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A B S T R A C T   

Alzheimer’s disease and Huntington’s disease are considered to be the most lethal illnesses that result in common 
human disorders. Alzheimer’s disease (AD) is a progressive neurological illness distinguished by age-related 
dementia, mental abnormalities, and poor memory, among other symptoms. However, Huntington’s disease 
(HD) is influenced by genetics as well as a generalized dysfunction of the motor system. Despite the fact that 
many similar genetic elements have been found in the literature as being interrelated between these two diseases, 
it is still unclear how people acquire infected with these two neurological disorders. Detecting biomarkers for 
Alzheimer’s and Huntington’s disease in brain tissue might help in drug development and treatment. The pur-
pose of this research was to find brain cell transcripts that show levels of gene expression linked to the pro-
gression of Alzheimer’s and Huntington’s disease. A bioinformatics pipeline was used to study one RNA-Seq 
transcriptomic dataset and one microarray dataset, and 24 significant differentially expressed genes (DEGs) were 
discovered that were shared by two brain cell datasets. We uncovered disease-gene association networks and 
signaling pathways, as well as gene ontology (GO) investigations and hub protein identification, to determine the 
roles of these DEGs. The discovery of significant gene ontologies and molecular pathways increased our un-
derstanding of the pathophysiology of these two disorders, and the hub proteins B2M, HLA-A, HLA-E, HLA-B, 
HLA-C, HLA-F, CANX, HLA-DQA1, HLA-DRA, and HLA-DRB1 might be exploited to design therapeutic in-
terventions. In neurological disorder subjects, we uncovered efficient hypothetical linkages between pathogenic 
processes in brain cells, implying that brain cells may be exploited to detect and monitor illness origin and 
development, as well as design pharmacological therapies.   

1. Introduction 

Alzheimer’s disease (AD) is a chronic neurological illness that 
gradually robs patients of cognitive function and eventually leads to 
death [1]. AD is a neurological condition that is growing more common 
in the world’s aging populations [2,3]. Age is the most notable hazard 
indicator for AD [4]. The condition is never visible in children, even 
when they have disease-causing mutations that cause to be over 
expressed from birth [5]. Because most people’s memory degrades 

slightly with age, the distinction between typical age-related forgetful-
ness and the initial signs of AD can be blurry [2]. Its symptoms involved 
memory loss, linguistic difficulties, and erratic behavior. He investi-
gated that affected brain after her death and identified many abnormal 
clumps (now recognized as amyloid plaques) and tangled bundles of 
fibers (now called neurofibrillary, or tau, tangles). These plaques and 
tangles in the brain are mostly considered to be among of Alzheimer’s 
disease’s most visible features [6]. Alzheimer’s disease is estimated to 
affect 2.3 million people in the United States (range, 1.09–4.8 million) 
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[7]. The prevalence of AD increases every five years after age 60, rising 
from 1% for individuals between the ages of 60 and 64 to up to 40% for 
those aged 85 and above [7]. 

Huntington’s disease (HD) is indeed a rare hereditary neurological 
disease characterized by uncontrolled excessive neurological move-
ments and cognitive and emotional deficits [8,9]. Symptoms of HD often 
appear in middle age after infected people have had children, although 
the condition may appear at any point between infancy and senescence 
[10]. Huntington’s, the disease-causing defective protein, has an 
enlarged CAG repetition, resulting in a polyglutamine sequence at the 
N-terminus that may be any length. There’s evidence to support the 
theory that this extra segment provides a harmful functional benefit 
[10]. 

Huntington’s disease (HD) and Alzheimer’s disease (AD) are two 
neurological illnesses that overlap clinical characteristics associated 
with specific brain impairment. Both disorders are caused by misfolding 
and deposition of particular proteins that associate with mitochondria 
and disrupt with endoplasmic reticulum (ER)/mitochondria-contact 
sites [11]. The accumulation of data suggests that mitochondrial Ca2+
homeostasis dysfunction underpins the vulnerability to specific 
neuronal death reported in HD and AD [11]. Moss [12] proposed that 
transcription is interrupted in peripheral cells in HD via processes that 
are similar to those seen in the brain. The convergence of immunological 
upregulation in HD and AD implies a common pathogenic process 
incorporating macrophage phagocytosis and microglial synaptic prun-
ing, and thus opens the possibility of addressing both diseases with 
similar treatment methods [12]. 

