

Arrhythmia/Electrophysiology

Relations of Biomarkers of Distinct Pathophysiological Pathways and Atrial Fibrillation Incidence in the Community

Renate B. Schnabel, MD, MSc; Martin G. Larson, ScD; Jennifer F. Yamamoto, MA; Lisa M. Sullivan, PhD; Michael J. Pencina, PhD; James B. Meigs, MD, MPH; Geoffrey H. Tofler, MD; Jacob Selhub, PhD; Paul F. Jacques, DSc; Philip A. Wolf, MD; Jared W. Magnani, MD; Patrick T. Ellinor, MD, PhD; Thomas J. Wang, MD; Daniel Levy, MD; Ramachandran S. Vasan, MD*; Emelia J. Benjamin, MD, ScM*

Background—Biomarkers of multiple pathophysiological pathways have been related to incident atrial fibrillation (AF), but their predictive ability remains controversial.

Methods and Results—In 3120 Framingham cohort participants (mean age 58.4 ± 9.7 years, 54% women), we related 10 biomarkers that represented inflammation (C-reactive protein and fibrinogen), neurohormonal activation (B-type natriuretic peptide [BNP] and N-terminal proatrial natriuretic peptide), oxidative stress (homocysteine), the renin-angiotensin-aldosterone system (renin and aldosterone), thrombosis and endothelial function (D-dimer and plasminogen activator inhibitor type 1), and microvascular damage (urinary albumin excretion; $n=2673$) to incident AF ($n=209$, 40% women) over a median follow-up of 9.7 years (range 0.05 to 12.8 years). In multivariable-adjusted analyses, the biomarker panel was associated with incident AF ($P<0.0001$). In stepwise-selection models ($P<0.01$ for entry and retention), log-transformed BNP (hazard ratio per SD 1.62, 95% confidence interval 1.41 to 1.85, $P<0.0001$) and C-reactive protein (hazard ratio 1.25, 95% confidence interval 1.07 to 1.45, $P=0.004$) were chosen. The addition of BNP to variables recently combined in a risk score for AF increased the C-statistic from 0.78 (95% confidence interval 0.75 to 0.81) to 0.80 (95% confidence interval 0.78 to 0.83) and showed an integrated discrimination improvement of 0.03 (95% confidence interval 0.02 to 0.04, $P<0.0001$), with 34.9% relative improvement in reclassification analysis. The combined analysis of BNP and C-reactive protein did not appreciably improve risk prediction over the model that incorporated BNP in addition to the risk factors.

Conclusions—BNP is a predictor of incident AF and improves risk stratification based on well-established clinical risk factors. Whether knowledge of BNP concentrations may be used to target individuals at risk of AF for more intensive monitoring or primary prevention requires further investigation. (*Circulation*. 2010;121:200-207.)

Key Words: atrial fibrillation ■ biomarkers ■ epidemiology ■ arrhythmia ■ risk assessment

It is anticipated that over the next 4 decades, the prevalence of atrial fibrillation (AF) will increase dramatically owing to an aging population, improved therapies, and longer survival with heart disease.^{1,2} AF is associated with higher rates of stroke and hospitalization,^{3,4} diminished quality of life,⁵ and significant mortality.⁶ The identification of risk factors for developing AF is an important epidemiological task with potential implications for public health,^{7,8} and research in this respect has been

prioritized by the National Heart, Lung, and Blood Institute (<http://www.nhlbi.nih.gov/meetings/workshops/prevent-af.htm>).

Clinical Perspective on p 207

Well-established clinical risk factors for AF other than age and sex are body mass index, hypertension, and cardiovascular disease, including valvular disease and heart failure⁹⁻¹¹; however, these risk factors do not explain all cases of AF, which

Received May 24, 2009; accepted October 20, 2009.

From the National Heart, Lung, and Blood Institute's and Boston University's Framingham Study (R.B.S., M.G.L., P.A.W., D.L., R.S.V., E.J.B.), Framingham, Mass; Mathematics and Statistics Department (M.G.L., M.J.P.), Whitaker Cardiovascular Institute (R.S.V., E.J.B.), Evans Memorial Medicine Department (J.W.M., D.L., R.S.V., E.J.B.), and Sections of Cardiology (J.W.M., D.L., R.S.V., E.J.B.), Neurology (P.A.W.), and Preventive Medicine (R.S.V., E.J.B.), Boston University School of Medicine, Boston, Mass; Biostatistics (J.F.Y., L.M.S., M.J.P.) and Epidemiology (E.J.B.) Departments, Public Health School, Boston University, Boston, Mass; Department of Medicine (J.B.M.) and Cardiology Division (P.T.E., T.J.W.), Massachusetts General Hospital, Harvard Medical School, Boston, Mass; Royal North Shore Hospital (G.H.T.), Sydney, Australia; Jean Mayer Department of Agriculture Human Nutrition Research Center on Aging (J.S., P.F.J.), Tufts University, Boston, Mass; and Center for Population Studies (D.L.), National Heart, Lung, and Blood Institute, Bethesda, Md.

*Drs Vasan and Benjamin contributed equally to this article.

The online-only Data Supplement is available with this article at <http://circ.ahajournals.org/cgi/content/full/CIRCULATIONAHA.109.882241/DC1>.

Guest Editor for this article was Michael E. Cain, MD.

Correspondence to Emelia J. Benjamin, MD, ScM, Professor of Medicine and Epidemiology, Boston University Schools of Medicine and Public Health, The Framingham Heart Study, 73 Mount Wayte Ave, Framingham, MA 01702-5827. E-mail emelia@bu.edu

© 2010 American Heart Association, Inc.

suggests a need for improvement in risk prediction and understanding of the pathophysiology of AF.¹² Blood and urinary biomarkers are potential tools to enhance AF risk prediction and to provide insights into the pathophysiology of the disease. On the basis of biological plausibility and prior reports, biomarkers were chosen to represent distinct pathophysiological pathways, including inflammation (C-reactive protein [CRP] and fibrinogen),^{13,14} neurohormonal activation (B-type natriuretic peptide [BNP] and N-terminal proatrial natriuretic peptide [N-ANP]),^{15,16} oxidative stress and endothelial dysfunction (homocysteine),¹⁷ the renin-angiotensin-aldosterone system (renin and aldosterone),¹⁶ thrombosis and endothelial function (D-dimer and plasminogen activator inhibitor type 1),^{18,19} and microvascular damage (urinary albumin excretion).²⁰ We hypothesized that the combined analysis of these biomarkers identifies a small panel of distinct biomarkers that are associated with new-onset AF and will improve risk stratification beyond clinical risk factors.

