
Navigating the development challenges in creating
complex data systems
Sören Dittmer1,6,+,*, Michael Roberts1,4,+,*, Julian Gilbey1, Ander Biguri1, AIX-COVNET
Collaboration2, Jacobus Preller3, James H.F. Rudd4, John A.D. Aston5, and
Carola-Bibiane Schönlieb1

1Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
2A list of authors and their affiliations appears at the end of the paper
3Addenbrooke’s Hospital, Cambridge University Hospitals NHS Trust, Cambridge, UK.
4Department of Medicine, University of Cambridge, Cambridge, UK
5Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Cambridge, UK
6ZeTeM, University of Bremen, Bremen, Germany
+these authors contributed equally to this work
*corresponding authors sd870@cam.ac.uk and mr808@cam.ac.uk

ABSTRACT

Data science systems (DSSs) are a fundamental tool in many areas of research and are now developed by people with a
myriad of backgrounds. This is coupled with a crisis in reproducibility of such DSSs despite the wide availability of powerful
tools for data science and machine learning over the last decade. We believe that perverse incentives and a lack of widespread
software engineering skills are among the many causes of this crisis and analyze why software engineering and building
large complex systems is, in general, hard. Based on these insights, we identify how software engineering addresses those
difficulties and how one might apply and generalize software engineering methods to make DSSs more fit for purpose. We
advocate two key development philosophies: one should incrementally grow – not plan then build – DSSs, and one should use
two types of feedback loops during development: one which tests the code’s correctness and another that evaluates the code’s
efficacy.

Machine learning (ML) is in a reproducibility crisis [1,
2, 3]. We argue that a primary driver is poor code quality,
having two root causes: poor incentives to produce good
code and a widespread lack of software engineering (SE)
skills. This crisis also suggests that Data Science Systems
(DSS) can, and will, fail silently if no continual verification
infrastructure exists throughout their development [4, 5, 6].

Modern DSSs are extremely complex systems with many
components, many themselves intrinsically susceptible to
minor changes in the data or underlying code. Three key
communities are involved in developing successful DSSs:
researchers, professional software engineers, and their incen-
tivisors. The last is the community that encourages those
developing DSSs to produce useful results, e.g., research su-
pervisors, employers, funding agencies and journal editors.
These communities can work separately or jointly, but all are
trained and rewarded differently.

While researchers designing and implementing DSSs in
academia and industry will be aware of the particular com-
plexities of data in their own domain, they usually lack formal
training in software development (SD) methodologies. There-
fore, the DSS is often planned and then built solely to satisfy
the objectives and incentives of the researcher. Software en-
gineers, however, are specifically trained to develop complex

systems and incentivised to make them flexible, organized,
and maintainable.

Gall’s law [7] states that complex systems cannot be built;
they can only be grown and SD methodologies, such as Ag-
ile, implicitly acknowledge that one cannot plan complex
systems; one has to evolve and grow them (following Gall’s
law [7]). In SD, a critical requirement is the development
of a minimum viable product. For data pipelines, this is of-
ten called a steel thread [8], bootstrapping a stable path that
one can gradually extend to build a more complete pipeline.
Effective utilisation of feedback loops and repeated testing
allows one to assess the code’s correctness without deviating
from a working codebase.

The current crisis is a natural consequence of an environ-
ment in which data scientists develop complex DSSs without
growing them methodically or establishing a careful and con-
tinual assessment of their code’s correctness. While incorrect
code can be computationally reproducible – i.e., rerunning the
code produces identical results – for replicability and general
reproducibility using independent implementations, correct-
ness is crucial. Even more crucially, reusability – standing on
the shoulders of giants – demands correctness; indeed, with-
out it, every downstream task inherits the lack of correctness
and reproducibility.

1



Due to the pervasiveness of ML, the community of peo-
ple developing DSSs is now vast and diverse. Therefore, in
this Perspective, we identify specific challenges for those
developing DSSs and their incentivisors and recommend cor-
rective actions to improve DSS reusability and reproducibility.
We also present a development philosophy, formalizing and
adapting SD methodologies for DSS researchers.

