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Abstract
Polythetic classifications, based on shared pat-
terns of features that need neither be universal
nor constant among members of a class, are com-
mon in the natural world and greatly outnumber
monothetic classifications over a set of features.
We show that threshold meta-learners, such as
Prototypical Networks, require an embedding di-
mension that is exponential in the number of task-
relevant features to emulate these functions. In
contrast, attentional classifiers, such as Matching
Networks, are polythetic by default and able to
solve these problems with a linear embedding di-
mension. However, we find that in the presence of
task-irrelevant features, inherent to meta-learning
problems, attentional models are susceptible to
misclassification. To address this challenge, we
propose a self-attention feature-selection mech-
anism that adaptively dilutes non-discriminative
features. We demonstrate the effectiveness of our
approach in meta-learning Boolean functions, and
synthetic and real-world few-shot learning tasks.

1. Introduction
Classification meta-learning is typically approached from
the perspective of few-shot learning: Can we train a model
that generalises to unseen ‘natural’ classes at test time? For
example, in the Omniglot task (Lake et al., 2011) we have
access to a labelled set of handwritten characters during
training and we are tasked with distinguishing new charac-
ters, from unseen writing systems, at test time. From this
perspective each example is associated with a consistent
class and members of that class share a common set of prop-
erties (e.g. all handwritten characters have the shape of the
underlying character class). Alternatively, we may consider
meta-learning over unseen ways of categorising: Can we
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Figure 1: Section of Methodus Plantarum Sexualis,
Georg Ehret, illustrating Systema Naturae (Linnaeus,
1735). The defining attributes of a class do not need
to be exclusive or universal, and useful classifications
are often contextual.

train a model on character recognition that generalises to
alphabet recognition? or to distinguishing upper from lower
case letters? In this setting, features need to be understood in
relation to a given classification: For instance, when tasked
with distinguishing equids (horses, zebras, donkeys) from
big cats, the presence of stripes on both zebra and tigers is
irrelevant, and potentially misleading. On the other hand,
stripes are the key to distinguishing horses from zebra.

Understanding features in the context of a classification is
central to the concepts of monothetic and polythetic classes
recognised in the fields of taxonomy and knowledge organ-
isation. Monothetic classifications are based on universal
attributes: there is at least one necessary and sufficient at-
tribute for class membership. Polythetic classifications are
instead based on combinations of attributes, none of which
are sufficient in isolation to indicate membership and, poten-
tially, none of which are necessary. Carl Linneaus, inventor
of the binomial nomenclature for species and “father of
taxonomy,” recognised that natural orders could not be de-
fined monothetically, lacking features that were unique and
constant over families and that, until such features could
be found, such classifications were necessarily polythetic
(Stevens, 1998; Hjørland, 2017).
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Figure 1 illustrates Linnaeus’ system for classifying plants,
which relies on polythetic classifications and is still in use
today. Consider, for example, that we can distinguish A
from B by the number of filaments, but not B from C; we
can distinguish B from C based on whether there are split
anthers (the ends), but not C from A, and so on. To recognise
classes it is necessary to consider their attributes in the
context of other attributes.

Threshold functions are a related concept in Boolean alge-
bra. A threshold function evaluates positively if a weighted
sum of binary inputs crosses some threshold. Lacking a
preferred feature basis, we can identify monothetic classi-
fications with threshold functions, as threshold functions
that are polythetic in one basis, such as logical OR(x, y),
may be recast in a basis where they are monothetic e.g. bi-
nary OR(x, y) evaluates as the unary MIN(x + y, 1). We
can compare the frequency of monothetic and polythetic
classifications in this general case. The number of binary
inputs of length n is 2n and the total number of Boolean
functions is the number of binary labellings of these inputs,
22

n

, whereas the number of threshold functions grows only
singly exponentially (≤ 2n

2

), and therefore monothetic clas-
sifications represent a vanishingly small proportion of the
total (Irmatov, 1993; Gruzling, 2007).

This work explores meta-learning for polythetic classifica-
tion. Specifically, we

• consider the limitations of widely used threshold classi-
fiers, such as Prototypical Networks (Snell et al., 2017),
and how they are able to learn and approximate non-
threshold functions in practice;

• show that simple alternatives based on attention, such
as Matching Networks (Vinyals et al., 2016), are poly-
thetic by default but susceptible to misclassification
due to excessive sensitivity;

• characterise the challenge of spurious correlations in
irrelevant features for attentional classifiers;

• and propose a simple solution to this challenge that is
non-parametric and based on self-attention.

Throughout, we evidence these findings and the effective-
ness of our proposals with experiments on synthetic and
real-world few-shot learning tasks.

2. Background
Problem formulation. We are interested in few-shot clas-
sification: provided with a small number of labelled points
S = {xi, yi}i∈IS , the support set, with feature vectors
xi ∈ Rn and labels yi ∈ {1, . . . ,K}, we want to predict
the labels of the query set Q = {xj}j∈IQ . Sk denotes the
set of support elements with label k, and I⋆ is the index set
of the subscript e.g. IS is the index set of the support. The
label space is arbitrary and potentially unique to a task (also

referred to as an episode) — both the number of classes,
k, and assigned labels may vary over tasks — and, impor-
tantly, examples that share labels under one categorisation
will not necessarily share labels under another. We will
refer to classification functions over n features simply as
classifications, and in meta-learning we are often interested
in classifications that only depend on some features, α, and
not the remainder, β = n− α.

Classifiers. Deep neural models for problems of this kind
are usually equipped with either a threshold classifier or
an attentional classifier. Threshold classifiers are based,
as the name suggests, on using thresholds to partition a
space into regions associated with each class. Prototypical
Networks (Snell et al., 2017) are an example of such a
model. This model embeds examples using a learned neural
function, fϕ, finds the average embedding for each class
in the support, ck, and classifies queries based on their
proximity (measured with a distance function d) to these
class prototypes:

ck =
1

|Sk|
∑
i∈ISk

fϕ(xi) ; (1)

pϕ(y = k|x) = exp(−d(fϕ(x), ck))∑
k′ exp(−d(fϕ(x), ck′))

(2)

The key advantage of such an approach is that salient class
features are preserved when forming the prototype while
irrelevant aspects of particular examples are washed out.
Attentional classifiers instead use a similarity function to
directly compare queries with each example in the support.
For example, Matching Networks (Vinyals et al., 2016) also
learn embedding functions, but each query is compared
with every member of the support to weight a sum over their
labels, which we can write simply as ŷ =

∑
i∈IS

a(x̂, xi)yi.
In the popular terminology of transformers we may write
the embedded queries as Q, the embedded support as keys
K, and their labels as values V, and dot-product attention
classification with temperature τ−1 as

DotAttn(Q,K,V, τ) = softmax(τQKT )V ∈ R|Q|×k.
(3)

Attentional classifiers are more sensitive to variations within
a class at the cost of additional computation.

