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Item response theory (IRT) refers to a family of mathematical models which describe the relationship 
between latent continuous variables (attributes or characteristics) and their manifestations 
(dichotomous/polytomous observed outcomes or responses) with regard to a set of item characteristics. 
Researchers typically use parametric IRT (PIRT) models to measure educational and psychological latent 
variables. However, PIRT models are based on a set of strong assumptions that often are not satisfied. 
For this reason, non-parametric IRT (NIRT) models can be more desirable. An exploratory NIRT 
approach is kernel smoothing IRT (KS-IRT; Ramsay, 1991) which estimates option characteristic curves 
by non-parametric kernel smoothing technique. This approach only gives graphical representations of 
item characteristics in a measure and provides preliminary feedback about the performance of items and 
measures. Although KS-IRT is not a new approach, its application is far from widespread, and it has 
limited applications in psychological and educational testing. The purpose of the present paper is to give 
a reader-friendly introduction to the KS-IRT, and then use the KernSmoothIRT package (Mazza et al., 
2014, 2022) in R to straightforwardly demonstrate the application of the approach using data of Children’s 
Test Anxiety scale. 
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Introduction 
 Item response theory (IRT) refers to a theory of 
testing which describes the relationship between latent 
continuous variables (unobserved attributes or 
characteristics) and their manifestations 
(dichotomous/polytomous observed outcomes or 
responses) with regard to a set of item characteristics. 
Unlike the test-level focus of classical test theory 
(CTT), the name item response theory denotes the focus 
of the framework on individual items, as the unit of 
measurement (Baker & Kim, 2004). Therefore, IRT 
models the response of each subject of given ability to 
each item in a measure. The term item is generic and 
includes all kinds of item formats, such as nominal, 
partial credit, multiple-choice, multiple-response, and 

rating scale. IRT is based on the ideal that 
psychological and educational attributes (e.g., attitudes, 
knowledge, anxiety/stress, etc.) are abstract latent 
entities that can be measured when they are elicited 
through devices called tests (Baghaei & Effatpanah, 
2022). More specifically, responses of subjects to items 
of a measure are considered as observable 
manifestations of the postulated latent variable. 

 A variety of IRT models have been developed, and 
a distinction has been made between parametric IRT 
(PIRT) models and non-parametric (NIRT) ones to 
model the encounter of an individual with a specified 
test item. Regardless of differences among IRT models 
in terms of number and kinds of parameters, they share 
a set of important assumptions: unidimensionality, 
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local independence, monotonicity, and measurement 
invariance (Hambleton & Swaminathan, 1985). The 
first assumption is unidimensionality indicating that 
there is only a single latent variable being measured, 
that is, all items of a scale should measure one single 
construct. Local independence assumes that the items 
of a measure should not be related to each other. That 
is, different item responses are independent 
conditioning on the underlying latent variable. The 
monotonicity assumption states that as the level of the 
latent variable is increasing, the probability of a correct 
answer also increases. Finally, measurement invariance 
posits that item parameters must be invariant in 
different populations of respondents. 

 Another common property between PIRT and 
NIRT models is item characteristic function which 
predicts responses of a subject to items of a measure 
in reference to their location on the latent variable 
continuum and parameters of items. The relation 
between the latent variable and the probability of 
getting an item right or endorsing a response option 
can be characterized by a monotonically increasing 
function (Rajlic, 2020). This function is known as item 
response function (IRF), graphically shown by an item 
characteristic curve (ICC). For PIRT models, a set of strict 
assumptions (e.g., unidimensionality, local 
independence, monotonicity, and measurement 
invariance) must hold for parameter estimation based 
on several fit statistics indicating the conformity of the 
observed responses to model expectations. PIRT 
models further involve the logistic transformation of 
observed responses to interval measures, by 
prescribing a prespecified mathematical shape for 
ICCs (logistic ogive form, Sigmoid, or S-shaped), with 
the models which are different in terms of the type of 
function is employed, the way ICCs are characterized, 
and the number of item parameters are proposed to 
specify the ICC (Birnbaum, 1968; Fischer, 1995; Lord, 
1980; Rasch, 1960; Samejima, 1969).  

 However, NIRT models are less restrictive than 
PIRT models and do not prescribe any mathematical 
form on the IRFs. They can be of any shape whether 
logistic or not. ICCs are directly estimated from the 
data without imposing a particular shape (Junker & 
Sijtsma, 2001; Molenaar, 1997; Mokken, 1971; Ramsay, 
1991; Sijtsma & Molenaar, 2002). The only restriction 
on the IRFs is the order restriction or monotonicity. 
The IRFs should be non-decreasing in θ, that is, a 
positive monotone relationship should exist between 

the latent variable and the correct response. Moreover, 
Sijtsma and Meijer (2007) note that in some PIRT 
models, specific distributions are required for the latent 
variable, but this is not necessary in NIRT models. For 
instance, Sijtsma and Meijer (2007) argue that unlike 
the IRFs of the two-parameter logistic model (2-PL 
model; Birnbaum, 1968), the IRFs of NIRT models 
“(1) need not be S-shaped, and need not even be 
smooth; (2) can have several inflexion points, and may 
be constant over several ranges of θ; and (3) can have 
lower asymptotes or minimum values greater than 0 
and upper asymptotes or maximum values smaller than 
1” (p. 722). The advantage of NIRT models is that 
many items which do not fit the PIRT models (because 
of the incongruity of their IRFs with the shape defined 
by the model) can still be kept in the scale as long as 
they are non-decreasing. Though they may not be 
optimal items, many of them may work at certain 
portions of the latent trait continuum. That is, they may 
be constant over a portion of the scale, but they may 
be increasing over other portions. Such items work for 
those portions of the scale over which they are 
increasing and thus contribute to test reliability. In 
other words, the contribution of the items to test 
reliability does not depend on the parametric shape of 
their IRFs. They only need to be non-decreasing. 
Furthermore, keeping more items improves the test 
coverage which is good for validity and protects the 
scale against construct underrepresentation (Messick, 
1989). 