Methods

Study Sample

The Framingham Offspring Study enrolled 5124 individuals in the early 1970s with regular follow-up every 4 to 8 years.²¹ Participants (n=3532) who attended the sixth examination cycle (1995–1998) were eligible for analysis. For the present study, attendees were excluded on the basis of any missing biomarker measurements (n=270), incomplete or missing follow-up (n=1), prevalent AF (n=106), serum creatinine >2 mg/dL (n=18), or missing covariate data (n=17). As a result, data on 3120 participants were available for analysis (n=2673 for those with a urinary albumin measurement). The Boston University Medical Center Institutional Review Board approved the study protocols, and participants provided informed consent at each examination.

Clinical Evaluations

Regular cardiovascular health assessments at the Framingham Heart Study clinic include cardiac risk factor documentation during a physician-administered interview and physical examination. Valvular heart disease was considered present if a systolic murmur louder than grade 3 (on a 6-point scale) or any diastolic murmur was detected on auscultation. Heart failure was diagnosed by the endpoint adjudication committee on the basis of previously published criteria.²² Hypertension medication was determined by self-report. The average of 2 seated systolic blood pressure measurements obtained by a Framingham Heart study physician constituted the examination blood pressure.

AF Verification

The participants' physician office visits and hospitalization records were collected. The diagnosis of AF was based on AF or atrial flutter present on ECG tracings and information from hospital or outpatient records or Framingham Study clinic examinations. For Framingham Offspring participants, biennial health history updates included a routine question on AF. Incident AF cases underwent review, and 2 Framingham cardiologists had to agree on the diagnosis.¹²

Biomarker Determination

Blood samples were obtained routinely from fasting participants and processed immediately. The measurement characteristics of the biomarkers have been described previously.²³ Plasma biomarkers comprised high-sensitivity CRP, D-dimer, fibrinogen, BNP, N-ANP, renin, plasminogen activator inhibitor type 1, and homocysteine. Aldosterone was measured from serum. Urinary albumin and creatinine were determined with a spot morning specimen. Assay details are provided in the online-only Data Supplement. Mean interassay

coefficients of variation were 13% for natriuretic peptides and 10% for other biomarkers.

Echocardiography

Attendees at examination cycle 6 routinely received transthoracic echocardiography. Echocardiographic measurements such as M-mode left atrial diameter, wall thickness (sum of diastolic interventricular septum and left ventricular posterior wall) and a measure of systolic function (left ventricular fractional shortening)²⁴ were available at the baseline examination on 2289 attendees.

Statistical Analyses

Biomarkers were transformed by the natural logarithm and were standardized (mean of 0 and SD of 1) for analyses. For multivariable-adjusted models, we selected AF risk factors that have been reported in association with incident AF and that have been incorporated recently in a weighted risk score for individualized risk prediction of AF. The present sample constitutes a subsample of the risk-score–derivation sample. The variables of the risk algorithm comprised age (at baseline examination 6), sex, body mass index, systolic blood pressure, ECG PR interval, hypertension treatment, heart valve disease (heart murmur), and heart failure.¹² Multivariable-adjusted proportional hazards regression models were estimated to relate the biomarkers to incident AF.²⁵ The proportional hazards assumption was examined with a Kolmogorov-type supremum test based on cumulative sums of Martingale-based residuals over follow-up times and covariate values.²⁶ For primary analyses, we used a stepwise procedure to select biomarkers associated with AF at a conservative 2-sided significance threshold of $P<0.01$ for entry and retention in the model,²⁷ with age, sex, and clinical covariates forced into the model. The regression coefficients presented are per SD increase in log-transformed biomarkers. For the final model, covariate-adjusted cumulative AF incidence estimates for tertiles of biomarker score (calculated as coefficient-weighted sums of standardized biomarkers associated with AF incidence) were estimated and plotted graphically. We assessed C-statistics to describe discrimination of the baseline model and the model that included selected biomarkers.²⁸ Calibration was calculated for deciles of risk with a modified Hosmer-Lemeshow statistic for survival analysis.²⁹ We assessed net reclassification improvement for predefined 10-year AF risk categories (<5%, 5% to 10%, and >10%),¹² integrated discrimination improvement, and the relative integrated discrimination improvement and reclassification calibration.³⁰ The statistical metrics to assess reclassification are an area of intense development. We also tested the newly introduced reclassification calibration, a method that also accounts for censored data.³¹

To establish the value of the retained biomarker(s) as a potential clinical tool in risk prediction, we reran the proportional hazards models using as a baseline “covariate” a recently developed risk-score function for 10-year incidence of AF (<http://www.framinghamheartstudy.org/risk/atrial.html>). Any event outside the 10-year time frame was censored (n=6 cases). Censored data were treated as nonevents.

