Incorporating Honeypot for Intrusion Detection
in Cloud Infrastructure

Bhavesh Borisaniya!, Avi Patel?, Dhiren R. Patel’, and Hiren Patel®

L NIT Surat, India
{borisaniyabhavesh,dhiren29p}@gmail.com
2 (City University London, UK
avi2687@gmail . com
3 SPCE Visnagar, India
hbpatel1976@gmail.com

Abstract. Cloud services delivered as utility computing over the Inter-
net makes it an attractive target for cyber intruders. Protecting network
accessible Cloud resources and services from ever increasing cyber threats
is of great concern. Most of the Network based Intrusion Detection Sys-
tem (NIDS) being rule based and therefore only capable of identifying
known attacks (through pattern matching). Traditional Anomaly Detec-
tion based IDS may generate more number of false positives.

In this paper, we attempt to amalgamate IDS with Cloud computing.
Introducing Honeypot in Cloud IDS design can greatly help in detecting
potential attacks with reduced number of false positives. This research
work provides an impetus to strengthen network security aspects related
to Cloud computing to make it more trustworthy.

Keywords: Cloud Computing, Intrusion Detection System, Honeypot,
Eucalyptus TaaS framework.

1 Introduction

Cloud computing is a model for enabling convenient, on-demand network access
to a shared pool of configurable computing resources (such as server, storage,
applications, services etc.) that can be rapidly provisioned and released with
minimal management effort or service provider interaction [I]. It is a major aid
for start-ups offering online applications and services without investing much
in storage, web, or computing infrastructure. Using known Internet protocols,
standards and formats; Cloud computing exposes a set of consumable services
delivered to end-users/consumers. These services range from computing utilities
to platforms for application development.

1.1 Need for Security in Cloud

Cloud services are executed on the Cloud provider’s site along with data. These
require large amount of data to be transferred over the network. Cloud providers

T. Dimitrakos et al. (Eds.): IFIPTM 2012, IFIP AICT 374, pp. 84-P6] 2012.
© IFIP International Federation for Information Processing 2012

Incorporating Honeypot for Intrusion Detection in Cloud Infrastructure 85

(o
Ubiquitous Network Access A 60
o>
i
Location Independent Resource Pooling ﬂ‘!}_
L.
%
e n

Cloud Computing

On-demand Self-service

Pay Per Use

Cloud Characteristics

Hybrid Cloud

Saa$: Software as a Service

. Private
Paas : Platformas a Service Public Cloud Cloud

laa$S : Infrastructure as a Service

Cloud Deployment Model

Fig. 1. Cloud computing

have to ensure about the quality of service, performance, reliability and basic
security [2].

If an intruder gains unwanted access to Cloud services, he may also exploit
the underlying architecture. In case of IaaS, the intruder may also be able to
exploit the Virtual Machine Monitor (VMM) by using vulnerabilities in the
implementation. Penetration to the hardware layer may allow an attacker to
compromise any VM provided by the infrastructure.

Because of its provisioning through the Internet and vulnerabilities in involved
(underlying) technologies; there are many issues related to security of Cloud in-
frastructure and its services. Major threats to Cloud computing includes insecure
interface and APIs of shared technology, account and service hijacking [3] etc.
Shared and distributed resources in the Cloud system make it difficult to de-
velop a security model for detecting intrusion and ensuring the data security
and privacy in Cloud. Because of transparency issue, no Cloud provider allows
its customers to implement intrusion detection or security monitoring system
extending into the management services layer providing back channel behind
virtualized Cloud instances. IDS technology has been tested to be capable of
working well in some large scale networks, however, its utilization and deploy-
ment in Cloud Computing is still a challenging task [2].