 Two most commonly used NIRT approaches are 
Mokken scale analysis (MSA; Mokken, 1971) and 
kernel smoothing item response theory (KS-IRT; 
Ramsay, 1991). Compared to MSA (Firoozi, 2021; 
Tabatabaee-Yazdi et al., 2021; see Baghaei, 2021, for a 
comprehensive review of MSA applications), too little 
attention has been paid to the application of KS-IRT 
in educational testing. The application of the approach 
has been limited to few practical (Beevers et al., 2007; 
Effatpanah & Baghaei, 2022a, 2022b, submitted; Khan 
et al., 2011; Meijer & Baneke, 2004; Santor et al., 1994; 
Sijtsma et al., 2008; Sueiro & Abad, 2011) and 
methodological (Douglas, 1997; Douglas & Cohen, 
2001; Pui-wa et al., 2004; Wells & Bolt, 2008) research. 
The results of these studies have shown that NIRT 
models can provide valuable insights into the 
functioning of measures. The limited application of the 
KS-IRT could be due to the lack of familiarity of 
applied researchers with the theoretical structure of the 
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approach and the interpretation of its results. The 
computer software TestGraf (Ramsay, 2000) was firstly 
developed to implement the non-parametric 
estimation of option characteristic curves (OCCs) 
using kernel smoothing technique and related graphical 
analyses. The term ‘OCCs’ is used instead of ICCs to 
focus on the functioning of response options rather 
than test items. Recently, Mazza et al. (2014, 2022) 
developed and presented the convenient R package 
KernSmoothIRT. However, although their paper 
provides a comprehensive description about both the 
theoretical aspects of the approach and its applications, 
it may be difficult to understand for applied researchers 
who are not familiar with complex statistical concepts. 
Therefore, the main purpose of this paper is to provide 
a reader-friendly introduction to the KS-IRT for 
applied researchers, with the least use of technical 
terms, and then use the KernSmoothIRT package 
(Mazza et al., 2014, 2022) in R (R Core Team, 2023) to 
straightforwardly demonstrate the application of the 
approach using data of a Children’s Test Anxiety scale. 

 

Kernel Smoothing Item Response 
Theory 

 By proposing regression methods based on kernel 
smoothing techniques, Ramsay (1991, 1997) 
introduced what he called “kernel smoothing IRT (KS-
IRT)” to provide a non-parametric estimation of 
OCCs, executed in the TestGraf program (Ramsay, 
2000). KS-IRT does not present any numerical values 
and only provides graphical illustrations of how items 
of a measure function. This feature allows the KS-IRT, 
as an exploratory and data-driven technique, to have 
the diagnostic capacity to identify problems with the 
performance of the items, with just eyeballing the 
OCCs, which violate the important assumptions of 
measurement such as monotonicity, item 
discrimination across various levels of the expected 
construct, and measurement invariance and/or 
differential item functioning (DIF) (Rajlic, 2020). 
Furthermore, the approach helps researchers to 
evaluate model fit and select the most optimal 
parametric model for further data analysis (Lee et al., 
2009; Mazza et al., 2014). If the KS-IRT, for instance, 
indicates that the items have different slopes, the 2-PL 
might be the more optimal model for the test, or if the 
items have non-zero lower asymptotes, the 3-PL could 
be a better modeling strategy for the test (Rajlic, 2020). 

Therefore, KS-IRT can be considered as an additional 
spanner in the statistical toolkit of researchers in 
psychological and educational measurement. 

 OCCs show the relation between the probability of 
choosing a particular response option for a test item 
and the ability of a subject. Let’s consider the responses 

of a group of subjects V = {V1, …, Vj, ..., Vn} to a set of 

test items I = {I1, …, Ii, …, Ik}. Also, let’s consider 

Oi = {Oi1, …, Oil, …, Oimi
} as a set of options for 𝐼𝑖, 

and 𝑥𝑖𝑙 as the weight ascribed to 𝑂𝑖𝑙. The observed 

response of 𝑉𝑗 to 𝐼𝑖 is shown by indicator variables 

yil = {yil1, …, yilmi
}. If option m is selected by subject 

ν,  𝑦𝑖𝑙𝑚 = 1; otherwise,  𝑦𝑖𝑙𝑚 = 0. In this case, the 
function of OCC can be expressed as: 

𝑃𝑖𝑙 (𝜃𝑣) = 𝑃 (𝑠𝑒𝑙𝑒𝑐𝑡 𝑂𝑖𝑙| 𝜃𝜈) = 𝑃 (𝑌𝑖𝑙 = 1 | 𝜃𝑣)   (1) 

where i = 1, …, k; l = 1, …, 𝑚𝑖; and 𝑃𝑖𝑙 (𝜃𝑣) is the 
probability that a subject v with unidimensionality 

ability level 𝜃 chooses option l for item i. 

 According to Ramsay (1991, p. 615) and 
Ramsay (2000, pp. 25-26), the estimation of OCCs 
involves the following steps: (1) Score: a value or score 
is assigned to each subject using different methods 
including computing the number of correct answers 
for each subject for multiple-choice items, computing 
the scale score for scales or mixed item types, which 
is the sum over items of the numerical weights related 
to the options selected, and reading in values from a 
file; (2) Rank: subjects are ranked based on the values 
or scores, with ranks within tied values assigned 
randomly; (3) Enumerate: the ranks are replaced by the 

quantiles 𝑞𝑣 of a certain distribution (mostly standard 
normal distribution); (4) Sort: sort subjects’ response 

patterns(Xi1, …, Xil) by the estimated ability rankings; 
and (5) Smooth: the relationship between item 
response and the latent variable is estimated by 
smoothing the relationship between the 0-1 indicator 
variable values and the standard normal quantiles. 
Smoothing is implemented at certain selected points, 
known as evaluation points. Put simply, the 
probability of a correct response is computed as the 
observed proportion of people who selected the 
option at the selected points. Then, the points on the 
x-axis are plotted against the probabilities on the y-
axis to obtain a trace line. Next, kernel smoothing 
non-parametric regression is used to smooth the IRF 
and directly estimate OCCs from the data (Eubank, 
1988; Härdle, 1990). In statistics, smoothing is used to 
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create an approximate curve that attempts to capture 
important patterns in the data and reduce noise. In 
the smoothing technique, instead of using all the data 
points, local averaging is used to estimate the 
relationship between the latent variable and the 
probability of choosing an option. “[K]ernel is a 
weighting function, which assigns weights to the 
scores, based on their distance from the targeted 
score” (Rajlic, 2020, p. 373). For kernel smoothing 
technique, there are various functions that can be 
selected such as Gaussian, uniform, and quadratic. In 

addition, for each selected point on 𝜃 scale, a 
constant distance size, referred to as bandwidth (h) 
which controls the width of the kernel around the 
point, is selected. Then, a weighted average for all the 
data points that are within the bandwidth and the 
point is computed. Points closer to the evaluation 
point get higher weights (Santor et al., 1994). As 
argued by Rajlic (2020), “Its [bandwidth] 
inappropriate selection can lead to over- or under-
smoothing of the curve. Selection of bandwidth 
assumes a trade-off between estimation bias and 
variance – larger bandwidth for example leads to 
smaller variance but larger bias” (p. 373). 
 Compared to the standard kernel regression 
methods, the independent variable is latent trait value 

𝜃, and the dependent variable is the probability of 
selecting the option m for item i, with the actual choices 
(Rajlic, 2020; Ramsay, 2000). These can be numerically 

summarized by defining an indicator variable 𝛾𝑖𝑙𝑣, that 
takes the value of 0 when subjects do not choose the 
option, and 1 if the option is chosen by the subjects. 