Secondary Analyses

For the final model that incorporated the biomarkers that were significantly associated with incident AF, we assessed potential effect modification by age and sex by a global likelihood ratio test. We further explored whether the association of the selected biomarkers with incident AF was mediated by heart murmur or interim heart failure. In addition, bivariate correlation coefficients for the (log) biomarkers were calculated. We also present the data for each biomarker analyzed separately in multivariable-adjusted models. For the final model, we adjusted for echocardiographic variables (left atrial size, left ventricular wall thickness, and left ventricular fractional shortening) to explore whether the relations between biomarkers and incident AF were mediated by cardiac structure and function measures. Analyses were conducted with SAS version 8.1 (Cary, NC). The authors had full access to and take full responsibility

Table 1. Baseline Characteristics by Incident AF Status

	AF Status in Follow-Up	
	No AF (n=2911)	Incident AF (n=209)
Clinical characteristics*		
Age, y	57.8±9.5	66.3±8.6
Women, n (%)	1608 (55)	84 (40)
Body mass index, kg/m ²	27.9±5.2	28.7±5.9
Systolic pressure, mm Hg	128±18	137±22
Hypertension treatment, n (%)	751 (26)	105 (50)
ECG PR interval, ms	163±23	170±27
Significant murmur, n (%)	68 (2)	14 (7)
Prevalent heart failure, n (%)	12 (<1)	5 (2)
Biomarkers, median (25th, 75th percentile)		
CRP, mg/L	2.0 (0.9, 4.6)	3.0 (1.3, 7.1)
Fibrinogen, mg/dL	329 (288, 378)	351 (306, 401)
BNP, pg/mL	7.7 (4.0, 16.7)	21.3 (8.2, 46.0)
N-ANP, pmol/L	311 (218, 444)	459 (323, 753)
Renin, mU/L	12.0 (7.0, 21.0)	10.0 (5.0, 21.0)
Aldosterone, ng/dL	10.0 (7.0, 14.0)	10.0 (7.0, 14.0)
Homocysteine, mmol/L	9.0 (7.4, 11.0)	9.8 (8.2, 12.3)
D-dimer, ng/mL	311 (200, 462)	435 (300, 636)
Plasminogen activator inhibitor type 1, mg/mL	22.6 (14.2, 33.8)	26.3 (19.3, 39.6)
Urinary albumin-to-creatinine ratio†	6.1 (2.7, 14.2)	8.4 (3.0, 20.0)
Echocardiographic variables‡		
Fractional shortening	0.37±0.06	0.36±0.07
Left atrial size, cm	3.92±0.50	4.27±0.63
Left ventricular wall thickness, mm	1.89±0.24	2.04±0.33

Age was at the beginning of the follow-up period.

*Clinical characteristics expressed as mean±SD or n (%).

†Available for a subset of 2507 subjects without and 166 subjects with incident AF.

‡Available for a subset of 2154 subjects without and 135 subjects with incident AF.

for the integrity of the data. All authors have read and agree to the manuscript as written.

Results

Participant Characteristics

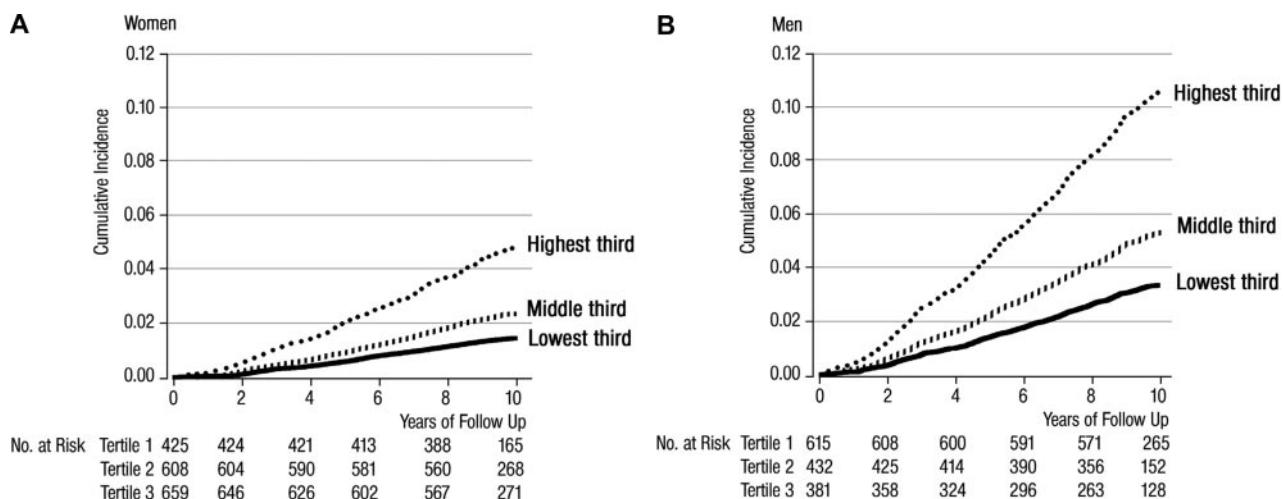
The study sample had an overall mean age of 58.4±9.7 years, and 54% of the participants were women. In Table 1, the baseline characteristics for individuals who developed AF and those free of AF during follow-up are provided. During a median 9.7 years of follow-up (maximum 12.8 years) until November 2007, 209 incident AF cases occurred (40.0% among women; n=166 in the subset with a urinary albumin-to-creatinine ratio available).

Biomarkers and AF Incidence

We confirmed the validity of the proportionality of hazards assumption for the variables in the selected models. In models that were adjusted for established risk factors, the biomarkers

Table 2. Multivariable-Adjusted Proportional Hazards Regression Models for AF, With Each Log-Transformed Biomarker Examined Separately

Variable	HR	95% CI	P
Inflammation			
CRP	1.25	1.07–1.46	0.004
Fibrinogen	1.09	0.94–1.26	0.26
Natriuretic peptides			
BNP	1.62	1.42–1.86	<0.0001
N-ANP	1.50	1.28–1.75	<0.0001
Renin-angiotensin-aldosterone system			
Aldosterone	1.05	0.92–1.19	0.50
Renin	0.89	0.77–1.02	0.08
Oxidative stress			
Homocysteine	1.08	0.94–1.24	0.28
Thrombosis, endothelial function			
D-dimer	1.11	0.92–1.32	0.28
Plasminogen activator inhibitor type 1	1.13	0.96–1.33	0.15
Microvascular damage			
Urinary albumin-to-creatinine ratio*	1.09	0.93–1.28	0.29


Biomarker concentrations are natural log-transformed measures.

HRs are provided per 1-SD increase in log-biomarker concentration. Models are adjusted for age, sex, body mass index, systolic blood pressure, hypertension treatment, PR interval, auscultatory valvular heart disease, and heart failure.