1.2 Intrusion Detection Systems (IDS)

Intrusion detection systems have proved to be a major tool for network adminis-
trators to protect their internal network from threats of cybercriminals and also
of internal threats. A Common Intrusion Detection Framework (CIDF) which

86 B. Borisaniya et al.

illustrates a general IDS architecture, based on the consideration of four types
of functional modules as shown in Figure 2 [4].

o
t
@
£
£
S

=
>
c
@

<
o
2
S
k=
c
S
=

Fig. 2. Common Intrusion Detection Framework

The components of this IDS framework include the following:

E blocks (Event-boxes): These blocks contain sensor elements that monitor
the target system and gather information events that can be analyzed by other
blocks.

D blocks (Database-boxes): These are the blocks intended to store informa-
tion from E blocks for subsequent processing by A and R boxes.

A blocks (Analysis-boxes): These are the processing modules which analyze
the events and detect the potential hostile behaviour, so that some kind of alarm
will be generated if necessary.

R blocks (Response-boxes): If any intrusion occurs, this block is responsible
to provide a response to prevent the detected threat.

Network based IDS (NIDS) detects the intrusion by monitoring malicious activ-
ity in network traffic while Host based IDS (HIDS) inspects the unusual activity
within the host by monitoring its file system.

Most of the NIDSs monitor network traffic and match it with the dataset of
predefined attack patterns(signatures) to detect the attacks. For network intru-
sion detection, a signature can be as simple as a specific pattern that matches a
portion of a network packet. However, signature-based technique fails to detect
the unknown or new attacks whose signatures are not defined or not included in
the dataset of signatures.

An anomaly based IDS establishes a baseline of normal usage patterns, and
anything that widely deviates from it gets flagged as a possible intrusion [5]. A
large number of false positives can limit this technique which can force it to sign
even a genuine activity as an intrusion attempt.

The objective is to build efficient IDS which can work in Cloud environment
with the capability of detecting known and unknown intrusions. The IDS must
also prove to be a tool to the user to detect if the used-service or hosts are used
to attack other victims.

Incorporating Honeypot for Intrusion Detection in Cloud Infrastructure 87

The rest of the paper is organized as follows: In section 2, related work is
reported. Section 3 discusses important design considerations for deploying IDS
in Cloud. Section 4 discusses our approach to implement NIDS along with hon-
eypot in Cloud framework. Section 5 describes implementation details using
Eucalyptus Cloud framework and section 6 discusses experiments and results.
We conclude in section 7 with references at the end.

2 Related Work

There has been relevant work done in the field about IDS for Cloud computing.
The major approaches are listed as follows:

Sebastian Roschke et al. [2] points the need for deploying IDS in the Cloud by
proposing extensible IDS architecture which can be used in a distributed Cloud
infrastructure.

Noah Guilbault and Ratan Guha [6] shows a way for designing and imple-
menting distributed grid based IDS using virtual servers deployed on Amazon’s
Elastic Compute Cloud service. Aman Bakshi et al. [7] proposed a framework for
securing Cloud from DDoS attacks using an IDS in a virtual machine. This can
be done by employing intrusion detection sensors installed in a virtual machine
to sniff network traffic and to analyze packets over the Internet using Snort. Both
these approaches incorporate IDS in each virtual machine, requires as many IDS
as number of running virtual machine instances. Claudio Mazzariello et al. [§]
has placed Snort as a NIDS on the virtual switch component of the physical ma-
chine. This physical machine hosts virtual machines of clients using open source
Eucalyptus cloud computing framework. Virtual Switch enables the NIDS to
monitor all in-bound and out-bound traffic from the entry-point. Chi-Chun Lo
et al. [9] proposed a cooperative IDS framework for Cloud computing networks
to reduce DDoS attacks. All these approaches use signature based technique,
limited to detect only known attacks.

Kleber Vieira et al. [I0] have described an intrusion detection based on Grid
and Cloud computing system which can identify unknown as well as known
attacks. However, this approach is only suitable for PaaS.

