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A B S T R A C T

Several developed vehicle spaces and time headway distribution models in traffic flow theory have been
widely used in the literature, reflecting the primary uncertainty in drivers’ car-following movements and
explaining the traffic flow stochastic features. Moreover, effective vehicle-to-vehicle (V2V) communication is a
key to decentralizing traffic information systems. Accurate vehicle headway distribution estimation will ensure
reliable communication and benefit passengers’ safety and comfort. Consider several proposals for headway
distribution in the literature; this paper studies the effect of space-headway distribution on information
propagation delay in assessing the reliability of the V2V communication networks. We utilize the properties of
reliability measurement for headway data by introducing the quasi-maximum likelihood estimator (QMLE) to
measure the effects that different headway models have on estimating the parameters of headway distribution
in a V2V communication network. The statistical analysis is then applied to the real Next-Generation Simulation
(NGSIM) data. It validates the proposed methodology and formulations by measuring the effects of model
selection on headway data and information propagation delay on the reliability of the V2V network. The
results show that the effect of headway distribution when the vehicle’s transmission range is smaller than the
road segmentation is not negligible, especially when cars are very distant. Based on our results, we recommend
new metrics based on Kullback–Leibler divergence for model selection of headway data, thereby enhancing
the reliability of the V2V network.
1. Introduction

Vehicle headway is a crucial metric in transportation and traffic
flow analysis. A vehicle space-headway is the distance between two
consecutive vehicles passing the same point in the same lane, which
explains how vehicles spread on the road (Biswas et al., 2021). The
concept of vehicle time-headway is similar. Modeling uncertainties
in traffic flows and drivers’ car-following movements with vehicle
headway distribution models are common in traffic flow analysis.
Furthermore, many academics are interested in headway distribution
research for various applications, including evaluating road capacity,
traffic signal scheduling (Qian et al., 2021), and driver acceleration
behavior (Singh and Kathuria, 2021).

With the advancement of mobility solutions, transportation systems
constantly strive for sustainable development through smart technol-
ogy to maintain a safe and quick response to the demands of so-
ciety 5.0 (Fathi et al., 2019). In this context, a vehicular ad hoc
network (VANET) facilitates data exchange among vehicles and from
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roadside infrastructure to vehicles. The VANET’s communication re-
source management relies heavily on headway distribution (Du et al.,
2016). Therefore, the correct headway distribution pattern must be
determined to analyze traffic, connectivity, and infrastructure-related
phenomena in VANET. It is necessary to know how much information
may be transferred on the road between vehicles and how many nodes
(connecting vehicles) are required to establish a stable connection to
have a reliable VANET (Ukkusuri and Du, 2008).

The likelihood of information propagation delay in a VANET with
either congestion or free traffic flow conditions is not negligible. On the
other hand, a variety of other sources of uncertainty, such as inaccurate
data, simulator randomness, model discrepancy, and statistical variabil-
ity in estimating and calibrating input parameters, can significantly
widen the gap between real-world and simulated data, affecting the
accuracy of the headway distribution and, as a result, the connectivity
in VANET (Weber et al., 2021). Consequently, there will be significant
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Fig. 1. Summary of vehicle headway distribution models and development during the time (Li and Chen, 2017).
errors in decision-making. Any inaccurate estimation of related pa-
rameters in VANET will cause an inaccurate estimation of information
propagation delay and, therefore, an unreliable network. Therefore,
selecting an inaccurate distribution for headway data will significantly
affect traffic flow rate calculations and connectivity reliability.

Despite these facts, this work aims to investigate the impact of
vehicle headway distribution on VANET reliability and information
propagation delay. For this purpose, we consider situations where
having a known distribution of space headway is not a reasonable
assumption and, therefore, the true model is unknown. In this case,
we force the use of an estimation model, thereby running the risk
of misspecifying the model. To investigate this, we start by defining
a measure of the discrepancy between different models, called the
Kullback–Leibler divergence, and investigate the effect of such a risk
on the stability and reliability of decisions on information propagation
delay.

The remainder of this paper is structured as follows: Section 2
discusses the literature review of the previously published studies in
this area. Section 3 describes the problem of reliability failure in
VANET due to model misspecification, followed by Section 4, which de-
scribes the problem and formulates the time delay in VANET. Section 5
proposes the reliability measurement of VANET based on headway
distribution and the theoretical computation of this assessment for
information propagation delay. Finally, the numerical experiments in
Section 6 validate the proposed approaches. We conclude this research
in Section 7.

2. Literature review

In the literature, attention to the reliability assessment of VANET
comes mainly from hardware functionality, road infrastructures, data
management, and broadcasting systems. To the best of our knowl-
edge, only a couple of papers see this problem from the theoretical
point of view in real-world simulation. These few works cover the
effect of vehicle transmission range, vehicle density on the connectivity
probability (Hussain et al., 2019), and string stability of a one-vehicle
look-ahead platoon under different network loss scenarios (Alsuhaim
et al., 2021). Therefore, our approach to considering the efficiency of
selecting headway distribution to assess the reliability of VANET is
novel. Therefore, in this section, we focus on the challenges in selecting
proper headway distribution addressed in the literature.

There are several headway distribution models in the literature. A
comprehensive literature review on modeling headway data and its
inferences in macroscopic/microscopic traffic flow analysis is discussed
in Li and Chen (2017). They classified the vehicle headway distribution
models into 1930–1970s, 1970–1990s, and 1990s-present, and their
findings are summarized in Fig. 1.

According to Fig. 1, it can be seen that several different distri-
butions have been used in the literature for modeling the headway
data. Therefore, practitioners and researchers have critical questions
about which distribution is better. Under what conditions would you
2

use this distribution? What will happen if the selected distribution
is not the best fit for the data? To answer these questions, Table 1
summarizes some of the most important headway distribution models
in the literature, along with their applications and characteristics. In
most early literature, as shown in Fig. 1, the headway distribution is
denoted as a time-headway distribution based on vehicle speed instead
of a space-headway distribution.

Regarding several approaches to selecting the best distribution for
both time and space headway data, it is necessary to understand traffic
phase transition and behavior to assist with planning successful vehicle-
to-vehicle (V2V) communication in a VANET. Considering this need, we
can categorize the existing literature into three different groups based
on their contributions, as follows:

I : Discussing the applications of headway distribution in VANET,
II : Comparing different distributions for specific measurements,

III : Showing the bias and uncertainties in selecting an improper
headway distribution.

2.1. Group I literature

Back to the historical review of literature, the order of implemen-
tation of headway distribution in various studies can be categorized
into four main applications: (1) modeling the traffic flow for the use
of pedestrians, allocating traffic lights, and pedestrian crossings; (2)
estimating the traffic noise for pollution reduction (air and sound) and
urban resilience management; (3) identifying abnormal road conditions
and enhancing the public transportation service level (Toledo et al.,
2010; Jamili and Aghaee, 2015; Morales et al., 2020), and (4) man-
aging the inter-vehicle communications in VANET due to the rapid
development of intelligent transportation systems (ITS) and AVs.

Yang and Recker (2005) utilized vehicle distribution in a very
turbulent and stable traffic stream to simulate traffic information prop-
agation based on V2V communication; their simulation model calcu-
lated the probability of successful communication and traffic informa-
tion propagation distance for different roadways under incident and
incident-free conditions. Saito (2006) evaluated the performance of
combined vehicular communication in ITS and measured the delay of
indirect information delivery using mean space headway, vehicle speed,
and device connectivity penetration ratio. Ukkusuri and Du (2008)
studied the geometric connectivity of VANET with disturbance to cap-
ture drivers’ uncertain behavior in traffic flow. Also, they analytically
derived the lower bound of reachable neighbor vehicles for each vehicle
to maintain high connectivity.

Wang et al. (2010) studied the robust information propagation
process in a traffic stream with a general identically and independently
distributed (i.i.d) concept for V2V spacing and calculated the expected
value, variance of information propagation distance, and connectivity
between two vehicles. Yin et al. (2013) derived the probability dis-
tribution of information propagation distance and its expectation and
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Table 1
Some representative headway distribution models.

Distribution Characteristics Application

Gaussian 1: Each event is independent of other events; 2: Equal
intervals of time include an equal number of events

Movement of vehicles is considered a random series.