Microarray-based gene expression analysis is the most widely used 
and successful high-throughput technology for studying complex disease 
etiology. Human ovarian cancer (OC) gene expression profiling studies, 
on the other hand, are extremely rare. In this study, we attempted to 
investigate the differentially expressed genes (DEGs), gene network, 
pathways, and protein interactions that are specific to HD [13]. To 
interpret the biological significance of these changes in gene expression, 
we used an integrated bioinformatic analysis that expanded on 

traditional microarray analysis methods, such as Gene Ontology (GO) 
and pathway analysis, to build interaction networks that could identify 
novel prognostic markers and therapeutic targets [14]. Denggang Fu 
[15] claims Computational biology was used to study the potential 
molecular processes and tumor immune landscape of these IRGs. An 
examination of tumor-infiltrating lymphocytes and immune checkpoint 
molecules indicated a different immunological landscape in the 
high-risk and low-risk groups. In several articles, bioinformatics ap-
proaches have been applied to identify potential molecular biomarkers, 
pathway analysis, gene ontology, and drug targets [13–17]. 

According to JiahuiWan [16] because the most well-known molec-
ular mechanism of lncRNA is to operate as a microRNA "sponge" that 
regulates the activity of mRNAs, lncRNAs are also known as competing 
endogenous RNAs (ceRNAs). S. Udhaya Kumar [17] focused on finding 
dysregulated molecular pathways and key genes that are differentially 
regulated in Familial hypercholesterolemia (FH), as well as possible 
genetic variables and putative underlying processes that raise the risk of 
atherosclerosis in FH individuals. 

Although there is strong evidence that there are pathological and 
clinically significant connections between AD and HD but the relation-
ship has not been thoroughly explored. As a result, the nature of these 
linkages is poorly known. Due to the intricacy of AD and HD’s etiology, 
its biological basis, as well as the molecular systems that enable this 
association, are still unknown. Furthermore, bioinformatics research 
that investigated the association between AD and HD is still insufficient. 

Two datasets were used in this research to discover the biological 
association between AD and HD. The datasets were obtained from the 
Gene Expression Omnibus (GEO) database, with reference codes 
GSE53697 and GSE64810 for AD and HD, respectively. At first, differ-
entially expressed genes (DEGs) for datasets were identified, and then 
common DEGs genes for two diseases were found. In this case, the 
common DEGs serve as the key experimental genes for the whole 
research. Further experiment and analysis were carried out using these 
common DEGs, including:  

• Ontological and functional enrichment analysis to dermine shared 
ontologies and pathways.  

• The network of protein-protein interactions (PPIs) formed by the 
mutual DEGs.  

• The transcriptional components of frequent DEGs have been 
identified.  

• A network of protein-drug interactions is being developed to find 
prospective medications.  

• The gene-disease association network will be used to uncover other 
diseases that share similar DEGs. 

Fig. 1. Proposed methodology and the workflow of our work.  

Table 1 
A summary of the datasets included in this study, together with their geo- 
characteristics and quantitative measures.  

Disease name GEO 
accession 

Total 
DEGs 
count 

Up regulated 
DEGs count 

Down 
regulated DEGs 
count 

Alzheimer’s 
Disease (AD) 

GSE53697 308 100 208 

Huntington’s 
Disease (HD) 

GSE64810 1655 894 761  
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So, the main objective of this study was to construct a workflow 
depending on bioinformatics methods for detecting potential associa-
tions between AD and HD. Determining the nature of these linkages may 
provide light on the molecular processes behind these illnesses and may 
ultimately contribute to the discovery of possible treatments that may 
result in the creation of disease-modifying drugs. Fig. 1 illustrates the 
sequential workflow of our research. 

2. Materials and procedures 

2.1. Datasets utilized in this research 

The National Center for Biotechnology Information’s (NCBI) GEO 
database (https://www.ncbi.nlm.nih.gov/geo/) [18] was used in this 
study for assessing the shared genomic interrelationships between AD 

and HD. We used an RNA-seq dataset for Alzheimer’s disease and a 
microarray dataset for Huntington’s disease. The Alzheimer dataset was 
(GEO accession ID: GSE53697) human brain tissue comprising eight 
advanced Alzheimer’s disease brain instances and nine normal samples 
which was processed using the high-throughput sequencing function-
ality known as Illumina HiSeq (Homo sapiens) [19]. The Huntington’s 
dataset (GEO accession ID: GSE64810) was compiled from human 
post-mortem BA9 brain tissue, which included 49 samples from neuro-
logically normal individuals and 20 samples from Huntington’s disease 
patients. We used a common platform GEO2R tool [20] for analysis the 
Huntington’s dataset. The Dataset was contributed by Labadorf et al. 
[21]. Table 1 contains the summarized information of the datasets. 

