
Received: 4 May 2021 Accepted: 12 June 2021

DOI: 10.1002/qre.2950

RESEARCH ARTICLE

The impracticality of homogeneously weighted moving
average and progressive mean control chart approaches

Sven Knoth1 Víctor G. Tercero-Gómez2 Marzieh Khakifirooz2

William H.Woodall 3

1 Department of Mathematics and
Statistics, Helmut Schmidt University
Hamburg, Hamburg, Germany
2 Tecnologico de Monterrey, Monterrey,
Nuevo Leon, Mexico
3 Department of Statistics, Virginia Tech,
Blacksburg, Virginia, USA

Correspondence
SvenKnoth,Department ofMathematics
andStatistics,Helmut SchmidtUniver-
sityHamburg,Holstenhofweg 85, 22043
Hamburg,Germany.
Email: knoth@hsu-hh.de

Abstract
There is growing literature on new versions of “memory-type” control charts,
where deceptively good zero-state average run-length (ARL) performance ismis-
leading. Using steady-state run-length analysis in combination with the con-
ditional expected delay (CED) metric, we show that the increasingly discussed
progressive mean (PM) and homogeneously weighted moving average (HWMA)
control charts should not be used in practice. Previously reported performance
of methods based on these two approaches is misleading, as we found that per-
formance is good only when a process change occurs at the very start of moni-
toring. Traditional alternatives, such as exponentially weighted moving average
(EWMA) and cumulative sum (CUSUM) charts, not only have more consistent
detection behavior over a range of different change points, they can also lead to
better out-of-control zero-state ARL performance when properly designed.
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1 INTRODUCTION

The statistical process monitoring (SPM) field comprises many different procedures to detect quickly and reliably changes
in a process based on sequentially observed data. There are classical ones such as the Shewhart chart,1 Shewhart charts
with runs rules,2 the cumulative sum (CUSUM) chart,3 the exponentially weighted moving average (EWMA) chart,4 and
the less popular Shiryaev-Roberts scheme.5 These methods are described in textbooks on statistical quality control like
Montgomery,6 Ryan,7 Kenett et al,8 and Vardeman and Jobe,9 to name a few. In addition to some more or less straight-
forward modifications, such as the combination charts of Lucas,10, 11 schemes with adaptive parameters like Capizzi and
Masarotto,12 and generalized likelihood ratio approaches (unspecified out-of-control mean), for example, Capizzi,13 we
have been facing for the last 20 years some unfortunate developments. Quite a substantial set of charts have been pro-
posed, which share one common feature: they often exhibit excellent out-of-control zero-state average run-length (ARL)
performance, which implies quick detection of changes that happen right at the beginning of the monitoring, but their
detection performance deteriorates substantially when the process change happens later. The balance between detection
of very early change points and later ones is ignored, an issue that has been thoroughly discussed in many papers, includ-
ing Chandrasekaran et al,14 Knoth,15 Lucas and Saccucci,11 and Woodall.16
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The most prominent example of this unfortunate phenomenon is the synthetic chart introduced inWu and Spedding.17
It has becomeone of themost popular control chart construction principles during the last 20 years. InDavis andWoodall18
and later in Knoth,19 it wasmade clear, however, that the supposed benefits of synthetic charts are highly questionable due
to the presence of an implicit fast initial response (or head-start) feature and a focus on zero-state performance. Despite
this, synthetic charts stayed popular and led to many more publications, refer to Rakitzis et al20 for a vigorous review
encouraging further contributions on the topic. Here, we pick two other design strategies that should be avoided in SPM.
We discuss the so-called progressive mean (PM) chart introduced by Abbas et al21 and the closely related homogeneously
weighted moving average (HWMA) control chart proposed by Abbas.22 We also advise against using double and triple
EWMA charts (DEWMA and TEWMA, respectively).
The PM chart corresponds to a well-known procedure in sequential statistics,23–25 utilized for tests of power one and

the repeated significance test. In parallel to Abbas et al,21 Morais et al26, 27 investigated this control chart in some detail.
They expressed it as the limit (therefore, they called it the limit chart) of an EWMA chart, where the smoothing constant
approaches zero. Moreover, they observed that the major flaw of the PM chart, as we illustrate in Section 2, is that it expe-
riences poor performance in detecting process changes that are delayed from the start of monitoring. Even the originators
of the PM charts, as in Abbas et al (p. 625),28 noticed this situation, writing, “However, if the process shift occurs at some
other time, the PM chart will not be so good.” In Abbas et al,28 the PM principle was transferred to variance monitoring and
labeled as a floating control chart.
Another offspring of the PM chart is the HWMA chart.22 The HWMA chart combines, using different weights, the