Negative exponential The traffic stream is normally distributed When the occurrence of the interval between two
consecutive vehicles is greater than a random variable

Shifted exponential (Cowan’s M2) Has a location parameter that shows the minimum
headway between vehicles

A 𝑀∕𝐷∕1 queueing system with service time equal to the
location parameter

Shifted Lognormal Consider a minimum space between vehicles which
present as shift parameter

Traffic stream at high flows when individual headway
distribution is Lognormal

Hyperlang Linear combination of exponential and Erlang
distributions

Model single-lane traffic road flow in two-lane two-way
road

Hyperexponential The distance among vehicles is large enough that no
vehicle is bound on one side by other vehicles.

When the flow rate rises above a few dozen vehicles per
hour and line

Semi-Poisson model 1: Data is semi-random, 2: There is a threshold that
separates data in random and uniform partitions
multiplied by weighted parameter

Applies for negatively autocorrelated headway at very
high flow roads

Cowan’s M3 Special case of shifted exponential distribution when
location parameter has a mixed distribution

There is a mixture of vehicles: a group that follows a
specific space headway and another group that drives
freely with larger space headway than the first group

Mixed-vehicle-type (Hoogendoorn
and Bovy, 1998)

Rely on Branston’s generalized queueing model Emphasize vehicle type and period of the day

Type I Extreme Value (Hung
et al., 2003)

The length of data has a quadratic relationship with
parameters

Use when modeling vehicle discharge headway at
signal-controlled intersections

Double Displaced Negative
Exponential (Zhang et al., 2007)

The mixture of two components of headway: (1) tracking
or following, and (2) free component

Modeling headway of high-occupancy vehicle lanes

Double exponential (Jin et al.,
2009)

Consisting of two exponential distributions glued together
on each side of a threshold

Modeling vehicle discharge headway at signal-controlled
intersections

Farlie–Gumbel–Morgenstern (Zou
et al., 2014)

Maximize correlation coefficient between marginal
distributions

Describe the characteristics of speed and headway
simultaneously

Inverse Gaussian (Kong and Guo,
2016)

Describes the distribution of the time a Brownian motion
with positive drift takes to reach a fixed positive level

Consider multi-lane freeway with car–truck interaction

Pearson 5 and 6 (Roy and Saha,
2018)

Special cases of inverse-gamma and beta-prime
distributions, respectively, to control the skewness and
kurtosis.

Modeling heavy traffic flow and providing a decent fit
under off-peak flow

Gaussian mixture (Zhou and Zhu,
2020)

Sum of weighted Gaussian distributions with positive
parameters

Utilized when the distribution of speed data exhibited
bimodality and skewness

Mixture model (Li et al., 2021a) The model can be applied for most of the common
headway distribution, considering classification results
based on the correlation coefficient between macroscopic
and microscopic traffic flow

Modeling the headway data by combining weighted
random free flow, steady car-following, steady free flow,
and block car-following models.

Uniform (Li et al., 2021b) When an arbitrary outcome lies between certain bounds For measuring the homogeneous degree of headway
distribution
variance for connectivity of V2V on two parallel roadways using head-
way distribution. Wang et al. (2015) analyzed the vehicle connectivity
in VANET with two parallel roads; when the distance between roads is

smaller than
√

3
2

of transition rate, then the probability distribution of
he information propagation distance and its expectation and variance
re derived.

Wang et al. (2018a) developed a distributed optimization algorithm
or V2V communication in a multi-agent system to minimize the com-
unication time delay over a directed graph. Wang et al. (2018b)
roposed an extended car-following model at un-signalized intersec-
ions to examine the impacts of V2V communication on micro-driving
ehavior. Tan et al. (2020) developed a car-following model under V2V
ommunication to improve traffic safety in the sand-dust environment.
hey showed that V2V communication is active in reducing headway
luctuations, acceleration, and velocity when there is a disturbance
n the sand-dust area’s traffic flow. Li et al. (2020) analyzed active
nd inactive V2V communication for car-following behavior with the
ffect of sudden acceleration changes using headway distribution. In
ummary, it can be seen that the application of headway distribution
n VANET has the following pattern:
3

(1) Simulate the
traffic flow and
density for
different time
windows and
road types based
on headway
distribution

→ (2) Estimate the
communication
power by the
number of
connected
vehicles using
traffic flow and
headway data

→ (3) Measure the
probability of
communication
failure and
information
propagation delay
according to the
communication
power and headway
information.

Therefore, if the headway distribution is not selected properly, there
would be a dramatic bias in simulating traffic flow and communication
power and estimating the probability of communication failure and
information propagation delay in VANET.

2.2. Group II literature

Most studies only gave a rough description of the fitness of a head-
way distribution for a particular traffic scenario without rigorous statis-
tical tests. Statistical goodness of fit tests is the most notable reference
to prove the advantages of selected distributions. For instance, Weng
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et al. (2014) disaggregated the vehicle headway for car-truck interac-
tion. Their results showed that the headway distribution of car/truck
interaction is significantly different. They used Mann–Whitney and
Kruskal–Wallis tests to show that the car/truck interaction’s headway
distribution is significantly different. Their methodology determined
the best headway distribution by maximum-likelihood estimation and
the Kolmogorov–Smirnov test as a function of the traffic flow rate, work
intensity, percentage of trucks, and lane position, impacting vehicle
headway in work zones. In another study, Kong and Guo (2016) studied
vehicle headway distribution characteristics on the multi-lane freeway,
considering car-truck interaction and different vehicle types, and fitted
the best headway distribution among possible choices using statistical
inferences.

2.3. Group III literature

There will likely be numerous models that match the data well
and appear to be viable models for analyzing any particular dataset.
Because various models provide different inferences, statistical good-
ness of fit is a required metric but is not a sufficient reason for
distribution selection. Therefore, researchers need to consider that the
validity of traditional statistical results rests on the assumption that the
underlying model is correct, which is a much stronger criterion than
just confirming that the model gives a good fit to the data (Copas and
Eguchi, 2020). Nevertheless, investigating the effect of not selecting the
best/better distribution can provide an additional level of certainty for
accepting a distribution as a good fit.

To the best of our knowledge, only a few studies have this perspec-
tive and discuss the side-effects of selecting an improper distribution
for headway data. For instance, Abuelenin and Abul-Magd (2015)
studied the moment analysis (mean, variance, skewness, and kurtosis)
of freeway-traffic clearance distribution. They computed V2V spacing
in a multi-lane freeway and calculated the correlation of vehicles’
spacing in different lanes. They found that the calculated kurtosis
differs from the skewness for different lanes during the different time
intervals. The skewness and kurtosis as functions of the mean V2V spac-
ing produce sharp peaks at critical densities expected for transitions
between different traffic phases. Besides, Blumenfeld and Weiss (1975)
showed that for a fixed traffic density of moderate or heavy traffic,
increasing the distribution order decreases the variance of traffic noise
and emphasizes higher frequencies in the spectral density.

The effect of selecting an improper distribution caused by math-
ematical modeling or the interpolation of observations of the error
term can be a disruptive factor in the simulation and management of
transportation systems. Considering this fact, some indexes, such as
mean square error, which is very common in measuring the efficiency
of estimators and models, do not show the exact variability and bias
of the estimator (even from nearly unbiased estimators, such as the
maximum likelihood estimator). In this situation, asymptotic metrics
(when the limits of sample size tend to be infinite), such as asymptotic
efficiency and bias, are more practical to show the power of estimators
and models. In summary, in terms of contribution and implementation,
our research can be compared with a few literature in the field, as
summarized in Table 2. Therefore, considering the gap in the literature,
the main contributions of this paper are:

1. to introduce a new metric based on Kullback Leibler divergence
as a reliability measurement index for estimating the delay of
information propagation in the VANET system;

2. to bring the attention of practitioners and researchers in the
field of transportation technology to the impact of improper
distribution selection;

3. to derive the asymptotic distribution and properties of time
delay on tail quantiles (when vehicles are very far from each
other) of headway distribution.
4

3. Problem explanation: Reliability under headway model uncer-
tainty

The importance of statistical challenges in transportation study and
practice will grow as new mobility technologies and systems develop.
For instance, to effectively predict the dynamics of autonomous vehi-
cles (AVs) in the transportation network, V2V, vehicle-to-infrastructure,
and infrastructure-to-vehicle technologies, because AVs are not yet re-
alistic, driving simulations are increasingly being used to identify such
dynamics or surrogates. Therefore, addressing statistical-related issues
directly impacts the successful implementation of new transportation
systems.