Fig. 2. Comparison of RNA-Seq analyses of Alzheimer’s disease and Huntington’s disease. (A) The Venn diagram depicts the number of shared important genes 
associated with AD and HD. (B) Heat map illustrating the log fold change for the genes shared by AD and HD. (C) Heat map illustrating the p-values for the genes 
shared by AD and HD. (D) The bubble figure depicts the joint log fold changes and p-values for the common genes shared by AD and HD. 
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2.2. Identification of DEGs and mutual DEGs between AD and HD 

The purpose of differential expression analysis is to explore out 
which genes are expressed at various levels under different conditions 
[22]. These genes can provide biological insight into the processes that 
are impacted by the state of interest [23]. The datasets were processed in 
R language (version 3.6.1) and Bioconductor platforms to find DEGs in 
AD and HD based on their linked controls. Firstly, we normalized the 
gene expression data employing the log2 transform and statistical 
techniques. To control rate of false discovery we used "Limma" package 
from R programming language with Benjamini-Hochberg correction 
[24]. The important DEGs were determined using P-value less than 0.05 
and a |logFC| > 1. The common DEGs of GSE53697 and GSE64810 were 
obtained using the Jvenn online VENN analysis tool [25]. 

2.3. Assessment of gene ontologies and pathway enrichment 

Gene set enrichment evaluation is a crucial experimental endeavor 
that attempts to identify basic biological observation such as biological 
processes or chromosome locations correlated with various inter-
connected diseases [26]. Gene ontology and pathway enrichment eval-
uations were used to deduce the relevant biological concepts and 
signaling pathways underlying frequent DEGs. The research utilized 
EnrichR (https://amp.pharm.mssm.edu/Enrichr), a commonly used 
online platform for gene set enrichment [27]. The three types of gene 
ontology (GO) and functional process are biological process, cellular 
component, and molecular function. To find common pathways between 
AD and HD, we used the KEGG (Kyoto Encyclopedia of Genes and Ge-
nomes), WikiPathways, Reactome, and BioCarta databases as sources of 
pathway annotations. For all analyses, a significant margin was esti-
mated to be a p-value < 0.05. 

2.4. Determining transcription factors and miRNAs that interact with 
mutual DEGs 

In order to control gene transcription, transcription factors attach to 
specific DNA patterns. Transcription factor attachment regions are 
shorter DNA patterns (5–20 bp in length) that are selectively associated 
by one or several transcription factors [28]. Identifying transcription 
factor binding locations and predicting their roles remain tough 

computational biology tasks. 
We utilized the NetworkAnalyst tool for identifying topologically 

plausible TFs binding to shared DEGs in the JASPAR database. JASPAR 
is the freely accessible database of TF profiles from multiple species 
across six taxonomic groups [29]. The associations of miRNAs with their 
specific genes were investigated in order to detect miRNAs that try to 
attach to a gene expression in order to inhibit protein production [30]. 
The primary databases for experimentally validated miRNA-target as-
sociations are Tarbase [31] and mirTarbase [32]. Using Network Ana-
lyst’s topological analysis, we discovered important miRNAs from 
Tarbase and mirTarbase. 

2.5. Network assessment of protein–protein interactions (PPIs) 

In all organisms, PPIs are critical for cellular functions and biological 
processes. The exploration of protein interactions will contribute to a 
deeper understanding of infection pathways, as well as the identification 
of multiple medication drugs and treatment optimization [32]. The PPI 
network of proteins generated by mutual DEGs was constructed using 
the STRING Protein-Protein Interaction database (version 11.0) (htt 
ps://string-db.org/) [33] to reflect how our specified DEGs, as well as 
proteins, communicate physically and functionally with each other. The 
annotation of protein interactions in STRING (https://string-db.org/) 
varies according to levels of medium confidence [33]. We set the lowest 
score confidence criterion to produce the PPI network sharply due to the 
small number of common DEGs. The Network Analyst web resource was 
used to conduct network analysis [34]. 