Boolean tasks. In comparing these classifiers we make
repeated use of tasks based on Boolean functions, and on
exclusive-OR (XOR) in particular. For a binary feature
vector x ∈ {−1, 1}n, the number χA(x) =

∏
i∈A xi is the

parity function or exclusive-or (XOR) over the bits (xi)i∈A.
We write a parity function of α bits XORα. The set of
parity functions over n bits form a linearly independent
basis (O’Donnell, 2014) and, as such, being able to model
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Figure 2: Confidence heatmaps and decision boundaries of prototype and attention classifiers on 2-variable Boolean
functions. The attention classifier shown uses a temperature of 1, lower temperatures ‘harden’ the classification and
produce decision boundaries more closely aligned with the axes (see Appendix B). As XOR(x, y) is not a threshold
function, simple prototypes fail to produce a correct classification scheme, in this case the prototypes are equal
(= (0, 0)) and there is no decision boundary.

the partition functions guarantees that one can model any
other Boolean function over that domain. Put another way,
the decision boundaries of XORα are at least as complicated
as those for any other α-variable Boolean function: there
is one between every possible pair of feature vectors. For
these reasons, XOR is our polythetic function of choice in
derivations, examples, and experiments.

3. Challenges in meta-learning polythetic
classifications

Threshold and attentional classifiers have their own
strengths and, in meta-learning polythetic classifications,
their own weaknesses. Threshold classifiers are insuf-
ficiently flexible and attentional classifiers are prone to
misclassification.

Threshold classifiers. Figure 2 shows the decision bound-
aries formed by a prototypical threshold classifier and an
attentional classifier for a selection of 2-variable Boolean
functions, highlighting the problem with using threshold
classifiers for polythetic classification: logical XOR(x, y) is
not a threshold function and so the prototypes fail to produce
a useful decision boundary. This is the perceptron problem
identified by Minsky & Papert (1969). However, deep net-
works using threshold classifiers can learn XOR. This is
possible because the network can learn additional pseudo-
features for the non-threshold functions it observes. Figure
3 shows an example for 2-variables: one can embed the
corners of the square at the corners of a tetrahedron with co-
ordinates

(
x, y,XOR(x, y)

)
and produce linear thresholds

solutions for every 2-variable Boolean function.

There are two problems with this approach, both of which
are exacerbated in the meta-learning context: i) the required
number of pseudo-variables grows as

(
n
α

)
∼ O(nα) to

account for all combinations of α active components,
and ii) the method does not generalise to unseen non-
threshold functions (see Appendix A). The right plot in
Figure 3 demonstrates these shortcomings for XOR2: the
required number of pseudo-variables is

(
n
2

)
∼ O(n2)

and initially we find that a quadratic embedding is able
to maintain performance, but for longer sequences the
number of threshold-functions unseen in training grows and
performance degrades.

Attentional classifiers. Attentional classifiers avoid these
problems — the required embedding dimension is linear
in the number of features and the classifier generalises to
unseen classifications — but suffer from over-sensitivity to
irrelevant features. This results in misclassification, which
we quantify in the case of Boolean functions to understand
the scaling properties of this problem generally.

Consider classifications over binary feature vectors x ∈
{−1, 1}n, with the class determined by XORα over α el-
ements with the remaining β = n − α being irrelevant.
Assume each of the 2α variations of the active elements
are present with equal frequency, r, for a support set S of
size |S| = r2α, and that the remaining β elements follow
a Bernoulli distribution with probability p. Using an atten-
tion classifier of the form ŷ =

∑
i∈S softmaxi

(
a(x̂, xi)

)
yi,

where a(x̂, xi) is a measure of the similarity of x̂ and xi,
how likely is it that we misclassify a query drawn from the
same distribution as S?

Without loss of generality, we can focus on the positive
examples (with label = 1) for which a positive output
gives the correct classification. Using dot-product
attention, the mean and variance of the classifier out-
put, with p̄ = p2 + (1 − p)2 and q̄ = 1 − p̄, are:

µ = r(e− e−1)α
[(

p̄e+ q̄e−1
)β]

= r(e− e−1)α[cβ ], (4)

σ2 = r(e2 + e−2)α
[(

p̄e2 + q̄e−2
)β
−
(
p̄e+ q̄e−1

)2β]
= r(e2 + e−2)α[dβ − c2β ], (5)
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Figure 3: A non-threshold function of 2-variables, the pseudo-variable solution, and Prototypical Network per-
formance on the XOR2 problem. (a) XOR(x, y), which does not have a threshold solution in 2 dimensions. (b)
Appending the pseudo-variable XOR(x, y) gives a 3-dimensional embedding in which all 2-variable Boolean func-
tions have threshold solutions. XOR(x, y) is a pseudo-variable in that it is determined by the other variables and
cannot freely vary, for example the hatched circle at (1, 0, 0) cannot occur. Right: Accuracy of prototypical networks
for the XOR2 problem over sequence length and embedding dimension. Mean over 1000 tasks, |S| = 40. See
Appendix F for details.

introducing c and d for compactness. The mean is positive,
as desired, but we are interested in the rate of misclassifi-
cation, which may be interpreted using the scale-free and
dimensionless coefficient-of-variation (the ratio of the stan-
dard deviation to the mean) where greater variation indicates
a greater rate of misclassification. From Equations 4 and 5,
we have

σ

µ
=

1√
r

(√
e2 + e−2

e− e−1

)α((
d

c2

)β

− 1

)1/2

. (6)

Starting with the leftmost term, increasing the number of
repetitions, r, reduces the relative variability. This aligns
with intuition and limits, where an empty support set, r = 0,
provides no basis on which to make predictions and at the
other extreme, r ≫ 2β , the support set is likely to span
the input domain reducing classification to look-up. The
term raised to α is approximately 3.2, and so the variability
increases with the number of active elements. An intuitive
explanation is that the number of immediate neighbours of
each point grows as

(
α
1

)
= α and this reduces the confi-

dence with which the point is classified, so the barrier to
misclassification is reduced. Finally, d > c2 and so the
rightmost term is positive and grows exponentially in β,
meaning that misclassification increases with the number of
irrelevant features. A full derivation, including alternative
attention functions, is provided in Appendix C.

