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Abstract This chapter introduces a framework of disturbance rejection controller
for discrete-time Run-to-Run (R2R) control system in semiconductor manufacturing
environments. While we discussed the source of uncertainty and disturbance in wafer
fabrication process, the photolithography process as one of the cutting-edge steps
in wafer fabrication is selected for illustrating the power of disturbance rejection
algorithm for compensating the misalignment. Along with this case study, some
classification of disturbance rejection control algorithm with the structure of control
plant is discussed.

13.1 Introduction

As society explores the Fourth Industrial revolution characterized by access to and
leveraging of knowledge in the manufacturing enterprise, a meticulous and intelligent
process control is needed to achieve higher throughput and customer satisfaction [31].
Controlling a complex system is challenging because the process components and
variables operate autonomously and interoperate with other manufacturing segments.
The immense in manufacturing complexity causes the several sources of measurable
and unmeasurable uncertainties such as disturbance. This chapter aims to tackle the
disturbances in feedback control operation in semiconductor production process by
engaging the disturbance rejection models into the system.
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The objective of this work is to introduce readers the traditional and novel distur-
bance rejection systems for controlling the semiconductor manufacturing process.
The paper then emphasizes on design and structure of control system with R2R
architecture. It covers the technological foundations of feedback control system and
addresses current threats faced by process engineers for handling the uncertainty of
controlling the semiconductor production process along with existing state-of-the-art
solutions for building up the disturbance-free optimization models. The topic will
discuss from the perspectives of both practical implementations in the industry and
cutting-edge academic research to provide a holistic mindset for process engineers
and quality managers in industry, in addition to researchers and educators in the
design and manufacturing communities.

The scope of this study is to build essential knowledge around control process in
the semiconductor industry, the R2R control system and the disturbance rejection
model, and other essentials. However, we are focusing almost exclusively on issues
relevant to designing, constructing, and adapting the various disturbance rejection
(free) control system for semiconductor manufacturing based on R2R control struc-
ture and optimization algorithm.

The remainder of this study is organized as follows, Section 13.2, introduces the
structure of R2R feedback control system in the semiconductor industry. Section
13.3 discusses the source of uncertainties in wafer fabrication process. Section 13.4
introduces the design of disturbance rejection controllers including the structure of
closed-loop system and algorithm of adaptive and robust control systems. Section
13.5, illustrates the control process of Photolithography process as one of the cutting-
edge steps in wafer manufacturing and the case study of overlay error. The main chal-
lenges in Photolithography control process will discuss, and the result of reinforce-
ment learning disturbance rejection model with traditional Exponentially Weighted
Moving Average (EWMA) model will compare for further interpretation. Section
13.6, concludes the paper.

13.2 Run-to-Run Control System

The R2R control is one of the general controlling techniques in semiconductor man-
ufacturing [38]. The primary objective of R2R control is variability reduction of the
process through the shrinking the process output error. R2R control has been exten-
sively adapted to analyze a variety of challenges in the process control of complex
semiconductor manufacturing.

R2R control consists of two major steps:

1. building a linear regression model based on offline experiments between the input
variable(s) u, and the output or response variable(s) y;.

2. estimating the process variable on online experiments, while the offline model
based on the observed process and data is continuously updated and determine
the control action (tuning the online model).
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In semiconductor manufacturing, the number of runs for a specific product, recipe,
chamber, and tool is small and collecting enough observations to fit and eventually
use a model for control purposes is impossible [28]. Therefore, the control process is
required the online estimation and tuning to predict the parameter setting of controller.
In this case, at each machine’s utilization time (in brief called run), the updated model
is used to compute the control action.

Consider a single-input-single-output (SISO) control system, the basic assump-
tion in the first step of R2R control is that the process exhibits static. This means that
the output variable y, at run ¢ depends only on the input variable u,_; at the end of
run ¢ — 1 (when the inputs variable u,_; or process output y,_; at run  — 1 has an
effect on y, the process exhibits dynamics).! The next assumption in the first step of
R2R is that the process is modeled by fitting (optimizing) to the simple first-order
linear process of the form

yi=a+Bu_ +¢ (13.1)

where o and B are process intercept and gain (slope) parameters, &; is a white noise
error.