In traffic simulation, little attention has been paid to uncertainty
considerations in simulation model inputs. Instead, the focus is mainly
on analyzing the stochastic outputs of various performance measures
resulting from different models. Bayarri et al. (2004) assessed un-
certainties in traffic simulation by model calibration and validation.
The calibration and validation process of traffic simulation models for
application to a transportation network is inherently tricky, and it is
typically handled informally using a variety of ad hoc approaches. Field
data, which are often restricted and expensive to get but necessary
for defining inputs to the simulation model and assessing the model’s
reliability, are explicit parts of the calibration and validation process.
The quantification and systematization of the calibration/validation
process reveal the statistical challenges of using such data to determine
a model’s validity. The validation is usually phrased as ‘‘does the model
accurately represent reality?’’ However, the answer to this question is
straightforward: models are not perfect.

Researchers and practitioners can choose the most effective model-
ing approach and find acceptable procedures for evaluating and vali-
dating statistical results by better understanding the ‘‘model-building’’
process. The computation of sensitivity factors such as marginal effects
and statistical performance metrics, including goodness-of-fit and pre-
diction accuracy, are common examples of these techniques. However,
structural discrepancies between various state-of-the-art statistical and
econometric methodologies may limit the applicability or practicality
of some measures. In this context, best practices in transportation
data analysis may not follow a uniform standard for the pre- and
post-implementation phases of statistical modeling. Because of the dis-
parities in model implementation and evaluation and the data-intensive
nature of transportation analyses, the accuracy of some models may be
questionable.

Therefore, we can (and have to) quantify the accuracy of a model
by:

Pr[|reality − simulation prediction| < 𝛿] > 𝛼 (1)

where 𝛿 is the tolerable difference (how close) and 𝛼 is the level of
assurance (how certain), with statements of what reality means, what is
needed to make sense, and how to compute the probabilities involved.
Reality refers to an operationally possible measure of a network’s
actual performance (e.g., it could be the time between two consecutive
vehicles to pass a certain location).

Accomplishing the task in (1) is to minimize 𝛿 while making sense
of (Pr), yet this is a challenging task. Therefore, a closer examination of
the model’s inputs based on simulators is required. Geometric inputs,
such as lane widths and bus stops, can be easily obtained by exact
measurements or documented sources. However, some parameters can
be discovered by calibration or the use of field data, including:

Type A : Parameters that can be directly estimated from field data
(such as vehicle arrival rates, turning ratio, and traffic vol-
ume), but estimation includes some percentage of uncertain-
ties.

Type B : Parameters that are not directly measurable (such as the
degree of driver aggressiveness) or depend on the choice,

such as discharge headway distribution.
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Table 2
Comparison of this study with a similar study on the reliability of VANET.

Reference Objective Methodology Key Findings Contribution

Hussain et al. (2019) Assessing VANET reliability
considering vehicle transmission
range and density

Real-world simulation Effect of vehicle transmission
range and density on
connectivity probability

Theoretical perspective on
VANET reliability

Alsuhaim et al. (2021) Studying string stability in
one-vehicle look-ahead platoon
under network loss

Network loss scenarios analysis Impact of network loss on
platoon stability

Insights into string stability in
VANETs under network loss

Li and Chen (2017) Comprehensive review of
headway distribution models

Literature review Classification and evolution
of headway distribution
models over time

Historical perspective on
headway distribution models

Current study Assess the reliability of VANET
focusing on headway
distribution efficiency

Analyzing headway distribution
in VANETs; real-world
simulation

Novel insights into the
efficiency of different
headway distributions for
VANET reliability

Introducing a new approach in
VANET reliability assessment by
focusing on headway
distribution efficiency
Type C : Tuning parameters (e.g., free-flow speed, lost time) that
are not real but are required by the simulation model.

Some of the parameters mentioned above can be replaced in the
calibration process with a sensitivity analysis. The remaining parame-
ters are often adjusted until the model output fits the field data of the
real traffic system. However, the accuracy of how the model is ‘‘well
fitted’’ is subjective to the other existing models and is informal with
the opinion of experts. Therefore, there are two major issues with this
type of calibration approach. First, there could be a ‘‘misspecification’’
problem, which allows the model to be tuned in various ways while
creating potentially huge uncertainty in the estimated parameters,
resulting in inaccurate model predictions. Second, ‘‘over-fitting’’ may
occur, in which fitting obscures model flaws and results in potentially
very inaccurate models outside the range of observed field data.

In this regard, if we have more than one candidate model for
fitting data, one interesting question would be, ‘‘How much can we
compensate/repudiate the bias of estimators by changing from one
model to another and keeping the connectivity in the VANET network
reliable?’’ To answer this question, we need to find the difference
between the effect of each simulated model on real data, measure how
significant the changes of models are, and determine if it is necessary
and cost-effective to look for a better model.

Several phenomena can make the accuracy of headway distribution
questionable. For instance, the long time/space headway is associated
with the high intensity in the driving zone (Weng et al., 2014). The
omission of drivers’ familiarity with driving zones and forcing a fixed
value on the driving intensity’s coefficient can lead to low accuracy
of the headway model (Weng et al., 2019). Therefore, knowledge of
vehicle headway distribution is essential for estimating connectivity in
VANET. With the rise of VANETs, connectivity became a fundamental
requirement for applying such networks. Connectivity analyses require
very accurate distribution models.

4. Problem formulation of time delay in VANET

To the best of our knowledge, there are only a few models in the
literature for estimating the time delay of information propagation.
In many other studies, the tolerance of delay is considered to be
known. Zarei and Rahmani (2016) considered the vehicles’ physical
movement as a catch-up process and ended with multihop transmission
through connected vehicles as a forwarding process. Therefore, the
information propagation process cyclically renews, and the information
propagation speed is related to the number of renewal cycles for
delivering information. They employ the distribution of connectivity
distance (headway distribution) in VANET, the probability that at least
one pair of vehicles communicate, and the number of connected vehi-
cles for modeling information propagation delay. Similarly, for one-way
or two-way road segments with many lanes, Du and Dao (2014) devel-
oped analytical formulations to estimate information propagation time
5

Table 3
List of mathematical notations and expressions in this study.

Notations Definitions

𝑖 Vehicle’s index. 𝑖 = 0,… , 𝑛
𝑘 Number of hob nodes when vehicles are well connected as an

instantaneous transmission happens.
𝑡1 Time delay in an intermittent transmission flow.
𝑡2 Time delay in a ferry transmission flow.
𝑆 The distance (space headway) between two consecutive vehicles.
𝑟 The transmission range.
𝜏 The wireless transmission time delay.
𝑌 The information propagation distance in a ferry transmission flow.
𝑋 The information propagation distance in an intermittent

transmission flow.
𝑇 The total time delay.
𝐿 The length of the road segment.
𝜈𝑖 The average speed of the vehicle 𝑖 carrying information.
𝑓 (𝑠) The space headway distribution between two vehicles in a lane or

across different lanes.
𝐵𝑖 𝑖th vehicle in a sequence of vehicles within a traffic flow or network
𝑃 Probability of successfully making instantaneous transmission hob

with the next vehicle.
𝑢𝑖 𝑖th percentile of a given probability distribution

delay over a V2V communication network. Zarei and Rahmani (2016)
added the average vehicle speed carrying information, transmission
rate, and transmission time to Du and Dao (2014) models. As a more
comprehensive model, we employ the proposed model by Du and Dao
(2014) for estimating the time delay of information propagation in this
study to assess the influence of model misspecification.

4.1. Modeling time delay of information propagation

Consider the main mathematical notations in this study, as summa-
rized in Table 3. In a dynamic traffic flow, the wireless connection is
occasionally connected (resulting in instantaneous transmission) and
broken (leading to ferry transmission) due to relative movement be-
tween vehicles. In a mildly congested traffic flow, intermittent trans-
mission is common. Intermittent transmission is exemplified by the
ferry and instantaneous communications. They are most common in
sparse and heavily congested traffic flows, where wireless commu-
nication between two cars occurs only occasionally or regularly. An
intermittent transmission continues a pattern of instantaneous and ferry
transmissions until the information reaches the end of the road section.
Several vehicles are well connected as an instantaneous transmission
happens, and information is smoothly conveyed from node 𝑖 to 𝑖 + 𝑘
(see Fig. 2).

When each vehicle in the VANET system can successfully commu-
nicate with at least one other vehicle as a communication hop; thus,
according to Du and Dao (2014), intermittent transmission follows
each hop of wireless transmission and will succeed if 𝑆 is less than 𝑟
(i.e., 𝑆 < 𝑟). If the space headway between a transmitter and a receiver
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Fig. 2. Schematic diagram of intermittent and ferry transmission in a one-way road.
(two consecutive vehicles) is 𝑆 > 𝑟, the information flows by ferry
transmission.