The problem of misclassification due to over-sensitivity in
attentional classifiers was recognised in the work of Luong
et al. (2015) on sequence processing. There the problem was
addressed by attending only to a subset of elements within
some distance of the target position. However, sets do not
have such an ordering and so we instead propose a feature-
selection method to resolve the problem more generally.

4. Attentional feature selection
A key challenge of meta-learning is that not all features are
relevant in all tasks and that the support is unlikely to span
the input domain. The model must choose, using incom-
plete information, what to focus on and what to ignore by
detecting the salient features within and between classes.
For monothetic classifications this is straightforward: by
definition, averaging highlights necessary features whilst
diminishing irrelevant features. Prototype methods rely on
this process. In the polythetic case, attentional classifiers
have the advantage of being able to learn non-threshold
functions without the need for pseudo-variables but do not
benefit, as prototypes do, from ‘washing-out’ irrelevant fea-
tures through averaging. Indeed, attentional classifiers are
susceptible even in the monothetic setting to misclassify-
ing on the basis of closely matching features that are not
relevant to the problem (putting a zebra with the big-cats
because its stripes match those of a tiger in the support set,
for example). Misclassification occurs when irrelevant fea-
tures overwhelm the signal from the active elements. As
this is a problem of highlighting the salient patterns within
a set, we propose a self-attention based mechanism for fea-
ture selection, presented in Algorithm 1 (and illustrated in
Appendix H) with examples given in Figures 4 and 5.

Intuitively, the process exploits the over-representation of
patterns within features that are relevant to the classification
as compared to patterns within the irrelevant features. We
first standardise the features to prevent those common to the
entire support, which are not discriminating, from dominat-
ing (Line 1) and stabilise, +ϵ, to prevent weakly activated
features from being excessively scaled-up.

We then repeatedly self-attend within each separate class
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[1.00, 1.00, 1.00, 1.00, 1.00, 1.00]

n = 0

[1.00, 1.00, 1.00, 0.88, 0.76, 0.85]

n = 5

[1.00, 1.00, 1.00, 0.89, 0.80, 0.69]

n = 10

[1.00, 1.00, 1.00, 0.87, 0.78, 0.66]

n = 25

Figure 4: Feature values and attention coefficients during the feature-selection self-attention (n = {0, 5, 10, 25})
within a class of XOR3. Nodes depict examples of the support set: the colour of the left halves represents the active
features; the right halves represents the magnitude of the irrelevant features. Edge width and opacity indicate the
attention strength between a pair of nodes. The red, green, blue and white groups, different variants, automatically
segregate which preserves their active features while the irrelevant features converge, as shown in the feature scores
beneath each plot. In this way, the active features identify themselves.

k of the support set, using dot product attention with scale
τ , Xk ← DotAttn(Xk,Xk,Xk, τ). Self-attention maps el-
ements of a set of vectors to the interior of their convex hull.
If every member of a class has some feature in common,
the convex hull in that dimension is a point and the features
do not change. In the polythetic case it is patterns of fea-
tures that matter, and by attending more strongly between
elements of the support set with such feature-patterns, these
too are preserved. Figure 4, for example, shows polythetic
variations within a class of XOR3 with three active and
three irrelevant features (α = β = 3). The patterns in the
active features self-reinforce, forming cliques of strongly

r = 0

[0.78, 0.80, 0.87]

r = 2

[0.89, 0.88, 0.49]

r = 4

[1.06, 0.97, 0.23]

Figure 5: Feature vectors converging under iterated
self-attention on a XOR2 classification of vectors
uniformly sampled over the sphere, in 3D (top) and
down the z-axis (bottom). Colours indicate classes.
The vectors quickly align by xy-quadrant and the
variation in z is ‘washed-out,’ also seen in the feature
selection scores (mean-absolute-deviation) [x, y, z].

Algorithm 1 Self-attention feature scoring. Scores can be
used for rescaling or masking. Note that the z-normalisation
is over the entire support set whilst the self-attention is
within classes. The choice of dispersion measure is of sec-
ondary importance and discussed in the main text.

1: Input: Support set S = {xi, yi}i∈IS with class labels yi ∈
{1, . . . ,K} and features xi ∈ RF , Sk denoting the subset
of S containing all samples with yi = k and Xk ∈ R|Sk|×F

an arbitrarily ordered matrix of feature vectors belonging to
Sk; small numerical constant, ϵ; attention temperature, τ−1;
repetitions, R.

2: Output: Feature scores, f ∈ RF .
3: xi ← (xi − µX)/(σX + ϵ) {standardise}
4: for r ← 1 to R do
5: for k ← 1 to K do
6: Xk ← softmax(τXkX

T
k )Xk {softmax is row-wise}

7: end for
8: end for
9: f ← dispersion({xi}i∈Si ) {mean-absolute-deviation, std. dev etc.}

connected elements, whilst the irrelevant features decay.
This is also evident from Figure 5 in the XOR2 case, il-
lustrating how the feature vectors converge during iterated
self-attention. For instance the patterns in (x, y) coordinates
of each class in opposite quadrants are preserved, as vectors
in these quadrants reinforce each other, while variations
in z get diluted. We can measure the degree to which a
feature has been preserved with the dispersion. Features
are scored by their dispersion over the support set (Line 1)
which indicates how well they have been preserved through
the self-attention iterations, and thus how relevant they are.

The scores can be used directly to rescale features across
the support and query sets before applying the classifier,
as in Figure 6, or in top-k selection. We focus on rescaling
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Figure 6: Attention classification of the XOR4 problem over variant frequency, r, and number of inactive components
β. Increasing r assists feature selection, in agreement with the derived misclassification distribution. Soft feature-
selection rescales features according to their scores, as determined by the proposed self-attention procedure. This
greatly improves performance even at low repetitions, for example at 2 repetitions and 3 inactive components the
change in accuracy is +38pp. Neither method is effective at high β with low r.

as the method that makes the fewest assumptions about the
underlying classification, but using top-k is highly effective
when the number of active elements is known, as shown
in Appendix D.

5. Experiments
We compare the proposed method (FS) with Prototypical
Networks (PN) (Snell et al., 2017), a threshold classifier,
and Matching Networks (MN) (Vinyals et al., 2016), an at-
tentional classifier without feature-selection, in a sequence
of increasingly complex synthetic and real-world few-shot
learning problems. As our approach is non-parametric and
operates directly on high-level features, it is agnostic to the
choice of feature extractor, and we are free to choose as
appropriate e.g. a convolutional neural network for images
or a multi-layer perceptron for tabular data, and in all exper-
iments we use the same embedding model for all methods
(see experimental details in Appendix F).

