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groups of nodes with many intra-modular links to each other but 
few inter-modular links to external groups (Newman and Girvan, 
2004). Graph theoretical work has shown that human brain func-
tional modules are hierarchically organized (Meunier et al., 2009b; 
Bassett et al., 2010), that their structure is altered in normal aging 
(Meunier et al., 2009a) and in adolescence (Fair et al., 2009), and 
that their structure is relatively consistent for fMRI and diffusion 
spectrum imaging (DSI) of the same subjects (Hagmann et al., 
2008). The brain, at least the healthy brain, is a modular system.

  Here we test the hypothesis that the normal modular com-
munity structure of functional brain networks might be somehow 
disrupted in neuropsychiatric disease, specifically in schizophrenia. 
There are theoretical reasons to posit that the brain’s modularity 
is crucial in terms of its evolution and healthy neurodevelopment. 
Modularity may allow the brain to adapt to multiple, distinct selec-
tion criteria over time (Kashtan and Alon, 2005). Modules may 
also represent stable subcomponents of the brain, which facili-
tate the construction of a complex system from simple building 
blocks (Simon, 1962). In the context of the recent focus on the 

IntroductIon
One of the most ubiquitous properties of complex systems, like 
large-scale functional brain networks, is that they generally have a 
modular community structure (Bullmore and Sporns, 2009). Using 
resting-state fMRI analysis, functional communities or modules 
can be broadly defined as groups of brain regions whose fMRI 
time series are similar to each other and dissimilar from other 
groups. How to partition the brain into such functional communi-
ties, and the related question of how to assess the quality of these 
partitions, are methodological issues that have been approached 
from the perspectives of both unsupervised learning and graph 
theory. In the context of unsupervised learning, where brain regions 
are considered as objects in n-dimensional functional space to be 
classified into their “natural” groups, hierarchical cluster analysis 
has been used to decompose the brain into a small number of 
functional modules that resemble known patterns of neural con-
nectivity (Cordes et al., 2002; Salvador et al., 2005). In graph theory, 
on the other hand, brain regions are nodes (or vertices), functional 
connections between nodes are edges (or links), and modules are 
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childhood-onset schizophrenia. We devise a way of applying a local 
threshold to construct brain graphs, which ensures that all of the 
graphs are node-connected at minimal densities, in contrast to the 
variability of node-connectedness that typically arises when graphs 
are constructed by a global threshold. We compare standard graph 
theoretical modularity results with the results of an unsupervised 
learning approach, using a generalization of the k-means algorithm 
known as partition around medoids (PAM), and a multi-resolution 
spin glass algorithm. In addition to modularity, we estimate sev-
eral other properties of the graphs, most of which have previously 
been investigated in adult-onset schizophrenia (Liu et al., 2008; 
Rubinov et al., 2009; Lynall et al., 2010). Finally, we ground the 
complex network analysis by looking at simpler properties of the 
fMRI time series in these subjects, such as the variability of the time 
series and its internal homogeneity within anatomical regions of 
interest. We find evidence in support of network dysmodularity in 
COS, and explain this finding in the context of the other proper-
ties of the fMRI phenotype that we investigate. To our knowledge 
this is the first study to report less modular brain organization or 
abnormal community structure of brain functional networks in 
any human population.

MaterIals and Methods
saMple
Thirteen COS patients and 19 controls or “normal volunteers” (NV) 
were recruited as part of an ongoing National Institute of Mental 
Health study of COS and normal brain development (ClinicalTrials.
gov Identifier: NCT00001246). All patients met the DSM-IV criteria 
for childhood-onset schizophrenia, and consent was acquired from 
both patients and their legal guardians. The populations did not 
differ significantly in terms of age (COS sample mean age = 18, 
standard deviation = 4; NV sample mean age = 19, standard devia-
tion 4; t-test p-value = 0.29) or gender (8 female, 5 male COS; 10 
female, 9 male, NV; chi squared test p-value = 0.89).