2.6. Assessment of protein-drug interactions 

DrugBank (v5.0) is a fascinating internet-based database of 
comparative drug records. Simultaneously, it offers information on the 
impact of drugs on protein expression [35]. We utilized NetworkAnalyst 
to conduct protein-drug interactions in order to find possible in-
teractions between our common DEGs and medicines in the DrugBank 
dataset [34]. 

2.7. Gene–disease association assessment 

DisGeNET is a standardized database for gene–disease association 
that integrates relationships from multiple sources involving different 
biomedical aspects of illnesses. It highlights the growing understanding 
of human genetic disorders [36]. We have used network analyst to 
examine the gene-disease interaction in order to identify diseases and 
chronic complications correlated with common DEGs [34]. 

3. Result 

3.1. Detection of DEGs and mutual DEGs between AD and HD 

To evaluate the relationship between AD and HD, we used the NCBI’s 
human RNA-seq dataset for AD and microarray data for HD. The in-
vestigations on the RNA-seq and microarray datasets were conducted 
using two packages from R programming language called the DESeq2 
and limma, with the Benjamin-Hochberg false discovery rate. We 
examined significant DEGs depending on p-values lower than 0.05 and | 
logFC| higher than 1. In the AD dataset, we identified 308 significant 
DEGs, with 100 and 208 DEGs being substantially up-regulated and 
down-regulated, respectively. In HD, we obtained 1655 significant DEGs 
in the similar manner that 894 DEGs were up-regulated and 761 DEGs 
were down-regulated (DEGs along with the p-value and logFC values for 
both the datasets added as supplementary files). We utilized the Jvenn 
utility to do a cross-comparison in order to find shared DEGs between 
AD and HD. As a result, we discovered that AD and HD share 24 common 
DEGs. Fig. 2A depicts the overall cross-comparison between two data-
bases in order to obtain common DEGs between AD and HD. A heat map 

Table 2 
Each common gene is listed with its p-value and logFC value.  

Gene_symbol logFC for AD p-value for AD logFC for HD p-value for HD 

HLA-A 3.261 5.93E-03 2.215 2.27E-02 
LOC554223 1.906 1.40E-04 1.158 6.17E-04 
CCL2 1.701 9.37E-04 2.255 1.12E-04 
CT45A10 1.539 2.69E-02 1.215 3.61E-02 
FCN3 1.331 3.99E-02 1.359 4.34E-07 
LINC00927 1.136 1.18E-02 1.911 3.15E-04 
LINC01565 1.06 2.21E-02 1.758 1.19E-02 
HLA-DQB1 2.723 1.93E-02 1.279 2.78E-02 
OR5AK4P 1.346 8.44E-03 1.21 4.79E-02 
IL17REL − 1.654 1.47E-02 − 2.366 1.35E-06 
MIR4525 − 1.241 4.23E-02 − 1.813 2.10E-03 
DES − 1.407 2.85E-02 − 1.561 2.04E-02 
NOL4L − 1.099 4.25E-02 − 1.266 4.55E-03 
HLA-DPB1 − 1.287 2.01E-02 − 2.73 1.89E-03 
KRTAP5-2 − 1.168 2.77E-02 − 1.687 7.44E-06 
TAP2 − 1.383 1.10E-02 − 1.145 4.39E-02 
GSTA1 − 2.099 1.17E-02 − 1.55 1.30E-02 
MUC20 − 1.702 9.72E-03 − 1.102 2.54E-02 
MOG − 2.834 1.75E-03 − 1.926 5.97E-06 
CHI3L1 − 1.519 2.82E-02 − 1.407 6.71E-03 
MIR663B − 1.281 1.29E-02 − 3.47 5.95E-20 
MIR181C − 1.912 7.51E-03 − 3.039 1.05E-09 
TP53TG3 − 2.228 1.20E-02 − 1.149 3.85E-02 
LINC01749 − 1.403 3.08E-02 − 1.773 1.16E-02  
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Fig. 3. The bubble plot of ontological analysis of shared DEGs between AD and HD performed by the Enricher online tool: here, (A) biological processes, (B) 
molecular function, and (C) cellular component. 
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Fig. 4. The bubble plot of pathway enrichment analysis of shared DEGs between AD and HD performed by the Enricher online tool: here, (A) KEGG pathway, (B) 
wikipathway, (C) reactome pathway. 
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and a bubble plot Fig. 2B–D depict the distinct transcriptional signature 
caused by AD and HD. Two genes (CCL2 and MOG) are often dysregu-
lated in AD and HD. These findings indicate that, while AD and HD have 

similar transcriptomic profiles, the CCL2 and MOG genes are shared by 
both diseases. In Table 2 shows, each common gene is listed with its p- 
value and logFC value. 