Binary strings. We consider meta-learning Boolean
functions of n = α + β variables. Labels for inputs
x ∈ {−1, 1}n are generated by computing the XOR of a
random subset of components of size α. Each variation

in the active elements occurs 5 times in the support,
|S| = 5 · 2α. The subset of active components is unknown
to the meta-learner. Appendix I shows a concrete example
of an XOR2 task. Table 1 summarises the performances
of Prototypical Networks and our approach. PN accuracy
decreases sharply with sequence length n and the number of
embedding units required to effectively solve this problem
grows rapidly with n, as shown previously in Figure 3.
This suggests that PN are indeed learning pseudo-variables
and demonstrates the limitations of threshold classifiers in
solving polythetic problems.

Polythetic MNIST. We evaluate the ability of the models
to jointly extract high-level features and identify polythetic
patterns. We build tasks (episodes) using MNIST digits (Le-
Cun et al., 2010), where an example consists of 4 coloured
digits (RGB). An example task is illustrated in Figure 7 and
further details are provided in Appendix J. For monothetic
tasks, a single high-level feature (e.g. colour of the top-
right digit) distinguishes classes. For polythetic tasks, class
membership derives from XOR interactions over a subset of
features, and the remainder are problem-irrelevant. Table 2
shows the performances on three versions of the polythetic
MNIST dataset: clean (excluding non-discriminative dig-

Class: 0 Class: 0 Class: 0 Class: 0 Class: 0 Class: 0 Class: 1 Class: 1 Class: 1 Class: 1 Class: 1 Class: 1

Class: 1 Class: 1 Class: 1 Class: 1 Class: 1 Class: 1Class: 0 Class: 0 Class: 0 Class: 0 Class: 0 Class: 0

Figure 7: Example of an MNIST polythetic task. Examples from class 0 have either digit 1 (in any colour) in the
bottom-left corner with a red digit in the bottom-right corner (top row); or digit 6 in the bottom-left corner with a green
digit in the bottom-right (bottom row). Examples from class 1 can have either digit 1 in the bottom-left with a green
digit in the bottom-right (top row); or digit 6 in the bottom-left with a red digit in the bottom-right corner (bottom row).
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Table 1: Binary strings. Accuracy by embedding dimension for sequences of length n = 5 and n = 10. Mean and
standard error calculated over 1000 tasks.

n = 5 n = 10

Model Emb. XOR2 XOR3 XOR4 XOR2 XOR3 XOR4

PN

1 57.6± 0.5 55.3± 0.5 60.8± 0.7 51.7± 0.4 50.2± 0.2 50.1± 0.2
n 73.6± 0.5 70.3± 0.7 91.4± 0.4 56.7± 0.4 50.1± 0.2 50.4± 0.2
n2 90.4± 0.3 77.8± 0.7 100.0± 0.0 62.1± 0.4 50.3± 0.2 50.6± 0.2

FS+MN n 99.6± 0.2 100.0± 0.0 100.0± 0.0 75.9± 1.3 82.6± 1.1 96.3± 0.5

Table 2: Polythetic MNIST. Evaluation accuracy on monothetic and polythetic tasks in three settings. Mean and
standard error calculated over 1000 tasks.

Clean Colourless Full

Model Monothetic Polythetic Monothetic Polythetic Monothetic Polythetic

PN 97.9± 0.1 50.6± 0.3 92.8± 0.3 49.9± 0.3 94.5± 0.3 49.8± 0.2
MN 79.6± 0.6 57.6± 0.4 69.7± 0.4 61.0± 0.5 70.1± 0.7 56.6± 0.5

FS+MN 96.8± 0.1 98.3± 0.0 94.5± 0.2 98.0± 0.0 75.0± 0.7 60.4± 0.7

its), colourless (task-irrelevant digits but no colour), and
full (both task-irrelevant digits and colour). The models are
trained on monothetic tasks and evaluated both on mono-
thetic and polythetic tasks. Protonets excel at identifying
monothetic features and ignoring non-discriminative fea-
tures, but have a close to random performance on polythetic
tasks. Conversely, matching networks, which are polythetic
classifiers by default, are highly sensitive to task-irrelevant
features. The proposed approach (FS) can simultaneously
detect salient features and perform polythetic classifications.
Furthermore, as shown in Figure 8, we found our classi-
fier to be robust to the rate of polythetic tasks seen during
training in a second experiment.

Omniglot. The Omniglot dataset (Lake et al., 2011)
consists of handwritten characters from 50 writing systems
with 20 hand drawn examples of each character. Training
tasks are formed using examples from 30 of the alphabets
and test tasks draw from the other 20. We compare our
method to PN, MN, Infinite Mixture Prototypes (IMP)
(Allen et al., 2019), and MAML (Finn et al., 2017) with a
threshold classifier (Triantafillou et al., 2020). We train the
models for character recognition, and additionally evaluate
performance on 3-way alphabet recognition (inherently
polythetic). Our approach can be used in conjunction with
most few-shot learning approaches – we specifically apply
FS prior to MN and single-nearest-neighbours (NN), which
corresponds to MN with softmax converging to argmax (see
Appendix B). Table 3 shows the results of this experiment.
The end-to-end trained model (FS+MN) is competitive
with PN and IMP, while performing better than MN and
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Figure 8: Polythetic MNIST (colourless) by poly-
thetic proportion during training. FS matches or out-
performs the other models at all training proportions
and is far less affected by the training mix. Mean
and standard deviation over 1000 tasks at each pro-
portion.
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Table 3: Omniglot. 20-way, 5-shot characters; 3-way
alphabets. Mean and standard error on 1000 tasks.

Characters Alphabets

PN 98.6 ± 0.0 83.4 ± 0.3
MN 91.1 ± 0.1 78.4 ± 0.3
FS+MN 96.2 ± 0.0 94.2 ± 0.2
IMP 98.6 ± 0.0 96.0 ± 0.2
MAML 94.0 ± 0.1 89.9 ± 0.3

MN* 97.9 ± 0.1 81.3 ± 0.3
NN* 98.3 ± 0.0 95.7 ± 0.3
FS+MN* 98.1 ± 0.0 96.0 ± 0.2
FS+NN* 98.3 ± 0.0 96.0 ± 0.2

MAML in character recognition. In alphabet recognition,
FS+MN performs better than other methods, while being
competitive with IMP. We further evaluate the performance
when using a pre-trained feature extractor (methods marked
with *), obtained by training a PN threshold classifier on
character recognition. FS+MN* improves over MN* in
both tasks. Compared to PN, the accuracy of FS+MN* and
FS+NN* in character recognition is reduced by at most
0.5pp; yet improved in alphabet recognition by 12.6pp,
while performing similarly to the more complex IMP.