IMage acquIsItIon and preprocessIng
All images were acquired using a 1.5T General Electric Signa MRI 
scanner located at the National Institutes of Health Clinical Center 
(Bethesda, MD). One anatomical T1-weighted fast spoiled gra-
dient echo MRI volume was acquired: TE 5 ms; TR 24 ms; flip 
angle 45Â°; matrix 256 × 256 × 124; FOV 24 cm. In addition, two 
sequential 3 min EPI scans were acquired while subjects were 
lying quietly in the scanner with eyes closed: TR 2.3 s; TE 40 ms; 
voxel 3.75 mm × 3.75 mm × 5 mm; matrix size 64 × 64; FOV 
240 mm × 240 mm; 27 interleaved slices. The first four volumes 
of each functional scan were discarded to allow for T1 equili-
bration effects. AFNI was used for slice time correction and for 
motion correction (Cox, 1996). In terms of motion, the maxi-
mum displacement of brain voxels due to motion did not differ 
significantly between the groups (sample mean COS maximum 
displacement = 2.45 mm; sample mean NV maximum displace-
ment = 1.93 mm; t-test p-value = 0.41). FSL’s FLIRT (Jenkinson 
and Smith, 2001; Jenkinson et al., 2002) was used to register each 
subject’s functional scans to that subject’s structural scan using a 
6 degrees of freedom transformation, and to register the structural 
scan to MNI stereotactic standard space using a 12 degrees of free-
dom transformation. Although registering both pediatric and adult 

 developmental phenotypes of neuropsychiatric disease (e.g., 
Gogtay et al., 2008; Giedd et al., 2009), it makes sense to meas-
ure properties of neuroimaging data, such as modularity, that are 
theoretically linked to network development and that may pro-
vide sensitive markers of abnormal brain development in disorders 
such as schizophrenia. In fact, dysmodularity in schizophrenia has 
already been proposed as a neuropsychological theory, implying the 
breakdown of information encapsulation between brain systems 
that are specialized to carry out different tasks (Fodor, 1983; David, 
1994). In the functional neuroanatomical context, possible exam-
ples might include pathological crosstalk between inner speech 
and auditory areas in the pathogenesis of hallucinations (Shapleske 
et al., 2002), or between left and right prefrontal cortex in work-
ing memory tasks (Lee et al., 2008). However, it is clear that this 
point can be argued from both sides: For example, patients seem 
to be more susceptible than controls to the Müller-Lyer illusion 
(Pessoa et al., 2008), a visual illusion that persists in spite of explicit 
knowledge about the nature of the illusion, which has been held 
up as an exemplar of perceptual modularity. At any rate, it is not 
obvious how to relate the notions of psychological modularity and 
topological modularity as it is quantified in complex systems, and 
the dysmodularity hypothesis has not yet been tested with any rigor 
in neuroimaging experiments.

  There are methodological barriers to testing this hypothesis. 
As already noted there are a number of possible ways in which 
the community structure of functional networks can be described, 
and these alternatives have not been comparatively evaluated. 
Moreover it is non-trivial to make comparisons of modularity, 
however measured, between two groups of brain graphs with dif-
ferent topological properties. Even random graphs show complex 
properties including modularity to an extent that varies depending 
on the number of nodes and edges in the graphs (Bollobás, 1985; 
Anderson et al., 1999; Guimerà et al., 2004). Network properties 
can change dramatically around the percolation threshold where 
graphs become node-connected (Dorogovtsev et al., 2008), where 
“node-connected” means that none of the nodes is entirely isolated, 
each is linked by at least one edge to a single giant connected cluster. 
To ensure that statistical comparisons of brain network properties 
are meaningful, therefore, all of the graphs should ideally have the 
same number of nodes and edges, and they should all be node-
connected. This last point is crucial because graphs constructed by 
global thresholding from data on different subjects may often show 
different degrees of node-connectedness, especially if the graphs 
are sparse. While differences in node-connectedness, e.g., as meas-
ured by percolation threshold, may be informative in their own 
right (Chen et al., 2007), they should ideally be controlled when 
considering group differences in other more edge-based network 
metrics such as degree. One conceptually simple way of doing this 
is to restrict evaluation of network metrics to a range of connection 
densities for which all graphs are node-connected (Bassett et al., 
2008; Lynall et al., 2010). However, this approach may preclude 
comparative analysis of network properties at sparser connection 
densities where complex topological features such as modularity 
are typically most prominent.