The probability function 𝑃𝑖𝑙(𝜃𝑞) is estimated by 

smoothing the relation between the binary 0-1 values 
and the subject abilities by local averaging, in which for 

any proficiency or trait level 𝜃, the probability of choice 

𝑃𝑖𝑙(𝜃𝑞) at that level is a weighted average of the values 

of 𝛾𝑖𝑙𝑣 for subject with proficiency or trait levels close 

to 𝜃 (Rajlic, 2020, p. 373): 

𝑃𝑖𝑙(𝜃𝑞) =  ∑ ⍵𝑣𝑞𝛾𝑖𝑙𝑣
𝑛
𝜈=1         (2) 

⍵𝑣𝑞 is a weight assigned to each subject at each 

evaluation point q  

⍵𝑣𝑞 =  
𝐾 (

𝜃𝜈− 𝜃𝑞

ℎ𝑖
)

∑ 𝐾 (
𝜃𝑟− 𝜃𝑞

ℎ𝑖
)𝑛

𝑟=1

              (3) 

In equation (3), K denotes kernel function, and h is the 
bandwidth parameter. For more detailed information 

about technical description of KS-IRT and regression 
methods based on kernel smoothing techniques; 
interested readers can refer to Eubank (1988), Härdle 
(1990), Mazza et al. (2014), and Ramsay (1991). 

 There are a range of outputs specific to KS-IRT. A 
unique graph of KS-IRT is the dynamic display of item 
characteristics for items with more than 3 or 4 options. 
The vector of probabilities can be shown as a point in 

the probability simplex. As 𝜃 varies, due to the 
assumptions of smoothness and unidimensionality of 
the latent variable, the vector of probabilities moves 
along a curve (Mazza et al., 2014). A convenient 
method is to show points in the probability simplex by 
the (reference) triangle – an equilateral triangle having unit 
altitude - and by the (regular) tetrahedron. At each side of 
the triangle and tetrahedron, only the options with the 
highest probabilities are shown; the highest 
probabilities are normalized to provide a simple 
representation (Mazza et al., 2014). A good item is one 
in which the sequence of points begins from the lowest 
option and terminates at or near the highest option to 
show all the vector of probabilities along the curve. 

 Using the response patterns of examinees and the 
item OCCs, the KS-IRT can also give the relative 
likelihood or probability of an examinee’s true 

proficiency level (𝜃) being at various values. The curve 

is known as relative credibility curve. The 𝜃 value with 
the highest likelihood is taken as the maximum 
likelihood (ML) estimate of the ability for the 
respondents. Since the ML estimate of the ability takes 
into account the respondents’ response patterns and 
the characteristics of the items, it is a more accurate 
indicator of the latent ability than the sum score 
(Mazza et al., 2014). In fact, ML estimates are the best 
estimates of the trait level, and RCCs show how 
precisely a total score shows the ability of a respondent 

(Ramsay, 2000). If the 𝜃 value with the highest 
credibility and the actual total score coincide, it means 
that the total score is an accurate indicator of the latent 

trait. However, if the total score and the 𝜃 do not 
coincide, it is a sign that the total score is inaccurate 
and does not represent the actual ability of the 
examinee. 

 Another output of the KS-IRT is a principal 
component analysis (PCA) of correct option ICCs. 
This plot depicts all of the correct-option characteristic 
curves or all of the expected item scores (EISs) 
simultaneously so as to indicate relationships among 
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items (Ramsay, 2000). This is carried out by a PCA of 
the values of the curves at each point of curve 
evaluation. “Prior to the analysis, the average curve is 
calculated across items, and subtracted from each item 
characteristic curve. In other words, the principal 
components analysis is carried out on the centered 
item characteristic curves” (Ramsay, 2000, p. 41). In 
this analysis, items play the role of examinees or 
replications, and evaluation points are similar to the 
role played by variables in common applications of 
PCA. 

Empirical Example 

 In this section, for the purpose of illustration, the 
data of the Persian translation of the Children’s Test 
Anxiety Scale (Shoahosseini & Baghaei, 2020; Wren & 
Benson, 2004) is used to demonstrate how to estimate 
and interpret the graphical outputs of KS-IRT using 
KernSmoothIRT package version 6.4 (Mazza et al., 
2022) in R (R Core Team, 2023). The dataset comprises 
160 participants (90 girls and 70 boys) aged 8 to 14 
years old (Mean of age = 12.88, SD = 1.96) with Persian 
as their first language. The scale consists of 30 items 
scored on a four-point Likert-type scale: almost never 
(0 point), some of the time (1 point), most of the time 
(2 point), almost always (3 point). For the dataset used 
in this study, total scores represent the anxiety level of 
children; higher scores indicate higher anxiety level of 
children, and lower scores show their lower anxiety 
level. The graphs of the KS-IRT are analyzed at both 
test- and item-level as well as plots for assessing 
Differential Item Functioning (DIF).  

Kernel Smoothing Estimation with the ksIRT() 
Function 

 To perform the analyses, the package should be 
first loaded: 

> library(KernSmoothIRT) 

The “foreign” package can be used to import the data 
from different statistical packages, such as SPSS or 
Stata, into R. The data for the current analysis is saved 
in the format of tab-delimited text (.txt or .dat) or 
comma separated values (.csv). To import the data into 
R, load the package: 

> library(foreign) 

Specify the folder where the data file has been saved: 

> setwd("... file location") 

The data file is specified and imported by executing the 
following code:  

> data<-read.table("data.dat", 

header=TRUE) 

The argument header = TRUE tells R that the first row 
of the data file contains variable names. The argument 
header = FALSE should be used when the data file 
does not have specific names for variables.  

 To perform kernel smoothing, the ksIRT() 
function requires responses matrix; rows represent 
subjects and columns represent items. Columns of 
items in the data file are specified:  

> data1<-data [,4:33]   

For all items of the test, key, as a numeric vector or a 
scalar, should be identified: 

> key <-

c(3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,

3,3,3,3,3,3,3,3,3,3,3,3,3,3) 

Note that if key is a vector, the length of key should 
match the number of items; if key is a scalar, the same 
value should be used for all items. For multiple-choice 
and dichotomous items, key should include the correct 
options for each item. One way to score multiple-
response items is to count the correctly classified 
options. To do this, a preliminary conversion of every 
option into a separate true/false item is necessary 
(Mazza et al., 2014). For rating scale items, key should 
include the largest option value for each item. The 
weight assigned to each option is thus equal to its 
option number. In our illustrative data, there are 30 
items in which option 3 is the largest response option. 
For nominal items, key is omitted. Bear in mind that 
subjects have to be ranked to analyze items or options. 
This can only be carried out when the test also includes 
non-nominal items, or when a prior ranking of subjects 
is given with SubRank (Mazza et al., 2014). Finally, for 
partial credit items, weighting can be specified in the 
weights argument. More complicated weighting 
schemes can be specified using weights instead of both 
key and format. 