The equivalent time delay in an instantaneous transmission flow is
computed by 𝑡1 = 𝑘𝜏. In a VANET, a piece of information may travel
multiple hops in an instantaneous transmission along with the well-
connected vehicle network on a road segment until the communication
connection fails; at this point, the information propagation becomes
ferry transmission. Ferry transmission is common due to the lack of
traffic. In particular, a vehicle will transport information until it meets
another vehicle, such as at node 𝑖+𝑘, then transported by node 𝑖+𝑘 until
it reaches the next node (see Fig. 2). As a result, in a ferry transmission
flow, 𝑡2 = 𝑌 ∕𝜈𝑖 is used to determine the corresponding time delay.

The expected time delay for one intermittent transmission (i.e., an
instantaneous transmission followed by a ferry transmission and vice
versa) is multiplied by the expected times when the intermittent trans-
mission occurs to estimate the time delay of a piece of information
traversing a road segment. This concept is expressed mathematically
by Du and Dao (2014) as follows:

𝐸(𝑇 ) =
(

𝐸(𝑡1) + 𝐸(𝑡2)
) 𝐿
𝐸(𝑋) + 𝐸(𝑌 )

=
(

𝐸(𝑘)𝜏 +
𝐸(𝑌 )
𝐸(𝜈𝑖)

)

𝐿
𝐸(𝑋) + 𝐸(𝑌 )

,

(2)

where

𝐸(𝑋) = 𝐸(𝑘)𝐸(𝑆|𝑆 ≤ 𝑟), (3)

and

𝐸(𝑌 ) =
𝐸(𝑆|𝑆 > 𝑟) − 𝑟

𝐸(𝜈𝑖 − 𝜈𝑗 )
. (4)

where 𝐸(𝜈𝑖 − 𝜈𝑗 ) represents the average relative speed of two vehicles 𝑖
and 𝑗.

Considering the dynamic feature of propagation distance under
instantaneous and ferry transmission and the number of hops. The
conditional random variable 𝑆|𝑆 ≤ 𝑟 represents the space headway in
instantaneous transmission, given that information always propagates
to its nearest neighbor, and can be expressed as follows:

𝐸(𝑆|𝑆 ≤ 𝑟) =
∫ 𝑟
0 𝑠𝑓 (𝑠)𝑑𝑠

∫ 𝑟
0 𝑓 (𝑠)𝑑𝑠

, (5)

given

𝑓 (𝑆|𝑆 ≤ 𝑟) =
𝑑𝐹 (𝑆|𝑆 ≤ 𝑟)

𝑑𝑠
=

𝑓 (𝑠)
∫ 𝑟
0 𝑓 (𝑠)𝑑𝑠

,

and

𝐹 (𝑆|𝑆 ≤ 𝑟) = Pr(0 < 𝑆 < 𝑠|0 < 𝑆 ≤ 𝑟) =
Pr(0 < 𝑆 < 𝑠, 0 < 𝑆 ≤ 𝑟)

Pr(0 < 𝑆 ≤ 𝑟)

=
∫ 𝑠
0 𝑓 (𝑠)𝑑𝑠

∫ 𝑟
0 𝑓 (𝑠)𝑑𝑠

Similarly, 𝐸(𝑆|𝑆 > 𝑟) can be calculated using 𝑆|𝑆 > 𝑟 as a
conditional random variable:

𝐸(𝑆|𝑆 > 𝑟) =
∫ +∞
𝑟 𝑠𝑓 (𝑠)𝑑𝑠
+∞ , (6)
6

∫𝑟 𝑓 (𝑠)𝑑𝑠
given

𝑓 (𝑆|𝑆 > 𝑟) =
𝑑𝐹 (𝑆|𝑆 > 𝑟)

𝑑𝑠
=

𝑓 (𝑠)
∫ +∞
𝑟 𝑓 (𝑠)𝑑𝑠

,

and

𝐹 (𝑆|𝑆 > 𝑟) = Pr(0 < 𝑆 < 𝑠|𝑟 < 𝑆 < +∞) =
Pr(𝑟 < 𝑆 < 𝑠)

Pr(𝑟 < 𝑆 < +∞)

=
∫ 𝑠
𝑟 𝑓 (𝑠)𝑑𝑠

∫ +∞
𝑟 𝑓 (𝑠)𝑑𝑠

.

The mathematical background of 𝐸(𝑘) is presented in the following
sub-section.

4.2. Estimating 𝐸(𝑘): expected hops in an instantaneous transmission

A piece of information may propagate multiple hops in an instanta-
neous transmission along with a road segment’s well-connected vehicle
network until the communication link breaks and the information prop-
agation becomes a ferry transmission. As a result, 𝑘, where the number
of hops equals the number of cars that can communicate effectively
within an instantaneous transmission.

To calculate 𝐸(𝑘), we consider 𝑛+1 vehicles on the road segment and
mark them with numbers ranging from 0 to 𝑛 from left to right. Then,
if an instantaneous transmission starts at any individual vehicle, 𝐵𝑖(𝑖 =
0,… , 𝑛), evenly with probability Pr(𝐵𝑖) = 1

𝑛 + 1
, and 𝑃𝑘 represents

the probability of 𝑘 hops of successive transmission; therefore, the
probability of an instantaneous transmission starting at vehicle 𝑖 and
only successively propagating 𝑘 hops is Pr(𝑃𝑘∩𝐵𝑖) = Pr(𝑃𝑘|𝐵𝑖)Pr(𝐵𝑖). As
a result, we treat 𝑘 as a random variable and investigate its probability
concerning 𝐵𝑖 using the below strategy:

hops = 0 For all vehicles, there is a
probability of 1 − 𝑃 failing to
make an instantaneous
transmission hop with the
next vehicle except vehicle
𝐵𝑛 (the last vehicle), with
the probability that one
cannot make a transmission.

Pr(𝑃0|𝐵𝑖=1,…,𝑛−1) = 1−𝑃
& Pr(𝑃0|𝐵𝑛) = 1

hops = 1 For all vehicles, there is a
probability of making one
successful instantaneous
transmission (𝑃1) with the
next vehicle and then failing
(1 − 𝑃 ) except vehicle 𝐵𝑛−1,
with the probability 𝑃1 that
can make the transmission
with vehicle 𝑛 without

Pr(𝑃1|𝐵𝑖=1,…,𝑛−2) =
𝑃1(1 − 𝑃 )
& Pr(𝑃1|𝐵𝑛−1) = 𝑃1
& Pr(𝑃1|𝐵𝑛) = 0
failure.
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hops = 2 For all vehicles, there is a
probability of making two
successful instantaneous
transmissions (𝑃2) with the
next vehicle and then failing
(1 − 𝑃 ), except for vehicle
𝐵𝑛−2 with the probability 𝑃2
that can make the
transmission with vehicles
𝑛 − 1 and 𝑛 without failure.

Pr(𝑃2|𝐵𝑖=1,…,𝑛−3) =
𝑃2(1 − 𝑃 )
& Pr(𝑃2|𝐵𝑛−2) = 𝑃2
& Pr(𝑃2|𝐵𝑛−1,𝑛) = 0

⋮

hops = 𝑘 For all vehicles, there is a
probability to make 𝑘
successful instantaneous
transmission (𝑃𝑘) with the
next vehicle and then fail
(1 − 𝑃 ), except vehicle 𝐵𝑛−𝑘
with probability 𝑃𝑘 can
make the transmission with
vehicle 𝑛 − 𝑘 + 1, . . . , 𝑛
without failure.

Pr(𝑃𝑘|𝐵𝑖=1,…,𝑛−𝑘−1) =
𝑃𝑘(1 − 𝑃 )
& Pr(𝑃𝑘|𝐵𝑛−𝑘) = 𝑃𝑘
& Pr(𝑃𝑘|𝐵𝑛−𝑘+1,…,𝑛) = 0

⋮

hops = 𝑛 Only vehicle 𝐵0 with
probability 𝑃𝑛 can make 𝑛
successful instantaneous
transmissions with vehicles
1, . . . , 𝑛 without failure.