3.2. Gene ontology and pathway enrichment assessment 

Enrichr was used to conduct gene ontology and pathway enrichment 
analysis to determine the clinical function and enriched pathways 
illustrated in this investigation that associated DEGs. Gene ontology 
takes into account gene functions and their components in order to 
incorporate complete quantifiable knowledge assets. Additionally, 
ontology and annotation are designed to facilitate the execution of a 
complicated biological structure model, which is often employed in 
biomedical activities [37]. The gene ontology study was performed in 3 
areas (biological process, cellular component, and molecular function), 
using annotations derived from the GO database. The bubble graph in 
Fig. 3(A-C) displays the overall ontology assessment for each group. The 
main significant ontology was cellular response to interferon− gamma, 
interferon− gamma− mediated signaling pathway, positive regulation of 
leukocyte cell− cell adhesion, T cell receptor signaling pathway, inter-
leukin− 17 receptor activity, chitinase activity, MHC class II receptor 
activity, MHC protein complex, integral component of lumenal side of 
endoplasmic reticulum membrane, COPII− coated ER to Golgi transport 
vesicle, MHC class II protein complex etc. 

Pathways assessment demonstrates how the organism responds to 
the inherent changes. It acts as a model technique for demonstrating 
how different diseases interact through fundamental molecular or bio-
logical processes [38]. Four worldwide databases, KEGG, WikiPath-
ways, Reactome, and BioCarta, were used to extract the most affected 
pathways of common DEGs between AD and HD. Fig. 4 depicted the 

Fig. 5. PPI network of DEGs shared by AD and HD. The circle nodes in the 
diagram represent DEGs, and the edges represent node interactions. String was 
used to create the PPI network, which was then visualized in Cytoscape. 

Fig. 6. Identification of hub genes from the PPI network utilizing the Cytohubba plugin in Cytosacpe. To extract hub genes, the new MCC protocol of the Cytohubba 
plugin was used. The largest nodes in this diagram represent the top ten hub genes and their intermolecular interactions. The network is made up of 24 nodes and 
159 edges. 
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pathway enrichment analysis in bar graphs. Here, Antigen processing 
and presentation, Allograft rejection, Graft− versus− host disease, Ebola 
Virus Pathway on Host, Mammary gland development pathway, Inter-
feron gamma signaling, Translocation of ZAP− 70 to Immunological 
synapse, Phosphorylation of CD3 and TCR zeta chains were the signifi-
cant pathway. 

3.3. Hub protein identification 

In order to anticipate typical DEG connections and attachment 
pathways, we examined the STRING PPI network and displayed it in 
Cytoscape. The PPI network of frequent DEGs shown in Fig. 5 contains 
27 nodes and 173 edges. 

At the same time, several interconnected nodes in a PPI network are 
recognized as hub genes. The leading 10 DEGs were identified as the 
most influential genes based on a study of the PPI network utilizing the 
Cytohubba plugin in Cytoscape. The hub genes are B2M, HLA-A, HLA-E, 
HLA-B, HLA-C, HLA-F, CANX, HLA-DQA1, HLA-DRA, and HLA-DRB1. 
This hub genes can be important biomarkers, leading to novel thera-
peutic methods for diseases under investigation. Since hub genes have 
potential, we built a submodule network (Fig. 6) with the help of the 
Cytohubba plugin to better understand their close communication and 
proximity. 

3.4. Identifying transcription factors and miRNAs that interact with 
mutual DEGs 

A network-based method was applied to decipher the regulatory TFs, 
and miRNAs of hub proteins, and the DEGs-TFs and DEGs-miRNA 

linkages networks were examined to identify transcriptional and post- 
transcriptional regulatory fingerprints of similar DEGs. The associa-
tions involving DEGs and TFs are illustrating in Fig. 7. The correlations 
between DEGs and miRNAs also appear in Fig. 8. Five transcription 
factors, MUC20, KRTAP5-2, NOL4L, GSTA1, and CCL2, and ten micro-
RNAs, mir-10b-5p, mir-941, mir-107, mir-330-3p, mir-26a-5p, mir-34a- 
5p, mir-26b-5p, mir-124-3p, mir-101-3p, and mir-148-3p, were ob-
tained from both interaction networks. 