 The basic function that performs KS-IRT is: 

> Mod1<-ksIRT(data1, key = key, 

format = 2, kernel = 

c("gaussian"),weights, miss = 

c("option"), NAweight = 0, 

bandwidth = c("Silverman"), 
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RankFun = "sum", thetadist = 

list("norm",0,1), groups = FALSE) 

In the function, there are some elements which should 
be explained:  

• “format” is a vector or a numeric scalar 

which specifies the type of items. If items are 
multiple-choice and dichotomous, use 
format=1. If items are rating scale and 

partial credit, use format=2. In our example, 

the data is rating scale. If items are nominal, use 
format=3. If there are a mixture of different 

item formats, then format is a numeric vector 
with length equal to the number of items with 
entries of 1 for each multiple-choice item and 
2 for each rating-scale item. Weights argument 
is used for more complicated weighting 
schemes; 

• “kernel” specifies the kernel function which 

must be “gaussian”, “quadratic”, and 
“uniform”. The default is “gaussian”; 

• “weights” is an optional list that can be used 

instead of including key. Determining weights 
allows for more complicated weighting 
schemes than the default. Its length must be 
equal to the number of items, and each entry 
must be a matrix with option numbers in the 
first row and option weights in the second row. 
When weights is removed and format=1, 

then weights are provided according to key. 
When weights is removed and format=2, 

then an option weight equals the option 
number is provided for each response. If 
weights is omitted and format=3, then 

weights are set to zero; 

• “miss” specifies the method to handle 

missing responses. The default value is 
“option”, considering them as a further option 
(labeled as NA) with zero weight. Such NA 
option will be added to the plot of the OCCs. 
As an alternative, a different weight for the NA 
option may be specified through the NAweight 
argument. The other approaches to manage 
missing responses are (a) miss = 

“random.unif” which substitutes NAs 

with randomly-chosen options from the 
possible ones for the items, (b) miss = 

“random.multinom” which does the 

same substitution as miss= 

“random.unif”, but each option has a 

probability of being selected proportional to its 
relative frequency, and (c) which removes or 
excludes all the subjects from the analysis with 
at least one omitted response; 

• “NAweight” is a scalar value that determines 

the weight given to missing responses when 
miss="option". The default is zero; 

• “bandwidth” can be either “Silverman”, 

“CV” (e.g., cross-validation), or a numeric 
vector specifying, for each item, the bandwidth 
to use for kernel smoothing. The default value 
is bandwidth="Silverman", a numeric vector 
computed following the famous Silverman’s 
rule of thumb (Silverman, 1986, p. 45) with the 
formula 1.06*sigma.hat*nsubj^(-

0.2), where nsubj is the number of 

subjects and sigma.hat is the standard 

deviation of the subject summary related to the 
subjects based on the distribution determined 
with thetadist. When bandwidth = “CV”, 

the bandwidths is selected for each item 
through cross-validation (for technical and 
detailed information for Silverman and CV, see 
Mazza et al., 2014); 

• “RankFun” is a function used to rank 

subjects. The default value is "sum". The other 
choice is "mean"; 

• “thetadist” specifies the distribution of 

subjects (e.g., ability of 𝜃 distribution of 
subjects). By default a standard normal 
distribution is used. The other different 
distributions can be used by specifying the first 
element of the list as "norm", "beta", "unif", 
"gamma", etc. where the character string is the 
same as used in the subjscoresummary 
function qnorm(), qbeta(), qunif(), 

qgamma(); 

• “groups = FALSE” is an optional vector 

of length equal to the number of subjects 
containing the group designation of each 
subject. Including this option allows for 
comparisons between groups using the DIF 
tools, which will be explained in the following 
section. 
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In addition to these commands used for the analysis of 
the dataset of the present paper, there are some other 
arguments. For example, “itemlabels” is an 

optional list of labels for each item. If removed, each 
item will be labelled based on its numerical order. The 
labels will be used in plotting; “nsubj” is an optional 

numeric value with the number of subjects; 
“SubRank” is a numeric vector determining the rank 

of each of the subjects. If undetermined and 
format=1 or format=2, subjects will be ranked 

based on the function passed through the argument 
RankFun. When format=3, this argument must be 

given; “evalpoints” is an optional numeric vector 

that allows users to directly specify evaluation points 
or the quantiles at which to estimate the OCCs. If 
undetermined, the default is nevalpoints evenly 

spaced values with end points specified based on the 
number of subjects and the distribution determined by 
the thetadist argument; and “nevalpoints” is  

an optional scalar value determining the number of 
evenly spaced points at which curves are estimated. 
This value is used as an alternative to a user defined 
vector in the evalpoints argument. The default 

value is 51. The end points are specified based on the 
number of subjects and to the distribution determined 
for the thetadist argument. When both evalpoints 

and nevalpoints are specified, then 

evalpoints has priority. 

 If the user tends to perform the kernel smoothing 
based on default values, the simple function for KS-
IRT is:  

> Mod1 <- ksIRT(data1, key = key, 

format = 2)  

The point polyserial correlations (also called point-
biserial correlations) can be estimated to show the 
correlation between each item and the total score 
(Olsson et al., 1982) as shown in Table 1.  

 

> itemcor(Mod1) 

Table 1. The Point Polyserial Correlations 
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Plot Methods at Item-level 

The function ksIRT() creates a ksIRT object 

using kernel smoothing. The plot method for ksIRT 

objects includes a variety of exploratory plots at item- 
and test-level as well as differential item functioning 
(DIF), including OCCs, EISs, principal component 
analysis (PCA), a probability simplex plot for the top 3 
or 4 highest probability options of each item, relative 
credibility curves (RCCs), density plots, expected value 
plots, standard deviation (SD) or standard error of 
measurement (SEM), OCCs for each of the different 
groups (OCCDIF), pairwise expected value 
comparison plots for each of the different groups 
(expectedDIF), expected item scores for each of the 
different groups (EISDIF), and density of observed 
scores for each of the different groups (densityDIF). 
The following sections show these plots by means of 
the plot() method.  

 Option Characteristic Curve (OCC). The 
following code returns the OCCs for items 2, 7, 8, and 
15 of the Children’s Test Anxiety scale presented in 
Figure 1:  

> plot(Mod1,plottype="OCC", 

item=c(2,7,8,15), axistype = 

"scores")   

“axistype” specifies the display variable to be used 

on the x-axis. The default is axistype = 

“distribution”, which uses 

subjectscoresummary of the distribution 

specified in the thetadist. The other option is 

axistype = “scores” which shows the 

expected score. The confidence intervals can be used 
if alpha = 0.05. The default is alpha = 

FALSE.  

 The OCC graphs show the probability of giving a 
correct response or endorsing an option (y-axis ranging 
from 0 to 1) for different locations on the latent trait 
dimension on which individuals are ranked (x-axis). 
On the OCC graphs, the vertical dashed lines indicate 
the points below which 5%, 25%, 50%, 75%, and 95% 
of individuals fall with respect to their actual total 
scores. The position of the vertical lines is identical for 
all the items. For example, the 75% line is dotted at the 
score 34 for all the items (2,7,8,15) in Figure 1, 
indicating that 75% of the respondents fall below the 
total score of 34 and 25% of the respondents are in the 
range of scores 34 to 90. This shows that there may 

exist a relative positive skewness in the data, that is, a 
large number of the respondents have low total scores, 
which represent the low test anxiety level.  