After optimization within the first step, the second step tries to maintain the process
variables as close as possible to the optimum (target) value. In R2R control system
usually, EWMA filter is used for predicting error and feedback signal. The optimal
control action for reaching the desired target T value for the process (13.1) is

. T—u

= . 13.2
uj Bo ( )

where oy and Sy are the initial values of o and S, respectively. Due to dynamic
behavior of semiconductor industry, the basic assumption in R2R control is to having
a time-varying (dynamic) intercept, «. Therefore, resulting from Eq. (13.2), the
control action computes from predicted response value y, = a,_ + bit;_y, where
b= ,é as the gain of slope parameter estimates offline and a; = &4, computes
recursively based on the EWMA equation

ar = A — bit—1) + (1 = Mar—1. (13.3)

where A is EWMA weighting. Figure 13.1 illustrates a block diagram of the general
structure of an R2R controller. R2R controller consists of two major steps. First, at
each run, a linear regression model is built to estimate the output measurement (inner
loop in Fig. 13.1). The estimated model by inner loop is continuously updated and
tuned based on output measurement data by the outer loop performing as a supervisor
of the inner loop. In fact the outer loop takes post-process measurements and gives
a control action for each run.

I'Static model: ¥yt = F(u;—1); Dynamic model: y; = F (y;—1, u;—1).
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Fig. 13.1 Supervisory Run-to-Run controller

The EWMA controller is the most preferred design in R2R control. However,
EWMA controller has several limitations. Some of the underlying limitations of
EWMA include

e dependency on maximum likelihood estimation (MLE) of optimal decay factor,
e dependency on limited control action by fixed filtering parameters,

e dependency on multiple filtering steps,

e inefficiency to deal with the large-scale disturbance of the real-world system.

On the other hand, the traditional EWMA controller cannot satisfy the demand for
high-mixed manufacturing process. Therefore, EWMA controller is not the best
choice for applying in real-world case studies [29].

13.3 The Source of Disturbance in Semiconductor Industry

In wafer fabrication process, the growth or expansion of uncertainty about the health
of processes and products often leads to major scrap events [28]. Thousands of
products can be scrapped and generate a major production disturbance. Therefore,
quality controls are required to take place at every stage of the production line, for
protecting manufacturing systems from tool drift.

Industrial process models need to be identified and estimated from operating data
and therefore encompass some level of uncertainty. Process variation can be caused
by unmeasured disturbances (apparent in statistical models as random errors) or
result from the uncertainty in model parameters, which are estimated from the data.
In addition to these sources of variation, some process disturbances can be measured.
However, the measured disturbances, such as process delay, are uncontrollable during
actual production. Ambient temperatures and raw material variations can count as
two typical examples of noise variables, which are encountered in manufacturing.
Roughly speaking, uncertainty is divided into two categories:
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e uncertainty in model parameters,
e uncertainty in noise variables.

Therefore, when considering a state-space system, the equation for predicting the
system output, concerning the system noise and disturbance, is described as follows:

Xip1 = C1x; + Couy + d; (13.4)

Yir1 = C3xey1 + &
where d, is process disturbance, x; is states vector in state-space model for run # and
Cy, Gy, and C3 are coefficient matrices in state-space model, and y;, u;—; and ¢, are
the same as (13.1).

Several studies have been implemented to reduce the effect of uncertainty on
the performance of the control system. However, providing a robust solution to
deal with both online variabilities of uncontrollable noise, and uncertainty in model
parameters, is still an interesting and challenging research topic. Figure 13.1, merged
the dynamic control system by uncertainties such as measurement noise, disturbance,
process delay, and measurement delay.

13.3.1 Process Disturbance

Knowing the basics of system disturbances will assist control systems in the identi-
fication and controlling of such disturbances, which are representative of unusable
parts of the actual value produced from any closed-loop system. Therefore, the effi-
cient manner to avoid, and eliminate disturbances in the systems, is to use system
feedback. The feedback loop assists to enable the control system to monitor the
disturbances and processing system, to reduce, minimize, or eliminate disturbances,
and achieve a state of stability in the system.

An integrated moving average (IMA(1, 1)) disturbance model, is widely
employed in the control of discrete-part manufacturing processes [33]. Consider
a process operates in closed-loop under a feedback control system. Feedback control
can be employed to minimize the variability of outputs caused by invisible dis-
turbances. In contrast, feedforward control can be used to decrease the influence
of uncontrollable variables that have been measured, and which influence process
variability. Sometimes, the prior knowledge as a form of Bayesian information can
proceed to demonstrate the closed-loop identification.
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13.3.2 Process Noise

In manufacturing processes, there are frequently, observable disturbances that can be
measured during operations. Observable, but uncontrollable variables, are referred
to as noise variables in process optimization literature.