The core problems
Data × Code = Complexity2

Until relatively recently, statisticians had a monopoly on data
analysis. They were, and are, highly trained to appreciate the
intricate relationships and biases in data and use relatively
simple methods (in the best sense of the word) to analyze and
fit models to that data. Data collection was often done under
their guidance to ensure biases were understood, documented,
and mitigated. Nowadays, data is ubiquitous and heralded as
the ‘new oil’. However, real-world datasets often resemble
more of an oil spill, containing a plethora of unknown (and
often unknowable) biases [9].

DSS developers must be tolerant of the complexities in
the data and code along with any due to their interaction.
Whilst SE masters the complexities of code, combining code
with data stacks complexity on top of complexity; thus, con-
structing a DSS can resemble balancing a stick on top of
a stick. Consequently, without sufficient statistical and SE
skills, the development of a DSS tends to lead to the following
implications:

Big Data ⇒ Messy Data ⇒ Big Code
⇒ Messy Code ⇒ Incorrect Conclusions

A Cambrian explosion in data and codebases
Further, the radical increase in the scale of data and the
wide availability of ML tools have led to an equally radi-
cal paradigm shift in their use. From the data and codebase
perspectives, this paradigm shift resembles a Cambrian ex-
plosion in quantity and intrinsic complexity. Hence, DSS
researchers are consumers of many more software tools than
classical statisticians.

As a user of many tools, focusing on how to interface with
them (rather than gaining a deep understanding of their inter-
nal workings) becomes an uncomfortable necessity. Hence
the underlying software must be trustworthy; one has to as-
sume it is almost bug-free, with any remaining bugs being
insignificant.

The shift makes expressing and structuring an analysis
plan in code the bedrock for all data science projects. How-
ever, SE is a challenging discipline, and building on vast un-
familiar codebases often leads to unexpected consequences.

Why is the problem challenging?
This section will discuss some significant challenges, both
technical and human driven, which data scientists face when
developing correct and effective DSSs.

Challenge 1: DSS researchers lacking SE and SD
skills
Most data scientists only learn to write small codebases,
whereas SD focuses on creating interconnected modules and
components, each of which is an isolated component of a
much larger codebase. Code is the interface to many data
science tools, and SE is the discipline of organizing interfaces
methodically. For this paper, we define SE as the discipline
of managing the complexity of code and data, with interfaces
as one of its primary tools [10]. While many SD practices
focus on enterprise software and do not trivially apply to all
components of DSSs, it is our belief that SD methodologies
should play a more prominent role in data science projects.

Challenge 2: Correctness and efficacy
A DSS must work correctly, i.e., do what you think it does.
It also must be efficacious, i.e., produce relevant and usable
predictions. Without SE, following earlier arguments, this
tends to lead to the following implications:

Multiple Experiments ⇒
Messy Code ⇒ Incorrect Conclusions

So, why do we need correctness and efficacy for a trustwor-
thy high-performing model? Firstly, whilst a published and
executable codebase can provide computational reproducibil-
ity, repeatability requires correctness. Secondly, while an
incorrect DSS can be efficacious due to a lucky bug, it is
uninterpretable and hard to modify. Without correctness, it is
impossible to understand, interpret, or trust the outputs of a
DSS or conclusions based on it (see Figure 1).

Challenge 3: Perverse incentives for researchers
Software engineers are rewarded for creating high-
performing, well-documented, and reusable codebases, whilst
industrial data scientists are rewarded based on a DSS’s use-
fulness to a business. Research data scientists work within
a very different incentive structure. They are incentivized to
use the outputs of their DSS to write novel papers to further
their field, apply for grants, and to enhance their reputation
and career prospects. For researchers, this creates a temporal
conflict. In the short-term, publishing papers quickly and
giving less attention to the reusability of the codebase is re-
warding. However, in the long-term, reusable DSSs increase
the probability that the associated paper will become influen-
tial and well-cited. This perverse incentivization may even
discourage producing and publishing code comprehensible to
a broad audience to avoid getting ‘scooped’ by competitors.

