach. This improvement stems 

from the energy-aware component in the reward 

function and the ability to make allocation decisions 

that balance performance and energy efficiency. 

5.3.3 Resource Utilization 

 
Figure 5: Resource utilization efficiency for different 

allocation approaches 

 

The approach maintained consistently higher 

resource utilization (78-82%) compared to baseline 

approaches (60-75%), indicating more efficient use of 

available resources. This is particularly important in 

heterogeneous environments where resources have 

varying capabilities and costs. 

5.3.4 Adaptability to Dynamic Conditions 

To evaluate adaptability, I introduced abrupt changes 

in workload patterns and network conditions during 

execution.  

 
Figure 6: Adaptation time to changing conditions for 

different approaches 

 

The approach demonstrated superior adaptability, 

recovering optimal performance 2.5x faster than static 

approaches and 1.3x faster than other learning-based 

approaches. This is attributed to the combination of 

predictive modeling and reinforcement learning that 

allows the approach to anticipate changes and adapt 

proactively. 
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DISCUSSIONS AND FUTURE DIRECTIONS 

6.1 Limitations and Challenges 

While the proposed framework demonstrates 

significant improvements over existing approaches, 

several challenges remain: 

1. Training Overhead: The training process for deep 

reinforcement learning models can be 

computationally intensive, which may be 

problematic for resource-constrained edge 

environments. 

2. Model Generalization: Ensuring that learned 

policies generalize well to new deployment 

scenarios and workload patterns remains 

challenging. 

3. Multi-Stakeholder Optimization: In real-world 

deployments, different stakeholders may have 

conflicting objectives, requiring careful balance 

in the reward function design. 

4. Scalability: As the number of nodes and tasks 

increases, the state and action spaces grow 

exponentially, potentially impacting the learning 

efficiency. 

6.2 Future Research Directions 

Based on the findings and identified challeng-es, I 

propose several promising directions for future 

research: 

1. Hierarchical Learning Approaches: Decomposing 

the allocation problem into hierarchical sub-

problems to improve scalability and learning 

efficiency. 

2. Explainable AI for Resource Allocat-ion: 

Developing techniques to make the decision-

making process of learning-based allocation 

algorithms more transparent and interpretable. 

3. Online Adaptation: Enhancing the ability of 

allocation policies to adapt in real-time to 

changing environme-ntal conditions without 

requiring extensive retraining. 

4. Integration with Emerging Hardware: Exploring 

the implications of speciali-zed hardware 

accelerators (e.g., TPUs, neuromorphic chips) for 

ML-based resource allocation. 

5. Cross-Layer Optimization: Extending the 

framework to jointly optimize resource allocation 

across application, system, and network layers. 

 

CONCLUSION 

This paper presented a comprehensive analysis of 

machine learning approaches for resource allocation 

in heterogeneous cloud-edge computing 

environments. I proposed an adaptive resource 

allocation framework that combines reinforcement 

learning, deep learning, and federated learning to 

address the unique challenges of these environments. 

The experimental evaluation demonstrated that the 

proposed approach outperforms existing techniques 

across multiple performance metrics, including task 

completion time, energy efficiency, resource 

utilization, and adaptability to dynamic conditions. 

The results highlight the potential of learning-based 

approaches to transform resource management in 

next-generation distributed computing systems. By 

continuously learning from experience and adapting 

to changing conditions, these approaches can enable 

more efficient, reliable, and responsive computing 

services. As edge computing continues to evolve and 

expand, the need for intelligent resource allocation 

strategies will only grow, making this an important 

area for ongoing research and development. 
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