  We explore some of these methodological issues in the con-
text of a preliminary investigation of the modularity and other 
properties of brain functional networks measured using fMRI in 
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pairs of regions. The regional strength of connectivity s(i) for a 
region i was defined as the mean of the correlations with the N − 1 
other regions:

s i
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1  
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We also explored the covariability of the voxels within each 
anatomical region, treating each anatomical region as a distinct 
subnetwork. If x is a voxel within a region i, and K is the number 
of voxels within i, the average voxel connectivity strength s(x) over 
all K is a measure of the internal homogeneity of the signal from 
region i. Although at a different spatial and temporal scale, this 
statistic is similar to so-called regional homogeneity (ReHo; Zang 
et al., 2004), which has been calculated between neighboring voxels. 
For greater consistency with this prior work, we also calculated 
Kendall’s coefficient of concordance, 0 ≤ W(i) ≤ +1, between the 
voxels in each region i:
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Here, K is the number of voxels in region i; n is the length of the 
time series; R

x
 is the sum of the ranks of the x th voxel; and R

−
 is the 

mean of R
x
, over all K voxels. The numerator in Eq. 2 is the variance 

of the sums of the ranks, and the denominator is the maximum 
possible variance given the number of voxels and the length of the 
time series (Sheskin, 2007). The advantages of this statistic are that 
it is non-parametric and that it is defined for a region containing 
any number of voxels. The average regional concordance is the 
mean of W over all N regions.

Graph construction
Note that R code used for graph construction is publicly available 
at http://brainnetworks.sourceforge.net, and the Appendix contains 
definitions of some commonly used graph theoretical terms. To make 
a graphical model of brain network connectivity, the usual approach 
is to generate a binary adjacency matrix A from a continuous asso-
ciation or connectivity matrix C. It is also possible to measure net-
work properties by analysis of the connectivity matrix using tools 
which do not require a binary thresholding operation to generate 
an adjacency matrix. Here we explored two different (global and 
local) thresholding methods to construct an adjacency matrix from 
the 100 × 100 connectivity matrix, C, where C

i,j
 = |r

i,j
|, the absolute 

wavelet correlation coefficient for a pair of regional time series i and 
j. We also investigated two complementary methods – the unsuper-
vised learning algorithm “partition around medoids” (PAM) and 
the multi-resolution spin glass model of modularity – to measure 
network properties without thresholding the connectivity matrix.

Most human neuroimaging studies to date have used global 
thresholding to construct functional brain networks. Using this 
method, any |r

i,j
| of the functional connectivity matrix greater than 

a threshold, τ, implies an edge in the corresponding element of 
the adjacency matrix, A, meaning that A

i,j
 = 1. If r

i,j
 < τ, then A

i,j
 = 0. 

Thresholding at a different value of τ creates a graph with a differ-
ent edge density or cost, which is the number of edges in a graph  

brains to the MNI adult brain template image could result in some 
age-specific differences in spatial normalization, these differences 
are unlikely to affect fMRI results because of fMRI’s relatively low 
spatial resolution (Burgund et al., 2002; Kang et al., 2003) and 
because functional activity is represented by regional mean time 
series averaged over multiple voxels comprising regions of the par-
cellation template image. Both these factors suggest that the scale 
of any possible age-related mis-registration is likely to be small 
in comparison to the relatively coarse-grained scale of functional 
network analysis applied to the data. We note that adult template 
images have previously been used as a basis for normalization of 
fMRI data on participants in similar and even younger age-ranges 
than our sample (Durston et al., 2003; Turkeltaub et al., 2003; 
Cantlon et al., 2006; Crone et al., 2006; Galvan et al., 2006).

Wavelet measures of variability and covariability at 
different scales
For each functional scan, 111 anatomical regions were defined 
using the combined cortical and subcortical Harvard-Oxford 
Probabilistic Atlas (Smith et al., 2004) thresholded at 25%. Because 
of low quality signal due to susceptibility artifacts in some regions, 
quantified as the majority of a region being absent from the EPIs 
of the majority of subjects, the brainstem and 5 bilateral corti-
cal regions at the inferior frontotemporal junction were excluded, 
which resulted in a dataset of 100 regions for each functional scan. 
In addition to the voxel time series, 100 regional time series were 
estimated by averaging the voxels within each of the regions, while 
one global time series was estimated by averaging the voxels within 
all of the regions.