If the field’s incentive structure and goals are misaligned,
the path of least resistance easily wins out. Incentivisors must
acknowledge whether their incentives are perverse to their
long-term ambitions and take corrective action if so. In partic-
ular, journals must be conscious that the need for manuscript
novelty can lead to researchers manufacturing complexity in
DSSs to increase the likelihood of acceptance.

2/10



Challenge 4: Short circuits
The wide availability of powerful data analysis and ML tools
allows for short circuits, as keen amateurs can quickly de-
velop complex DSSs. This is not to say that using powerful,
publicly available tools or short circuits is inherently bad.
On the contrary, if every practitioner wrote private versions
of common tool kits, this would be a major source of bugs.
However, powerful tools reduce the accidental complexity,
not the intrinsic complexity of DSS. Thus, they make building
complex systems with a high intrinsic complexity easier. This
intrinsic complexity is extremely hard to manage, especially
as it often hides in subtleties.

Challenge 5: Teams vs. individual work
Working in a team on a codebase can be extremely powerful.
However, without the proper training or organizational struc-
ture, it can also produce massive inefficiencies and errors –
teams being complex systems themselves. Software engi-
neers are often highly trained in methodologies encouraging
effective team working, e.g., SCRUM [11, 12]. They also
know how to harness the benefits of infrastructure, such as
version control, continuous integration pipelines, and pair
programming. Researchers tend to only possess informal
training in these teamwork-enabling tools, and can even be
actively discouraged from teamwork to ensure individual
contributions are clear.

Challenge 6: Bridging the academia-industry gap
Data science projects in industry and academia have many
similarities. However, besides the already discussed incen-
tive differences, there are also key differences in the DSS
development environment. Due to a larger SE culture, in-
dustry embraces the idea that high-quality code is obligatory
for maintainable DSSs; academic researchers are usually not
incentivized along these lines because of the nature of their
short-term projects. In academia, there are many benefits,
particularly the freedom to explore completely new ideas, but
the incentives promote a strong throwaway mentality towards
code and academia has virtually no feedback loop for code
quality. High-quality code is neither a prerequisite for most
publications nor used to assess job performance.

Challenge 7: Training a DSS is costly
A change in a DSS can require costly and lengthy retrain-
ing to check whether or how it changes the outcome. For
this reason, seemingly minor fixes, improvements, and code
cleanups might not happen at all.

Challenge 8: Long-term maintenance
Even a small DSS is often sufficiently complex that the num-
ber of package dependencies can easily number in the dozens.
As complex systems are inherently fragile, a minor change in
one of the dependencies can lead to a (potentially silent) fail-
ure of the entire DSS. This is one of many reasons long-term
code maintenance is costly or impossible. While there are

many countermeasures to facilitate computation reproducibil-
ity, e.g., publishing Python/Anaconda environments and test
suites, they do not ensure future reusability within a larger
DSS.

Summary of the challenges
Many researchers have a systemic lack of awareness that SE
is integral to modern data science. This results from a lack
of formal training and a perverse incentive structure, both of
which cause a colossal loss of opportunity to create value.
DSSs must be both correct and efficacious. The potential
unleashed by the useability of modern data science tools has
enabled significant progress; however, it has also led to the
development of many seemingly efficacious but incorrect sys-
tems. Industry is inherently better at developing high-quality
code as it must integrate with infrastructure, teams, and de-
ployment platforms. Academia lacks such guard rails and
code development can be myopic.

Using software development methodolo-
gies to grow complex systems
Every programmer can write small codebases, but larger ones
require SD methodologies to perform correctly and be main-
tainable [13]. So why is it generally hard to build complex
systems from scratch?

Complex systems tend to consist of many highly intercon-
nected components which are susceptible to small perturba-
tions. In the case of a codebase, these perturbations could be
simple typos that, with luck, produce a syntax error. Other-
wise, a simple typo can subtly alter the outcome in unknown
ways, leading to dramatic and unexpected consequences.

Instead, one should use small incremental steps, never
deviating far from a working system. Gall’s law, stating that
complex systems must be grown and not built, should be of
great value to data scientists as we argue that growing an
n-component system can reduce the worst-case build com-
plexity from O(n2) to O(n).