Noise is an outcome of using sensor technologies or measuring process variables.
Concerning electrical sensors and signals, measurement noise is often produced
due to interaction with other electrical sources. Also, some physical blocking can
affect sensors, resulting in incorrect signals being detected by the controller. In a
typical process control situation, a proportional-integral-derivative (PID) controller
can make corrective actions by reducing the proportion of the error between the
process variable and the setpoint, combined with the integral and derivative, of that
difference. The derivative action is most often affected by noise and disturbances.

In statistical process optimization literature, the statistical inference solutions are
widely applied offline and are therefore not able to process adjustment methods, so
that different controllable variable settings can be recommended, which are depen-
dent on online noise variables and measured during production.

13.3.3 Stochastic Process Delay

The implementation of advanced process control (APC) in semiconductor manufac-
turing, blended with an inherent problem known as metrology delay which adversely
affects R2R control performance.

Due to the need for the provision of rapid feedback to the process control, the lack
of real-time metrology data causes extensive limitations in the R2R control. Most
semiconductor manufacturing processes suffer from issues caused by metrology
delays due to the time needed for measurements, metrology capacity, and the waiting
time in the wafer queue between the processing tool and the metrology station [18].
The stability and performance of the process will be affected by the metrology delay.
Moreover, since quality measurements perform online, the delay would not be fixed
but flows stochastically. Several other phenomena make sever disturbance including
the delay of proceeding because of bottleneck tools/processes in the system.

Thus far, numerous researches have been done in the semiconductor industry, to
study on methods to reduce the effects of infrequent measurements and extensive
metrology delays [16, 17, 51, 52, 55]. Virtual Metrology (VM) is deemed as the
most popular technique and is a potential solution for overcoming these difficulties
[34, 53].
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13.4 Design of Disturbance Rejection Control System

13.4.1 Structure of Disturbance Rejection Control Systems

The closed-loop control design is the best-suited design for disturbance rejection
controllers.

Consider a simple feedback controller in closed-loop mode. When a disturbance
added to the system, the process variable will begin to change according to the
magnitude of the load and physical characteristics of the process. However, a simple
feedback controller cannot determine how the process reacts to a disturbance, because
the process response to disturbance is faster than its response to setpoint change. (See
the simple closed loop operations diagram in Fig. 13.2).

Regards to the dependency of the closed-loop controller to the feedback signal,
this question may come to mind “what happens to the stability of system when
the feedback is inadequate?” This problem can be solved when the controller can
be equipped with setpoint-filtering. The setpoint-filtering allows that mathematical
inertia to minimize the distance between the setpoint and output variable. (See the
Closed-Loop operations diagram in Fig. 13.3).

13.4.2 Algorithms for Disturbance Rejection Control System

In control system, the algorithm mainly classifies into robust and adaptive controllers.
Robust systems are expected to work well with plants which change their characteris-
tics along time, or in noisy environments and have fixed control parameters. However,
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Table 13.1 Categories of feedback adaptive and robust control

Adaptive control Robust control

Optimal dual controllers [24] Sliding mode control [49]

Suboptimal dual controllers [1] Variable structure control [4, 45]
Adaptive pole placement [9] Linear—quadratic—Gaussian control [47]
Extremum-seeking controllers [46] Active Disturbance Rejection Control [26]
Iterative learning control [3] Passivity based control [39]

Gain scheduling [42] Lyapunov based control [22]

Model reference adaptive controllers [10] Quantitative feedback theory [41]

Model identification adaptive controllers [43] | Tracking differentiator [20]

Multiple models [25, 54] Extended state observer [21]

it is implied that those changes are somewhat bounded and the closed-loop system
which encompasses the fixed robust controller presents stability, controllability, and
observability.

But in scenarios where the changes in the plant are extensive, often it is not
possible to design a robust controller with a fixed parameter. In this case, one uses an
adaptive controller whose parameters change with time and tracks the changes in the
plant, with the goal of designing a system which performs by the design constraints.