*Urinary albumin-to-creatinine ratio was available for 2673 subjects.

as a panel were associated with incident AF ($P<0.0001$). In multivariable models for single biomarkers in relation to incident AF, N-ANP, BNP, and CRP were associated with outcome (Table 2). In the stepwise-selection procedure, BNP (hazard ratio [HR] per SD=1.62, 95% confidence interval [CI] 1.41 to 1.85, $P<0.0001$) and CRP (HR 1.25, 95% CI 1.07 to 1.45, $P=0.004$) met the inclusion criterion (online-only Data Supplement Table I). The biomarker selection was similar in the subsample of individuals with a urinary albumin-to-creatinine ratio available (BNP HR 1.63, 95% CI 1.40 to 1.89, $P<0.0001$; CRP HR 1.31, 95% CI 1.11 to 1.55, $P=0.002$). The urinary albumin-to-creatinine ratio was not significantly associated with incident AF. The addition of BNP alone, CRP alone, or both simultaneously to the model that contained the clinical risk factors increased the χ^2 statistic from 223 to 303, 229, and 310, respectively. Cumulative event rates according to tertiles of the biomarker score that incorporated BNP and CRP revealed an increase in AF events, with the highest AF incidence observed in the top biomarker score tertile (Figure 1).

When we assessed biomarkers in addition to the risk factors identified as part of the recently developed AF risk score, the risk information derived from BNP increased the C-statistic from 0.78 (95% CI 0.75 to 0.81) to 0.80 (95% CI 0.78 to 0.83; online-only Data Supplement Table II) and improved net reclassification (Figure 2A). The analysis method of net reclassification has been developed to assess the putative clinical utility of a novel risk factor. It is based on prespecified risk categories. A clinically useful biomarker would help to optimize risk classification beyond the model

Figure 1. Covariate-adjusted AF cumulative incidence curves for tertiles of the biomarker score (including BNP and CRP) in women (A) and men (B). Mean values of the biomarkers for each tertile of biomarker score were used in creating the cumulative incidence estimates.

that included known risk factors. Ideally, the novel marker would reclassify all individuals with a future event into the high-risk category and all individuals without the outcome into the lowest-risk category. Among those participants who developed AF in the present study sample, the inclusion of BNP concentrations resulted in 25 individuals being reclassified into higher-risk categories (correct direction, green-shaded cells), but 28 were inappropriately classified into a lower-risk category (red-shaded cells). Conversely, among individuals who did not develop AF during the 10 years of

follow-up, BNP concentrations would have led to undesirable reclassification of risk upward in 217 individuals, whereas the inclusion of BNP concentrations would have appropriately reclassified 444 individuals into lower-risk categories. The net reclassification improvement, which in the present case indicates the overall reclassification in the desirable direction, was 0.06 (95% CI -0.01 to 0.14, $P=0.09$); reclassification occurred predominantly in the intermediate-risk group. A clinically less intuitive method to assess reclassification is the calculation of the integrated discrimination improvement,

A) Reclassification based on BNP.				
Without BNP		With BNP		
	<5%	5-10%	>10%	Total
<i>Participants who developed atrial fibrillation</i>				
<5%	23 (69.7)	10 (30.3)	0	33
5-10%	11 (21.6)	25 (49.0)	15 (29.4)	51
>10%	1 (0.8)	16 (13.5)	102 (85.7)	119
Total	35	51	117	203
<i>Participants who did not develop atrial fibrillation</i>				
<5%	1557 (92.5)	118 (7.0)	9 (0.5)	1684
5-10%	252 (40.5)	280 (45.0)	90 (14.5)	622
>10%	11 (1.8)	181 (29.6)	419 (68.6)	611
Total	1820	579	518	2917
Net reclassification improvement was 0.06 (95% CI -0.01 to 0.14, $P=0.09$).				
B) Reclassification based on CRP.				
Without CRP		With CRP		
	<5%	5-10%	>10%	Total
<i>Participants who developed atrial fibrillation</i>				
<5%	28 (84.9)	5 (15.1)	0	33
5-10%	5 (9.8)	39 (76.5)	7 (13.7)	51
>10%	0	6 (5.0)	113 (95.0)	119
Total	33	50	120	203
<i>Participants who did not develop atrial fibrillation</i>				
<5%	1617 (96.0)	67 (4.0)	0	1684
5-10%	92 (14.8)	461 (74.1)	69 (11.1)	622
>10%	0	55 (9.0)	556 (91.0)	611
Total	1709	583	625	2917
Net reclassification improvement 0.009, (95% CI -0.04 to 0.06, $P=0.72$).				
C) Reclassification based on both biomarkers, BNP and CRP simultaneously.				
Without biomarkers		With both biomarkers (BNP and CRP)		
	<5%	5-10%	>10%	Total
<i>Participants who developed atrial fibrillation</i>				
<5%	22 (66.7)	10 (30.3)	1 (3.0)	33
5-10%	10 (19.6)	22 (43.1)	19 (37.3)	51
>10%	1 (0.8)	12 (10.1)	106 (89.1)	119
Total	33	44	126	203
<i>Participants who did not develop atrial fibrillation</i>				
<5%	1546 (91.8)	127 (7.5)	11 (0.7)	1684
5-10%	264 (42.4)	261 (42.0)	97 (15.6)	622
>10%	23 (3.8)	177 (29.0)	411 (67.3)	611
Total	1833	565	519	2917
Net reclassification improvement was 0.11 (95% CI 0.04 to 0.19, $P=0.002$).				

Figure 2. Reclassification based on biomarkers. Individuals in the unshaded diagonal boxes did not change classification with the additional biomarkers. Green shading indicates the number and percent of individuals who were reclassified in a desirable direction when the new biomarkers were added to the baseline model; red shading indicates individuals who were reclassified in an undesirable direction. Data in parentheses are row percents.

which does not rely on prespecified risk categories but represents a continuous measure; this was 0.03 (95% CI 0.02 to 0.04, $P<0.0001$), with 34.9% relative improvement.