Although one can often decompose complex systems into
predominantly simple components, their sheer number and
interactions quickly produce a complex whole. If one wants
to build an n-component system, there are up to O(n2) inter-
actions, giving O(n2) potential failure points (assuming that
each component works correctly). SE has developed two lead-
ing solutions to this “O(n2)-problem”: software architecture
and the Agile development methodology [14, 13].

Software Architecture
Well-established code development principles are a critical
component of SD. One fundamental principle is the sepa-
ration of concerns, which splits the software into different
components, each handling a single isolated concern and pos-
sessing a simple, complexity-hiding interface [10]. These
components are, in turn, formed by connecting lower-level
isolated components. Designing the software architecture
in this manner reduces the graph spanned by the different

3/10



components from a potentially densely connected graph with
O(n2) connections to a sparse graph with far fewer potential
failure points. It is also advantageous to have a sense of local-
ity in the code and graph such that components are preferably
locally connected; see Figure 2 for a visualization.

Agile Development
Modern SD tends to follow Agile methodologies, where one
grows software incrementally, adding or changing one com-
ponent at a time, so there is always a working system. One
only has to consider how this new component interacts with
the existing n components. This reduces the O(n2) potential
failure points to O(n) possible failure points at each step. In
the end, this reduces the “build complexity” from O(n2) to
O(n) when the complex system is grown. See Figure 3 for a
visualization.

New habits for DSS development
Now we discuss combining and generalizing these principles
into actionable advice for data scientists. Following these
suggestions will allow them to write correct and effective
code in less time.

Do not build complex systems; grow them
Earlier, we discussed how growing a DSS can reduce the
build complexity from O(n2) to O(n). Planning an entire sys-
tem and then building it does not work for complex systems.
We must grow DSSs to keep the complexity on the order of
at most O(n) at each incremental stage, ideally – enabled by
good software architecture – of O(1).

Planning is still required to ensure we continually grow
our systems towards the desired goal, but it should be highly
iterative and alternate with incremental implementation steps.
Planning not only orients the iterations but also helps to avoid
local optima during the evolution of the DSS. It is valuable
to recognize that the future evolution of a complex system
is increasingly fuzzy. Planning should follow a multiscale
approach with a discount factor on future details. An excel-
lent example is the comparison of SpaceX’s rocket devel-
opment process against the classical approach [15, 16, 17].
The rocket’s design was grown by testing it over many it-
eratively adapted instantiations, each being less of a failure
than the last. This iterative process, embracing the inevitabil-
ity of errors, must become a deeply appreciated fact during
the development of a DSS [18] and of complex systems in
general.

The nature and necessity of feedback loops
The power of feedback loops makes incremental, iterative de-
velopment incredibly effective. When establishing a feedback
loop, it is helpful to consider its two properties: alignment
and cycle time, see Figure 5.

Alignment. How many assumptions about a given code
component are measured by the feedback loop? Aligning the
feedback loop with our goal for the code is crucial. If the

alignment is suboptimal, the feedback loop cannot give us
confidence in the trustworthiness of the component.

Cycle time. How much time (or cost) is required to get
the feedback? Even if it were possible, a 100%-aligned feed-
back loop would be useless if it took an unreasonable amount
of time to run. Ideally, we want a short cycle time to allow
for high-frequency feedback.

Writing a test suite is extremely powerful for establishing
a feedback loop on code. Each test’s execution provides a
feedback signal on a particular aspect of the code. Respond-
ing to the signal of a test suite with high alignment and low
cycle time (running quickly and with high frequency) estab-
lishes a strong feedback loop. Reading the code also provides
a feedback signal, whose strength is defined by the code’s
readability.

As discussed previously, data scientists should care about
both the model’s efficacy and the code’s correctness. There-
fore we need feedback loops that measure both. We measure
the DSS’s efficacy by evaluating our model on a test set. We
measure its correctness (or trustworthiness) with a test suite
and by making the code as readable as possible.