current observation with the previous PM. This can attenuate the inertia resulting from the use of the past data,29 but it
does not eliminate the problem, as seen in Section 3 with a nonmonotonic behavior of the ARL at different change points.
Despite their severe disadvantage in performing poorly to detect changes that happen later than at start-up, the PM

and HWMA approaches had been used extensively to develop new methods in the SPM literature. Therefore, we want to
illustrate clearly that both PM and HWMA approaches should not be applied for process monitoring. To overcome the
misleading use of the zero-state ARL, we consider the conditional expected delay (CED),30 whose limit is the conditional
steady-state ARL as the time of the process shift increases.31–33
In the next two sections, we evaluate the PM and the HWMA chart, respectively, regarding their CED behavior. In

Section 4, we describe the data weighting profiles resulting from these different approaches to illustrate the cause of their
poor and misleading behavior. We end by collecting our conclusions in Section 5.

2 PM APPROACH

2.1 Basic definitions

Similar to Abbas et al,21 we assume that 𝑋1, 𝑋2, … follow a normal distribution with mean 𝜇 and standard deviation 𝜎.
Moreover, the values of 𝑋𝑡 are assumed to be stochastically independent. Because we are interested in changes that might
happen after 𝑡 = 1, we introduce the following change point (𝜏) model

𝜇 =

{
𝜇0 = 0, 𝑡 < 𝜏

𝜇1 = 𝛿, 𝑡 ≥ 𝜏.
(1)

Later we will use the change point 𝜏 as an index to label a particular change point position, as needed. The standard
deviation is assumed to be known, 𝜎 = 𝜎0 = 1 (otherwise normalize the 𝑋𝑡), and to remain constant. Then the PM chart
is formed by

𝑃𝑡 =
1

𝑡

𝑡∑
𝑖=1

𝑋𝑖 , 𝑡 = 1, 2, …

with

𝐸∞(𝑃𝑡) = 𝜇0 and var(𝑃𝑡) = 1∕𝑡

and run length

𝐿̃𝑃 = min
{
𝑡 ≥ 1∶ |𝑃𝑡 − 𝜇0| > 3𝑐𝑃𝜎0∕√𝑡 } .

 10991638, 2021, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/qre.2950, W

iley O
nline L

ibrary on [27/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



KNOTH et al 3781

TABLE 1 Excerpt of zero-state ARLs from Table II in Abbas et al21 (104 replications), ARL0 = 500, new Monte Carlo results, and two
EWMA configurations evaluated numerically

𝜹 =

0 0.25 0.5 0.75 1 1.5 2 2.5 3 4 5
ARL𝛿 for PM with Monte Carlo, number of replications =

104 in Abbas et al21 498.14 47.24 19.03 11.16 7.55 4.52 3.15 – 1.98 1.42 1.12
108 497.89 47.68 19.00 11.07 7.58 4.50 3.16 2.43 1.98 1.43 1.12

ARL𝛿 for EWMA
𝜆 = 0.1 500.00 103.32 28.81 13.61 8.21 4.17 2.66 1.92 1.51 1.12 1.01
𝜆 = 0.007 500.00 45.74 14.91 7.66 4.83 2.62 1.78 1.38 1.18 1.02 1.00

Abbas et al21 observed that the above limits are quite wide for large 𝑡. They proposed to bend the limits by manipulating
the power of 𝑡, namely,

𝐿𝑃 = min
{
𝑡 ≥ 1∶ |𝑃𝑡 − 𝜇0| > 3𝑐𝑃𝜎0∕𝑡0.7 } (2)

replacing the original 𝑡0.5 with 𝑡0.7.
Simple algebra yields the standard recursive formula for the sample mean