An even newer metric to evaluate novel biomarkers is the reclassification calibration test introduced by Cook et al,³¹ which also takes into account censored data. The χ^2 statistic for the model with risk-score variables only (23.58, $P=0.0003$) decreased to 8.78 with the addition of BNP ($P=0.12$), which indicates a better fit (for these lack-of-fit statistics, a lower value indicates better fit, and nonsignificance is desirable). CRP (net reclassification improvement 0.009, 95% CI -0.04 to 0.06, $P=0.72$; integrated discrimination improvement 0.005, 95% CI 0.0002 to 0.01, $P=0.04$; relative integrated discrimination improvement 5.9%) achieved only a very small improvement in reclassification calibration (Figure 2B). The reclassification calibration χ^2 decreased slightly from 7.26 ($P=0.20$) to 7.05 ($P=0.22$) when CRP was added. Figure I in the online-only Data Supplement provides plots of the estimated risk from the models with and without the biomarkers in addition to the risk factors. To create these plots, we computed risk of AF for each person at each event time ($n=203$), first from the model with only the clinical risk factors and then from the model with the addition of BNP and CRP. We then averaged each model-specific set of risk estimates by event status, which resulted in the set of sample average predicted risks for AF events and nonevents seen in the plots. The addition of the information derived from BNP and CRP led to a greater separation of the event curves, primarily through a modest increase in estimated incidence for the AF event group.

The reclassification when the combination of both biomarkers was used in addition to the model comprising only the clinical covariates was clearly driven by BNP (net reclassification improvement 0.11, 95% CI 0.04 to 0.19, $P=0.002$; integrated discrimination improvement 0.04, 95% CI 0.02 to 0.05, $P<0.0001$; relative integrated discrimination improvement 39.1%; Figure 2C). The C-statistic did not change appreciably (0.81, 95% CI 0.78 to 0.84) and the calibration χ^2 statistic increased slightly when CRP was added to the model that included BNP.

When the risk algorithm for 10-year incidence of AF was used ($n=203$ events), the final stepwise selection resulted in a similar model that incorporated BNP ($P<0.0001$) and CRP ($P=0.003$). The reclassification statistics for the variables combined in a risk score may inflate the reclassification and discrimination statistics for biomarkers compared with assessment of the risk factors separately. In our case, the net reclassification improvement for BNP was 0.08 ($P=0.04$). The integrated measure was 0.04 ($P<0.0001$), with 48.2% relative improvement. Further details on the results when the risk score was used are provided in the online-only Data Supplement.

Secondary Analyses

We did not observe statistically significant age or sex interactions with BNP or CRP for the final model (global $P=0.38$). When adjusted for interim development of heart murmur or heart failure, the coefficients and significance of the estimates for BNP and CRP did not change materially (online-only Data

Supplement Table IV). The exclusion of individuals ($n=17$) with prevalent heart failure at baseline did not change the final model appreciably (data not shown). The use of a more parsimonious model with the strongest risk factors (age, sex, hypertension, and heart failure) yielded discrimination statistics comparable to the model that incorporated the risk factors from the Framingham risk score (online-only Data Supplement Table V). The use of the broader range of risk factors moderately increased calibration and fit of the model. The strongest correlations for biomarkers were observed between BNP and N-ANP (Pearson correlation coefficient $r=0.66$) and between fibrinogen and D-dimer ($r=0.45$; online-only Data Supplement Table VI). CRP and BNP had a low positive correlation ($r=0.04$, $P=0.02$).

After adjustment of the final model that incorporated both BNP and CRP for echocardiographic measures (left atrial diameter, left ventricular wall thickness, and fractional shortening), the association of BNP with AF remained robust (HR 1.52, 95% CI 1.28 to 1.81, $P<0.0001$). However, CRP was no longer significantly associated with incident AF (HR 1.10, 95% CI 0.91 to 1.34, $P=0.33$).

Discussion

Principal Findings

In a prospective, middle-aged to elderly community-based cohort, we examined the association of 10 biologically plausible biomarkers with incident AF over a median of 9.7 years. The neurohumoral marker BNP emerged as the strongest predictor of incident AF. When used in addition to a risk score for AF incidence, it improved discrimination and resulted in a substantive net reclassification improvement of 7.9% and a relative integrated discrimination improvement of almost 50%, which remained strong (35%) even after we accounted for potential inflation of the results. The inflammatory biomarker CRP also was statistically significantly associated with the outcome but did not markedly improve risk prediction beyond BNP. We observed that the final models were not substantively altered by the analysis of cardiac disease as a time-dependent variable or by the incorporation of echocardiographic features. Furthermore, we did not observe significant effect modification by sex or age in the models that incorporated BNP and CRP.

BNP as an indicator of cardiac stress is a highly plausible candidate biomarker for AF risk. Manifest AF is accompanied by elevated natriuretic peptide concentrations,³² even in paroxysmal AF^{33,34} and in the absence of overt heart failure.³² Intuitively, the prohormone fragment of atrial natriuretic peptide, which is predominantly expressed in the atria, might be the member of the natriuretic peptide family that should have strongest predictive power for incident AF. Both natriuretic peptides are elevated in AF patients,³⁵ and the atria may be a main source for BNP even in the absence of ventricular dysfunction.³⁶ Correlates of BNP concentrations are left atrial size and left ventricular ejection fraction.³⁷ The present data demonstrated that even after we accounted for potential intermediate mechanisms by adjusting for interim cardiac disease or echocardiographic measures of left atrial dimensions and systolic function, BNP retained its strength of

association with AF. Thus, BNP appears to provide risk information for AF beyond that provided by noninvasively assessed cardiac structure and function.

Recent investigations over a shorter follow-up period and with fewer AF cases, including a study by Framingham investigators that examined natriuretic peptides in relation to multiple cardiovascular outcomes (68 AF cases), have suggested an association of natriuretic peptides with incident AF.^{15,38,39} We now demonstrate that BNP provides additional risk information compared with known strong clinical risk factors for AF and with multiple other biomarkers that have been related to AF. The net reclassification improvement and relative integrated discrimination improvement, which takes into account the number of variables in the basic model and the gain of information by the addition of the novel variable, support the strength of BNP in addition to the clinical risk factors.