Software architecture for data science systems
Good software architecture reduces the number of compo-
nents connected to any incremental addition to the system,
reducing the system’s build complexity. Good architecture
also dramatically improves the code’s readability and future-
proofs the codebase’s flexibility [19]. We argue that the
crucial architecture concept for DSSs is the idea of horizontal
layers, as shown in Figure 6.

Horizontal software layers are the different components
of an analysis pipeline, e.g., data loading, preprocessing,
model training, and evaluation. We can view each layer as
a high-level component in the software; therefore, intra- op-
posed to interconnections to other layers should dominate.
Each layer is a pocket of complexity, hiding its complexity
from the other components in the system.

Feature and model engineering are two of the most im-
portant tasks in ML, and we can interpret both as asking
questions about the data. The ultimate question we often ask
is: how well can I predict some labels with given features,
particular preprocessing, and a specific model? Answering
this requires coding the whole pipeline to establish efficacy
feedback. This lengthy wait is antithetical to the Agile ap-
proach.

Therefore, we recommend organizing the pipeline in hori-
zontal layers and building each layer in a minimalistic incom-
plete fashion so that the basic connections between the layers
are established early in the project (Figure 6). We think this
point is crucial to quickly establishing a tight, highly aligned
feedback loop. Without this feedback loop, even feature pre-
processing becomes a potential “fishing expedition” as you
cannot know if it improves the outcome.

Using a simple method like linear regression first is a
good idea when fitting a predictive model. It is often claimed

4/10



that you should do this to avoid overfitting however, the key
benefit is that linear regression is easy to implement and fast
to run, enabling you to rapidly establish the first feedback
loop with a short cycle time. This steel thread [8] (mini-
mum viable product in SE) allows for iteration and building
complexity whilst never deviating too far from a working
codebase.

Testing for data science systems
Developing a suite of tests (e.g., unit, integration, and end-to-
end) for both the codebase and the datasets, whilst developing
a DSS, provides a comprehensive correctness feedback loop.

Code tests
A good test suite mitigates the fragility that DSSs – as com-
plex systems – inevitably have, e.g., a typo can destroy ev-
erything without ever being noticed. However, software en-
gineers often base tests on example input-output pairs, but
knowing these for non-trivial numerical code may be impos-
sible.

Property-based testing can help. While correct outputs of
a numerical function might be hard to know in advance, we
often know the mathematical properties the function should
satisfy. Property-based testing uses that knowledge, e.g.,
by creating random inputs and checking whether the prop-
erty holds for them. Libraries, such as pytest [20] and
hypothesis [21], can be utilized for general and property-
based testing, respectively.

One critical question is: which tests do I have to write to
be confident in the correctness of my system? We propose
that focusing on the functionality the system must provide
when deployed is key. This allows for recursive thinking
about which system components one must test, and to what
degree, to have confidence in the system’s functionality when
deployed externally.

DSSs should not just churn data but also highlight issues
and violated assumptions to the developer. ML code in gen-
eral, and deep learning code in particular, often fail silently
in many unexpected ways [4]. For example, one likely would
not notice if early layers of a convolutional neural network’s
architecture were buggy and their weights not updated during
training.

Data tests
We do not know what the data knows. This is another reason
why DSSs can fail silently. Therefore, implementing tests
not only for code but also for data is crucial. It is also cru-
cial to plot the data as often as possible. Looking at plots is
a feedback loop with high alignment. However, looking at
plots is time-consuming, i.e., this has a high cycle time. We
recommend extracting the relevant information from what
you see in the plots and writing tests based on that [22].

Within the code, we recommend performing as many
checks on assumptions about the data as possible; while you
should do this repeatedly, the likely most crucial point is right

before the data goes into a model [4]. Checking our assump-
tions on the data is hard as we are often unaware of them and
may forget which ones we made, so it makes sense to hard-
code them with tests whenever we notice them. One can also
do this with dedicated Python libraries like pandera [23].
If we expect a variable to be in a particular format, we should
write a check that generates an error or warning in case the
format is wrong. Tests minimize uncertainties by converting
assumptions into certainties.