𝑃𝑡 =
1

𝑡
𝑋𝑡 +

𝑡 − 1

𝑡
𝑃𝑡−1 ,

which was explicitly discussed in Abbas,34 who claimed that the PM chart is a special case of the adaptive EWMA
(AEWMA) chart of Capizzi andMasarotto.12 However, this is misleading because the latter method adapts the smoothing
constant differently while aiming at a different goal. If the distance between the current observation and the previous
AEWMA statistic becomes large, the scheme switches to “Shewhart” mode in a smooth way. Hence, the weights are
controlled by the data. The weights of the PM chart are following a deterministic data-free scheme instead. As well, the
method of Han and Tsung35 is only weakly related to the PM chart. These authors pick an optimal EWMAweight from the
grid {1, 1∕2, … , 1∕𝑡} for each time point 𝑡 making the magnitude of the resulting EWMA statistic maximal. Here, the PM
weight 1∕𝑡 would be the extreme choice. In sum, Capizzi and Masarotto12 and Han and Tsung35 proposed EWMA mod-
ifications providing a good detection performance for a range of possible changes 𝛿. In contrast, the PM chart exhibits a
weighting scheme that is suitable for detecting very early changes, whereas it deteriorates quickly and substantially for
later changes.

2.2 ARL types

In (2), the constant 𝑐𝑃 is set so that the in-control zero-state (𝜏 = ∞) ARL,𝐸∞(𝐿𝑃), is equal to some given large value ARL0.
UtilizingMonte Carlo simulation (104 replications), Abbas et al21 determined 𝑐𝑃 = 1.267 to fulfill ARL0 = 500. Afterward,
they calculated, in the same way, several out-of-control ARL values 𝐸1(𝐿𝑃) with 𝛿 ∈ {0.25, 0.5, … , 5} and concluded that
the PM charts perform well, compare to Table 1. Because the simple case 𝜏 = 1 in (1) is only one facet of the detection
performance, we consider as well the CED

𝐷𝜏 = 𝐸𝜏(𝐿 − 𝜏 + 1 ∣ 𝐿 ≥ 𝜏)

and, if appropriate, the conditional steady-state ARL

 = lim
𝜏→∞
𝐷𝜏 .

Note that both the sequence of CED values {𝐷𝜏} and the limit  are functions of the shift size 𝛿. For most of the con-
ventional control charts, the sequence converges rapidly to . Therefore, the conditional steady-state ARL  is another
valuable and representative performance measure. Later we will show that for PM and HWMA charts, more elaborate
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3782 KNOTH et al

convergence patterns of {𝐷𝜏} appear, so thatmight be less representative. We will estimate all these values with Monte
Carlo simulation runs (106 replications for each 𝜏). Readers can refer to Siegmund,36 who did some more sophisticated
analyses with the PM chart (under the name repeated significance test or test of power one).

2.3 EWMA, the classical competitor

Here, we introduce our competitor, the popular EWMA chart,4 with exact control limits. As MacGregor and Harris37
mentioned, these limits convey some fast initial response features. Thus, we apply

𝑍0 = 𝜇0, 𝑍𝑡 = (1 − 𝜆)𝑍𝑡−1 + 𝜆𝑋𝑡, 𝑡 = 1, 2, … ,

𝐿𝐸 = min

{
𝑡 ≥ 1∶ |𝑍𝑡 − 𝜇0| > 𝑐𝐸𝜎0√(1 − (1 − 𝜆)2𝑡) 𝜆2 − 𝜆

}
.

Contrary to PM andHMWA approaches, numerical routines are established to calculate the zero-state ARL, the CED, and
the steady-state ARL. Here, we make use of the implementations in the R package spc.38

2.4 ARL comparison

Let us start with Table 1, with some confirmation of the zero-state ARL values of Table II in Abbas et al.21 We use ARL0 =
500 (and 𝑐𝑃 = 1.267) and add new Monte Carlo results with 108 replicates.
Comparing our results and the previous ones, we verify their accuracy. Abbas et al21 determined the standard devi-

ation and some percentiles of the run length as well. However, all of these results were obtained for the special sit-
uation that the change happens at 𝜏 = 1 or never (𝜏 = ∞, i. e., in-control). These ARL results were compared with
numbers taken from Lucas and Saccucci11 for EWMA 𝜆 ∈ {0.1, 0.25, 0.5, 0.75} and CUSUM (𝑘 = 0.5), both with and
without head-start. Because the PM chart corresponds to an EWMA chart with 𝜆 → 0, a smaller 𝜆 than 0.1 might be
more appropriate for the performance comparison. Therefore, we add zero-state ARL results for the EWMA chart with
𝜆 ∈ {0.1, 0.007}. Not surprisingly, one can select an EWMA chart design that beats the PM chart uniformly in terms of the
zero-state ARL (see Section 4), but we do not recommend extremely small smoothing constants due to resulting inertia
issues.
Before turning to our CED analysis, we consider the empirical cumulative distribution function (CDF) of the in-control