3 Design Considerations

Deploying IDS in the Cloud is a tricky issue. From the users’ perspective, they
need to make sure that the service they use is not subjected to any kind of
attack. They should also know whether these services are being used to attack
other hosts or not. On the other hand, Cloud providers need to ensure if its
infrastructure is subjected to any attack or not. With knowledge of attacks and
their behavior, the provider should be prompted to take appropriate actions.
In order to justify our approach and make it useful for a Cloud environment,
we explored various Cloud frameworks for implementing TaaS as a service model
and configure them for analysis in our lab environment. There are several open-
source frameworks for Cloud computing viz; Eucalyptus [I1], OpenNebula [12],

88 B. Borisaniya et al.

Globus Nimbus [13] etc. Amongst them, we have zeroed into Eucalyptus because
it provides simpler interface, supports different virtual machine monitors (or
hypervisors) and modular architecture, which provides us an easy alternative to
incorporate honeypot with IDS.

Network based intrusion detection tools are usually deployed over a perimeter
of an organization network in order to monitor inbound and outbound network
traffic. We have looked at various intrusion detection tools chosen Snort[I4], as
it is configurable, widely used and constantly updated. We have augmented the
simple honeypot to a dynamic honeypot and incorporated it into our proposed
approach. For testing the proposed architecture, we have setup a configurable
private Cloud using Eucalyptus framework. We have created and tested the
installed machine images of different operating systems which can be delivered
as virtual machine instances with different configurations (RAM and CPUs) to
the Cloud users in context of private Cloud.

3.1 Eucalyptus Architecture

Figure [shows the Eucalyptus Cloud architecture containing various compo-
nents [I5I6]. Each high-level system component in the Eucalyptus design is
implemented as a stand-alone Web service. These Web services expose a well
defined language-agnostic API in the form of a WSDL (Web Service Descriptive
Language) document, which contains operations that the service can perform
and input/output data structures. It also support secure communications us-
ing WS-Security policies and rely upon industry-standard Web services software
packages like Axis2, Apache and Rampart [I5/T6].

Basic Components of Eucalyptus Architecture and their functions are sum-
marized in Table [

Table 1. Eucalyptus Components

No Component Function

1 Cloud Controller(CLC) High level scheduling decisions

2 Node Controller(NC) Management of virtual machine instances and its execution

3 Cluster Controller(CC) Scheduling of virtual machine execution on specific hosts
and virtual network management

4 Storage Controller(SC) Storage of user data as well as storage service for

virtual machine images

Eucalyptus provides a functionality called security groups which acts as a
firewall for running machine instances. It is a named collection of network access
rules, defining which incoming traffic is delivered to instances. A user can add
or remove a security group to meet his security requirement. By using this, a
user can open or close ports to control the inbound or outbound network traffic
over it. By restricting the number of open ports in an instance; a user can only
decrease the probability of an attack to some extent. If the services running on
these ports are vulnerable, then its easy for an intruder to exploit it.

Incorporating Honeypot for Intrusion Detection in Cloud Infrastructure

Cluster A

CCand SC

Private
Network

N

J

CLC and Walrus

Public

Network

ClusterB

-

CCand SC

Private
Network

/

Fig. 3. Eucalyptus Cloud Architecture

3.2 Placement of a NIDS in Eucalyptus Based Private Cloud

89

Figure @ shows the architecture of the system which comprises the NIDS. We
have placed the NIDS in each Cluster Controller to monitor the network traffic

CLC and Walrus

Public
Network

Cluster A

CCand SC

Private
Network

\

L/

ClusterB

Central
Database

\

CCand SC

Private
Network

L/

Fig. 4. Architecture of Eucalyptus Private Cloud with NIDS

90 B. Borisaniya et al.

of all the Node Controllers which report to the respective CC. NIDS will capture
all the packets passing through the CC intended to the instances hosted by NCs
and examine them for the malicious content. If malicious content is found, it
generates alerts and logs that network activity into the central database. The
Cloud administrator can view and analyze these logged alerts and network activ-
ities (i.e. packets) by accessing the database. Also, the owner of the instance can
analyze the logged attack alerts related to it by querying the central database
using interface through the instance.