 As illustrated in Figure 1, four curves for each of 
the scale items are plotted, because there is more than 
one item response option (e.g., four-point items) in the 
scale. On the x-axis of the OCC graphs, the expected 

score, ranging from 0 to 90, which represents 𝜃 is 
given. Expected score is the average score that an 

examinee at a given 𝜃 level will achieve. For 
dichotomous items, it is the sum of the probabilities of 

a correct response on all the items at a given 𝜃 level. 
For polytomous items, it is the sum of the weighted 
probabilities of marking all the categories on all the 

items at a given 𝜃 level (Ramsay, 2000). The probability 
of a correct response or selecting a particular response 

option at different 𝜃 levels is estimated using the kernel 
smoothing function. According to monotonicity 
assumption, respondents with higher scores on the 
latent trait dimension have a higher probability for 
giving a correct answer to a test item or endorsing an 
option. In this example, an increase of total scores on 
the x-axis indicates an increase in test anxiety for the 
respondents. In other words, respondents with higher 
expected scores on the x-axis are more likely to select 
higher response categories (e.g., Options 2 and 3), and 
respondents with the lowest level of test anxiety are 
more likely to select lower response categories (e.g., 
Options 0 and 1). Therefore, a satisfactory curve for 
polytomous items is expected to show the likelihood 
of respondents selecting a certain response category on 
the scale at various levels of the latent trait. In fact, 
OCCs should indicate the regions on the latent trait 
where a response category becomes most probable for 
a respondent of a specific level. An appropriate 
response category should be the most probable 
category at a specific level of the latent trait scale and 
become less probable or have zero probability at other 
regions. The response category will be inappropriate 
and a candidate for merging with adjacent options if it 
is not the most probable category at a specific region 
of the scale. Any peculiar shapes in the OCCs (e.g., a 
“wave” or a “U-shaped” curve) represent the violation 
of monotonicity assumption which has a strong effect 
on the accuracy of measurement (Sijtsma & Molenaar, 
2002; Wind, 2020). As can be seen in Figure 1, the four 
response categories for the items are the most probable 
category for respondents at certain levels of the anxiety 
scale. Items 2 and 15 are adequately monotone because 
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respondents with higher levels of test anxiety (or total 
scores) have a higher probability to select the higher 
options; however, the OCC graph for Item 8 indicates 
a large degree of violation of monotonicity because 
respondents with lower test anxiety levels have more 
probability to select higher options. Item 7 also shows 
a small degree of distortion of monotonicity. 

 More precisely, each response category should be 
the most probable option for participants at certain 
levels of the trait continuum. That is, the first response 
Category (0) should be the most probable for those 
with the lowest trait levels (whatever the trait is) and 
become less probable as the trait increases. The 
probability of the lowest category should be near 1 at 
the lowest end of the trait continuum and should 
approach zero at the highest levels of the trait scale. 
Category 1 should be the most probable option for 
those at low to medium levels of the trait and be less 
probable for those outside this range of the trait. 
Category 2 should be the most probable for those at 
medium to high levels of the latent variable and be less 
probable for those below and above this level. And 
finally, the highest category (e.g., Category 4) should 
have a very low probability for those at low and 
medium levels of the latent variable and be very 
probable for those with very high trait levels. In 
summary, ideal OCCs should look like a set of neat 
successive hills each representing a category and a class 
of respondents based on the trait levels. Obviously, for 
multiple-choice (MC) questions we do not expect to 
see these hills unless each distractor is specifically 
written to attract respondents from a certain 
proficiency level. However, we do expect the correct 
option to have a low probability for low-proficiency 

examinees and become more probable as 𝜃 increases.  

 For clarification purposes, the performance of 
Item 15 as shown in Figure 1 is examined. Category 0 
is very probable for those with expected anxiety scores 
between 0 and 10 and becomes very improbable as 
anxiety increases. For those above 10, Category 1 
becomes very probable, and its probability diminishes 
as anxiety increases. Category 2 does not work well as 
its probability is lower than the probability of Option 
1 across the entire length of the trait continuum. This 
is indeed a very disturbing finding. Participants with 
anxiety levels between 10 and 40 are more likely to 
select Category 1 than 2, and Category 2 never 
becomes more probable than 1. At anxiety levels above 

40, Category 3 becomes the most probable option. 
This indicates a problem in distinguishing between 4 
categories of responses and may call for a reduction in 
the number of response options. Merging Categories 1 
and 2 may solve the problem. This problem also exists 
for Item 2. In Item 8, Category 0 is the most probable 
for those between 0 and 60 after which Category 1 
becomes more probable. In other words, Categories 2 
and 3 do not work, and this item works better with only 
two response options. Item 7 is also problematic, as 
category 0 remains the most probable option for a very 
wide range of the scale. Only after expected score of 
40, Category 3 becomes the most probable which 
makes Options 1 and 2 obsolete.  

 OCC graphs can also represent item discrimination 
which is defined as the slope or steepness of the OCCs. 
Item discrimination determines the rate at which the 
probability of getting an item right or endorsing a 
response option changes given the latent dimension. 
As the slope of the curves increases, the better the item 
can discriminate between the respondents with 
different trait levels. As presented in Figure 1, Item 2 
highly discriminates between the respondents with 
lower and higher levels of test anxiety, especially with 
expected total scores ranging from 23 to 45 for Option 
3. Items 7 and 15 have also adequate discriminating 
power with different trait levels. On the contrary, Item 
8 displays a weak discrimination item, indicating the 
inefficiency of the item in differentiating between the 
respondents with low and high test anxiety level, that 
is, the respondents with higher level of anxiety have the 
same probability of endorsing an option with the 
subjects with lower anxiety levels.  

 Another important aspect of OCC graphs is the 
evaluation of the lower and upper asymptote of the 
curve which refers to the highest and lowest end of a 
curve. The probability of giving a correct answer to an 
item or endorsing a response option should 
approximate 0 in the lowest end of the scale, and 
should approximate 1 in the highest end of the scale 
(Rajlic, 2020); otherwise, a set of extraneous, irrelevant, 
variables may be at work. In Figure 1, the curve of 
options for all the items approach 0 in the lowest 
region of the expected score dimension; however, only 
Items 2 and 15 approach 1 in the highest region of the 
expected score dimension for the highest option (e.g., 
Option 3). 
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Figure 1. Option Characteristic Curves (OCCs) for Four Items of the Children’s Test Anxiety Scale 
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 Expected Item Score (EIS). The code 

> plot(Mod1,plottype="EIS", 

item=c(9,14,23,28), axistype = 

"scores")        

generates the expected item score (IES) graphs for 
Items 9, 14, 23, and 28 of the Children’s Test Anxiety 
scale displayed in Figure 2. Similar to OCCs, the display 
variable can be either axistype = “scores” or 

axistype = “distribution”, which is the 

default. 