Manifest AF is accompanied by systemic inflammatory activity and increased oxidative stress.^{40,41} We confirmed prior investigations that related the inflammatory biomarker CRP to incident AF,⁴² but we did not find an association with fibrinogen that reached statistical significance.¹⁴ The magnitude of association we observed for CRP in the present study was similar to that observed previously. However, CRP did not perform as well as BNP in improving risk classification, and application of CRP as a risk indicator in clinical practice is unlikely to be resource effective. Even if CRP does not improve risk prediction substantially, the observed relation may help to elucidate the underlying mechanisms of AF and to identify therapeutic targets. Pleiotropic effects of statins have been shown to decrease inflammatory activity, and antiinflammatory treatment might be a rationale for AF prevention on the basis of the consistent association of CRP with AF.⁴³ Prior literature relating homocysteine to AF suggested that homocysteine is an indicator of endothelial dysfunction and susceptibility to thromboembolic events in manifest AF.¹⁷ Data have remained inconsistent,^{44,45} and after multivariable-adjustment, we did not identify a significant association between homocysteine and occurrence of AF.

Strengths and Limitations

Some limitations merit consideration. Inherent to the study design, we may have missed asymptomatic AF episodes. We cannot exclude the possibility that baseline BNP concentrations may have been influenced in part by clinically undetected paroxysmal AF. Furthermore, it would be a useful future research endeavor to investigate whether BNP concentrations can be used to predict risk of AF burden (both duration and number of episodes).

Framingham Offspring participants are almost exclusively of European ancestry, which may limit the generalizability of the present findings to other races/ethnicities. The mean age of the sample at baseline was 58.4 years, and the strength of association of the risk factors and biomarkers may differ in younger individuals or patients with lone AF. Conversely, the risk score was derived from an ambulatory, community-based sample. We acknowledge that the generalizability to a referral-based sample with a higher prevalence of heart failure is uncertain. The risk score may need to be recalibrated if the prevalence of AF risk factors varies substantially from that observed in the present sample. We had a modest number of AF cases; hence, we cannot exclude the possibility that with more events, biomarkers with more modest effect sizes also would have been related to AF onset. On the other hand, a larger number of AF cases might also have led to a regression toward the mean of BNP concentrations in individuals who developed AF.

The present results will need confirmation in independent prospective samples. The utility of the determination of BNP needs to be demonstrated, and potential preventive interventions must be tested. The benefit of prediction algorithms ultimately depends on the demonstration of improved outcomes, ie, a reduction in incidence of AF. At present, no strong preventive measures for AF have been established. BNP is an attractive candidate biomarker, but an observational study design cannot prove a causal relation. However, a better understanding of the relation of BNP to incident AF might provide valuable insights into its pathophysiology and help to identify targets for intervention. In the Framingham cohort, the correlation of N-ANP with BNP was moderately high at 0.66, and after incorporation of both natriuretic peptides into the model, BNP emerged as the stronger biomarker. Of note, the mean BNP concentrations in individuals developing AF were higher than in individuals free of manifest AF at follow-up but fell within the clinical range of normal BNP concentrations. Mildly elevated BNP thus shows a higher susceptibility for incident AF, yet the present data clearly demonstrate that measurement of BNP alone is not sufficient for AF risk evaluation. The present study results can only suggest that BNP, in addition to careful assessment of clinical risk factors, may be able to refine risk prediction.

A major concern with respect to the validity of the present reclassification results and conclusions remains the arbitrary choice of cutoffs for risk categories, because to date, no established risk-prediction scheme has been implemented for AF. We used the same risk classes as in the original publication of the risk algorithm.¹² A different definition of cut points may result in changes in the net reclassification. For this reason, we also provide data on integrated discrimination improvement, which is not dependent on specified risk categories. The results of both analyses showed the same direction, with a borderline improvement after the addition of BNP to the baseline model.

The strengths of the present study are the well-characterized community-based sample with routine ascertainment of clinical risk factors and potential confounders, strict quality control of biomarker measurements, continuous collection of information on outcomes over a comparatively long follow-up time frame, and rigorous ascertainment of incident AF cases. The availability of routine echocardiographic measures at the same examination cycle allowed us to explore mechanistic questions as to whether the relation of BNP to AF was mediated solely through cardiac remodeling. A great advantage of the present investigation is the ability to explore a broad range of pathophysiologically distinct biomarkers and to compare them directly for their strength of association.

In conclusion, the neurohormone BNP and the inflammatory biomarker CRP revealed significant associations with outcome in multivariable-adjusted analyses. BNP was the strongest single biomarker in relation to AF occurrence and significantly improved risk prediction beyond a risk score based on known clinical risk factors.

Sources of Funding

This study was supported by National Institutes of Health/National Heart, Lung, and Blood Institute contracts N01-HC-25195 and 6R01-NS 17950; National Institutes of Health grants 1R01HL092577-01A1 (Drs Ellinor and Benjamin), HL064753, HL076784, and AG028321 (Dr Benjamin), and 1 R01HL71039 (Dr Vasan); National Institutes of Health Research career award K24 HL04334 (Dr Vasan) and K24, DK080140 (Dr Meigs); an American Diabetes Association career development award (Dr Meigs); and Deutsche Forschungsgemeinschaft (German Research Foundation) research fellowship SCHA 1149/1-1 (Dr Schnabel).

Disclosures

None.