We ask the data questions by running experiments. Like
in a good conversation, you must listen to the answers care-
fully and adapt your future responses and questions accord-
ingly. That does not mean your question generator algorithm
has to be greedy, but it has to be iterative. On the one hand,
iterative work unlocks the power of feedback loops, which
we need when working with complex/real-world data. On the
other hand, this requires agility in how you interact with the
data.

Conclusion
Feedback loops are a prerequisite for feature engineering,
model development, and everything else. Feedback loops al-
low one to move faster, further, and more confidently. Grow-
ing DSSs incrementally harnesses the power of feedback
loops.

Correctness and efficacy are different things that require
different feedback loops. The most critical feedback loops for
correctness are writing and running a test suite and writing as
comprehensible code as possible. The most important point
for building a feedback loop for efficacy is establishing it
early by growing the entire data pipeline as early and thinly
as possible.

We note that (almost) no feedback loop is perfectly
aligned; still, they are essential. However, we warn that a sub-
tle problem can arise when iterating on misaligned feedback
loops: overfitting, also known as Goodhart’s law [24, 25],
stating that every measure which becomes a target ceases to
be a good measure. Overfitting is predominantly a problem
for efficacy feedback loops.

As discussed in [26], people and processes optimizing
perverse incentives with misaligned feedback can lead them
to (un-)consciously “play the system.” This overfitting, i.e.,
on the validation set, can happen to the entire DSS, not just
the model. While researchers are usually aware of this prob-
lem when training a model, they are often unaware of it for
the entire DSS. The same countermeasures to model overfit-
ting apply to DSS, e.g., holdout test sets not utilized during
the development.

Also, we reemphasize that this is a socio-technical prob-
lem. Training of students and early career researchers in these
specific issues is essential, see e.g. the Turing Way [27]. Also,
despite endeavours like Zenodo or SoftwareX, academia of-
ten directs the incentive structures away from creating and
publishing high-quality DSSs. We must, therefore, improve
the incentives structure alignment in academia.

5/10



Not correct Correct

Not efficacious

You do not know whether
your idea is bad.

Try to achieve correctness,
it might give you

efficacy too.

You need a new idea.

Efficacious

You do not know whether
your idea works.

Try to make the system
correct or analyze why

your system is effective.

Figure 1. You need both: correctness & efficacy.

Acknowledgements
We are grateful to the EU/EFPIA Innovative Medicines Ini-
tiative project DRAGON (101005122) (S.D., M.R., AIX-
COVNET, C.-B.S.), Trinity Challenge BloodCounts! project
(M.R., J.G., C.-B.S.), EPSRC Cambridge Mathematics of In-
formation in Healthcare Hub EP/T017961/1 (M.R., J.H.F.R.,
J.A.D.A, C.-B.S.), Cantab Capital Institute for the Mathe-
matics of Information (C.-B.S.). The European Research
Council for Horizon 2020 grant no. 777826 (C.-B.S.), Alan
Turing Institute (C.-B.S.), Wellcome Trust (J.H.F.R.), Can-
cer Research UK Cambridge Centre (C9685/A25177) (C.-
B.S.), British Heart Foundation (J.H.F.R.), NIHR Cambridge
Biomedical Research Centre (J.H.F.R.), HEFCE (J.H.F.R.),
Leverhulme Trust project on ‘Breaking the non-convexity
barrier’ (C.-B.S.), Philip Leverhulme Prize (C.-B.S.), EPSRC
grants EP/S026045/1 and EP/T003553/1 (C.-B.S.) and the
Wellcome Innovator Award RG98755 (C.-B.S.). We are also
grateful to Intel for financial support, Ian Selby for creative
input; and Jan-Christoph Lohmann, Shaun Griffith, Jeremy
Tang and Fan Zhang for helpful comments and discussions.

Competing Interests
The authors declare no competing interests.

AIX-COVNET
Michael Roberts1,4, Sören Dittmer1,6, Ian Selby7, Anna
Breger1,8, Matthew Thorpe9, Julian Gilbey1, Jonathan

R. Weir-McCall7,10, Effrossyni Gkrania-Klotsas3, Anna
Korhonen11, Emily Jefferson12, Georg Langs13, Guang
Yang14, Helmut Prosch13, Jacobus Preller3, Jan Stanczuk1,
Jing Tang15, Judith Babar3, Lorena Escudero Sánchez7,
Philip Teare16, Mishal Patel16,17, Marcel Wassin18, Markus
Holzer18, Nicholas Walton19, Pietro Lió20, Tolou Shadbahr15,
James H. F. Rudd4, John A.D. Aston5, Evis Sala7 and Carola-
Bibiane Schönlieb1.

