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Abstract 

The proliferation of AI models across industries has spurred the need for flexible and 

interoperable deployment strategies that enable seamless migration and sharing across 

heterogeneous cloud environments. This paper proposes a modular AI deployment 

framework that decouples model development, packaging, and orchestration layers to 

ensure cloud-agnostic portability. Leveraging containerization, API standardization, and 

automated orchestration tools like Kubernetes, the framework supports scalable 

deployment with enhanced reproducibility and reduced vendor lock-in. Evaluation across 

AWS, Azure, and GCP environments demonstrates the framework's efficiency, adaptability, 

and cost-effectiveness. 
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1. Introduction 

In the modern era of cloud-native machine learning (ML) and artificial intelligence (AI) 

development, organizations increasingly rely on public cloud infrastructure for training, 

inference, and model management. However, the disparate APIs, networking protocols, and 

deployment environments across cloud providers present major challenges for reproducible 
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and portable model deployment. Moreover, regulatory compliance, cost optimization, and 

organizational policies often necessitate hybrid or multi-cloud strategies that demand 

standardized, modular deployment solutions. 

The rise of MLOps has partially addressed operational concerns in AI lifecycle management, 

yet many pipelines are tightly coupled to specific cloud environments. As a result, deploying 

the same model across AWS SageMaker, Azure ML, or GCP Vertex AI often involves 

redundant configuration and adaptation. A modular framework that decouples core 

deployment layers—model packaging, orchestration, and interface exposure—can provide 

a sustainable solution to this problem by enabling plug-and-play deployment across 

infrastructures. 

This paper presents such a modular AI deployment framework that utilizes Docker, Helm, 

and Kubernetes, along with model versioning strategies using MLFlow or DVC. We test the 

framework’s performance and scalability by deploying benchmark models across three 

major cloud providers and analyzing latency, memory footprint, and deployment time. Our 

approach highlights best practices for ensuring transparency, version control, and 

reusability while maintaining provider-agnostic deployments. 

 

2. Literature Review 

A variety of research has attempted to address the problem of AI model portability and 

deployment, particularly in the context of cloud-native development. Early studies focused 

on monolithic pipelines, such as the work by Sculley et al. (2015), who introduced the 

concept of “technical debt” in ML systems, emphasizing the dangers of entangled workflows 

and hard-coded deployment logic. These findings motivated the development of modular 

frameworks capable of maintaining model reproducibility and consistency across 

environments. 

Subsequent studies examined container-based deployment as a means of model portability. 

Hohpe (2017) highlighted the architectural shifts needed to design systems for multi-cloud 

deployments. By encapsulating AI models into Docker containers and orchestrating them 

using Kubernetes, several teams demonstrated significant improvements in deployment 

consistency. For instance, Liu et al. (2020) tested containerized ML services on AWS and GCP, 

showing reduced deployment overhead and improved scalability using Helm charts. 

Recent works, including those by Zaharia et al. (2022), emphasized the use of MLFlow for 

tracking model lineage, enabling metadata-driven deployment in hybrid environments. 

These systems integrated with CI/CD tools to facilitate reproducible experiments and multi-

cloud compatibility. However, gaps remain in harmonizing orchestration and service 

discovery across providers, which motivates the need for a layered, modular framework to 

abstract cloud-specific dependencies and enforce common interfaces. 
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3. Framework Architecture and Design 

This section details the proposed architecture for the modular AI deployment framework. 

The design is composed of three loosely coupled layers: (1) Model Packaging, (2) 

Orchestration Layer, and (3) Interface Exposure. Each component is cloud-agnostic, 

ensuring compatibility across AWS, GCP, and Azure. 

3.1 Model Packaging Layer 

Models are packaged using Docker containers, bundled with all required dependencies and 

executed through command-line interfaces. The containers are registered with a centralized 

repository such as Docker Hub or GitHub Container Registry. Tools like MLFlow or DVC are 

used for version control, providing traceability and rollback capabilities for model 

management. 

3.2 Orchestration Layer 

Kubernetes and Helm serve as the primary orchestration tools, responsible for managing 

model lifecycles, scaling instances, and handling service discovery. This layer ensures 

decoupled deployment logic and automates the allocation of compute resources. It supports 

both horizontal and vertical scaling, and configuration templates abstract cloud-specific 

parameters. 