3.5. Identification of candidate drugs 

The objective was to find candidate drugs that could potentially 
affect AD and HD while also investigating the protein-drug interaction. 
Analysis of protein-drug interactions is essential to understand the 
characteristics necessary to sensitive receptors [39]. The interaction 
analysis between the protein and drug revealed the drug’s interaction 
with a hub protein. Fig. 9 shows two drug molecules, called Pyroglu-
tamic Acid and Beta-D-Glucose associate with the hub proteins of 
KRTAP5-2. 

3.6. Identification of gene-disease association 

The assumption that various disorders can be associated or linked 
with each other is that they generally have one or more common genes 
[40]. Disorder-specific therapeutic interface techniques attempt 
uncovering the connection between genes and disorders. According to 
Network Analyst’s study of the gene-disease relationship, Schizo-
phrenia, Chemical and Drug Induced Liver Injury, Asthma, Multiple 
Sclerosis, Celiac Disease, and Brain Ischeia disorders are the most 

Fig. 7. DEGs-TFs Common DEG interaction network created via Network Analyst. The nodes identified by circles are TFs, while the nodes represented by diamonds 
associate with TFs. 
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synchronized to our identified hub genes. Fig. 10 depicts the connection 
involving genes and disease. 

4. Discussion 

We explored gene activity data from Alzheimer’s and Parkinson’s 
disease patients in this experiment. We utilized bioinformatics pipelines 
to describe genes that are dysregulated in both illnesses and may serve as 
potential treatment candidates or diagnostic biomarkers. Microarray 
datasets for HD and RNA-seq datasets for AD were employed to examine 
candidate biomarker genes. The statistical study of the AD and HD 
transcriptomics showed 24 DEGs with identical expression variations in 
the two diseases. Gene Ontology (GO) and pathway evaluation were 
utilized to obtain understanding into the biological significance of these 
shared genes in the pathogenesis of AD and HD. The Gene Ontology 
(GO) model is a comprehensive theoretical framework in the field of 
gene expression that specifies gene activities and interactions. It pro-
gresses incrementally via the collection of scientific knowledge 
regarding gene functions and regulation, which is contingent on various 
ontological categories and language connections across classes [41]. 
Enrichr was utilized for gene ontology exploration of common genes 

across three divisions (biological, cellular, molecular) and an ontolog-
ical annotation source was used for the GO database. According to GO 
[42], biological mechanisms are instances of molecular interactions. 

The cell part is the cellular form in which the gene controls its ac-
tivity, and the molecular notion refers to molecular activities. The 
pathway analysis is a new strategy that explores and reveals how bio-
logically or molecularly complicated disorders are linked. The pathway 
is the optimal way to achieve the responses of an organism that are 
caused by internal changes [43]. Gene ontology and the pathway study 
revealed many mechanisms involved with neurodegenerative diseases. 
However, this integrative study has succeeded in identifying additional 
major proteins or hub proteins shared between these two illnesses. It 
suggests other research paths, such as possible preventative treatments 
for novel uses. 

PPIs experiments are often performed to reach essential illness- 
related signaling molecules and pathways which might amplify dis-
ease facets [44]. Therefore, we conduct a PPI investigation to determine 
critical hub proteins. B2M, HLA-A, HLA-E, HLA-B, HLA-C, HLA-F, CANX, 
HLA-DQA1, HLA-DRA, and HLA-DRB1 were identified as 10 hub pro-
teins. In this study, we identified the respective proteins encoded be-
tween AD and HD by common DEGs. 

Fig. 8. DEGs-miRNA Common DEG interaction network created via NetworkAnalyst. Circular nodes symbolize DEGs, and square circle structure reflects miRNAs.  
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In [45] mentioned, only HD information about gene expression and 
miRNA is provided. Whereas in our study, we examined the hub gene, 
pathway analysis, gene ontology, potential drug target, and gene disease 
association with miRNA and TFs both HD and AD. 