run length. The empirical CDF in Figure 1 features two particular patterns for PM chart different frommost other control
charts. The median run length, MRL = 180, is much smaller than the ARL = 497. In fact, the ARL coincides with the
third quartile. The maximum observed run length in our simulation, 68,436, was unusually large.
In order to assess the CED, we calculated, using Monte Carlo (106 replicates) and the numerical methods in

the R package spc, the series {𝐷𝜏} for 𝜏 = 1, 2, … , 500 = ARL0 for the PM and EWMA charts. We consider 𝛿 ∈
{0.25, 0.5, 0.75, 1, 2, 2.5, 3, 5} and provide the graphs in Figures 2 and 3. Because 𝐷𝜏 does not converge within 𝜏 ∈
{1, 2, … , 500} (in contrast to both EWMA designs), we added on the right-hand side of all diagrams the value 𝐷1000 in
parentheses to get an idea about the progression. We compared the PM chart with two different EWMA configurations,
𝜆 = 0.1 (a standard setup) and 𝜆 = 0.007 (less common, but beats the PM chart uniformly for 𝛿 ≥ 0.25). Only for the small-
est shift considered, 𝛿 = 0.25, does the PM chart exhibit a lower 𝐷𝜏 profile as long as 𝜏 ≤ 500 (which might be sufficient
for an in-control ARL of 500). However, for later changes (𝜏 > 500), the common 𝜆 = 0.1 EWMA chart detects the change
more quickly on average. For all other 𝛿 values, this standard design performs far better than the PM chart. For 𝛿 > 0.25,
the special 𝜆 = 0.007 EWMA chart has lower and thus better 𝐷𝜏 profiles than the PM chart, in addition to EWMA’s zero-
state ARL superiority for all 𝛿. Beginning with 𝛿 = 0.5, its values fall between those of the more standard EWMA chart
and the PM chart.
In conclusion, the out-of-control performance of the PM chart is easily dominated by control charts from the

EWMA family.
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3784 KNOTH et al

F IGURE 3 CED 𝐷𝜏 (𝛿 ∈ {2, 2.5, 3, 5}), Monte Carlo with 106 replicates, PM chart, two EWMA charts

2.5 Other PM research

In addition to Abbas et al21 and Abbas,34 there has been a massive growth of PMmodeling and its application in the SPM
literature. All of the methods we list below possess the same basic flaw, and thus their practical performance will be poor.
We review this literature to show how much work on the PM approach has appeared in the SPM literature.
Nonparametric approaches can be found in Abbasi et al,39 where they proposed a nonparametric chart based on the

PM statistic to monitor the proportion of observations over a target value. Abbas et al40 suggested the monitoring of a sign
statistic using a PM scheme, while Abbas et al41 repeated the analysis with double PM (DPM) approach (see below). Ali
et al42 combined the EWMA scheme with a PM approach using the sign statistic.
To deal with attribute data, Abbasi43 used the PM approach tomonitor with a series of Poisson observations. Alevizakos

and Koukouvinos44 applied the approach to the Conway–Maxwell–Poisson distribution. Alevizakos and Koukouvinos45
did something similar, but with the traditional Poisson model. In addition, Abbas et al46 monitored the fraction of non-
conforming items with a PM statistic.
For normal observations, Abbas et al47 extended the analysis with the DPM chart, based on a PM of progressive means,

which adds evenmore weight to the older observations (see Section 4). However, Riaz et al48 found an error and corrected
the DPM variance to improve its performance. Focusing on a different problem, Zafar et al49 proposed a chart to monitor
the variance. It follows the same spirit as the PM, but the cumulative variance is used instead.
Abbas et al50 proposed the mixed structure of EWMA and PM charts and named it the mixed EWMA-progressive

control chart for detecting small and moderate deviations in process location. Again, Alevizakos et al51 gave a note on

 10991638, 2021, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/qre.2950, W

iley O
nline L

ibrary on [27/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



KNOTH et al 3785

their variance, which was later used by Ajadi et al52 as a corrected EWMA-PMmethod. Thereafter, Abbas et al50 corrected
their approach for variance estimation for the sameEWMA-PMcontrol chart. Zafar et al 53 developed theMAX-PMcontrol
chart similar to the MAX-EWMA approach. The MAX-operation combines two (or more) single control charts (here PM)
in order to monitor more than one parameter.
Dealing with linear profiles, Abbas et al54 used the PM approach to monitor a variable in the presence of an auxiliary

variable. In addition, Saeed et al55 proposed a PM approach for the simultaneous monitoring of simple linear profile
parameters named PM_3, under shifts in linear profile parameters such as intercept, slope, and error variance.
With other continuous distributions for monitoring time between events, Alevizakos and Koukouvinos 56 adapted the