References

1. Go AS, Hylek EM, Phillips KA, Chang Y, Henault LE, Selby JV, Singer DE. Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study. *JAMA*. 2001;285:2370–2375.
2. Miyasaka Y, Barnes ME, Gersh BJ, Cha SS, Bailey KR, Abhayaratna WP, Seward JB, Tsang TS. Secular trends in incidence of atrial fibrillation in Olmsted County, Minnesota, 1980 to 2000, and implications on the projections for future prevalence. *Circulation*. 2006;114:119–125.
3. Friberg J, Buch P, Scharling H, Gadsbøll N, Jensen GB. Rising rates of hospital admissions for atrial fibrillation. *Epidemiology*. 2003;14:666–672.
4. Stewart S, Hart CL, Hole DJ, McMurray JJ. Population prevalence, incidence, and predictors of atrial fibrillation in the Renfrew/Paisley study. *Heart*. 2001;86:516–521.
5. Reynolds MR, Lavelle T, Essebag V, Cohen DJ, Zimetbaum P. Influence of age, sex, and atrial fibrillation recurrence on quality of life outcomes in a population of patients with new-onset atrial fibrillation: the Fibrillation Registry Assessing Costs, Therapies, Adverse events and Lifestyle (FRACTAL) study. *Am Heart J*. 2006;152:1097–1103.
6. Benjamin EJ, Wolf PA, D'Agostino RB, Silbershatz H, Kannel WB, Levy D. Impact of atrial fibrillation on the risk of death: the Framingham Heart Study. *Circulation*. 1998;98:946–952.
7. Wolf PA, Mitchell JB, Baker CS, Kannel WB, D'Agostino RB. Impact of atrial fibrillation on mortality, stroke, and medical costs. *Arch Intern Med*. 1998;158:229–234.
8. Wattigney WA, Mensah GA, Croft JB. Increasing trends in hospitalization for atrial fibrillation in the United States, 1985 through 1999: implications for primary prevention. *Circulation*. 2003;108:711–716.
9. Benjamin EJ, Levy D, Vaziri SM, D'Agostino RB, Belanger AJ, Wolf PA. Independent risk factors for atrial fibrillation in a population-based cohort: the Framingham Heart Study. *JAMA*. 1994;271:840–844.
10. Krahn AD, Manfredi J, Tate RB, Mathewson FA, Cuddy TE. The natural history of atrial fibrillation: incidence, risk factors, and prognosis in the Manitoba Follow-Up Study. *Am J Med*. 1995;98:476–484.
11. Wolf PA, Benjamin EJ, Belanger AJ, Kannel WB, Levy D, D'Agostino RB. Secular trends in the prevalence of atrial fibrillation: the Framingham Study. *Am Heart J*. 1996;131:790–795.
12. Schnabel RB, Sullivan LM, Levy D, Pencina MJ, Massaro JM, D'Agostino RB Sr, Newton-Cheh C, Yamamoto JF, Magnani JW, Tadros TM, Kannel WB, Wang TJ, Ellinor PT, Wolf PA, Vasan RS, Benjamin EJ. Development of a risk score for atrial fibrillation (Framingham Heart Study): a community-based cohort study. *Lancet*. 2009;373:739–745.
13. Liu T, Li G, Li L, Korantzopoulos P. Association between C-reactive protein and recurrence of atrial fibrillation after successful electrical cardioversion: a meta-analysis. *J Am Coll Cardiol*. 2007;49:1642–1648.
14. Mukamal KJ, Tolstrup JS, Friberg J, Gronbaek M, Jensen G. Fibrinogen and albumin levels and risk of atrial fibrillation in men and women (the Copenhagen City Heart Study). *Am J Cardiol*. 2006;98:75–81.
15. Wang TJ, Larson MG, Levy D, Benjamin EJ, Leip EP, Omland T, Wolf PA, Vasan RS. Plasma natriuretic peptide levels and the risk of cardiovascular events and death. *N Engl J Med*. 2004;350:655–663.
16. Dixen U, Ravn L, Soeby-Rasmussen C, Paulsen AW, Parner J, Frandsen E, Jensen GB. Raised plasma aldosterone and natriuretic peptides in atrial fibrillation. *Cardiology*. 2007;108:35–39.
17. Marcucci R, Betti I, Cecchi E, Poli D, Giusti B, Fedi S, Lapini I, Abbate R, Gensini GF, Prisco D. Hyperhomocysteinemia and vitamin B6 deficiency: new risk markers for nonvalvular atrial fibrillation? *Am Heart J*. 2004;148:456–461.
18. Marin F, Roldan V, Climent VE, Ibanez A, Garcia A, Marco P, Sogorb F, Lip GY. Plasma von Willebrand factor, soluble thrombomodulin, and fibrin D-dimer concentrations in acute onset non-rheumatic atrial fibrillation. *Heart*. 2004;90:1162–1166.
19. Ikeda U, Yamamoto K, Shimada K. Biochemical markers of coagulation activation in mitral stenosis, atrial fibrillation, and cardiomyopathy. *Clin Cardiol*. 1997;20:7–10.
20. Asselbergs FW, van den Berg MP, Diercks GF, van Gilst WH, van Veldhuisen DJ. C-reactive protein and microalbuminuria are associated with atrial fibrillation. *Int J Cardiol*. 2005;98:73–77.
21. Dawber T, Meadors G, Moore F Jr. Epidemiological approaches to heart disease: the Framingham Study. *Am J Public Health Nations Health*. 1951;41:279–281.
22. Ho KK, Anderson KM, Kannel WB, Grossman W, Levy D. Survival after the onset of congestive heart failure in Framingham Heart Study subjects. *Circulation*. 1993;88:107–115.
23. Wang TJ, Gona P, Larson MG, Tofler GH, Levy D, Newton-Cheh C, Jacques PF, Rifai N, Selhub J, Robins SJ, Benjamin EJ, D'Agostino RB, Vasan RS. Multiple biomarkers for the prediction of first major cardiovascular events and death. *N Engl J Med*. 2006;355:2631–2639.
24. Vaziri SM, Larson MG, Benjamin EJ, Levy D. Echocardiographic predictors of nonrheumatic atrial fibrillation: the Framingham Heart Study. *Circulation*. 1994;89:724–730.
25. Cox DR, Oakes D. *Analysis of Survival Data*. London, United Kingdom: Chapman & Hall; 1984:201.
26. Lin D, Wei LJ, Ying Z. Checking the Cox model with cumulative sums of martingale-based residuals. *Biometrika*. 1993;80:557–572.
27. Schnabel RB, Larson MG, Dupuis J, Lunetta KL, Lipinska I, Meigs JB, Yin X, Rong J, Vita JA, Newton-Cheh C, Levy D, Keaney JF Jr, Vasan RS, Mitchell GF, Benjamin EJ. Relations of inflammatory biomarkers and common genetic variants with arterial stiffness and wave reflection. *Hypertension*. 2008;51:1651–1657.
28. Pencina MJ, D'Agostino RB. Overall C as a measure of discrimination in survival analysis: model specific population value and confidence interval estimation. *Stat Med*. 2004;23:2109–2123.
29. D'Agostino RB, Nam BH. Evaluation of the performance of survival analysis models: discrimination and calibration measures. In: Balakrishnan N, Rao CR, eds. *Handbook of Statistics*. Amsterdam, The Netherlands: Elsevier; 2004:1–25.
30. Pencina MJ, D'Agostino RB Sr, D'Agostino RB Jr, Vasan RS. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. *Stat Med*. 2008;27:157–172.
31. Cook NR, Ridker PM. Advances in measuring the effect of individual predictors of cardiovascular risk: the role of reclassification measures. *Ann Intern Med*. 2009;150:795–802.
32. Knudsen CW, Clopton P, Westheim A, Klemsdal TO, Wu AH, Duc P, McCord J, Nowak RM, Hollander JE, Storrow AB, Abraham WT, McCullough PA, Maisel AS, Omland T. Predictors of elevated B-type natriuretic peptide concentrations in dyspneic patients without heart failure: an analysis from the breathing not properly multinational study. *Ann Emerg Med*. 2005;45:573–580.
33. Li J, Wang L. B-type natriuretic peptide levels in patients with paroxysmal lone atrial fibrillation. *Heart Vessels*. 2006;21:137–140.
34. Ellinor PT, Low AF, Patton KK, Shea MA, Macrae CA. Discordant atrial natriuretic peptide and brain natriuretic peptide levels in lone atrial fibrillation. *J Am Coll Cardiol*. 2005;45:82–86.
35. Rossi A, Enriquez-Sarano M, Burnett JC Jr, Lerman A, Abel MD, Seward JB. Natriuretic peptide levels in atrial fibrillation: a prospective hormonal and Doppler-echocardiographic study. *J Am Coll Cardiol*. 2000;35:1256–1262.