This approach allows the Cloud administrator (Instance provider as well as
instance owner) to monitor the type and source of the attack, which in turn can
be used to prevent the similar future attacks.

3.3 Use of Honeypot

A honeypot is a deception system which allures the attackers. It has no produc-
tion value and is intended to be compromised. All the traffic sent to a honeypot is
almost certainly unauthorized meaning no false positives, false negatives or large
data sets to analyze [I7]. Any connection with honeypot can be considered as an
attack and an attacker who breaks into a honeypot is comprehensively monitored.
Honeypots are serving several purposes that include the following [17]:

1. They can distract attackers from more valuable machines on a network.

2. They can provide early warning about new attack and exploitation trends.

3. They allow in-depth examination of adversaries during and after exploitation
of a honeypot.

In our approach, honeypot plays an important role. Any attempt to access hon-
eypot is labeled as an attack.

4 Proposed Approach: Incorporating a Honeypot
in Eucalyptus Based Private Cloud

Unknown attacks, for which signatures are not available, have to be dealt with
caution and it requires a more efficient IDS mechanism. In our approach, we
have incorporated a honeypot to enhance the working of a NIDS in a Cloud
environment. The introduction of a honeypot allows identification of suspicious
activities by monitoring those network packets which were previously marked
as non-suspicious by a normal NIDS. In order to deploy a honeypot in a Cloud
environment, we have considered a design in which the administrator launches
instances through the honeypot manager. Honeypot manager is an administra-
tive tool used for managing honeypot instances, which are made vulnerable and
attractive for intruders to exploit (by running various services accessible through
the Internet through open ports).

Figure B shows the NIDS incorporating a honeypot in a Cloud architec-
ture. We have shown two such machine instances which work as honeypot.
These instances have no production value and hence any inbound or outbound

Incorporating Honeypot for Intrusion Detection in Cloud Infrastructure 91

network activity with these instances is considered as malicious. Any packet
passing through CC intended for honeypot machine instances will be captured
by a packet sniffer and logged into the central database for later analysis.

CLC and Walrus
Honeypot
Manager

Public
Network

Cluster A ClusterB

CCand SC R CCand SC

Packet Sniffer Packet Sniffer

Private Private

Network CEntEl Network

Database

Honeypot

\mm M

Fig. 5. Architecture of intrusion detection system using honeypot in Eucalyptus Cloud

Here, NIDS is placed in CC to listen the traffic intended for instances and
generates (and logs) the alerts to the central database if any malicious activity is
found. A packet sniffer sniffs and logs all network packets related to the honeypot
instances in the central database.

All packets intended towards honeypot instances, also passes through NIDS.
As cloud provider is not delivering honeypot instances to any client, any activity
towards it can be considered as malicious. Hence, by querying the database for
activities which are captured by honeypots and passed through NIDS, we are
able to find such activities/attacks, which were not detected earlier. From these
logged activities, we can find information like source (IP) of attack and services
they are trying to access using destination and source port. Figure [6l depicts this
intrusion detection process flow diagram.

The compromised honeypot instance image can also be used as a means to
learn new ways, tools and methods to get into the system. It is also helpful to
understand the motive of attacker, to avoid the future attacks and to make the
existing NIDS more efficient.

The compromised honeypot instance image can also be used as a means to
learn new ways, tools and methods to get into the system. It is also helpful to
understand the motive of attacker, to avoid the future attacks and to make the
existing NIDS more efficient.

92 B. Borisaniya et al.

Packet arrival on CC

Packet Sniffer

Signature based NIDS

Packet captured

and processed by Dest IP =
NIDS Honeypot Drop

Instance Packet
IP?

Known Attacks
Att;Ck I;ound Log the packet Generate
e in NIDS

. known Database (@ Alert Log the packet in
signature) ?

Honeypot
Database

Pass the packet to
Machine Instance

Potential
Unknown Attacks

Fig. 6. Intrusion detection process in proposed framework
5 Implementation Issues

Figure [1 shows the experimental setup of a Eucalyptus private Cloud with the
proposed framework of NIDS.