Pr(𝑃𝑛|𝐵0) = 𝑃𝑛
& Pr(𝑃𝑛|𝐵1,…,𝑛) = 0

Consider 𝑔(𝑘) as a probability of an instantaneous transmission with
nly 𝑘 hops, or 𝑔(𝑘) = ⋃𝑛

𝑖=0 Pr(𝑃𝑘 ∩𝐵𝑖)a general formulation of 𝑔(𝑘) can
e derived as follows:

(𝑘) =
(𝑛 − 𝑘)𝑃𝑘(1 − 𝑃 ) + 𝑃𝑘

𝑛 + 1
(7)

Consequently, the 𝐸(𝑘) under free-flow traffic conditions can be
easily calculated by 𝐸(𝑘) =

∑

𝑘 𝑘𝑔(𝑘). However, the space between
two vehicles is relatively small in congested traffic conditions. The
movement of the following vehicle needs to consider the movement
of the leading vehicle in front to keep it safe; therefore, the spacing
between any two consecutive vehicles is dependent, which causes
difficulty in accurately calculating 𝑃𝑘. To address this challenge, Du and
Dao (2014) provides a lower and upper bound for 𝐸(𝑘). In this study,
we employ the same approach as (Du and Dao, 2014), where the lower
and upper bounds of 𝐸(𝑘) are calculated as follows, respectively:

𝐸(𝑘) ≥
𝑛
∑

𝑘=1
𝑘
(𝑛 − 𝑘)(𝑘𝑃 − (𝑘 − 1))(1 − 𝑃 ) + 𝑘𝑃 − (𝑘 − 1)

𝑛 + 1
(8)

(𝑘) ≤
𝑛
∑

𝑘=1
𝑘
(𝑛 − 𝑘)(2𝑃 − 𝑃 2)(1 − 𝑃 ) + 2𝑃 − 𝑃 2

𝑛 + 1
(9)

5. Quantile estimation of information propagation delay and reli-
ability assessment of VANET

In the literature on traffic flow modeling, considering the type of
traffic flow from free flow to heavily congested traffic, Exponential,
Lognormal, and Normal distributions are among the most commonly
used distributions in fitting headway data (Yin et al., 2009); however,
these may not be the best choice for modeling headway distribution.
The more precise the headway distribution, the more unified the com-
munication system between vehicles will be; thus, various applications
contributing to passenger and vehicle safety will be available. In addi-
tion, in most of the literature, a uni-modal structure for traffic flow is
considered. In reality, the traffic can change from very congested to a
very sparse model during the day. Therefore, (even in a very congested
traffic flow), giving attention to tail information (when vehicles are
7

very far from each other) in the connectivity measurement of VANET
is necessary.

In this section, we show derivations of quantile function based on
entropy and its relation with the expected value of a random variable
to assess the reliability of the VANET network based on information
propagation delay for two cases of (1) single distribution and (2)
competitiveness of two distributions.

5.1. Single distribution

To perform the communication among vehicles, consider 𝑛 sample
eadway data. Let 𝑆𝑖 be the 𝑖th observation, with 𝑓 (𝑠) and 𝐹𝑆 (𝑠𝑖) as the
robability and cumulative distribution functions, respectively, where
− 𝐹𝑆 (𝑠𝑖) can be considered as a survival function. Therefore, the
easure of uncertainty is defined by:

(𝑆) = −∫

∞

0
log(𝑓 (𝑠))𝑓 (𝑠)𝑑𝑆 = −𝐸[log 𝑓 (𝑠)], (10)

s the expected uncertainty contained in the distribution of the pre-
ictability of an outcome of 𝑆, known as the Shannon entropy measure.
ased on this idea, the residual Shannon entropy of 𝑆 at point 𝑟 is:

(𝑆|𝑆 > 𝑟) = −∫

∞

𝑟

𝑓 (𝑠)
𝐹 (𝑆|𝑆 > 𝑟)

log
(

𝑓 (𝑠)
𝐹 (𝑆|𝑆 > 𝑟)

)

𝑑𝑆 =

log𝐹 (𝑆|𝑆 > 𝑟) − 1
𝐹 (𝑆|𝑆 > 𝑟) ∫

∞

𝑟
log(𝑓 (𝑠))𝑓 (𝑠)𝑑𝑆 = (11)

1 − 1
𝐹 (𝑆|𝑆 > 𝑟) ∫

∞

𝑟
log

𝑓 (𝑠)
𝐹 (𝑆|𝑆 > 𝑟)

𝑓 (𝑠)𝑑𝑆

A similar function can be obtained when 𝑆 < 𝑟.
In addition, the quantile function of 𝑙𝑜𝑔(𝑆𝑖) can be defined as

𝑆𝑖
(𝑢𝑖) = 𝐹−1

𝑆 (𝑢𝑖) = inf{𝑠𝑖|𝐹𝑆 (𝑠𝑖) ≥ 𝑢𝑖}, 0 ≤ 𝑢𝑖 ≤ 1 (12)

here 𝐹𝑆 (𝑄(𝑢)) = 𝑢. Similar to nations for (5) and (6) we can define
he quantile density function by 𝑞(𝑢) =

𝑄(𝑢)
𝑑𝑢

, where 𝑞(𝑢)𝑓𝑆 (𝑄(𝑢)) = 1.

Therefore, the 𝜉(𝑆) in (10) can be expressed as:

𝜉(𝑆) = ∫

1

0
log 𝑞(𝑢)𝑑𝑢 (13)

Clearly, by knowing either 𝑞(𝑢) or 𝑄(𝑢), the expression for 𝜉(𝑆)
s quite straightforward. In addition, an equivalent definition for the
ntropy of quantile function is given by:

(𝑄(𝑢)) = log(1 − 𝑢) + 1
1 − 𝑢 ∫

1

𝑢
log 𝑞(𝑢)𝑑𝑢 (14)

𝜉(𝑄(𝑢)) measures the expected uncertainty contained in the condi-
ional density about the predictability of an outcome of 𝑆 until the
00(1−𝑢)% point of distribution. Furthermore, differentiating (14) with
espect to 𝑢 results in:

𝑑𝜉(𝑄(𝑢))
𝑑𝑢

= − 1
1 − 𝑢

+ 1
(1 − 𝑢)2 ∫

1

𝑢
log 𝑞(𝑝)𝑑𝑝 − 1

1 − 𝑢
log 𝑞(𝑢)

or

(1 − 𝑢)
𝑑𝜉(𝑄(𝑢))

𝑑𝑢
= −1 + 𝜉(𝑄(𝑢)) − log(1 − 𝑢) − log 𝑞(𝑢),

then

𝑞(𝑢) = exp
(

𝜉(𝑄(𝑢)) − (1 − 𝑢)
𝑑𝜉(𝑄(𝑢))

𝑑𝑢
− log(1 − 𝑢) − 1

)

. (15)

Therefore, when 𝐸(𝑋) = ∫ 1
0 𝑄𝑋 (𝑢)𝑑𝑢, we can use the notations in

(15) for updating (2) based on quantile function and entropy. In a
numerical analysis in the next section, we will update the upper limit
of the integral of 𝐸(𝑋) based on 𝑄(𝑢) to focus on only tail quantiles
and assess the reliability of the VANET network based on information

propagation delay.
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5.2. Two competitive distributions

In practice, to minimize the effects of information propagation
delay, we want to select a distribution that, while minimizing 𝛿 in
1), does not overestimate or underestimate the data. In this regard,
here might be more than one candidate distribution for modeling
ata. Therefore, let us consider the problem of predicting the unknown
arameter 𝜽 as the property of space headway distribution. Given a
ollection of predictors, we select the predictor �̂� that minimizes the
iscrepancy with 𝜽. The common approach is to select �̂� that minimizes
n unbiased estimate of the expected squared loss, or E||

|

𝜽 − �̂�||
|

2
. In this

ontext, we investigate the interest of going beyond squared losses by
stimating a loss function grounded on an information-based criterion,
amely, the Kullback–Leibler divergence.

The Kullback–Leibler divergence can measure the information loss
hen an alternative distribution such as 𝑓 ′

𝑆 (𝑠|𝜽
′) is used to approximate

he underlying distribution given by

(𝜽,𝜽′) = ∫ d𝑓𝑆 (𝑠|𝜽) log
d𝑓𝑆 (𝑠|𝜽)
d𝑓 ′

𝑆 (𝑠|𝜽
′)

(16)

Unlike square loss, the Kullback–Leibler divergence does not mea-
sure the discrepancy between an unknown parameter and its estimate
but between the (unknown) distribution 𝑓 of 𝑆 and its estimate 𝑓 ′.
Therefore, it is invariant with one-to-one reparametrization of param-
eters and transformation of 𝑆 because the transforms do not affect the
quantity of information carried by 𝑆. While the squared loss is defined
irrespective of the noise distribution, the Kullback–Leibler divergence
could adjust its penalty for the scale and shape of the deviation, and it
accounts for heteroscedasticity.