The maximal overlap discrete wavelet transform (MODWT) 
with a Daubechies 4 wavelet was used to band-pass filter the time 
series (Percival and Walden, 2006) and, in what follows, we will 
focus on the results obtained using the scale 2 frequency interval, 
0.05–0.111 Hz. This frequency scale was chosen to minimize the 
impact of higher frequency physiological noise while maximiz-
ing the degrees of freedom available for wavelet correlation, as 
well as for consistency with previous work. Wavelet coefficients 
with boundary effects from the MODWT were excluded, and the 
coefficients of the sequential functional scans were concatenated 
to form a single series of 144 wavelet coefficients which was the 
basis for all further analyses of variability and covariability (e.g., 
see Figures 2B,D).

Variability of the global and regional signals
We quantified the variability of the low frequency MRI signal sim-
ply as the sample variance of the MODWT wavelet coefficients at 
scale 2. (To make comparisons between the variability of the signal 
at different temporal scales, the wavelet variances would have to 
be corrected for the redundancy of the MODWT, but we focus 
exclusively on differences between the clinical populations at the 
same scale.) Variability was estimated for each of the anatomical 
regions and also for the global signal.

Covariability between and within regions
The wavelet correlation, −1 ≤ r

i,j
 ≤ +1, was used as an estimate 

of the covariability between two time series i and j. For N ana-
tomically defined regions, this value was found for all (N 2 − N)/2 



Frontiers in Systems Neuroscience www.frontiersin.org October 2010 | Volume 4 | Article 147 | 4

Alexander-Bloch et al. Modularity and local connectivity in schizophrenia

general have lower signal-to-noise. In addition, there is less het-
erogeneity between the graphs of different subjects, as the adja-
cency matrices are identical and only the weights of the edges can 
differ. Finally, only some network measures, such as modularity 
(discussed below), have analogs that can be applied to weighted 
complete graphs.

Global netWork measures
We report network properties over the whole of range of edge 
density or cost, from 0.02 to 0.98 at 0.02 intervals, for both globally 
and locally thresholded graphs. As a summary statistic, we also 
calculated the mean of each metric over the range of costs from 
0.3 to 0.5. This range was chosen for several reasons: (1) most of 
the globally thresholded graphs become connected by a cost of 

comprising N nodes, divided by the maximum number of possible 
edges, (N2 − N)/2. A difficulty with global thresholding is that at sparse 
densities it can result in graphs that are not  node-connected, i.e., there 
is not a finite path between every pair of nodes. Disconnectedness 
of the graphs affects the quantitative values of many network met-
rics. Therefore, comparisons of network metrics between different 
subjects may be biased if the network for one subject is connected 
at the chosen threshold, but the network for the other subject is 
fragmented or disconnected. We anticipated that this might be a 
significant challenge in making a fair comparison between networks 
estimated in healthy volunteers versus patients with COS.

To address the issue of disconnectedness that can arise as a result 
of global thresholding, we explored an alternative thresholding 
method that forces graphs to be connected even at sparse densities. 
To this end we made use of the standard graph theoretical concepts 
of the minimum spanning tree (MST; Kruskal, 1956; Prim, 1957) 
and the k nearest neighbor graph (k-NNG; Eppstein et al., 1992). 
The k-NNG is composed of those edges that link each node to the 
k nearest other nodes, where “nearest” in this case means highest 
functional connectivity. The MST is composed of those edges that 
node-connect the graph with the lowest possible number of edges 
and the highest possible functional connectivity. Put differently, 
an MST of a graph is a node-connected subgraph that includes 
the minimum total weight, and here we interpret the weight of an 
edge between two nodes as one minus the nodes’ functional con-
nectivity. Although in theory there could be more than one MST 
or k-NNG for a given network, in practice this does not occur in 
our data. Algorithmically, the MST can be found by starting with 
the 1-NNG, that is by including an edge between every node and its 
single nearest neighbor. If the 1-NNG is connected, then it is identi-
cal to the MST; if the 1-NNG is disconnected, including fragmented 
groups of nodes with no finite path between them, then additional 
edges are added to link these fragments. For a given graph with N 
nodes, the MST always has N − 1 edges, which include the edges 
of the 1-NNG as a subset.

Although the MST itself can be used as a sparse representation of 
the whole network, it is somewhat implausible biologically because 
the MST is by definition acyclic (no loops or triangles) and its edges 
do not form clusters or cliques. For example, the clustering coef-
ficient (Watts and Strogatz, 1998) of an MST will always be zero. 
For this reason, it has been previously proposed to start with the 
MST as a minimal connected skeleton of the brain network and 
then grow the tree by adding extra edges according to a standard 
global thresholding rule (Hagmann et al., 2008). Alternatively, we 
developed a new method to grow the MST by adding extra edges 
according to a local thresholding rule. Specifically, we add the edges 
of the k-NNG in step-wise fashion, for higher and higher k. Since 
the MST is a connected superset of the 1-NNG, we generalize the 
concept to connected supersets of the k-NNG. See Figure 1 for an 
illustration of these different graph construction methods, applied 
to a “toy” connectivity matrix composed of 11 of the 100 nodes 
of a typical subject.