172.16.2.210 172.16.2.212 172.16.2.213 172.16.2.214

11 12 13 14
172.19.1.1 172.19.1.2 172.19.1.3 172.19.1.4

172.19.1.0

NC —
172.16.2.205

172.16.2.204

Honeypot
Manager

172.16.2.200

172.16.2.201

C1 c2

172.16.2.182 172.16.2.183

Fig. 7. Experimental Setup for NIDS using Honeypot in Cloud

Incorporating Honeypot for Intrusion Detection in Cloud Infrastructure 93

Our setup consists of three machines, a Node Controller (NC), a Cloud Con-
troller (CLC) and a machine consisting of both Storage Controller (SC) and
Cluster Controller (CC). We have used a separate cluster controller (i.e. SC and
CC) and database server (i.e MySQL) on different machines. They can also be
placed on the same machine in which the CLC resides. 11, 12, I3 and 14 are four
machine instances, made available over an external network as a Cloud service
model i.e. IaaS, whereas C1 and C2 are clients utilizing these services from the
Cloud.

Snort is configured in the CC machine along with a packet sniffer, while the
Honeypot Manager is placed in the CLC. A set of machine images of different OS
is used to create the honeypot in our environment. Under ideal circumstances, it
should cover machine images of all the OS, whose instances are provided by the
Cloud provider. These images are made in a way that can attract the attackers.
In our experiments we have used machine images of Windows XP, Windows
Server 2003 and Ubuntu 10.04. The central database contains the information
of machine images that can be used to launch as honeypot instances. It also
maintains the information of the fake Cloud users (for experimentation) like
their username and credentials that can be used to run the honeypot instances
with different instance ownership.

The honeypot manager is responsible for launching the honeypot instances.
It gathers the information about the operating system and the state of open
and closed ports for different services for all instances. Accordingly, the honey-
pot manager schedules the type of operating system to be used as a honeypot.
The honeypot manager launches each machine instance of a different OS having
the ownership of fake users. It also opens different ports for vulnerable services
through a security group mechanism to make it more attractive. These ma-
chine instances are not delivered to normal users and also its owners credentials
are only with the Cloud administrator (nobody can access these instances di-
rectly). Hence, any connectivity with these machine instances can be considered
malicious.

A packet sniffer captures all the network packets which pass through the CC
whose source or destination IP is one of the honeypot IPs. It logs all the captured
packets into the central database. Snort examines those packets that are sniffed
by the packet sniffer and generates alerts if it finds a known attack pattern within
the packet content.

Controlled monitoring of vulnerable images can assist the behavioral analysis
of an intruder. Vulnerable images are crafted to exploit with absolute zero or
no security and placed in a DMZ. These images are monitored periodically for
intrusion attempts. In case of an intrusion, an alert is reported on the primary
basis. A local cache directory can be included on top of the Cloud architecture
which saves copies of vulnerable images periodically on a version basis. Careful
analysis can be done of these vulnerable images to record intruder activity and
to enhance the security of the Cloud architecture there after using appropriate
security measures.

94 B. Borisaniya et al.
6 Experiments and Results

We have used Snort as a NIDS and launched vulnerable machine instances to
work as honeypots. In order to compare the vulnerability in both original as
well as vulnerable copies of operating system images, we conducted a scan using
Nessus by enabling all available plug-in modules. The statistics collected are
shown in Table

Table 2. Nessus vulnerability scan result of machine images

Operating System Machine Instance Total High Medium Low Open Port

Windows XP Original 20 0 2 14 4
Vulnerable 48 0 5 29 14

Windows 2003 Server Original 11 0 1 8 2
Vulnerable 32 5 1 18 8

Ubuntu 10.04 Original 21 0 0 17 4
Vulnerable 64 1 2 43 18

We launched two instances of each operating system (i.e. Windows XP, Win-
dows 2003 and Ubuntu 10.04) in the Cloud and opened the required ports for the
services that run on different operating system instances using security group.
Honeypot manager also launches instances of the vulnerable images relative to
these operating systems.