36. Inoue S, Murakami Y, Sano K, Katoh H, Shimada T. Atrium as a source of brain natriuretic polypeptide in patients with atrial fibrillation. *J Card Fail.* 2000;6:92–96.
37. Letsas KP, Filippatos GS, Pappas LK, Mihas CC, Markou V, Alexanian IP, Efremidis M, Sideris A, Maisel AS, Kardaras F. Determinants of plasma NT-pro-BNP levels in patients with atrial fibrillation and preserved left ventricular ejection fraction. *Clin Res Cardiol.* 2009;98:101–106.
38. Laukkonen JA, Kurl S, Ia-Kopsala M, Vuolleentaho O, Ruskoaho H, Nyysönen K, Salonen JT. Plasma N-terminal fragments of natriuretic propeptides predict the risk of cardiovascular events and mortality in middle-aged men. *Eur Heart J.* 2006;27:1230–1237.
39. Asselbergs FW, van den Berg MP, Bakker SJ, Signorovitch JE, Hillege HL, van Gilst WH, van Veldhuisen DJ. N-terminal pro B-type natriuretic peptide levels predict newly detected atrial fibrillation in a population-based cohort. *Neth Heart J.* 2008;16:73–78.
40. Frustaci A, Chimenti C, Bellucci F, Morgante E, Russo MA, Maseri A. Histological substrate of atrial biopsies in patients with lone atrial fibrillation. *Circulation.* 1997;96:1180–1184.
41. Mihm MJ, Yu F, Carnes CA, Reiser PJ, McCarthy PM, Van Wagoner DR, Bauer JA. Impaired myofibrillar energetics and oxidative injury during human atrial fibrillation. *Circulation.* 2001;104:174–180.
42. Aviles RJ, Martin DO, Apperson-Hansen C, Houghtaling PL, Rautaharju P, Kronmal RA, Tracy RP, Van Wagoner DR, Psaty BM, Lauer MS, Chung MK. Inflammation as a risk factor for atrial fibrillation. *Circulation.* 2003;108:3006–3010.
43. Young-Xu Y, Jabbour S, Goldberg R, Blatt CM, Graboys T, Bilchik B, Ravid S. Usefulness of statin drugs in protecting against atrial fibrillation in patients with coronary artery disease. *Am J Cardiol.* 2003;92:1379–1383.
44. Nadar S, Blann A, Lip GY. Homocysteine is unlikely to be associated with the risk of thromboembolic complications in atrial fibrillation. *Blood Coagul Fibrinolysis.* 2003;14:513–514.
45. Ay H, Arsava EM, Tokgozoglu SL, Ozer N, Saribas O. Hyperhomocysteinemia is associated with the presence of left atrial thrombus in stroke patients with nonvalvular atrial fibrillation. *Stroke.* 2003;34:909–912.

CLINICAL PERSPECTIVE

The prevalence of atrial fibrillation (AF) is expected to increase owing to an aging population, improved therapies, and longer survival with heart disease. Many pathophysiological pathways have been examined in animal and human studies within the context of AF. We report the prospective association of a broad panel of blood and urinary biomarkers representing inflammation (C-reactive protein and fibrinogen), neurohormonal activation (B-type natriuretic peptide and N-terminal proatrial natriuretic peptide), oxidative stress and endothelial dysfunction (homocysteine), the renin-angiotensin-aldosterone system (renin and aldosterone), thrombosis (D-dimer and plasminogen activator inhibitor), and microvascular damage (urinary albumin excretion) in a community-based cohort with long-term incidence of AF. A recently published risk score for long-term incidence of AF combines several well-established clinical risk factors for AF such as age, sex, body mass index, hypertension, and cardiovascular disease, including valvular disease and heart failure. We tested the predictive value of the strongest biomarkers in addition to the clinical variables combined in the risk algorithm. The neurohormone B-type natriuretic peptide and the inflammatory biomarker C-reactive protein revealed significant associations with outcome in multivariable-adjusted analyses. B-type natriuretic peptide was the strongest single biomarker in relation to AF occurrence and significantly improved risk prediction based on the risk algorithm. Whether determination of B-type natriuretic peptide contributes to strategies to prevent AF must be established in future studies. Our findings may also provide valuable insights into the pathophysiology of AF.