 The curves simply show the expected score for the 
highest option - in this case Option 3 - for different 
locations of the latent trait. For dichotomous and 
multiple-choice items, the OCC for the correct option 
is given. The x-axis represents the expected total score 
on the test, and the y-axis represents the expected score 
on the item. It stands to reason that respondents with 
higher scores on the overall test also have higher scores 
on the individual items. Therefore, the IESs are 
supposed to be monotonically increasing. On the IES 
graphs, the red dotted lines represents 95% pointwise 
confidence intervals for only the curve of the highest 
option (e.g., Option 3), and the points on the graph 
represent the observed average score for the subjects 
grouped based on their ordinal ability estimates, which 
are equally spaced (Mazza et al., 2014). Based on the 
number of respondents, the intervals show to what 
extent the curve has been precisely estimated at specific 
levels of the construct dimension. As can be seen in 
Figure 2, the narrowest regions are at the low end of 
the construct dimension, and the widest regions are at 
the high end of the dimension. When the number of 
respondents is small (e.g., there is less data) for 
estimating the curve, the regions get wider which 
indicates less precision in the estimates. Conversely, 
the regions get narrower when there is more data for 
estimating the curve.  

 Probability Simplex Plots. To produce 
tetrahedron and triangle simplex plots, run the 
following codes:  

> plot(Mod1, 

plottype="tetrahedron", items= 

c(2,25)) 

> plot(Mod1, plottype="triangle", 

items= c(23,29))   

Figures 3 and 4 show (regular) tetrahedron and  

(reference) triangle simplex plots for four items (e.g., 2, 
25, 23, and 29), respectively. These plots are only used 
for items with more than 3 or 4 options.  As given in 
Figure 3, there is a curve with three colors inside the 
(regular) tetrahedron. Color points indicate different 
trait levels which are broken into three equal groups. 
Low trait levels are recognized by red points, medium 
trait levels with green, and high trait levels with blue 
points. Following the ordering of trait levels, a sound 
item is one in which the sequence of points starts from 
the lowest option and stops at or near the highest 
option. In Figure 3, as expected, Item 2 meets this basic 
requirement because the sequence of points starts 
from Option 0 (vertex), passes Options 1 and 2, and 
moves toward Option 3. However, Item 25 is a weak 
item because the sequence of points do not terminate 
at or near the highest option. Another issue in the 
analysis of tetrahedron is the length of the curve. There 
should be a distance between the respondents with the 
highest and the lowest trait levels. Unlike Item 2 which 
is a good item, in Figure 3, because the respondents 
with the highest levels are far from those with the 
lowest trait level, Item 25 is a poor item because it has 
a very short curve which are focused on the lower level 
options (e.g., Options 0 and 1). Furthermore, the 
spacing of the points indicate the speed at which the 
probabilities of response options change. In Figure 3, 
Item 2 shows a good performance since as test anxiety 
increases, the probability of endorsing a response 
option changes; however, in Item 25, the probability of 
endorsing an option does not change to a great extent 
with increasing levels of test anxiety, and thus this item 
needs further examinations. 

 Figure 4 displays the (reference) triangle simplex 
plots for two items of the scale. The three sides of the 
triangle represent the most often chosen options for 
Items 23 and 29. In particular, for Item 23, the base 
side of the triangle shows that Option 1 has a much 
higher probability of being chosen, and as the anxiety 
level of the respondents changes, the probability of 
choosing the other options (e.g., Options 0 and 3) 
changes as well, that is, subjects with higher levels of 
anxiety have a higher probability to choose higher 
options and those with lower level of anxiety have a 
lower probability to select lower options. For Item 29, 
Option 0 has a much higher probability of being 
selected. In both triangles for the items, the sequence 
of points starts from the lowest option and ends at the 
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Figure 2. Expected Item Scores (EISs) with 95% Pointwise Confidence Intervals  
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Figure 3. Probability Tetrahedrons for Items 2 and 5 of the Children’s Test Anxiety Scale. Low trait levels are plotted 
in red, medium in green, and high in blue. 

Figure 4 . Probability Triangles for Items 23 and 29 of the Children’s Test Anxiety Scale. Low trait levels are 
plotted in red, medium in green, and high in blue. 
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highest option, suggesting the reasonable performance 
of the items. 

Plot Methods at Test-level 

 Principal Component Analysis (PCA). The 
following code can be run to produce principal 
component analysis (PCA) plot of the test: 

> plot(Mod1, plottype="PCA") 

The PCA plot for the Test Anxiety scale items is 
demonstrated in Figure 5. Items of the scale are 
represented by numbers inside the plot. PCA plot 
provides a useful way to compare items all at once and 
shows the relationship among them. As shown in 
Figure 5, there are two principal components. On the 
horizontal axis, the first principal component shows 
item difficulty; in such a way that the easiest items are 

placed on the left and the most difficult items on the 
right. The small plots on the left and right represent the 
expected item scores (EISs) for the highest option of 
the easiest and the most difficult items (e.g., the most 
extreme items). In this example, as can be seen in 
Figure 5, Item 13 is the easiest item, and Item 17 is the 
most difficult one. On the vertical axis, the second 
principal component shows item discrimination; in 
such a way that items high on the plot tend to have a 
high positive slope, and items low in the plot tend to 
have a high negative slope. The small plots on the top 
and the bottom represent EISs for the highest and 
lowest discriminating items. In this example, Item 28 
has the highest discriminating power, and Item 22 has 
the lowest discriminating power which differentiates 
negatively.  

 

Figure 5. First Two Principal Components for the Children’s Test Anxiety Scale 

 

 



Practical Assessment, Research & Evaluation, Vol 28 No 7 Page 15 
Effatpanah & Baghaei, KS-IRT in R: A Didactic 

 
 Relative Credibility Curve (RCC). To obtain the 
RCCs for a number of subjects, run the following code:  

> plot(Mod1,plottype="RCC", 

subjects=c(12,25,27,37)) 

Figure 6 illustrates the RCC plots for four respondents 
(e.g., 12, 25, 27, and 37) to the Children’s Test Anxiety 
scale items. On the RCC plots, the vertical red line 
represents the actual total score of the respondent, and  

 

Figure 6. Relative Credibility Curves (RCCs) for Subjects 12, 25, 27, and 37  
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the blue vertical dashed lines, similar to OCCs, show 
the points below which 5%, 25%, 50%, 75%, and 95% 
of individuals fall in terms of their actual total scores. 
The width of the curve also shows the range where the 
examinee’s true ability may lie, and the height of the 
curve with a maximum of 1.0 for a respondent shows 

the likelihood or the relative credibility of each 𝜃 value 
(e.g., true trait level). The pointier the curve, the more 

accurate the 𝜃 estimate is. If the total score line (the red 

vertical line) is to the right of the ML 𝜃, it means that 
the examinee should have received a lower total score. 

If the total score line is to the left of the ML 𝜃, it 
indicates that the examinee should have scored a 
higher total score. Furthermore, a bimodal RCC 
indicates that the examinee answered some hard items 
but failed some easy items (Ramsay, 2000). This is a 
sign that either some guessing or random answering 
was involved, or the examinee has a good command of 
some parts but is less proficient in other parts. Another 
reason for this phenomenon is multidimensionality. 