The Kullback–Leibler divergence is a non-symmetric discrepancy
measure. The model in (16) could give interpretation to the question
‘‘How well 𝑓 ′

𝑆 (𝑠|𝜽
′) explains an independent copy of 𝑆?’’, and the

following equation could provide an answer to ‘‘how well 𝑓 ′
𝑆 (𝑠|𝜽

′)
generates an independent copy of 𝑋’’:

𝐼(𝜽′,𝜽) = ∫ d𝑓 ′
𝑆 (𝑠|𝜽

′) log
d𝑓 ′

𝑆 (𝑠|𝜽
′)

d𝑓𝑆 (𝑠|𝜽)
(17)

Therefore, to know which distribution is better and what will hap-
en if the selected distribution is not the best fit for the data, we
xtend the result in the last section to two competitive distributions.
o do this, let 𝑓 and 𝑓 ′ be two continuous distributions with quantile
unctions 𝑄(𝑢) and 𝑄′(𝑢), respectively. Assume that 𝑄′′(𝑢) = 𝑄′−1(𝑄(𝑢))

denotes the quantile function of 𝐹𝑆 (𝐹 ′−1
𝑆 ), where 0 ≤ 𝑢 ≤ 1. Then, the

quantile-based Kullback–Leibler divergence is given by:

𝜉(𝑆𝜽, 𝑆𝜽′ ) = ∫

1

0

(

log 𝑑
𝑑𝑝

𝑄′′(𝑝)
)

𝑑𝑝 (18)

For more information regarding the derivation details in (18), one
can refer to Sankaran et al. (2016).

Assuming that 𝐸(𝑋) of both distributions is finite, we can use the
properties of the cumulative quantile function and derive the equiva-
lent quantile-based Kullback–Leibler divergence in (18) as a function
of the expected value of both distributions and the cumulative quantile
function as follows:

𝜉∗(𝑆𝜽, 𝑆𝜽′ ) = ∫

1

0
(1 − 𝑝)

(

log
1 − 𝑝

1 −𝑄′−1(𝑄(𝑝))

)

𝑑𝑄(𝑝)

−

[

∫

1

0
(1 − 𝑝)𝑑𝑄(𝑝) − ∫

1

0
(1 − 𝑝)𝑑𝑄′(𝑝)

]

= ∫

1

0
(1 − 𝑝)

(

log
1 − 𝑝

1 −𝑄′′(𝑝)

)

𝑞(𝑝)𝑑𝑝 + 𝐸(𝑆|𝜽) − 𝐸(𝑆|𝜽′) (19)

In the numerical example of this study, using (19), we measure the
distance between the two pairs of candidate distributions for modeling
headway data based on their quantile functions and show how signif-
icant the effect of advancing one distribution to another one is on the
reliability of VANET and information propagation delay.
8

6. Numerical example

To illustrate the effect of uncertainty in model selection of headway
data on the reliability of VANET based on information propagation
delay, we use the Next-Generation Simulation (NGSIM) data to evaluate
our proposed methodology and formulations. We selected data that
includes detailed vehicle trajectory data on southbound US 101 (as
an example for mixed flow) and Lankershim Blvd (as an example for
congestion flow) in Los Angeles, CA, and Peachtree Street in Atlanta,
Georgia (as an example for free flow). The data was collected through
a network of synchronized digital video cameras.

The data set provides attributes that include vehicle length, width,
class, acceleration, velocity, ID, frame ID, total frames, global time,
local X and Y, global X and Y (based on the state plane), lane ID, pre-
ceding and following vehicles’ ID, and time and space headway (both
in the same lane). For this empirical data, the transmission range and
road segment’s length are set to 𝑟 = 300 and 𝐿 = 500 m, respectively.
For data preparation, we also removed all observations with a time
headway equal to 9999.99 (where vehicles move at zero speed). The
NGSIM dataset provides the space headway for the proceeding vehicle
in the same line; however, a vehicle can stay in an instantaneous
transmission if another vehicle is in the other lanes with a distance
shorter than 𝑟. Therefore, we utilize the sorted data based on the global
time (regardless of the lane ID) and then calculate the space headway.

We monitor the space headway data until the condition (𝑆𝑖+vehicle
length ≤ 𝑟) fails and consider this a ferry transmission. Fig. 3 illustrates
the histogram plot of 𝑆 for three selected roads in this study with
summary statistics of the ferry and instantaneous transmissions. In
addition, since for each vehicle ID, there are multiple frames captured
by sensors/cameras, we merged observations based on lane ID, vehicle
ID, preceding, and following vehicles and considered the average time
and space of merged observation for space headway and time headway,
respectively, for each unique observation.

We expect to see the effect of uncertainty of the headway model
in the data set with higher variation more significantly. Therefore, ac-
cording to the histogram plot in Fig. 3 and the corresponding variance
of each road equal to (𝑉 𝑎𝑟(US101), 𝑉 𝑎𝑟(Lankershim), 𝑉 𝑎𝑟(Peachtree)) =
(5054.475, 3485.12, 6147.207), we are expecting to see a higher level of
entropy for US101, and Peachtree street in compare with Lankershim
Blvd, validating this finding can result in a conclusion that congestion
traffic flow (because it causes less variation in space headway) is less
sensitive by the effects of model selection, and eventually mixed and
free traffic flow (because they cause more variation in space headway)
have a more sensitive behavior in this paradigm. In addition, both fatty
tails (right and left) of Peachtree Street and Lankershim Blv histograms
tell us that the effects of model selection in both tails quantiles will
be high, while these effects are more obvious only for the lower tail
quantiles of US101.

Following the data pre-processing step, calculating the theoretical
entropy of 𝐸(𝑇 ) became straightforward. To do that, we separated data
into two groups of 𝑆 ≤ 300 for calculating 𝐸(𝑋) and 𝑆 > 300 for
calculating 𝐸(𝑌 ) in (3) and (4), respectively. However, the alternative
equations of quantile-based entropy in (15) are utilized. We calculated
𝐸(𝑋) and 𝐸(𝑌 ) for empirical data under different distribution settings
(some of these distributions may not be a proper choice for our empiri-
cal data, but to show how serious the effect of models on the reliability
of VANET we intentionally included them into our analysis).

Eventually, 𝐸(𝑋), 𝐸(𝑌 ), 𝐸(𝑘), 𝜏, and 𝜈𝑖s are utilized to estimate
𝐸(𝑇 ) in (2). We considered 𝑃 as a Bernoulli experiment that results
in successful communication of one vehicle within the network as
Pr(0 ≤ 𝑆 ≤ 𝑟) = ∫ 𝑟

0 𝑓 (𝑠)𝑑𝑠. For calculating wireless transmission
time, 𝜏, since the instantaneous communication usually happens in a
highly congested traffic flow where the wireless connection between
two vehicles happens constantly and is very small (microseconds)
compared to ferry communication, we set 𝜏 as a very small and constant

value (122 μs). Finally, 𝜈𝑖 is calculated based on the headway space
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nd time ratio. To estimate 𝐸(𝑋) and 𝐸(𝑌 ) and show the effect of
model uncertainty on the reliability of VANET, we considered four
distributions, including Weibull, Normal, Lognormal, and Gamma dis-
tributions. The purpose behind selecting these distributions was only
for illustration and did not relate to how well or poorly these distribu-
tions fit the headway data. Thereafter, several quantiles including 𝑢 =
{0.5, 0.75, 0.8, 0.9, 0.95, 0.975, 0.99, 0.999} are considered and quantile-
based entropy is only calculated for %𝑢 of the smallest value of the
data.

The most common values of 𝑢 for decision makers are 0.5 (known as
median quantile), 0.25, 0.75 (known as lower and upper quartiles, re-
spectively), and 0.95 and higher values (known as upper tail quantiles).
The median quantile is pivotal for understanding the central tendency
of the data. It provides insight into the typical or median delay within
the traffic system, which is essential for general operational planning
and performance assessment. The lower quartile is useful for identifying
the lower bounds of headway or delays where the majority of the
data points lie. This can be particularly relevant for setting minimum
service standards or understanding the best-case operational scenarios.
The upper quartile helps recognize the upper limits of the more typical
range before entering the tail extremities. It aids in capacity planning
and understanding regular congestion points and can be a marker for
the onset of less frequent, more severe traffic conditions. Tail quantiles
are crucial in assessing the risk of rare but impactful events, such as
significant traffic delays. They are essential for preparing for potential
worst-case scenarios, ensuring the resilience of traffic models against
outliers, and complying with safety and reliability standards. Decision-
makers utilize these quantiles to develop strategies for robust traffic
management and to plan for emergencies.