PM statistic for the Erlang distribution, and Alevizakos and Koukouvinos57 repeated the analysis but using the DPM
approach. Finally, Zafar and Riaz58 recognized the inertia29 problem of memory type charts and proposed to restart the
plotting statistic at fixed times. They explored this idea with a modification of the CUSUM, EWMA, and PM statistics.
Not surprisingly, an improvement was found with the PM chart. However, to force restart a chart every 10th observation
made CUSUM and EWMA chart performance worse for changes of 1.75 standard deviations or less, and improving only
slightly the average run length for larger changes. This likely happened as a consequence of the already resetting behavior
of the CUSUM and the forgetting factor of the EWMA chart, existing elements that already mitigate inertia. In addition,
Zafar and Riaz58 own experimentation showed a CUSUM and an EWMA chart with consistently smaller ARLs in every
scenario, which makes the PM statistic unnecessary.
A number of these papers contained errors that were later corrected. For instance, Abbas et al47 upgraded the existing

PMcharts by introducing theDPMcontrol charts for normal or unspecified distributions based on computing PMaverages
twice. However, they introduced the wrong variance formula (after their eq. (15)47). In a more recent paper, Riaz et al48
provided corrections to the variance formula of DPM. Alevizakos and Koukouvinos45 extended the idea of the PM statistic
introducing a second PM statistic for use with the Poisson distribution in Abbasi et al.43 They suggested the DPM and
the optimal DPM charts for enhancing the detection ability of the PM chart. They used the variance formula from Abbas
et al.47 Latter, Abbas et al59 corrected the variance derivation of this model.
It should be noted that several papers in this area addressed steady-state performance40, 43, 44 46; however, their analysis

was limited to performancewith a change point after 150 observations,56 in the best cases, and up to 15 in theworst cases.46
The extent of these analyses is acceptable when discussing an EWMA chart, but they can bemisleading for the PM family.

3 THE HWMA CHART

3.1 Basic definition

One spin-off of the PM chart is the HWMA control chart proposed by Abbas.22 Its statistics are calculated in the following
way:

𝐻1 = 𝜔𝑋1 + (1 − 𝜔)𝜇0 .

𝐻𝑡 = 𝜔𝑋𝑡 + (1 − 𝜔)𝑃𝑡−1 = 𝜔𝑋𝑡 + (1 − 𝜔)
1

𝑡 − 1

𝑡−1∑
𝑖=1

𝑋𝑖 = 𝜔𝑋𝑡 +

𝑡−1∑
𝑖=1

1 − 𝜔

𝑡 − 1
𝑋𝑖

for 𝑡 = 2, 3, …, where 0 < 𝜔 < 1. Determining the first two moments, the signaling rule is derived as follows:

𝐸∞(𝐻𝑡) = 𝜇0, var(𝐻1) = 𝜔2, var(𝐻𝑡) = 𝜔2 + (1 − 𝜔)2∕(𝑡 − 1), 𝑡 = 2, 3, … .

𝜎𝐻,𝑡 =
√
var(𝐻𝑡) ,

𝐿𝐻 = min
{
𝑡 ≥ 1∶ |𝐻𝑡 − 𝜇0| > 𝑐𝐻𝜎𝐻,𝑡} .
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TABLE 2 Excerpt of zero-state ARL values from tab. 2 in Abbas22 (105 replications), ARL0 = 500, new Monte Carlo results, and two
EWMA configurations evaluated numerically

𝜹 =

0 0.25 0.5 0.75 1 1.5 2 2.5 3 4 5
ARL𝛿 for HWMA (𝜔 = 0.1) with Monte Carlo, number of replications =

105 in Abbas22 499.78 81.48 28.61 14.85 9.35 4.98 3.32 2.45 1.87 – 1.03
108 500.45 81.59 28.56 14.88 9.33 4.97 3.32 2.45 1.87 1.21 1.02

ARL𝛿 for EWMA
𝜆 = 0.1 500.00 103.32 28.81 13.61 8.21 4.17 2.66 1.92 1.51 1.12 1.01
𝜆 = 0.05 500.00 77.76 23.71 11.87 7.31 3.77 2.43 1.77 1.41 1.09 1.01