TieredImageNet. TieredImageNet (Ren et al., 2018) is a
subset of ILSVRC-12 (Russakovsky et al., 2015) with poly-
thetic characteristics, with classes grouped into categories
corresponding to higher-level nodes in the ImageNet hier-
archy. There are 34 categories of 10 to 30 classes each.
We compare our method (FS) to PN and MN classifiers.
We use a publicly available pre-trained ResNet-12 (Zhang
et al., 2020), pre-trained using the training classes in Tiered-
ImageNet, as the feature extractor for all models. Table 4
presents the aggregate accuracy while Table 5 shows the
head-to-head results of this experiment. FS leads to signifi-
cant improvements in performance (except C=8/G=5, where
the difference between PN and FS is not significant) in this
full scale, naturally polythetic problem, particularly in the
“more polythetic” case with 10 subgroups.

6. Related work
We characterise meta-learning approaches for few-shot clas-
sification. In addition to evaluating their ability to gener-
alise to unseen classes, we investigate how well they can
adapt to polythetic tasks (generalisation to unseen ways
of cateogorising). Adaptability in few-shot settings has
been studied through different paradigms such as: fast
weights (Ba et al., 2016); learnable plasticity (Miconi et al.,
2018); combining features obtained from different pre-
trained networks (Chowdhury et al., 2021) or learned from
different data sets (Dvornik et al., 2020); as well as meta-
learning. Recent work on meta-learning for few-shot classi-
fication includes approaches that are able to quickly adapt
through various mechanisms such as recurrent architec-
tures (Santoro et al., 2016; Mishra et al., 2018) for learning
parameter updates (Ravi & Larochelle, 2017). Other more
general optimisation-based approaches (Finn et al., 2017;
Nichol et al., 2018; Rusu et al., 2019), tackle these tasks by
explicitly optimising the model’s parameters. These, how-
ever, are typically model-agnostic and commonly used in
conjunction with threshold classifiers (Triantafillou et al.,
2020), inheriting their limitations in a polythetic scenarios.

Our work aligns more closely with metric-learning ap-
proaches for few-shot classification (Chen et al., 2019) that
apply distance functions between queries and the support
in a common embedding space (Vinyals et al., 2016; Snell
et al., 2017; Sung et al., 2018; Allen et al., 2019; Oreshkin
et al., 2018; Zhang et al., 2020). Methods that construct
class-wise prototypes from the support (Snell et al., 2017;
Ren et al., 2018; Allen et al., 2019) can successfully tackle
monothetic tasks, but can struggle with task-adaptiveness in
a polythetic context. Attentional meta-classifiers (Vinyals
et al., 2016; Kim et al., 2019; Hou et al., 2019; Jiang et al.,
2020) adapt to polythetic tasks but lack crucial mechanisms
for focusing exclusively on relevant features. Tian et al.
(2020) investigate this issue of attentional meta-classifiers
through the prism of knowledge distillation (Hinton et al.,
2015), where an additional model is sequentially distilled
from the original embedding model, leading to better, and
arguably more relevant features. The authors show that
such an approach, coupled with an attentional classification

Table 4: TieredImageNet. Model accuracy by
categories (C) and groups (G) over 500 tasks.

G C = 2 C = 4 C = 8

5
FS 83.5 ± 0.3 66.4 ± 0.3 48.9 ± 0.2
MN 82.7 ± 0.4 65.4 ± 0.3 48.3 ± 0.2
PN 81.4 ± 0.3 64.6 ± 0.3 49.4 ± 0.1

10
FS 83.6 ± 0.3 65.8 ± 0.3 48.7 ± 0.1
MN 82.9 ± 0.3 64.9 ± 0.3 48.0 ± 0.1
PN 81.1 ± 0.3 63.3 ± 0.3 48.2 ± 0.1

Table 5: TieredImageNet. Head-to-head comparison over 500
tasks by categories (C) and subgroups (G). Bold indicates
significance at the p < 0.001 level.

C = 2 C = 4 C = 8

G X Y X / Y (tie) X / Y (tie) X / Y (tie)

5 FS MN 230 / 162 (108) 329 / 101 (70) 343 / 113 (44)
FS PN 319 / 136 (45) 339 / 142 (19) 239 / 247 (14)

10 FS MN 258 / 185 (57) 357 / 108 (35) 413 / 68 (19)
FS PN 374 / 101 (25) 396 / 99 (5) 296 / 191 (13)
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mechanism such as nearest neighbours (or cosine-similarity
classifier) leads to improvements over the non-distilled mod-
els. This approach is, in principle, similar to ours, and in
terms of performance, inline with our findings (FS + NN∗

in Table 3). However, unlike Tian et al. (2020), we investi-
gate polythetic tasks in addition to monothetic, and more im-
portantly we do not rely on learning additional models, but
rather employ a self-attention mechanism for feature selec-
tion, to a similar effect. In this context, our work is remotely
related to Škrlj et al. (2020), which analyse self-attention
mechanisms for obtaining feature importance estimates, but
their scope and applications differ significantly from ours.

Attending over datapoints has been considered previously.
Luong et al. (2015) introduced dot-product attention in the
context of attending over sequences. Vinyals et al. (2016)
considered ŷ =

∑
i∈IS

a(x̂, xi)yi and provided the condi-
tions under which such a model carries out kernel density
estimation or k-nearest-neighbours classification. Vaswani
et al. (2017) used explicit scaling in hidden attention lay-
ers, but scaling a classifying softmax by a temperature pa-
rameter dates to the work of Boltzmann and later Gibbs
(1902). Plötz & Roth (2018) note that their neural-nearest-
neighbours (N3) block recovers a soft-attention weighting
when the number of neighbours is set to 1, and deploy their
model on an outlier-detection set-reasoning task.