We expect that when data are for lower quantiles (we only have
instantaneous transmission), we see low entropy or receive high infor-
mation gain by fitting selected distributions to headway data. The main
reason for this phenomenon is the high frequency of data due to high
congestion traffic flow. However, when we include the higher quantile
information when traffic turns to be more sparse, and we have ferry
transmission, due to the high volume of sparsity, the entropy increases,
9

and therefore, no matter how the selected distribution is a good choice
to fit the headway data, there would be a low-high information gain
from the model for upper tail quantiles.

Table 4 summarizes the quantile-based entropy for each road and
distribution and the estimated value of 𝐸(𝑇 ) under each scenario.
As motioned earlier in Section 5, based on the relationship between
the expected value and cumulative quantile function, we employed
quantile-based entropy to estimate the 𝐸(𝑋) and 𝐸(𝑌 ). Note that, in
Table 4, one of the reasons that the value of 𝜉(𝑄(𝑢)|𝑆 > 𝑟) is very
high compared with 𝜉(𝑄(𝑢)|𝑆 < 𝑟), is because we did not have enough
observations that fit in the condition 𝑆 > 𝑟. This includes only %12.5
f data from US101, %2.5 of Lankershim, and %10 of Peachtree roads.

The result in Table 4 validates our earlier assumptions in which the
pper tail quantiles with ferry transmission in sparse traffic flow are
ore sensitive to model selection, and regardless of how distribution is
ell fitted with the majority of data (mainly in instantaneous transmis-

ion status), there is always a high level of uncertainty (high entropy)
or ferry transmission data.

From Fig. 4, we can discern that, across all cases, the Lognormal
istribution more accurately models the headway distribution and sub-
equent propagation delay calculation. The alignment of the Lognormal
istribution with the empirical data is particularly notable, suggesting
hat it effectively captures the nuances of real-world traffic dynamics.
ower quantiles correspond to scenarios where vehicles are in close
roximity (instantaneous transmission status), a common characteristic
n right-skewed distributions. Fig. 3 shows that the empirical distri-
ution for all the selected roads is indeed right-skewed, indicating a
reater frequency of lower quantiles for short headway distances. Con-
equently, Fig. 4 shows that the expected time delay, 𝐸(𝑇 ), decreases
s vehicles become closer (from lower quantiles, getting closer to the
entral quantiles in this figure). This trend intensifies towards the upper
ail quantiles, where the headways are much longer (ferry transmission
tatus). Such a pattern is expected and aligns with typical traffic
ehavior, where time delays are shorter for closely packed vehicles and
ncrease as the distance between vehicles expands.
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Table 4
The quantile-based entropy for each road and distribution under different quantile values, where (𝐿,𝑈 ) denotes lower and upper bounds of 𝐸(𝑘). Note: entropy is always between

and 1, and closer to zero means high information gain, and closer to 1 indicates low information gain.
Road 𝐸(𝑘)(𝐿,𝑈 ) Distribution Terms Quantiles

0.5 0.75 0.8 0.9 0.95 0.975 0.99 0.999

US101 Weibull 𝜉(𝑄(𝑢)|𝑆 < 𝑟) 0.11339 0.12797 0.11339 0.09692 0.09092 0.08907 0.08815 0.08738
4.24 𝜉(𝑄(𝑢)|𝑆 > 𝑟) 0.74844 0.77182 0.74844 0.71912 0.70769 0.7053 0.70332 0.7017
(2.107, 6.374) Normal 𝜉(𝑄(𝑢)|𝑆 < 𝑟) 0.1088 0.13648 0.1219 0.10543 0.09942 0.09758 0.09666 0.09589

𝜉(𝑄(𝑢)|𝑆 > 𝑟) 0.46157 0.51426 0.49088 0.46157 0.45013 0.44774 0.44576 0.44415
Lognormal 𝜉(𝑄(𝑢)|𝑆 < 𝑟) 0.22261 0.25028 0.23571 0.21924 0.21323 0.21139 0.21046 0.20969

𝜉(𝑄(𝑢)|𝑆 > 𝑟) 0.35286 0.40555 0.38217 0.38217 0.35286 0.34142 0.33705 0.33544
Gamma 𝜉(𝑄(𝑢)|𝑆 < 𝑟) 0.17682 0.1914 0.17682 0.16035 0.15434 0.1525 0.15158 0.15081

𝜉(𝑄(𝑢)|𝑆 > 𝑟) 0.41541 0.43879 0.41541 0.3861 0.37466 0.37227 0.37029 0.36868

Lankershim Weibull 𝜉(𝑄(𝑢)|𝑆 < 𝑟) 0.09932 0.11965 0.09932 0.08124 0.07428 0.07256 0.07125 0.07017
5.677 𝜉(𝑄(𝑢)|𝑆 > 𝑟) 0.62 0.65659 0.62 0.6049 0.59779 0.59278 0.59278 0.59278
(3.893, 7.461) Normal 𝜉(𝑄(𝑢)|𝑆 < 𝑟) 0.08306 0.11921 0.09888 0.0808 0.07387 0.07212 0.0708 0.06973

𝜉(𝑄(𝑢)|𝑆 > 𝑟) 0.46719 0.51888 0.48229 0.46719 0.46008 0.45507 0.45507 0.45507
Lognormal 𝜉(𝑄(𝑢)|𝑆 < 𝑟) 0.09804 0.13419 0.11386 0.09579 0.08882 0.0871 0.08579 0.08471

𝜉(𝑄(𝑢)|𝑆 > 𝑟) 0.39036 0.44205 0.40546 0.39036 0.38326 0.37825 0.37825 0.37825
Gamma 𝜉(𝑄(𝑢)|𝑆 < 𝑟) 0.08256 0.10289 0.08256 0.06448 0.05752 0.0558 0.05449 0.05341

𝜉(𝑄(𝑢)|𝑆 > 𝑟) 0.42931 0.46589 0.42931 0.4142 0.4071 0.40209 0.40209 0.40209

Peachtree Weibull 𝜉(𝑄(𝑢)|𝑆 < 𝑟) 0.102 0.11534 0.102 0.07665 0.06996 0.068 0.06657 0.06657
1.303 𝜉(𝑄(𝑢)|𝑆 > 𝑟) 0.7271 0.7271 0.7271 0.68835 0.67169 0.66657 0.66657 0.66243
(0,5.549) Normal 𝜉(𝑄(𝑢)|𝑆 < 𝑟) 0.06961 0.10574 0.09239 0.06704 0.06036 0.05839 0.05697 0.05697

𝜉(𝑄(𝑢)|𝑆 > 𝑟) 0.6046 0.64335 0.64335 0.6046 0.58795 0.58283 0.58283 0.57868
Lognormal 𝜉(𝑄(𝑢)|𝑆 < 𝑟) 0.27688 0.31295 0.29961 0.27426 0.26758 0.26561 0.26419 0.26419

𝜉(𝑄(𝑢)|𝑆 > 𝑟) 0.48662 0.52536 0.52536 0.48662 0.46996 0.46484 0.46484 0.4607
Gamma 𝜉(𝑄(𝑢)|𝑆 < 𝑟) 0.19009 0.20344 0.19009 0.16475 0.15806 0.1561 0.15467 0.15467

𝜉(𝑄(𝑢)|𝑆 > 𝑟) 0.56087 0.56087 0.56087 0.52212 0.50546 0.50034 0.50034 0.4962
i
t
f
a
a
T
w

To show the effect of model selection on 𝐸(𝑇 ) and the reliability of
VANET, instead of directly using distributions, we utilized the quantile
functions to estimate 𝐸(𝑆|𝑆 < 𝑟) and 𝐸(𝑆|𝑆 > 𝑟) for the calculation
of 𝐸(𝑇 ). While estimating 𝐸(𝑇 ) based on quantile functions, we con-
sidered the same quantile information for calculating the average and
relative speeds and 𝐸(𝑘). Our primary analysis found that regardless of
the speed, 𝐸(𝑋) and 𝐸(𝑌 ) always have the same patterns. In addition,
according to our findings, although speed and 𝐸(𝑘) are values that can
be changed under different quantiles, even if they remain fixed for all
quantiles and equal to estimated values for complete information, still
𝐸(𝑇 ) remains sensitive to the model.