F IGURE 4 HWMA (𝜔 = 0.1)—in-control CDF
𝐹(𝓁) = 𝑃(𝐿𝐻 ≤ 𝓁), Monte Carlo with 106 replicates

3.2 ARL comparison

Again, as seen in Table 2, we start with the confirmation of some zero-state ARL results. Here, we pick the case 𝜔 = 0.1
and nominal ARL0 = 500 (𝑐𝐻 = 2.938) and collect some out-of-control zero-state ARL results from Table 2 in Abbas,22
who utilized 105 Monte Carlo replications. We added results for two EWMA charts. It turns out that for all EWMA con-
figurations with 𝜆 ≤ 0.05, the out-of-control zero-state ARL values are uniformly smaller than for the HWMA chart with
𝜔 = 0.1. It remains unclear why Abbas2 compared the HWMA chart with 𝜔 = 0.1 to the EWMA chart with 𝜆 = 0.1 since
the meanings of the two constants 𝜔 and 𝜆 are substantially different. A rough calibration could be done by setting equal
the asymptotic variances of the statistics 𝐻𝑡 and 𝑍𝑡, that is, 𝜔2 = 𝜆∕(2 − 𝜆) resulting in 𝜆 = 2𝜔2∕(𝜔2 + 1). For example,
𝜔 = 0.1 would then correspond to 𝜆 ≈ 0.02. From Table 2, we conclude that even the use of 𝜆 = 0.05 would lead to a con-
vincing competitor to the HWMA chart with 𝜔 = 0.1. From this restricted zero-state ARL analysis one would conclude
that the HWMA chart performance is worse than that of the EWMA chart if the EWMA configuration is chosen with
some care.
Next, we provide the same illustrations of steady-state performance as in Section 2 for the PM chart. We begin with

Figure 4 showing the in-control CDF for the HWMA chart with 𝜔 = 0.1. It turns out that the in-control CDF looks similar
to CDF profiles for common control charts like the EWMA chart. For the subsequent CED analysis, looking at Figures 5
and 6, we chose two EWMA chart designs, 𝜆 = 0.1 and 𝜆 = 0.05. In the case of small changes, 𝛿 ≤ 1, the EWMA (𝜆 = 0.05)
chart’s values𝐷𝜏 are smaller for each 𝜏 considered in Figure 5. However, except for 𝛿 = 0.25 and 𝜏 ≤ 70, themore common
EWMA chart with (𝜆 = 0.1) detects the change more quickly on average than the HWMA (𝜔 = 0.1) chart. Turning to the
larger changes, in Figure 6, we observe slightly different behavior. For 𝛿 = 2 and 𝛿 = 2.5, the EWMA (𝜆 = 0.1) chart is the
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KNOTH et al 3787

F IGURE 5 CED 𝐷𝜏 (𝛿 ∈ {0.25, 0.5, 0.75, 1}), Monte Carlo with 106 replicates, HWMA chart, two EWMA charts

best, followed by the other EWMA design. For 𝛿 = 2.5, the HWMA 𝐷𝜏 chart profile starts decreasing for 𝜏 > 53, crossing
the EWMA (𝜆 = 0.05) profile around 𝜏 = 300. The overall performance, however, is better for the EWMA chart. In case of
𝛿 = 3 and even greater values of 𝛿(= 5), we recognize that the EWMA charts are better for 𝜏 ≤ 120 (𝜆 = 0.05) and 𝜏 ≤ 220
(𝜆 = 0.1) and for 𝜏 ≤ 50, respectively. For later changes, theHWMAchart features astonishingly small𝐷𝜏 values. However,
this is not surprising because the HWMA control chart behaves like a Shewhart chart if the change happens quite late.
Therefore, we added the Shewhart ARL values (deploying 𝑐𝐻 = 2.938 as control limit of a Shewhart chart) to Figure 6. We
conclude that for very large late changes, the HWMA chart performs well, but in these cases the Shewhart chart performs
even better. In conclusion, we see no advantages whatsoever in using the HWMA approach, only disadvantages.