In other words, an adaptive controller has to adapt to unknown uncertainties while
a robust controller has to work within a compact set known a priori of uncertainties.
The goal of an adaptive controller is to estimate unknown parameters first, usually
online, and then derive the control law, while the purpose of a robust controller is
to formulate a control law, usually based on worst case scenario, so that the con-
troller works for the whole range of norm-bounded disturbance, without changing
the control law.

Therefore, an adaptive controller adapts to the changes in its environment and
modifies the control law based on the same information, while a robust controller
provides a control law that is guaranteed to work throughout the norm-bounded
disturbance range, without ever changing the control law.

Adaptive and robust control comes in many variants some of them along with
some references are summarized in Table 13.1.

Adaptive or robust control methods are less successful when facing dynamicity
(i.e., unbounded noise, change in environmental setting) or in real time obtaining
missing information (i.e., delay). In these cases, the use of artificial intelligence (AI)
tools can help to expand the capacity of complex control systems by covering tasks
which quantitative models enable or less efficient to solve them. A variety of artificial
intelligence tools can be used individually as the control system or as an auxiliary aid
for quantitative models such as: neural network control [14], Bayesian control [23],
fuzzy control [56], neuro-fuzzy control [27], expert systems [15], genetic control
[35], and cognitive/conscious control [12]. Figure 13.4 illustrates the implementation
of levels of different control models in a complex system.
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13.5 Case Study: Semiconductor Manufacturing and
Challenges in Controlling the Patterning Process

Semiconductor device fabrication is encompassed in several processing steps. These
steps are characterized by four primary sections, including patterning, etching/
removal, deposition, and modification, as summarized in Table 13.2. Among these
processes, the lithography process is the primary step in wafer fabrication. Following
this section, some key demand features of lithography process are introduced for the
analytical tools utilized in designing an adequate control system.

13.5.1 Photolithography Process

Lithography is one of the frequently used processes in fabricating chips, and typically
between 30 and 35%, of the overall processing costs, and between 40 and 50%, of the
completion time, is accounted for this process [37]. Additionally, the development
plan for the future of lithography process required shrinkage in die size, and therefore
lithography will have a technical limitation tendency when associated with the feature
size reduction phenomena. Thereupon, lithography requires a high resolution, high
sensitivity, precise alignment, and low defect density to achieve visions of wafer
manufacturing. Therefore, setting up an accurate control system with high impact
on disturbance rejection is an essential appliance for the lithography process.
Currently, the step-and-scan (shortened scanner) method is one of the most com-
mercially used systems, in the lithography process. The purpose of the scanner is
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Table 13.2 Semiconductor device fabrication steps

Process

Methods

Deposition: Grows, coats, or transfers a
material onto the wafer

Physical vapor deposition

Chemical vapor deposition

Electrochemical deposition

Molecular beam deposition

Atomic layer deposition

Removal: Removes material from the wafer
either in bulk mode or selectively

Wet etching

Dry etching

Chemical-mechanical planarization

Patterning: Shapes or alters the shape of the
deposited materials

Lithography

Modification: Doped transistor sources and
drains

Ion implantation

Rapid thermal anneals

Ultraviolet light processing

Fig. 13.5 Wafer fabrication
in photolithography process

scamner

Photoresist
on wafer

Photoresist Master mold

photo patterned

to superimpose a masking pattern on top of the existing wafer pattern. Figure 13.5
illustrates the initial steps of wafer fabrication in the photolithography process when
using the scanner. The gap between the actual position of the mask over the actual
position of the wafer substrate is known as the overlay error [5, 6]. As is evident
from research, the overlay error has proven to be the most challenging issue in the

photolithography process [2, 6, 40, 44].

13.5.1.1 Overlay Error

As discussed earlier, during semiconductor fabrication process, each wafer goes
several times under the photolithography process, and at each time a layer of photo-
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Fig. 13.6 The overlay error
measurement [8] Y1 (desxidysr)

Y2 v I >

resist material exposure on the surface of wafer. The misalignment between the
current and previous exposure layers, through the box-in-box design is called overlay
error. When the inside box is accurately patterned in the center of the outside box,
no overlay errors are apparent (Fig. 13.6).

The response variables of the overlay error, are indicated as follows:

d(x+X) =172
a0+ ) = vl (13.5)

where (x, y) is intrafield coordinate system, regarding the center of the field> and
(X, Y) is interfield coordinate system, regarding the center of the wafer. In Fig. 13.6,
dx and dy denote to interfield overlay error in x and y direction, respectively, and dX
and dY denote to interfield overlay error in X and Y direction, respectively.