3.3 Interface Exposure Layer 

To ensure seamless model consumption, APIs are exposed via REST or gRPC. A lightweight 

gateway (e.g., Istio or Ambassador) handles routing and security policies. Each model is 

containerized as a microservice with documented endpoints using OpenAPI standards. 

 
 

Figure 1: Modular Framework Design 
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Figure 1 illustrates the modular architecture of the proposed AI deployment framework, 

organized into three primary layers: Model Packaging, Orchestration, and Interface 

Exposure. Each layer operates independently but integrates seamlessly through 

standardized APIs and configuration protocols. 

 

1. Model Packaging Layer is responsible for preparing AI/ML models for deployment. 

This includes encapsulating trained models in Docker containers along with all 

necessary dependencies, ensuring consistent execution environments across cloud 

platforms. Versioning tools such as MLflow and DVC allow teams to track, reproduce, 

and manage model versions efficiently. 

2. Orchestration Layer uses Kubernetes and Helm to manage model lifecycles, 

provide resource autoscaling, and abstract provider-specific deployment logic. This 

layer supports cloud-agnostic templates, meaning models can be deployed on AWS, 

GCP, or Azure without reconfiguration. Continuous integration and deployment 

pipelines (CI/CD) facilitate automated testing and rollout of updates. 

3. Interface Exposure Layer provides access to deployed models via standardized 

interfaces. REST or gRPC APIs are hosted as containerized microservices, while 

gateways such as Istio handle routing, security, and traffic management. API 

documentation via OpenAPI ensures interoperability and ease of use for developers 

and applications consuming the models. 

 

This layered approach ensures modularity, scalability, and flexibility in AI deployment 

workflows, promoting reuse, reproducibility, and seamless cloud migration. 

 

4. Evaluation and Experimental Results 

The framework was tested on three cloud platforms—AWS, Azure, and GCP—by deploying 

a ResNet50 image classification model and a BERT-based text classifier. Deployment metrics 

such as latency, container spin-up time, and API response rate were tracked and compared. 

 

Table 1. Deployment Time Across Platforms 

 

Model AWS (seconds) Azure (seconds) GCP (seconds) 

ResNet50 38.5 41.3 36.8 

BERT-base 52.1 54.6 50.4 

 

Table 1 presents the average deployment time (in seconds) for two representative models 

across three major cloud platforms. The ResNet50 model, used for image classification, 

showed the fastest deployment on GCP, followed by AWS and Azure. Similarly, the BERT-
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base model, used for natural language processing, exhibited the lowest deployment latency 

on GCP. These results demonstrate that the proposed framework achieves consistent 

performance across heterogeneous cloud environments with minimal variation, validating 

its cloud-agnostic design. 

 

5. Discussion and Implications 

The proposed framework enhances reproducibility and deployment agility, addressing key 

challenges in cloud interoperability. The decoupled design allows teams to optimize 

infrastructure choices based on cost, data residency, or compliance needs without significant 

reconfiguration. Furthermore, the reliance on open standards ensures long-term 

maintainability and community support. 

Adopting such a modular approach contributes to the standardization of AI operations, 

particularly in federated and distributed learning environments. However, complexity 

increases with model size and cross-region deployment, necessitating careful governance. 

Also, while the orchestration is automated, managing network security and inter-service 

communication across clouds still requires manual intervention. 

Future work may focus on incorporating automated model testing, canary deployments, and 

reinforcement-based orchestration policies. In particular, integrating this framework with 

cloud-native CI/CD tools (e.g., GitHub Actions, Azure Pipelines) can further streamline model 

lifecycle management. 

 

6. Conclusion 

This study introduced a modular AI deployment framework designed for cloud-agnostic 

model sharing and orchestration. By decoupling packaging, orchestration, and interface 

layers, the framework allows seamless deployment of models across AWS, Azure, and GCP. 

Empirical evaluation demonstrated low deployment overhead and consistent performance 

metrics, validating the feasibility of cross-platform AI service delivery. This modular 

paradigm paves the way for more agile and sustainable AI infrastructure practices, with 

potential for scaling into multi-tenant and edge computing environments. 
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