3.3 Other HWMA research

Since the first paper on HWMA by Abbas,22 there has been a rapid growth in research to investigate other versions of the
HWMA method. One can refer to Adegoke et al60 (multivariate HWMA), Adeoti and Koleoso61 (HWMA for the process
mean), Alevizakos et al62 (double HWMA, or DWMA), Abid et al63 (DWMA control chart for the process mean), Raza et
al64 (nonparametric HWMA), Riaz et al65 (nonparametric DWMA), Abid et al66 (mixed HWMA-CUSUM control chart),
Abid et al67 (mixed HWMA-CUSUM control chart for the process mean), Thanwane et al68–71 (the effect of measurement
error on HWMA), and Riaz et al72 (triple HWMA or TWMA).
In particular, we note that the double and triple HWMA charts are simply reparameterizations of the HWMA chart.

The consequences of this equivalency have not been recognized in the literature.
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3788 KNOTH et al

F IGURE 6 CED 𝐷𝜏 (𝛿 ∈ {2, 2.5, 3, 5}), Monte Carlo with 106 replicates, HWMA chart, two EWMA charts

4 WEIGHTING PATTERNS

Following Lai’s73 statement, “In utilizing previous observations for the detection of the lack of control, we have to ensure
that the ‘good old days’ of the machine would not outweigh its present misery,” one should never use weighting patterns
such as the ones we observe for PM, HWMA, and some other recently proposed memory control charts. Note that the
EWMA chart, the CUSUM chart, and even the simple moving average (MA) chart follow Lai’s73 design rules for the
general formulation 𝑆𝑡 =

∑𝑡
𝑖=1
𝑐𝑡−𝑖𝑋𝑖 with 𝑐0 ≥ 𝑐1 ≥ 𝑐2 ≥⋯𝑐𝑘−1 > 0 = 𝑐𝑘 = 𝑐𝑘+1 = ⋯TheEWMAweights 𝑐𝑖 = 𝜆(1 − 𝜆)𝑖

are strictly monotonically decreasing with 𝑐𝑖 ≈ 0 for 𝑖 ≫ 1. The weights for the one-sided CUSUM chart are 𝑐0 = 𝑐1 =
⋯𝑐𝐾−1 > 0, with 𝐾 being the random number of CUSUM observations after the last CUSUM statistic value of zero. For
the MA chart, the parameter 𝐾 is the window size. All other weights vanish, that is, 0 = 𝑐𝐾 = 𝑐𝐾+1 = ⋯ .
Now, we want to compare the weights of the PM chart, the DPM chart introduced in Riaz et al,48 and the HWMA chart

with the weights of the EWMA chart, the DEWMA chart from Shamma et al74 and more recently in Zhang et al,75 and
the TEWMA chart proposed in Alevizakos et al.76 Next we provide illustrations for 𝑡 = 2, 5, 10, and 100. In Figure 7, we
present the weight profiles for 𝑡 = 2 and = 5. The first distinctive feature on the right-hand side of the figure is the heavy
weight for the initial value (usually the in-controlmean𝜇0) of all EWMAschemes, which ismore pronounced for themore
complicated DEWMA and TEWMA charts.77 In addition, proceeding in time, these large weights converge much more
slowly to zero than for the EWMA chart. The other weights of the EWMA chart are strictly increasing with observation
number (decreasing with age), whereas the weights for the DEWMA and TEWMA charts exhibit local maxima (easy
to see for 𝑡 = 100 in Figure 8). Thus, the DEWMA and TEWMA approaches violate Lai’s weighting rules, and common
sense, substantially.
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KNOTH et al 3789

F IGURE 7 Weights 𝑐𝑖 (Lai73 notation) attached to all observations at time 𝑡 ∈ {2, 5}

The most simple weighting pattern can be observed for the PM chart, where all observations get the same weight,
1∕𝑡. Themore recent HWMA features for 𝑡 < 10 = 1∕𝜔 the lowest weight (𝜔) at 𝑡 with the other weights being constant at
(1 − 𝜔)∕𝑡. For 𝑡 = 10, the PMandHWMAweights coincide. Startingwith 𝑡 > 10, theHWMAchart gives the largest weight
to the most recent observation (see Figure 8 for 𝑡 = 100), whereas the other weights are all equal and small. This explains
the similarity in detection behavior to that of a Shewhart chart when large changes happen late. Themost counterintuitive
and inappropriate weighting can be seen for the DPM chart, where the Lai rule is reversed. The most recent data are
weighted less than data that were observed in the past. Here, the control chart design puts much weight on the “good old
days,” making it nearly impossible to detect changes that occur later than at start-up.
Aiming at excellent zero-state ARL performance was already considered by Chandrasekaran et al,14 Rhoads et al,78