7 Department of Radiology, University of Cambridge (UoC),
UK. 8 Faculty of Mathematics, University of Vienna, Austria.
9 Department of Mathematics, University of Manchester, UK.
10 Royal Papworth Hospital, Cambridge, UK. 11 Language
Technology Laboratory, UoC, UK. 12 Population Health and
Genomics, School of Medicine, University of Dundee, UK. 13

Department of Biomedical Imaging and Image-guided Ther-
apy,Medical University of Vienna, Austria. 14 National Heart
and Lung Institute, Imperial College London, UK. 15 Re-
search Program in Systems Oncology, Faculty of Medicine,
University of Helsinki, Finland. 16 Data Science & Artificial
Intelligence, AstraZeneca, UK. 17 Clinical Pharmacology &
Safety Sciences, AstraZeneca, UK. 18 contextflow GmbH,
Austria. 19 Institute of Astronomy, UoC, UK. 20 Department
of Computer Science and Technology, UoC, UK.

6/10



Figure 2. The graph on the left is a fully connected graph illustrating a bad software architecture. The sparsely, mostly locally,
connected graph on the right demonstrates a better architecture [28, 29].

Figure 3. Some SE practices require delayed gratification, where one has to sacrifice short-term for long-term progress.

7/10



Figure 4. Illustration of how the usefulness of feedback loops depends on their alignment (θ ) and cycle time (t). For example,
we identify (t1,θ1): a integration test that ensures the code can be run without syntactic errors which can take milliseconds;
(t2,θ2): retraining a model from scratch on a large database and evaluating it on an independent test set, which can take several
hours or days; (t3,θ3): checking for outlier values in the features of the training data, which can take milliseconds.

Figure 5. Illustration of how the usefulness of feedback loops depends on their alignment (θ ) and cycle time (t). For example,
we identify (t1,θ1): a integration test that ensures the code can be run without syntactic errors which can take milliseconds;
(t2,θ2): retraining a model from scratch on a large database and evaluating it on an independent test set, which can take several
hours or days; (t3,θ3): checking for outlier values in the features of the training data, which can take milliseconds.

Figure 6. When growing a DSS, you must be able to support the cherry on top as early as possible. This “steel thread” is
necessary to establish an efficacy feedback loop (the cherry).

8/10



References
1. Haibe-Kains, B. et al. Transparency and reproducibility in artificial intelligence. Nature 586, E14–E16 (2020).

2. Pineau, J. et al. Improving reproducibility in machine learning research: a report from the neurips 2019 reproducibility
program. J. Mach. Learn. Res. 22 (2021).

3. Baker, M. 1,500 scientists lift the lid on reproducibility. Nature 533 (2016).

4. Karpathy, A. A recipe for training neural networks. Tech. Rep. (2019). URL https://karpathy.github.io/
2019/04/25/recipe/.

5. Aboumatar, H. & Wise, R. A. Notice of Retraction. Aboumatar et al. Effect of a Program Combining Transitional Care
and Long-term Self-management Support on Outcomes of Hospitalized Patients With Chronic Obstructive Pulmonary
Disease: A Randomized Clinical Trial. JAMA. 2018;320(22):2335-2343. JAMA 322, 1417–1418 (2019). URL https:
//doi.org/10.1001/jama.2019.11954. DOI 10.1001/jama.2019.11954. https://jamanetwork.com/
journals/jama/articlepdf/2752474/jama_aboumatar_2019_rx_190001.pdf.

6. Bhandari Neupane, J. et al. Characterization of leptazolines a–d, polar oxazolines from the cyanobacterium leptolyngbya
sp., reveals a glitch with the “willoughby–hoye” scripts for calculating nmr chemical shifts. Org. Lett. 21, 8449–8453
(2019). URL https://doi.org/10.1021/acs.orglett.9b03216. DOI 10.1021/acs.orglett.9b03216. PMID:
31591889, https://doi.org/10.1021/acs.orglett.9b03216.