 As indicated in Figure 6, there is a considerable 
agreement between the total scores and the RCCs for 

Subjects 12 and 27, although the precision of the ML-
estimate is higher for Subject 27 than Subject 12 
because the RCC of Subject 27 is more spiky (having 
sharp point), and the width of the curve is smaller. For 
Subject 12, the width of the curves indicates that, on 
the basis of subjects’ total scores, his/her true anxiety 
is most likely between 22 and 40 while, for Subject 27, 
it is most likely between 0 and 8. For Subjects 25 and 
37, however, a difference between the total scores and 
the maximum of the RCCs is observed. It can be seen 
that for Subjects 25 and 37, the most likely value, where 
the curve reaches 1.0 is about 26, indicating that their 
true latent trait or test anxiety levels are about 6 and 5 
points, respectively, lower than their observed total 
scores. Put it simply, the true anxiety level of Subjects 
25 and 37 is lesser than their current anxiety level based 
on their total scores, suggesting a lower precision.  

 The following codes respectively produce a vector 
containing the observed total score of each subject and 
a vector containing the maximum likelihood estimate 
of the ability of each subject: 

 

> subjscore(Mod1) 

 

 

 

 

 

 

 

> subjscoreML(Mod1) 
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 Test Summary Plots. To obtain an overall 
assessment of the test, use the following functions:  

> plot(Mod1,plottype="density", 

axistype = "scores")   

> plot(Mod1,plottype="expected", 

axistype = "scores", lwd = 2) 

> plot(Mod1,plottype="sd")   

Figure 7 displays three test-level summary plots for the 
Children’s Test Anxiety Scale. A kernel density 
estimate of the distribution of the actual total score is 
presented in Figure 7a. This figure shows to what 
extent scores are probable assuming that they are 
normally distributed (or be bell-shaped). The density 
plot in Figure 7a shows that the scores in the range of 
17 to 20 are most probable for the scale, and the 
normality assumption is not met in the data. As the 
most observed scores are clustered around the left tail 
of the distribution, there is a positively skewed 
distribution in the data, reflecting that most of the 
respondents possess low total scores or low test 
anxiety level.   

 In Figure 7b, the expected test scores (ETSs) for 
the scale in relation to (as a function of) the quantiles 
of the standard normal distribution is illustrated. The 
curve is expected to be linear or monotonic, indicating 
if the monotonicity assumption is satisfied at the test 
level. In this example, the curve is monotonic, that is, 
the monotonic requirement is met for the scale.  

 Test standard deviation graph shows the standard 

error of measurement (SEM) for different levels of 𝜃. 
SEM is in fact the standard deviation of scores if an 
examinee takes a test an infinite number of times. In 
CTT literature, the mean of these repeated tests is 
called true score, and their standard deviation is the 
error of measurement (Baghaei & Effatpanah, 2022). 
As can be seen in Figure 7c, the SD or SEM (on the 
vertical axis) arrives at the maximum for respondents 
at around a total score of 58 (on the horizontal axis), 
where it is about 9. This translates into 95% confidence 
intervals about 40 and 76 for a respondent who has an 

expected score of 58 (58±(9 ˟ 2)), implying that a 
respondent with a score value of 58 can be 95% 
confident that his/her true score is somewhere 
between 40 and 76. These limits are very wide and 
hence indicate less precision. The graph suggests that 
the test is more precise for lower levels of test anxiety.  

Plot Methods for Differential Item Functioning 
(DIF) 

 Differential item functioning (DIF) occurs when 
the items of a scale function differently for or against a 
particular group over another (Zumbo, 2007). In other 
words, measurement invariance at the item level or 
DIF is present if respondents with the same level of 
the trait/ability from different groups have unequal 
probabilities to give a correct response to an item or 
endorse an option. A distinction is usually made 
between two types of DIF that may exist in practice: 
(a) Uniform DIF is the type of DIF when the 
probability of endorsing an item is higher for one 
group than another group across all levels of the 
trait/ability. In fact, the difference between ICCs for 
reference (e.g., the group hypothesized to have an 
unfair advantage) and focal group respondents (e.g., 
the group hypothesized to be disadvantaged by the 
test) remains constant or uniform across levels of the 
trait/ability; and (b) Non-uniform DIF is the type of 
DIF when the probability of endorsing an item is 
different for groups across levels of the trait/ability. In 
fact, the difference between the ICCs is not constant 
or uniform across levels of the trait/ability. 

 In KS-IRT approach, DIF is detected by analyzing 
curves which produce a visual display of item 
responses in different groups. Any considerable 
differences in the shape of the curves across the groups 
and the size of the areas between them could indicate 
the presence of DIF in the scale (Rajlic, 2020). To 
perform DIF analysis using the person variable 
“Gender”, a new object must be created, provided that 
groups arguments is specified. The following code 
introduces the column of gender in the data file as the 
grouping variable: 

> gender <-data [,2]   

which means that the variable gender is in the second 
column of the dataset.  

 To create a new object with the addition of the 
groups argument based on “gender” variable, run the 
following code: 

> Moddif <- ksIRT(data1, key=key, 

format = 2, miss = c("option"), 

NAweight = 0, groups=gender) 
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Figure 7. Test Summary Plots for the Children’s Test Anxiety Scale 
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Finally, the following commands can be run to produce 
different plots for DIF analysis:  

> plot(Moddif, plottype = 

"expectedDIF", lwd = 2) 

> plot(Moddif, plottype = 

"densityDIF", lwd = 2)   

> plot(Moddif, plottype = 

"OCCDIF", item = 4)    

> plot(Moddif, plottype = 

"EISDIF", item = 4)   

 Figure 8a shows the pairwise expected scores or 
QQ-plot between the distributions of the scores for 
females (on the x-axis) and males (on the y-axis). In the 
QQ-plot, the expected number correct or the total 
score values for any pair of subgroups corresponding 
to the various standard normal quantiles are plotted 
against each other, which summarizes differences in 
performance between the groups. The horizontal and 
vertical blue dashed lines indicate the 5%, 25%, 50%, 
75%, and 95% quantiles for the two groups. When the 
two groups have almost the same performance, the 
relationship will appear as a nearly diagonal line; a truly 
diagonal line is plotted as a reference (Ramsay, 2000). 
However, if the groups have different performance, 
the solid line will deviate from the diagonal line. For 
the Children’s Test Anxiety scale, as can be seen in 
Figure 8a, there is a subtle difference between the two 
groups in terms of the distribution of their expected 
scores. Females have higher scores in the ranges of 2 
to 8, and 31 to 52, while males have higher scores in 
the range of 10 to 21. By reading off the plot, we can 
find that females with 45 total scores (on the x-axis) 
have higher scores by about 4 or 5 over males with 41 
total scores at the same quantile position (on the y-
axis), indicating that these discrepancies are not 
considerable. 

 Figure 8b depicts the total score distribution plot 
(e.g., kernel density functions) for the two groups. The 
observed scores for females are shown by the solid 
blue line and males by the red dashed line. A slight 
difference in the distribution of the observed scores 
between the groups is observed for the Children’s Test 
Anxiety Scale. Females have higher scores in the range 
of 7 to 22, while males have relatively higher scores in 
the range of 39 to 63. Overall, the two plots, Figures 
8a and 8b, suggest an agreement in behavior of the two 
groups based on their observed scores, showing the 

lack of a substantial difference in the distribution of the 
scores between the two groups. 