The presence of overlay errors can be attributed to intrafield and interfield errors
[7]. The interfield overlay errors are the result of the mismatch between the patterning
mask and wafer. The intrafield errors are due to fitment problems between the lens of
the scanner (light source), and the patterning mask. The interfield errors are measured
at the center of the wafer, and the intrafield errors at the center of the exposure. The
variables leading to intrafield, and interfield overlay errors, are presented in Fig. 13.7
and Fig. 13.8, respectively.

Various feedback controllers are designed based on R2R control for compensating
the misalignment during the photolithography process. The most commonly applied
and theoretical method is formed on EWMA estimation, other learning-based mod-
els are Kalman filters [11], artificial neural networks [32], machine learning [30],
and PID controller [8]. Following this study, we introduce a new approach for com-
pensating overlay error which has an advantage for faster disturbance rejection in
comparison to the EWMA, PID, or Kalman filters based on reinforcement learning
optimization.

2The surface of a wafer can be partitioned into smaller part for increase the accuracy of measurement
the overlay error, each partition is called a field.
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13.5.2 Reinforcement Learning Optimization

A partially observable Markov decision process (POMDP) [36] is a generalization of
Markov decision process (MDP) [48] which only part of the information is available
about the current state, and this led to the uncertainties (i.e., delay, noise).

Consider a class of algorithms for finding good approximations to a class of learn-
ing problems in which agents interact in adynamic, noisy and stochastic environment;
this interaction is conventionally modeled as an POMDP which consists of

e §;: afinite set of states.
e A;: afinite set of actions.
o R(S;,A;): areward function.
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P(S;+118:, Ay): a state transition probability function.
O;: a set of observations.

P(O;41|S:+1,A;): an observation probability.

r, € [0, 1]: a discount factor.

B;: a distribution over state S; called “Belief State”.

POMDP can identify as an optimal or near-optimal behavior for an uncertain

system. The MDP problem seeks to find a mapping from states to actions; however,
the challenge in POMDP problem is to find a mapping from probability distributions
over states to actions. For achieving this purpose, the key step is to calculate the
value function of a given policy (;r) which is the mapping function from the state
to the action, to maximize the expected sum of the discounted factor. Regards to the
definition of POMDP components described in above the optimization procedure of
POMDP is following below steps:

_
e

WOk W=

set up the unobserved state S; of the system at each time step ¢

select an action A;,

maintain the distribution over S; as B;,

receive the reward function R(S,, A,),

transitions to unobserved state S;,; with probability P(S,y|S;, A;),

receive an observation O,y with probability P(O;y1|S;+1, Ar),

estimate a distribution on state S;11 as Byy1(S;+1) = P(St+110:+1, As, B:(Sy)),
update the reward function by R(S;41, A;11) = Bry1(Si+1) X R(S;, Ap)
optimize the return function by policy 7 (S;41) = maxy,,, > riR(Sis1, Arrr)
and select the best action A, 1,

update and repeat the process.

The Bellman’s optimality [19] equation says that under principal of stochastic

approximation, the average bias Q(S;, A;) (Q-learning) from ¢ times simulation-based
solution is

. 1
(8, A) = nglrn |:R(St,Az) - ;E {ZR(Sz,At)} + ZP(SASFMAFI)

xE{ZR(S,,A,) - %EiZR(S,,A,)}” (13.6)

The POMDP relies on defining the set of states and their expected values, the

action transition matrix and reward structure. The description, role, and action of
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each component in details for the control system of overlay model are summarized
as follows?:

The state-space: The output of the controller to the plant (x,), given the action
(u,), including the disturbance and process delay. Considering N overlay factors,
therefore, there are 1 x N different states in the system. Note that in practice the
actual value of x, is predictable, and not observable.

The observation space: The actual output of the plant (y,) for N overlay factors
including the metrology delay and measurement noise.

The action transition matrix: The matrix of probability which each sate (x;) can
appear in the sequence of the lithography process. Respecting the definition of vari-
ables in (13.4) the elements of transition matrix can be derived by

P(X;[X—1, uy_1). (13.7)

The transition matrix can be computed based on the historical data and update
after each run.

Belief updating: The probability distribution over X, given the state of previous
belief and observation and action at the current run.