7. Conclusion
In this work we have articulated the difference between
monothetic and polythetic classifications and considered
the limitations of standard meta-learning classifiers in the
polythetic case. We have shown that threshold classifiers
require an embedding space that is exponential in the num-
ber of active features and that attentional classifiers are
overly sensitive and susceptible to misclassification. To
address this, we have proposed an attention based method
for feature-selection and demonstrated the effectiveness of
our approach in several synthetic and real-world few-shot
learning problems. Our approach is simple and can be used
in conjunction with most few-shot meta-learners. We expect
polythetic meta-learners to find real-world application in
domains where data is typically scarce and complex, such
as healthcare or bioinformatics. For example, we envision
a use in classifying rare diseases from DNA sequences –
there are around 7000 rare diseases, affecting ∼1/17 of the
worldwide population, where mutations often lead to dif-
ferent phenotypes. In such scenarios, few-shot learning
approaches able to generalise over unseen combinations of
mutations (i.e. ways of categorising), in a similar vein to our
binary strings experiment, may lead to better performance
in diagnosing rare diseases and shed new insights into their
molecular mechanisms.

Reproducibility
The code is available at https://github.com/
rvinas/polythetic_metalearning. The descrip-
tions of the experimental setups are provided in Section 5
and Appendices F, G, I and J. An illustrative description
of our method, discussed in Section 4, is provided in
Appendix H.
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Oreshkin, B. N., López, P. R., and Lacoste, A. TADAM:
task dependent adaptive metric for improved few-shot
learning. In Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, December 3-8,
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A. Partitioned XOR performances
We hypothesise that, in order to solve polythetic tasks, prototypical networks need to create pseudo-variables in the
embedding space (e.g. XOR for each pair of components for binary strings tasks). To test this, we train a prototypical
network on binary strings tasks (where pairs of active components are always chosen from the 5 first components) and
evaluate the performance on unseen combinations of components (i.e. combinations of the 5 first components not seen
during training). Table 6 shows the accuracies for sequences of length n = 5 + β (where β is the number of variables
that are always inactive). We attribute the better-than-chance performances (i.e. for 100-dimensional embeddings) to the
high-dimensionality of the embeddings – by chance, large numbers of non-linear features (e.g. output by a random feature
extractor) will include some features that are useful for the task of interest (i.e. similar to extreme learning machines).
Overall, these results highlight the inability of prototypical networks to generalise to unseen combinations and support our
hypothesis.

Table 6: Accuracy of prototypical networks on unseen non-threshold functions by embedding dimension. We use
sequences of length n = 5+β, where β is the number of components that are always inactive. The labels are derived
from XOR2 combinations over the first 5 components and the sets of combinations seen at train and test times are
disjoint. In other words, the combinations of variables (0, 1), (0, 2), (1, 3), (2, 4), (3, 4) are only seen active at train
time, whereas, the combinations (0, 3), (0, 4), (1, 2), (1, 4), (2, 3) are only seen at test time, with r = 5 repetitions
for each XOR combination. Each of the 5 first variables has the same expected frequency of being active at train
and test times. The inability to generalise in this scenario suggests that protonets need pseudo-variables (i.e. XOR
functions applied to each pair of components) to solve the binary strings task.

Emb. β = 0 β = 1 β = 2

1 48.741± 0.276 48.855± 0.282 49.558± 0.284
10 50.350± 0.282 49.397± 0.286 49.479± 0.265
20 50.705± 0.271 51.057± 0.247 50.144± 0.255
100 52.246± 0.256 52.390± 0.265 52.573± 0.258

B. Temperature in attention classification
The softmax in attention mechanisms permits a temperature scaling that interpolates between argmax and uniform (and
argmin.) This is controlled by T = 1

β , as

softmaxi(x, β) =
exp(βxi)∑
j exp(βxj)

with softmax converging to argmax as β →∞, and to uniform (i.e. all elements equal to the reciprocal of the length of the
vector) as β → 0.

For attention classifiers, a decrease in temperature increases the model confidence and can cause decision boundaries to
move. As β →∞ and the softmax converges to argmax, the classifier tends to the single nearest neighbour classification
scheme; for β = 0 the classifier returns the support set class balance. For Boolean functions, changes in temperature
effect the degree to which decision boundaries are axis-aligned. For example, Figure 2 shows the decision boundary for
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Figure 9: Changes in confidence and decision boundary of the attention classifier with temperature for AND(x, y).

f(x, y) = AND(x, y) using a softmax temperature of 1 at y = − 1
2 ln (tanhx), which we derive as

p(class 1) = p(class 0)

exp
(
β(x+ y)

)∑
exp(...)

=
exp

(
β(−x− y)

)
+ exp

(
β(−x+ y)

)
+ exp

(
β(x− y)

)∑
exp(...)

exp
(
β(x+ y)

)
− exp

(
−β(x+ y)

)
= exp

(
β(−x+ y)

)
+ exp

(
β(x− y)

)
sinh(β(x+ y)) = cosh(β(x− y))

sinh(βx)
(
cosh(βy) + sinh(βy)

)
= cosh(βx)

(
cosh(βy)− sinh(βy)

)
tanh(βx) =

cosh(βy) + sinh(βy)

cosh(βy)− sinh(βy)

tanh(βx) = exp(−2βy)

y = − 1

2β
ln
(
tanh (βx)

)
.

The effect of decreasing the temperature on the decision boundary is shown in Figure 9.

C. Misclassification distribution full derivation
We first present a more detailed derivation for the case of dot-product attention. We will make repeated use of the Binomial
theorem

(x+ y)n =

n∑
k=0

(
n

k

)
xn−kyk =

n∑
k=0

(
n

k

)
xkyn−k. (7)

Recall that we consider classifications over binary feature vectors x ∈ {−1, 1}n, with the class determined by XORα over
α elements with the remaining β = n− α being irrelevant. Assume each of the 2α variations of the active elements are
present with equal frequency, r, for a support set S of size |S| = r2α, and that the remaining β elements follow a Bernoulli
distribution with probability p. There are

(
α
δ

)
strings over the active elements that differ from a given example in δ positions.

XOR flips the classification with each difference, so if δ is even the class is the same, if δ is odd the class is different (parity).