Kang revealed that TEMRA cells from Alzheimer’s disease patients 
had proinflammatory (IFN- and TNF) and cytotoxic activities (NKG7, 
GZMA, and B2M) [46]. Huntington’s expression was determined using 
2CT with -2-microglobulin (B2M) as the reference in Ref. [47]. HLA-A 
alleles were shown to be linked with a higher chance of obtaining AD 
in a Chinese population studied by the authors of [48]. According to the 
authors’ results, a subpopulation of brain cells known as angiogenic 
endothelial cells is produced in Alzheimer’s patients. Increased amounts 
of angiogenic expansion elements are present in these angiogenic 
epithelial units and recipients (EGFL7, FLT1, and VWF), as well as 
antigen-presenting components (i.e., B2M and HLA-E) [49]. HLA-A and 
HLA-C were the most prevalent HLA class - I genotypes in both AD pa-
tients and the overall population [50]. HLA-F also implicated in 
neurotransmission, giving fresh insights into the underlying process 
[51]. The authors discovered dramatically changed expression of 
HLA-DRA and IPMK in Alzheimer disease brains compared to normal 
brains using a gene expression data set [52]. Genome-wide association 
studies (GWAS) have identified rs9271192, a single-nucleotide poly-
morphism (SNP) within HLA-DRB1, as a potential marker for AD in 
Caucasians [53]. A common biomarker is attempting to suppress the 
elevated signals associated with AD and HD targeted therapy. Gene 
regulation involves both transcriptional and post-transcriptional stages 

of regulatory control. Bioinformatics methods were used to identify the 
most important genes, miRNAs, DEG-miRNA interactions, and their 
associated pathways in AD and HD [54]. As a result, our defined genes 
and microRNAs may be used in future molecular studies of AD and HD. 
To classify DEG regulatory molecules, we examined the important reg-
ulatory molecules TF and miRNAs. Regarding DEGs-TF interaction, we 
established the top five transcription factors, which are MUC20, 
KRTAP5-2, NOL4L, GSTA1, and CCL2. According to Xiaoyu Dong [55], 
the miRNA network revealed that hsa-miR-4488, hsa-miR-196a-5p, and 
hsa-miR-549a had a high degree and may be involved in HD etiology 
and possible treatment targets. Messenger RNAs are targeted by 
microRNAs, which are small (22 nt) RNA molecules that disrupt their 
synthesis. Thus, miRNAs control DEGs in this manner. By providing a 
comprehensive view of the regulatory mechanism networks underlying 
TFs, the current research establishes potential molecule targets for ge-
netic counseling and prenatal diagnosis of TFs [55]. According to Zhang 
[56], future advancements and challenges will be discussed, including 
more powerful bioinformatics approaches and high-throughput tech-
nologies for TF and miRNA target prediction, as well as the integration 
of multilevel networks. Nowadays, miRNAs are gaining prominence as 
biomarkers in a variety of complex diseases, including cancer. 
Mir-10b-5p, mir-941, mir-107, mir-330-3p, mir-26a-5p, mir-34a-5p, 
mir-26b-5p, mir-124-3p, mir-101-3p, and mir-148-3p are the top 10 
regulatory miRNAs identified in our study. 

The study of the gene-disease interaction network identified the 
comorbid disorders linked to the hub genes. The most synchronized 
diseases to our identified hub genes are Schizophrenia, Chemical and 
Drug Induced Liver Injury, Asthma, Multiple Sclerosis, Celiac Disease, 
and Brain Ischemia. 

Finally, in order to find new drugs that target the hub proteins, we 
explored protein-drug interactions and discovered that Pyroglutamic 
Acid and Beta-D-Glucose drug molecules associate with the hub protein 
KRTAP5-2. More investigation is required to determine the significance 
of these medicines in the diagnosis of AD and HD. 

5. Conclusion 

In this research, we employed a bioinformatics method to examine 
gene expression transcriptomic profiles in order to identify possible 
biomarkers that could clarify critical pathobiological pathways influ-
encing AD and HD. We used overlap, core connection, and gene filtering 
to identify the shared responsive gene between AD and HD. 

Following that, we determined signaling pathways and gene 
ontology processes and then presented a PPI network for shared genes. 
We utilized transcriptional analysis to determine DEG-miRNA associa-
tions as well as protein-protein interactions. The protein–drug and 
protein–chemical association networks illustrate how pharmacological 
and chemical substances interact with certain genes. As a result, our 
methodology will help to push the decision-making process ahead in the 
field of personalized healthcare. Despite our best efforts, this research 
contains flaws. The sample size for certain illness studies may be inad-
equate to describe all of the essential disease-associated genes required 
to determine frequent DEGs. As such, additional investigation may be 
necessary to properly evaluate the biological significance of the prob-
able intended possibilities reported in this research. 
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