A final alternative is to avoid thresholding altogether, using net-
work measures that can be appropriately applied to the unthresh-
olded connectivity matrix. This sidesteps the potentially arbitrary 
decision of how to threshold the connectivity matrix. However, 
the unthresholded graphs – also called “complete” graphs – will in 

Figure 1 | Schematic illustrating local and global thresholding methods, 
and how these methods impact on the modular structure of graphs 
constructed from a correlation matrix. Starting with a model correlation 
matrix, which shows the functional connectivity between a subset of 11 brain 
regions for one subject, the two different thresholding methods are used to 
construct graphs with increasing numbers of edges. On the left, applying a 
local threshold produces connected supersets of the k nearest neighbor graph 
(k-NGG), which includes edges for each node’s k highest functional 
connections, shown here for k = 1, 2, 3. The minimum spanning tree (MST) is 
a connected superset of the 1-NNG, and connects all 11 nodes with the 
lowest possible number of edges and the highest possible functional 
connectivity. On the right, applying a global threshold simply includes edges 
between the pairs of nodes with the highest functional connectivity in order. 
Nodes of the same color are in the same module, as determined by the fast 
greedy algorithm, showing the influence of graph construction and edge 
density on the modular partition.
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Clustering
The regional or nodal clustering coefficient, C(G, i), of a node i 
in a graph G is the ratio of connected triangles, δ

v
 to connected 

triples, τ
v
. In other words, it is the proportion of i’s neighbors that 

are also neighbors of one another. For the graph as a whole, the 
clustering coefficient is:

C G
V

v

vv V

( )
| |

=
′ ∈ ′

∑1 δ
τ  

(5)

where V ′ is the set of nodes with degree >2 (Watts and Strogatz, 
1998; Schank and Wagner, 2004). Clustering is a measure of the 
locally aggregated structure in a graph.

Small-worldness
Small-world networks have high clustering, C, but low average 
minimum path length, L, compared to random networks. The 
small-worldness, σ(G), of a graph G is calculated as:

σ γ
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Here, C
R
 is the clustering of random graph rewired so as to 

preserve the degree distribution of G, and L
R
 is the average mini-

mum path length of such a random graph. For connected graphs, 
the average minimum path length is identical to the inverse of the 
(unweighted) global efficiency, so we can also write λ(G) = E

R
/E(G). 

For disconnected graphs, formally σ(G) is undefined, but we can 
again substitute λ(G) = E

R
/E(G) to get a related quantity. A net-

work is generally accepted as “small-world” if σ > 1 (Humphries 
et al., 2006).

Robustness
As a measure of robustness, we looked at the resistance of the net-
work to fragmentation after removal of nodes either in random 
order or in decreasing order of their degree. Suppose that there 
are M fragments in the network, i.e., M subgraphs that are con-
nected internally but disconnected from each other. Resistance to 
fragmentation is defined as:

R G

N N

N N

j j
j

M

( )
( )

=
−( )

−
=

∑ 1

1
1

 
(7)

where N
j
 is the number of nodes in fragment j, and N is the number 

of nodes in the graph. N − 1 nodes are removed in order, and 
robustness is the mean of R over all of these smaller graphs (Chen 
et al., 2007).

ModularIty
We explored modularity using three complementary meth-
ods from unsupervised learning and graph theory: partition 
around medoids (PAM), fast greedy optimization of thresh-
olded graphs, and simulated annealing of a spin glass model. 
See Figure 1 for an illustration of these methods, applied to a 
model network.

0.3; (2) previous work suggests that above a cost of 0.5 graphs 
become more random (Humphries et al., 2006) and less small-
world; and (3) the network measures are relatively constant over 
this range. Statistics were calculated in R (R Development Core 
Team, 2009) using original code as well as the following packages: 
wmtsa, brainwaver, cluster, MASS (Venables and Ripley, 2002), and 
igraph (Csardi and Nepusz, 2006).