Considering the results provided in Fig. 3, our assessments at the be-
ginning of this section are validated by the result in Fig. 1, which means
traffic flows with higher variations are more sensitive to the effects
of model selection, and these effects in tail quantiles, when there is a
very large (ferry transmission) or very short distance (during congestion
traffic flow) among vehicles, are more significant. In conclusion, the
reliability of VANET is questionable due to information propagation
delays in very crowded or sparse traffic. Besides, Fig. 1 shows that
having more hops (during congested traffic flow) on the road does not
guarantee a low information propagation delay (see lower quantiles in
Fig. 2).

The results of our calculation for 𝐸(𝑇 ), can be effectively con-
trasted with the findings from Du and Dao (2014) to highlight the
significance of reliability assessment in VANET connectivity. Du and
Dao (2014) conducted a detailed analysis of similar datasets, focusing
on various vehicle scenarios, road types (one-way and two-way), and
traffic conditions (congested and free-flow). They provided average
time delay calculations for each road type and traffic condition, offering
a comprehensive perspective on delay variations across different traffic
scenarios. Their result is as follows:

• 𝐸(𝑇 ) for one-way segment with congested flow: 42.07 s
• 𝐸(𝑇 ) for one-way segment with free flow: 46.4 s
• 𝐸(𝑇 ) for two-way segment with congested flow: 25.4 s
• 𝐸(𝑇 ) for two-way segment with free flow: 17.8 s

Our approach and findings in this study are alleged closely within
the context of one-way road segmentation results presented by Du and
10
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Dao (2014). In our analysis, the concepts of free flow and congested
flow are analogous to the tail and central quantiles, respectively. It is
notable that for different road scenarios, the central quantiles’ 𝐸(𝑇 )
in our study closely matches the 42 s average delay reported by Du
and Dao (2014) (see Fig. 4). However, for free-flow conditions, which
correspond to tail quantiles in our research, our estimated 𝐸(𝑇 ) is closer
to 80 s. This discrepancy highlights the importance of incorporating
reliability aspects into analysis, as our approach reveals a higher delay.
This indicates a significant bias in earlier estimations, underscoring the
effectiveness of our methodology in capturing the more realistic traffic
dynamics, especially in decision-making contexts where higher delays
are critical.

According to the simulation result in Fig. 1, the Lognormal dis-
tribution always performs better than Normal, Gamma, and Weibull
distributions, specifically not under the very end tails, which are the
most common traffic flows in all selected roads. Therefore, the proper
selection of models is the most critical decision in the reliability assess-
ment of VANET. To show how significant the effect of misspecifying the
distribution would be on information propagation delay, we consider
the scenario where the better distribution is Lognormal but fitted by
the Weibull distribution. We considered the quantile-based function
for two competitive distributions in (19) and defined two metrics as
relative bias (RB) and relative variability (RV) for measuring the effects
of misspecification on information propagation delay and reliability of
VANET as follows:

𝑅𝐵 =
𝐸(𝑇 |�̂�) − 𝐸(𝑇 |𝜽′)

𝐸(𝑇 |�̂�)
=

𝐸(𝑇 |𝜉∗(𝑆𝜽, 𝑆𝜽′ ))
𝐸(𝑇 |𝜉(𝑆𝜽))

(20)

𝑅𝑉 =
𝐸(𝑇 |𝜉∗(𝑆𝜽, 𝑆𝜽′ ))
𝐸(𝑇 |𝜉∗(𝑆𝜽′ , 𝑆𝜽))

. (21)

The results of 𝑅𝐵 and 𝑅𝑉 for different quantile functions in estimat-
ng 𝐸(𝑇 ) are depicted in Figs. 5 and 6, respectively. From the figures,
heoretically speaking, if the better distribution is Lognormal and the
itted distribution is Weibull, by comparing the results, there could be
bout 3.5%, 3%, and 1.5% of bias in roads with mixed congestion
nd free traffic flows, respectively, when vehicles have low distance.
hese effects are about 2.5%, 2.5%, and 1% for similar traffic flows
hen vehicles have higher distances. Although these numbers may not

ook very critical and strongly depend on road and traffic conditions,
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Fig. 4. Estimated 𝐸(𝑇 ) based on quantile-based entropy for each percentile under different distribution and road settings. Note: 𝐸(𝑇 ) is in 10 s.
imagine a low-speed/low-distance traffic flow that automatically leads
to a high information propagation delay; if drivers drive at speeds
as low as 20 km/h, there would be about 42 s of bias in estimating
the 𝐸(𝑇 ), if instead of a better distribution like Lognormal, a weaker
distribution like Weibull fit the 𝑋 and 𝑌 data. During 42 s at a speed
of only 20 km/h, the vehicle can pass 2.5 m, while the reaction and
braking distance are only 6 m at such a speed (see Fig. 5). 1

Fig. 6 depicts the result for the 𝑅𝑉 of each road. The result confirms
our findings from analysis 𝑅𝐵 for tail quantiles; in addition, these
plots tell us that for US101 with a mixed traffic flow, Weibull is
always underestimating the property of 𝐸(𝑇 ) (𝑅𝑉 is always smaller
than 1), while for the case of Lankershim Blvd., Weibull is usually
overestimating the properties of 𝐸(𝑇 ). A similar conclusion with US101
can be withdrawn for Peachtree Street. Generally, we can conclude that
information propagation delay on roads with mixed and free traffic flow
can be underestimated and overestimated in highly congested traffic
flow. Therefore, it can be concluded that if the space headway dis-
tribution is not properly selected, the underestimation of information
propagation delay will cause accidents in the mix and even free traffic
flow roads.

7. Conclusion

Headway modeling has attracted many researchers during the past
decades. In this paper, we developed a novel methodology for studying

1 https://mobilityblog.tuv.com/en/calculating-stopping-distance-braking-
is-not-a-matter-of-luck/.
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the effect of model uncertainty on information propagation delays in
the reliability of V2V communication networks, which may be ben-
eficial for vehicle safety, traffic control estimation, and prediction.
We evaluate the effects of model selection of space headway data
when different distributions fit the data and calculate the quantile-
based entropy to estimate the information propagation delay in a V2V
communication network. Under different models, the behavior of 𝐸(𝑇 )
as the expected time delay value is calculated for different quantile
values.

The proposed model for considering the effect of model selection
on information propagation delay in the reliability assessment of IVC
networks can be implemented to quantify propagation and coverage
of time delay information for local transportation networks. Also, CAV
technologies open new issues for exploring digital data-sharing oppor-
tunities. One of the future challenges will be gathering different sources
of information about vehicle headway distribution. Moreover, this
study examines the time delay caused by instantaneous transmission,
which is small in a single road segment but significant as information
spreads across a large network. Extending to the network level would
be a potential research area. The proposed analytical formulations,
which capture the time delay of information propagating over a road
segment, serve as a solid foundation for further research into these
complex areas under the effects of proper model selection and network
reliability assessment.

In addition, it is worth mentioning that when the size of the head-
way data is large enough because estimators are approximately un-
biased, bias is not an issue for practitioners. However, to reduce the
bias and inefficiency of model selection when the fitted model turns

https://mobilityblog.tuv.com/en/calculating-stopping-distance-braking-is-not-a-matter-of-luck/
https://mobilityblog.tuv.com/en/calculating-stopping-distance-braking-is-not-a-matter-of-luck/
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Fig. 5. 𝑅𝐵 of estimating 𝐸(𝑇 ) based on quantile-based entropy between two distributions, when the true distributions are Lognormal but mistreated as Weibull.
Fig. 6. 𝑅𝑉 of estimating 𝐸(𝑇 ) based on quantile-based entropy between two distributions, when the true distributions are Lognormal but mistreated as Weibull.
out to be incorrect, defining a robust test plan, such as our proposed
entropy-based goodness of fit test, is necessary. In practical situations,
there are cases where mixture distribution is the true distribution,
but an unimodal distribution incorrectly fits the data; for instance,
separated distributions for ferry and instantaneous transmissions are
recommended. Therefore, defining a correct mixture model or stochas-
tic process that can describe the dynamic behavior or data is worth
investigating.

Finally, using the proposed model to detect, forecast, and manage
freeway congestion based on a better estimate of headway distribution
and data availability would improve the efficiency and reliability of
AI-based traffic congestion detection, forecasting (short, medium, and
long term), and freeway management.
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