The class is determined by the sign of the sum of contributions at an even distance subtract those at an odd distance. Putting
those into a single sum we have

class = sign

 α∑
δ=0

r(−1)δ
(
α

δ

)
exp (α− 2δ)

. (8)

We can factor out the number of repetitions, r, and as it is positive it doesn’t change the sign. We can then rearrange to
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match the Binomial theorem form and recover the form in the main text:

class = sign

 α∑
δ=0

(
α

δ

)
eα−δ

(−1
e

)δ
 = sign

((
e− e−1

)α)
= +. (9)

Next we give the Binomial distribution of the irrelevant feature contribution as 2B(β, p̄) − β with p̄ = p2 − (1 − p)2 =
2p2−2p+1. Something that is important to the behaviour of the mean and variance later, and breaks the usual symmetry of p
and q = (1−p), is that p̄ ≥ 0.5 and is quadratic in p defined by the three points (p, p̄) = {(0, 1), (0.5, 0.5), (1, 1)}. q̄ has the
usual definition 1− p̄, so q̄ ≤ 0.5 and so on. The contribution at a difference δ is then X(δ) ∼ exp (α− 2δ + 2B(β, p̄)− β).
The expectation is computed in the usual way

E[X(δ)] =
∑
i

P(X = xi)xi =

β∑
b=0

P(B(β, p̄) = b) exp (α− 2δ + 2b− β)

= exp (α− 2δ)

β∑
b=0

(
β

b

)
p̄bq̄(β−b) exp (2b− β)

= exp (α− 2δ)

β∑
b=0

(
β

b

)
(p̄e)b(q̄e−1)β−b = exp (α− 2δ)

(
p̄e+ q̄e−1

)β
.

Finding the variance in the traditional way, Var[X(δ)] = E[X(δ)2]− E[X(δ)]2, first E[X(δ)2] following the derivation for
E[X(δ)]:

E[X(δ)2] =
∑
i

P(X = xi)x
2
i =

β∑
b=0

P(B(β, p̄) = b) exp (2α− 4δ + 4b− 2β) (10)

= exp (2α− 4δ)

β∑
b=0

(
β

b

)
p̄bq̄(β−b) exp (4b− 2β) (11)

= exp (2α− 4δ)
(
p̄e2 + q̄e−2

)β
. (12)

From this we can write the variance

Var[X(δ)] = exp (2α− 4δ)

((
p̄e2 + q̄e−2

)β
−
(
p̄e+ q̄e−1

)2β)
. (13)

Next we want to find the expectation of the sum of the contributions at each difference δ. As pointed out there are
(
α
δ

)
many strings at a difference of δ. We apply E[

∑
i Xi] =

∑
i E[Xi] and Var[X− Y] = Var[X] + Var[Y], and, remembering

to change the sign with each increase in δ,

E
[∑

i∈S(−1)δiX(δi)
]
=

α∑
δ=0

r(−1)δ
(
α

δ

)
E[X(δ)] (14)

= r
(
p̄e2 + q̄e−2

)β α∑
δ=0

(
α

δ

)
e(α−δ)

(−1
e

)δ

(15)

= r
(
p̄e2 + q̄e−2

)β (
e− e−1

)α
, (16)

and

Var
[∑

i∈S(−1)δiX(δi)
]
= Var

[∑
i∈S X(δi)

]
=

α∑
δ=0

r

(
α

δ

)
Var[X(δ)] (17)

= r

((
p̄e2 + q̄e−2

)β
−
(
p̄e+ q̄e−1

)2β) α∑
δ=0

(
α

δ

)(
e2
)α−δ (

e−2
)δ

(18)

= r

((
p̄e2 + q̄e−2

)β
−
(
p̄e+ q̄e−1

)2β)
(e2 + e−2)α. (19)
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C.1. Different attention mechanisms

For dot-product and cosine-similarity attention, ‘angular’ difference mechanisms, we use (+,−) to encode the input
variables. This is because we want the score to be greater when the variables are the same and lesser when they are opposed
(if we were to use (1, 0) we’d have 0× 0 ̸= 1× 1 and 0× 1 = 0× 0). With these methods we get

fdot(δ) = α− 2δ, (20)

fcos(δ) = 1− 2δ

α
. (21)

The change for cosine-similarity introduces a factor of exp (1/α) to the mean and exp (2/α) to the variance, and the overall
picture doesn’t change

E
[∑

i∈S(−1)δiXcos(δi)
]
= r

(
p̄e2 + q̄e−2

)β (
e
1/α − e

− 1/α
)α

(22)

Var
[∑

i∈S(−1)δiXcos(δi)
]
= r

((
p̄e2 + q̄e−2

)β
−
(
p̄e+ q̄e−1

)2β)(
e
2/α + e

− 2/α
)α

. (23)

For squared Euclidean distance attention (which coincides with the ‘Laplace attention’ L1 norm in this encoding), if we
encode the inputs as (1, 0) we get fL2(δ) = −(

√
δ)2 = −δ, introducing a factor of exp (−α) to the mean and exp (−2α)

to the variance, which also doesn’t change the overall picture.



Attentional Meta-learners for Few-shot Polythetic Classification

D. Top-k feature selection
Top-k feature selection masks out all but the k highest scoring features. That is x←m⊙ x with

mi =

{
1 if rank(s)i ≤ k

0 otherwise
(24)

As compared to soft feature selection which rescales as x← s⊙ x, or x← s′ ⊙ x with normalised s′.
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0.56 0.63 0.70 0.76 0.81 0.85 0.88 0.90 0.91 0.93
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with soft feature selection
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with top-k selection (k = 4)
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Figure 10: Comparing soft and top-k feature selection in the same setting as Figure 6: classification of XOR4 over
variant frequency, r, and number of inactive components β. Examples of a variant satisfy the XOR in the same way,
i.e. the active components are equal, but may not have the same inactive components. The top-k version uses a binary
mask to leave the k highest scoring features unchanged and zeroing the rest. This produces significant improvements
over even the soft feature selection method at high values of β, but requires knowledge of the number of active
elements.
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E. Convergence of feature vectors across self-attention iterations
Figure 11 illustrates how feature vectors converge on the XOR2 task across self-attention iterations of the feature selection
mechanism.

r = 0

[0.78, 0.80, 0.87]

r = 1

[0.81, 0.83, 0.67]

r = 2

[0.89, 0.88, 0.49]

r = 3

[0.99, 0.94, 0.31]

r = 4

[1.06, 0.97, 0.23]

Figure 11: Feature vectors converging under iterated self-attention on a XOR2 classification of vectors uniformly
sampled over the sphere, in 3D (top) and down the z-axis (bottom). Colours indicate classes. The vectors quickly
align by xy-quadrant and the variation in z is ‘washed-out,’ also seen in the feature selection scores (mean-absolute-
deviation) [x, y, z].