7. Gall, J. General Systemantics (General Systemantics Press, 1975).

8. Brabban, P., Case, S., Cutts, S., Diniz, C. & Crawford, L. Data pipeline playbook. Tech. Rep. (2021). URL https:
//data-pipeline.playbook.ee/.

9. Roberts, M. et al. Common pitfalls and recommendations for using machine learning to detect and prognosticate for
covid-19 using chest radiographs and ct scans. Nat. Mach. Intell. 3, 199–217 (2021).

10. Parnas, D. L. On the criteria to be used in decomposing systems into modules. 479–498 (1972).

11. Sutherland, J. & Sutherland, J. V. Scrum: the art of doing twice the work in half the time (Currency, 2014).

12. Fowler, M., Highsmith, J. et al. The agile manifesto. Softw. development 9, 28–35 (2001).

13. Farley, D. Modern Software Engineering: Doing What Works to Build Better Software Faster (Addison-Wesley Professional,
2021).

14. Bass, L., Clements, P. & Kazman, R. Software architecture in practice (Addison-Wesley Professional, 2003).

15. Reddy, V. S. The spacex effect. New Space 6, 125–134 (2018).

16. Vance, A. & Sanders, F. Elon Musk (HarperCollins, 2015).

17. Smith, R. J. Shuttle problems compromise space program: With the shuttle earth-bound, political troubles and cost overruns
take off. Science 206, 910–914 (1979).

18. Perkel, J. M. How to fix your scientific coding errors (2022).

19. Lakshmanan, V., Robinson, S. & Munn, M. Machine learning design patterns (O’Reilly Media, 2020).

20. Krekel, H. et al. pytest x.y (2004). URL https://github.com/pytest-dev/pytest.

21. MacIver, D. R. Hypothesis x.y. https://github.com/HypothesisWorks/hypothesis-python (2016).

22. Baumgartner, P. Ways i use testing as a data scientist. (2021). URL https://www.peterbaumgartner.com/
blog/testing-for-data-science/.

23. Niels Bantilan. pandera: Statistical Data Validation of Pandas Dataframes. In Meghann Agarwal, Chris Calloway,
Dillon Niederhut & David Shupe (eds.) Proceedings of the 19th Python in Science Conference, 116 – 124 (2020). DOI
10.25080/Majora-342d178e-010.

24. Goodhart, C. A. Problems of monetary management: the uk experience. In Monetary theory and practice, 91–121
(Springer, 1984).

25. Hoskin, K. The ‘awful idea of accountability’: inscribing people into the measurement of objects. Accountability: Power,
ethos technologies managing 265 (1996).

26. Muller, J. Z. The tyranny of metrics. In The Tyranny of Metrics (Princeton University Press, 2019).

27. Community., T. W. The turing way: A handbook for reproducible, ethical and collaborative research (1.0. 1). (2021).

9/10

https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://doi.org/10.1001/jama.2019.11954
https://doi.org/10.1001/jama.2019.11954
https://jamanetwork.com/journals/jama/articlepdf/2752474/jama_aboumatar_2019_rx_190001.pdf
https://jamanetwork.com/journals/jama/articlepdf/2752474/jama_aboumatar_2019_rx_190001.pdf
https://doi.org/10.1021/acs.orglett.9b03216
https://doi.org/10.1021/acs.orglett.9b03216
https://data-pipeline.playbook.ee/
https://data-pipeline.playbook.ee/
https://github.com/pytest-dev/pytest
https://github.com/HypothesisWorks/hypothesis-python
https://www.peterbaumgartner.com/blog/testing-for-data-science/
https://www.peterbaumgartner.com/blog/testing-for-data-science/


28. Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’networks. nature 393, 440–442 (1998).

29. Valverde, S. & Solé, R. V. Hierarchical small worlds in software architecture. arXiv preprint cond-mat/0307278 (2003).

10/10


	References