and Steiner,79 where the original EWMA design was reshaped to downsize the out-of-control zero-state ARL for certain
changes. However, with Knoth,15 it became clear that already the original setup with control limits utilizing the exact
EWMA variance is an appropriate method to improve the detection performance for initial changes. Here, we want to
illustrate its simple deployment to beat all the new methods by lowering the constant smoothing value 𝜆. To make this
easy, we determined themaximum 𝜆 to attain an out-of-control zero-state ARL not larger than the PM andHWMAvalues,
respectively. The PM values in Figure 9 tell us that for medium and large 𝛿, nearly all EWMA designs exhibit smaller out-
of-control zero-state ARL values. For small 𝛿 < 1.2, one has to pick 0.008 ≤ 𝜆 < 0.1, and then it results on a uniformly
quicker EWMA chart. For the HWMA chart with 𝜔 = 0.1, we identify two patterns. First, for large 𝛿 > 4 the bound 𝜆max
decreases. Second, for all other 𝛿 not too small (𝛿 > 0.5), the standard 𝜆 = 0.1 defines an EWMA control chart that is
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3790 KNOTH et al

F IGURE 8 Weights 𝑐𝑖 (Lai73 notation) attached to all observations at time 𝑡 ∈ {10, 100}

better in terms of both ARL types for a wide range of changes. One must remember that the zero-state comparison is only
a small part of the performance evaluation. Taking very small 𝜆 allows the EWMA chart to beat the PM or HWMA charts,
but these very special setups lead to steady-state ARL problems similar to those new charts. To give an idea, we consider
𝜆 ∈ (0.001, 1) for an in-control ARL 𝐸∞(𝐿𝐸) = 500 and determine both the zero-state and steady-state ARL for selected
changes. From Figure 10A, we conclude that the out-of-control zero-state ARL decreases with decreasing 𝜆. Hence, in a
simple zero-state ARL competition, one utilizes a very small 𝜆. From Tables 1 and 2, we know that these 𝜆 are not this
small (𝜆 = 0.007 to beat PM, 𝜆 = 0.05 to win against the HWMA chart). However, in Figure 10B, we recognize that the
steady-state ARL𝛿 profiles feature local minima, whose arguments are quite large for large 𝛿. We should recall that for
constant control limits relying on the asymptotic EWMA variance 𝜆∕(2 − 𝜆), the zero-state ARL profiles exhibit a similar
shape as the𝛿 curves.

5 CONCLUSIONS

We showed that the PMandHWMAapproaches should never be used in practice. It is important in SPM to give lessweight
to data which move further and further into the past. These two approaches, in general, do not possess this important
property, resulting in very poor performance in detecting delayed shifts.
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F IGURE 9 Maximum 𝜆 value to “beat” the
zero-state ARL of PM and HWMA, 𝐸∞(𝐿𝐸) = 500

F IGURE 10 ARL performance for EWMA, revisited,𝐸∞(𝐿𝐸) = 500, shifts 𝛿 ∈ {0.25, 0.5, … , 4}

Webelieve that these schemes that follow the PM andHWMAprinciples aremore closely related to sequential hypothe-
sis testing, in the sense of Wald80 or Dodge,81 than to process monitoring approaches appropriate for quality management
practice. Sequential hypothesis testing and control charts are related, and, sometimes, they overlap. However, they are
based on different objectives, and they are applied in different circumstances. Sequential hypothesis testing evaluates evi-
dence as it is incorporated until a conclusion is reached in a situation where the population is stable, and the practitioner
wants to concludewith aminimum cost. A control chart can also be used to assess a population sequentially, but theywere
not designed for a stable population. Process monitoring schemes are built to keep a watch over a process with enough
sensitivity to detect isolated or sustained changes if and when they occur. A new process might undergo different behav-
ior from expectation the moment it starts; however, as a system evolves, as it gets better, more capable, it also becomes
more stable, to a point where hundreds or thousands of measurements might flow under control until an unexpected
assignable cause results in a large enough change that matters. A proper chart design, to be useful in process monitoring,
must consider the change point to be unknown (either deterministic or stochastic), where steady-state performance and
CED performance play a role even more fundamental than zero-state behavior.
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3792 KNOTH et al

As a final note, it is implicitly assumed in our paper, and all papers on the PM andHWMA approaches, that any process
change, however small, is to be detected quickly. If some process shifts are considered too small to be of concern, then we
recommend the approach of Woodall and Faltin.82
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