F. Experimental details
We use the same feature extractor architecture and train loop for all the baselines.

Feature extractor. We leverage a convolutional neural network with 4 blocks as a feature extractor. Each block consists of
a convolutional layer (64 output channels and 3× 3 filters), followed by batch normalisation (momentum 0.01), a ReLU
activation, and 2× 2 max pooling:

Conv2d(64, 3× 3)→ BN→ ReLU→ MaxPool(2× 2)

Then, we flatten the output and apply a linear layer to map the data into a 64-dimensional embedding space (unless otherwise
stated). As explained in the main manuscript, each method then manipulates these embeddings in different way.

Train loop. We train all models in an episodic manner. At each training iteration, we follow these steps:

• First, we sample task-specific support and query sets. For polythetic MNIST, the support set has 96 samples (2 classes,
2 groups per class, and 24 group-specific examples per group). The query set consists of 32 samples (2 classes, 2
groups per class, and 8 group-specific examples per group). For Omniglot, the support set consists of 5 examples for
20 classes (20-way, 5 shot). The query set consists of 15 examples per class.

• Second, we compute embeddings using the feature extractor and produce class probabilities for the query points. The
way in which these probabilities are computed depends on the method (e.g. attentional classification for matching
networks or softmax over prototype distances for prototypical networks).

• Finally, we compute the cross entropy for the query examples and optimise the feature extractor via gradient descent.
We employ an Adam optimise with learning rate 0.001.

We train the models for 10,000 iterations (i.e. tasks) for all experiments, except for full polythetic MNIST (100,000 tasks).
We then compute the performances on a held-out dataset and average the results across 1,000 tasks.
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G. Multi-categorical pre-training
In this experiment we first train a classifier in the multi-categorical setting for the full polythetic MNIST task. In this case
there are no task-irrelevant digits or colours as the label describes all four digits with their colours: there are four 10-way
labels for the digits (∈ R4×10) and four 3-way labels for the colours (∈ R4×3) for a combined multi-hot output vector ∈ R52.
The model architectures match that used in the other experiments, see Appendix F, other than using a variation of the MLP
head that takes the flattened output from the convolutional network. The variation has two hidden layers with 512 units
each and ReLU activations, before linear layers with softmaxes for each of the label heads. The model is pre-trained over
800 batches of 16 examples drawn at random from the label combinations. In the multi-categorical pre-training, the model
achieved a validation accuracy of 95.6% on the digit labels and 100% on the colour labels over 1600 validation examples.

The pre-trained model was then used with prototypical and attentional classifiers in the polythetic MNIST few-shot
classification setting discussed in Section 5 and detailed further in Appendix F. We compared performance using the
multi-headed softmax activations the model was pre-trained with and an elementwise sigmoid for both the monothetic and
polythetic settings. The results are presented in Table 7, and conform to the trend we see in other experiments: threshold
classification has the advantage in monothetic tasks but perform no better than chance for polythetic tasks. Attentional
classifiers are weaker in the monothetic setting, but more than make up for this defeict in the polythetic setting.

Table 7: Polythetic MNIST problem with multicategorical pre-training. Mean over 1000 tasks.

Softmax Sigmoid

Model Monothetic Polythetic Monothetic Polythetic

Proto. 97.95 50.18 94.64 50.21
Attn. 93.48 93.40 88.16 86.24
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H. An illustrative example of the method
Figure 12 provides a more comprehensive overview of the proposed method. In this example, we are interested in
distinguishing between big-cats and equids (horses, donkeys, and in the case zebra). We first extract features from all
samples in the support and query sets. Here, we imagine these features as corresponding to some general ‘cat’ properties,
patterns (such as stripes, dots etc.) and general ‘equid’ properties. Next (as presented in lines 2 : 4 in Algorithm 1), we
perform repeated self-attention with respect to the separate classes of the support set, which yields updated features for each
support sample.

We then aggregate the resulting support features with an appropriate dispersion metric, e.g. mean absolute deviation or
standard deviation, (line 5 in Algorithm 1) to obtain a vector of feature scores. These scores quantify the relevance of
each feature in a given task. Next, we rescale both the query and (initial) support features, i.e. multiplying by the feature
scores, to dilute the task-irrelevant and (potentially) misleading features. In this particular example, this would correspond
to diluting the ‘patterns’ feature, since it is irrelevant when distinguishing between cats and equids. Finally, we produce
class probabilities via an attentional classifier.

Figure 12: Diagram of the proposed approach. Note how the misleading features of stripes and spots, which may
cause misclassification, are diluted through the feature selection process.
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I. Construction of binary strings tasks
For binary strings tasks, we construct training tasks by sampling |S| = 5 · 2α support examples and |Q| = 5 · 2α query
examples. Each example consists of α + β bits. The location of the α active bits is completely random and consistent
between the support and query sets within the same task. The labels are computed as the XOR over the α active components.
The remaining β noisy components are randomly sampled from a Bernoulli distribution with protability 0.5. Figure 13
shows an example of a binary strings task with α = 2 active components, β = 3 noisy bits, and r = 1 repetitions.

Support set
−−−+− → −
+−−−+ → +

+++−− → +

−++−+ → −

Query set
++−−− → −
−+−++ → +

−+++− → +

−−+++ → −

Figure 13: Example of an XORα task with α = 2 active components (3rd and 5th bits), β = 3 noisy bits, and r = 1
repetitions for each combination of active components. The support and query sets contain r2α examples each.

J. Construction of polythetic MNIST tasks
For polythetic MNIST tasks, the support set consists of 96 samples, with 48 samples for class 0 and 48 samples for class 1.
Each class is further divided into 2 groups of 24 samples and each group is defined by a specific set of traits. The groups are
complementary between classes, e.g. red ones and blue zeros for class 0; and blue ones and red zeros for class 1. The set
of traits is sampled randomly for each task. The query set is sampled in the same manner, with 2 groups per class and 8
samples per group. Tables 8 and 9 summarise the details of the support and query sets and Figures 14, 15, and 16 show the
whole support set for the clean, colourless, and full versions of polythetic MNIST.

|S| = 96 Examples Groups Examples per group Example of groups

Class 0 48 2 24 green ones and blue threes
Class 1 48 2 24 blue ones and green threes

Table 8: Support set details

|Q| = 32 Examples Groups Examples per group Example of groups

Class 0 16 2 8 green ones and blue threes
Class 1 16 2 8 blue ones and green threes

Table 9: Query set details
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Figure 14: Example of the support set for a polythetic MNIST task (clean).
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Figure 15: Example of the support set for a polythetic MNIST task (colourless).



Attentional Meta-learners for Few-shot Polythetic Classification

Figure 16: Example of the support set for a polythetic MNIST task (full).