12000

10000

w
¥
=] 8000 —
®
o
—
[-=] 6000 —
5 M Nmap
-E 4000 | o Metasploit
3
Messus
) - [[3
a
Snort ‘ Honeypot Snort ‘ Honeypot Snort ‘ Honeypot
Windows XP Windows 2003 Server Ubuntu 10.04

Fig. 8. Comparison of total number of packets logged by Snort and Honeypot in Cloud
environment

We attacked all the nine machine instances (3 for each operating system -
2 normal and 1 launched by the honeypot manager) using Nmap, Nessus and
Metasploit to test the designed system. Nmap scans all the open ports while
Nessus and Metasploit send bad packets in order to find vulnerabilities and

Incorporating Honeypot for Intrusion Detection in Cloud Infrastructure 95

exploit them. Then we compared the alerts generated by Snort and honeypot in
response to the attacks made by each tool.

Figure [§ shows the graphical representation for the comparison of the total
number of logged packets by the honeypot and Snort.

P ——— “— . T o O
File Edit View History Bookmarks Tools Help
BN & (0] hpr e Iy-debug/Msin.htmi ¥7 - | [28- Google £

2, Most Visited |_| Getting Started 3, Latest Headlines

|| http//localhost/c...ly-debug/Main-htmi| -+ =

Honeypot Events | Hachine Images | Honeypot Instances | Users Anomaly | Friends List
Time Signature Source IP Dest P Filter Records By

2010-04-20 22:47:49 SNIP AgeniXfcp request 17216.1.244 17216117 (4]

2010-04-20 22:47:49 (portscan) Open Port 17216.1.244 172161179 —
2010-04-20 22:47:40 (portscan) Open Port 17216.1.204 172161179

2010-04-20 22:47:40 (portscan) TCP ortscan 17216.1.204 172161170

2010-04-20 224749 SNMP request tcp 17216.1.244 172.16.1.170 H

2010-04-20 22:47:49 (portscan) Open Port 17216.1.244 17246017 L frents

2010-04-20 22:47:40 (portscan) Open Port 17216.1.244 172460170 72

2010-04-20 22:47:40 (portscan) Open Port 172461244 172460172 l i e
2010-04-20 22:47:49 (portscan) Open Port 172161244 172.16.1.17 T
2010-04-20 22:47:49 (portscan) Open Port 17216.1.244 172161179 W %
2010-04-20 22:44:58 SCAN UPNP senvice discover attempt | 172.16.1.100 239.255.255.250 3 oter
2010-04-20 22:43:04 NETBIOS SHE IPCS unicode share acces| 172.16.1.62 172161170

2010-04-20 224152 SCAN UPNP senice discover atempt | 172.16.1.170 230.265.256.250 e

2010-04-20 22:33:26 (portscan) Open Port 17216.1.244 172160170

2010-04-20 22:33:26 (portscan) TCP Portscan 17216.1.244 17216017 3

2010-04-20 22:33:26 SNWP request tcp 17216.1.244 17246.0.170 7]

Transferring data from localhost...

Fig. 9. Web application(screen shot) for analyzing proposed system

In order to verify the results, we formally developed a web application which
gives the details of intrusion attempts logged by Snort as well as the honeypot.
Screen shot of this web application is shown in Figure

7 Conclusion

By incorporating honeypot, the proposed IDS for Cloud not only alerts the users
(about possible network attacks) but also helps Cloud administrator to monitor
unknown attacks to enhance its Intrusion Prevention Strategy. The proposed
system can be implemented in a Cloud environment to make it more trustworthy
by providing an intrusion alert mechanism for attacks against Cloud.

The core benefits of the proposed approach are:

1. It can detect known as well as potential unknown attacks.

2. Controlled use of honeypot generates less number of false alarms for un-
known attacks making it an efficient solution for intrusion detection specific
to private Cloud.