_ P(yffl‘xr—l»uz—l) Z,P(Xr|xz—1«“r—l)B(X1—l)
B(XZ) - Z,P(y,_]Ix,,l,uf,l)P(x/\x,,],u,,])B(x,,l) : (138)

Reward function: The actual error which results from action u; is
E =y —-T (13.9)

Average bias: The optimal value of actual error after # run with regards to the
transition matrix at each run and learning from the previous runs. Since each action
is independent, the only factor that influences the total error is the gain of the actions.
Therefore, bias is interpreted as the expected total difference between the reward (E,)
and the gain (G (E))).

bias:E{ZE,—G(E,)} (13.10)

In practice when ¢ — 00, the optimal gain is 1E {3_, E,}.
Consider y,, where T = 0 in (13.9) as reward function in ¢th run then the average
optimality reward function based on [13] is

O, u) =1 —n)0X—1,w—1) + 1 X [y, -Gy + Hlllin O(X;—1, ut—l)] s
(13.11)

3Regards to notation in the beginning of this section X, is equivalent to S;: u; is As; y, is Oy
P(x[X;—1,07-1) is R(S¢[Sr—1,Ar—1); and E; is R(S;, Ay).
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where G(y,) can be learned and updated at each run by

(13.12)

— DGy, )+,
G(yt)=(1—n;)G(y,_l)Jrn;[(f )G (Y1) y:|

t

The learning parameters 1, and 7, (similar to A in EWMA controller) are both
decayed at run ¢ by the following rule:

I”JOF’ ”12 (13.13)

K+t

’
N, Ny =

where K is a very large number, and 7, 7;, are initial values for learning parameter
n and n’, respectively.

Choosing the optimal action: The objective function of a control system in (13.9)
can be minimize by the optimal solution of stationary policy given by the observation
space:

m(B(X;)) = arg min [rtB(xl) X Q(xy, u,)r,’] . (13.14)

Using the model as a controller: For having a controllable and observable system,
the following assumptions should be satisfied:

e The model applies over an infinite number of runs, implying that the control system
is stationary.

e Conditioned on the true u, and control setting at run #, the P(y,|xX,) is independent
from information related to the run # — 1.

e The measurement noise and process disturbance are accumulated to the y, and u,,
respectively.

e Regards to policy function in (13.8), objective function of optimization goal in
(13.9) is updated by

argminZ{r,B(x,) X Q(X;, Wp)ry} (13.15)

For investigating the efficiency of the POMDP controller in comparison with
EWMA as the most common control filter in the semiconductor industry, an SISO
process with 200 runs simulated as follows:

e generating 200 runs of uncontrollable disturbance d; and noise &; from N (0, 1)
based on the model in (13.4), where yy, u;, x; and T are set to zero.

o fitting simulated overlay errors from 200 runs into (13.4) and obtaining the effect of
cumulative disturbance on y;, u;, and x; forrun¢ = 2, ..., 200 where the coefficient
parameters (Cy, C,, C3) for simplicity set to one.
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Fig. 13.9 The power of disturbance rejection between POMDP and EWMA controller. Y axis
denotes to the total overlay error and X axis to the simulation runs

e calculate the probability distribution function in (13.7) based on empirical dis-
tribution function (in reality, we can use historical data to find the distribution
function of x,).

e optimize objective function in (13.14) subject to model in (13.4) for each run where
both 79, 77;, are set to 0.5, and K = 10'5.

e evaluating the performance of the proposed POMDP controller with 200 runs in
comparison with EWMA controller with fixed discount factor equal to 0.3 and
b = 0.5 as presented in Eqs. (13.1)—(13.3) with &, = 0 (note that the effect of
noise and disturbance is considered in steps 1 and 2).

Figure 13.9 illustrates this comparison based on the value of (13.9) and shows
that how POMDP is performing supremely better than EWMA to compensate the
disturbance.

13.6 Conclusion

This study highlighted the importance of disturbance rejection algorithm in semi-
conductor manufacturing for overlay error minimization during the photolithography
process. The research summarized several disturbance rejection algorithms as a com-
prehensive collection for researchers and practitioners who would like to investigate
in this field. However, the algorithm and methods for disturbance rejection are not
limited to those are mentioned in this paper. Practically, the hybrid algorithm and
technology-enabled method is more efficient than traditional control theory and are
more applicable in the smart manufacturing environment.
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