 Figure 9 further demonstrates the OCCs for 
different options of Item 4 of the Children’s Test 
Anxiety Scale across the two groups. On the OCC 
graphs, the blue curves represent the score 
distributions for female respondents, the red curves for 
male respondents, and the black curves, as the overall 
curve, for all respondents. Lack of DIF is evidenced by 
overlapping OCCs for the two groups. With regard to 
Item 4 of the scale, there is a lack of DIF for Options 
2 and 3, as the curves almost overlap, but females have 
a higher probability than males to mark Option 0, while 
males a have higher probability than females to mark 
Option 1, indicating a difference in the functioning of 
these options in the two groups. 

 Finally, Figure 10 shows the expected item scores 
plot for Item 4 of the Children’s Test Anxiety Scale 
across the two groups. On the graph, the blue curve 
denotes the expected score for female respondents, the 
red curve for male respondents, and the black curves, 
the overall curve, for all respondents. The vertical 
dashed lines display the points below which 5%, 25%, 
50%, 75%, and 95% of respondents fall based on their 
total scores, and that different color points on the plot 
indicate how respondents from the groups actually 
scored on the item. As presented in Figure 10, male 
respondents have relatively greater expected scores 
compared to female respondents. 

 The package KernSmoothIRT (Mazza et al., 2014, 
2022) can also provide more arguments for class 
‘ksIRT’ for subjects. Table 2 gives further codes along 
with their descriptions for analyzing subjects. 

 

Conclusion 

 In this article, the basics of kernel smoothing IRT 
(KS-IRT; Ramsay, 1991) were introduced to applied 
researchers not acquainted with this approach, and R 
functions were provided to demonstrate how the 
KernSmoothIRT package (Mazza et al., 2014, 2022) 
in R can be conveniently used. To empirically illustrate 
the functions of the approach, the data of 160 
respondents to the Persian Translation of the 
Children’s Test Anxiety Scale (Shoahosseini & 
Baghaei, 2020; Wren & Benson, 2004) were analyzed, 
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Figure 8.  The Pairwise Expected Scores (QQ-Plot) and Kernel Density Functions for Females and Males on the 
Children’s Test Anxiety Scale    
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Figure 9. Option Characteristic Curves (OCCs) for Females and Males related to Item 4 of the Children’s Test 
Anxiety Scale  
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and the resultant outputs or plots were interpreted at 
test- and item-level as well as DIF across genders. 

 Unlike PIRT models which prescribe a specific 
shape for the relation between the latent trait and the 
probability of giving a correct answer or endorsing a 
test item (e.g., normal ogive or logistic), NIRT models 
relax this assumption and allow models to estimate 
ICCs without imposing a specific form. As an 
exploratory IRT approach, KS-IRT has the potential 
to offer visual information about the functioning of 
items in a measure. The graphical representations give 
initial feedback about the functioning of items at item-
level. By analyzing visual displays of items, 
practitioners can identify poorly functioning items, 
check model fit, and find the appropriate parametric 
model for further data analysis (Lee et al., 2009; 
Ramsay, 2000). The inspection of plots also allows 
practitioners to check whether the monotonicity 
assumption is satisfied, whether items have adequate 
discrimination across the latent dimension, and if all 
items of the measure function similarly across different 
subgroups. Therefore, the use of KS-IRT can be a 
supplemental tool for researchers within the 

framework of CTT and IRT (Douglas & Cohen, 2001; 
Junker & Sijtsma, 2001; Sijtsma & Molenaar, 2002; 
Stout, 2001). 

 Although the KS-IRT approach proved useful in 
analyzing the functioning of items, it includes some 
limitations which should be taken into consideration. 
The major drawback of the KS-IRT is that it only gives 
visual illustrations for the evaluation of items and do 
not provide any numerical values. This makes a 
challenge for researchers to thoroughly check the 
psychometric characteristics of a particular measure. 
More specifically, as no specific boundaries or criteria 
for evaluating graphs is available, the interpretation and 
analysis of graphs, especially plots or graphs on DIF, 
are liable to be arbitrarily or subjectively explained. 
Consequently, it is highly suggested to use the KS-IRT 
as a supplementary tool to traditional CTT and PIRT 
models. Another limitation of the KS-IRT is that it fails 
to parameterize item difficulties. Wind (2019) also 
recognized the shortcomings of NIRT models, 
including MSA, which can be extended to different 
research contexts in which the KS-IRT is intended to 
be used. She argued that  

Figure 10. Overall Expected Item Score (EIS) and EIS of Females and Males for Item 4 of the Children’s Test 
Anxiety Scale 
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Table 2. Further Arguments for Class ‘ksIRT’ 

Codes Descriptions 

subjthetaML(Mod1) Returns the maximum likelihood estimate for each subject. 

subjETS(Mod1) Returns a vector with each subjects expected test score. 

subjEIS(Mod1) Returns a matrix containing each subject’s expected item score. The rows represent 
items and the columns, subjects. 

subjOCC(Mod1, 
stype="ObsScore") 

Returns a list containing a matrix for each item. Each matrix in the list contains a row 
for each option with each column representing a subject with the probability of selecting 
that option for each subject. 

The scale on which to evaluate each subject. stype = "ObsScore" uses the subject’s 

observed test score. stype = "ExpectedScore" uses the subject’s expected test 

score. stype = "MLScore" uses the maximum likelihood estimate for the subject’s 

overall score. stype = "Theta" uses the subject’s rank on the thetadist scale. stype 

= "MLTheta" uses the maximum likelihood estimate for the subject on the thetadist 

scale. 

subjEISDIF(Moddif) It returns a matrix containing each subject’s expected item score. The rows represent 
items and the columns, subjects. 

subjETSDIF(Moddif) Returns a vector with each subjects expected test score. 

subjOCCDIF(Moddif) It returns a list containing a matrix for each item for each of the different groups. Each 
matrix in the list contains a row for each option with each column representing a subject 
with the probability of selecting that option for each subject. 

The scale on which to evaluate each subject. stype = "ObsScore" uses the subject’s 

total score. stype = "Theta" uses the subject’s rank on the thetadist scale. stype 

= "ThetaML" uses the maximum likelihood estimate for the subject on the thetadist 

scale. codestype = "ScoreML" uses the maximum likelihood estimate for the 

subject on the overall test score scale. 

 

the lack of a parametric form prevents PIRT 
models from providing interval-level parameter 
estimates, such as are needed for computer-
adaptive assessment procedures, equating, and 
other parametric analyses. Whereas parametric 
IRT models result in interval-level estimates that 
are suitable for such analyses, [non-parametric 

IRT] models do not. (pp.18 ̶ 19) 

Irrespective of these drawbacks, the KS-IRT has the 
potential to provide preliminary feedback about the 
performance of test items.  
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