Though, the proposed scheme is implemented with a Eucalyptus framework, it
may work well for other Cloud platforms. It can serve as model to study the
behavior of NIDS for distributed environment.

96

B. Borisaniya et al.

References

10.
11.
12.
13.
14.

15.

16.

17.

. Grance, T., Mell, P.: The nist definition of cloud computing. National Institute of

Standards & Technology (NIST) (2009),
http://www.nist.gov/itl/cloud/upload/cloud-def-v1i5.pdf

. Roschke, S., Cheng, F., Meinel, C.: Intrusion detection in the cloud. In: IEEE

International Symposium on Dependable, Autonomic and Secure Computing, pp.
729-734 (2009)

. Top threats to cloud computing (2009),

https://cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf

. Garca-Teodoro, P., Daz-Verdejo, J., Maci-Fernndez, G., Vzquez, E.: Anomaly-

based network intrusion detection: Techniques, systems and challenges. Computers
and Security 28, 18-28 (2009)

. Marinova-Boncheva, V.: A short survey of intrusion detection systems. Problems

of Engineering Cybernetics and Robotics (2007),
http://www.iit.bas.bg/PECR/58/23-30.pdf

. Guilbault, N., Guha, R.: Experiment setup for temporal distributed intrusion de-

tection system on amazon’s elastic compute cloud. In: IEEE International Confer-
ence on Intelligence and Security Informatics, IST 2009, pp. 300-302 (2009)

. Bakshi, A., Dujodwala, Y.B.: Securing cloud from ddos attacks using intrusion de-

tection system in virtual machine. In: International Conference on Communication
Software and Networks, pp. 260264 (2010)

. Mazzariello, C., Bifulco, R., Canonico, R.: Integrating a network ids into an open

source cloud computing environment. In: Sixth International Conference on Infor-
mation Assurance and Security (IAS), pp. 265-270 (2010)

. Lo, C.C., Huang, C.C., Ku, J.: A cooperative intrusion detection system frame-

work for cloud computing networks. In: Proceedings of the 2010 39th International
Conference on Parallel Processing Workshops, ICPPW 2010, pp. 280-284. IEEE
Computer Society (2010)

Vieira, K., Schulter, A., Westphall, C., Westphall, C.: Intrusion detection for grid
and cloud computing. It Professional 12(4), 38-43 (2010)

Eucalyptus, http://www.eucalyptus.com/

Opennebula, http://wuw.opennebula.org/

Nimbus, www.nimbusproject.org/

Snort, network intrusion detection and prevention system,
http://www.snort.org/

Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L.,
Zagorodnov, D.: The eucalyptus open-source cloud-computing system. In: Proceed-
ings of the 2009 9th IEEE/ACM International Symposium on Cluster Computing
and the Grid, CCGRID 2009, pp. 124-131. IEEE Computer Society (2009)
Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L.,
Zagorodnov, D.: A technical report on an elastic utility computing architecture
linking your programs to useful systems (2008), jopen.eucalyptus.com

Mokube, I., Adams, M.: Honeypots: concepts, approaches, and challenges. In:
Proceedings of the 45th Annual Southeast Regional Conference, ACM-SE 45,
pp- 321-326. ACM (2007)

http://www.nist.gov/itl/cloud/upload/cloud-def-v15.pdf
https://cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf
http://www.iit.bas.bg/PECR/58/23-30.pdf
http://www.eucalyptus.com/
http://www.opennebula.org/
www.nimbusproject.org/
http://www.snort.org/
open.eucalyptus.com

	Incorporating Honeypot for Intrusion Detection
in Cloud Infrastructure
	Introduction
	Need for Security in Cloud
	Intrusion Detection Systems (IDS)

	Related Work
	Design Considerations
	Eucalyptus Architecture
	Placement of a NIDS in Eucalyptus Based Private Cloud
	Use of Honeypot

	Proposed Approach: Incorporating a Honeypot in Eucalyptus Based Private Cloud
	Implementation Issues
	Experiments and Results
	Conclusion
	References