Randomized graphs
It is important to contrast the brain graphs with comparable ran-
dom graphs (Watts and Strogatz, 1998). We used two procedures 
to construct such graphs. With one method, the edges of the graph 
were replaced by edges chosen completely at random, with every 
pair of nodes having an equal probability of being connected in 
the new graph. Thus the only constraint is that the random graphs 
have the same number of nodes and edges as the original graphs 
(Erdös and Rényi, 1959). Alternatively, the graphs were “rewired” 
so as to preserve the degree distribution of the original graph. This 
is accomplished by picking two edges at random, between nodes 
A and B and between nodes C and D, and replacing these with 
edges between nodes A and C and between nodes B and D. Enough 
iterations of this process ensure a randomized graph where every 
node still has the same degree as in the original graph (Milo et al., 
2004). We also explored graphs that were only partially randomized, 
where some proportion of the edges had undergone one or the 
other randomization procedure.

Global efficiency
The global efficiency, E(G), of a graph G is

E G
N N Li ji j G

( )
,

=
− ≠ ∈

∑1 1
2

 

(3)

where L
i,j
 is the minimum path length, or the minimum number of 

edges that must be traversed between regions i and j (Latora and 
Marchiori, 2001; Achard and Bullmore, 2007). Note that if there is 
not a finite path between nodes i and j, then (1/L

i,j
) = 0. The regional 

or nodal efficiency of one brain region can also be calculated by 
averaging 1/L

i,j
 over each node separately. When calculating L

i,j
 for 

weighted graphs, the edges themselves are treated as varying in 
length according to the weight matrix W, where W

k,l
 = 1 − C

k,l
. For 

weighted graphs, the global efficiency at a given cost is normalized 
by dividing by the global efficiency of the unthresholded, complete 
graph. (Theoretically, this is the case for binary global efficiency as 
well, but the global efficiency of the complete graph is 1).

Local efficiency
The local efficiency, E

loc
(G, i), of a node i in a graph G is 

computed as:

E G i E Giloc( , ) = ( )
 

(4)

Here, G
i
 is the subgraph including only the neighbors of i (not 

i itself), and E(G
i
) is the global efficiency of G

i
. The local efficiency 

of the graph is the average of the local efficiency of all of its nodes. 
This metric can be extended to weighted graphs in the same 
manner as global efficiency (Latora and Marchiori, 2001; Achard 
and Bullmore, 2007).
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weight in the weighted modularity calculation is actually one 
minus that edge’s weight in the calculations of weighted global 
or local efficiency.

There are several known algorithms to assign nodes to modules 
so as to maximize Q. The principal benefits of the fast greedy algo-
rithm that we use are its computational speed and the fact that it 
has been used in prior fMRI studies (e.g., Meunier et al., 2009a,b). 
This algorithm starts by assigning each node to its own module, 
and then agglomerates modules in a step-wise fashion, choosing 
the 2 modules whose combination results in the highest Q. The 
modularity value for the graph is then the highest Q that results 
throughout this step-wise process (Clauset et al., 2004). We applied 
this algorithm over the full cost range using a global threshold and 
a local threshold, for weighted and unweighted graphs.

Multi-resolution spin glass model
Finally, we employed a graph theoretical algorithm that looks at the 
modular structure at different resolutions. It has been shown that 
there is a resolution limit to modularity, in that modules smaller than 
a certain size are not found by traditional approaches (Fortunato and 
Barthélemy, 2007). Thus the modular structure is biased toward a 
certain scale, which is particularly problematic when considering a 
multi-scale system like the brain. This problem can be addressed by 
adding an additional parameter into the definition of modularity. 
One approach (Reichardt and Bornholdt, 2006) equates the problem 
of partitioning a graph with the problem of minimizing the energy 
of an infinite range Potts spin glass model, where the group indices 
become spin states. Groups of nodes with dense internal connections 
end up having parallel spins. The Hamiltonian, H, of a graph G is:

H( ) ,G A P M Mij ij i j
i j

= − −( ) ( )
≠
∑ γ δ

 

(11)

Here, γ > 0 is the additional, adjustable parameter. The γ parameter 
can be thought of as a resolution parameter, such that higher values 
result in higher number of modules, each of which has fewer mem-
bers on average. To find the optimal partition at different resolutions, 
this quality function H is minimized for different values of γ, using a 
simulated annealing approach. When γ = 1, minimizing this function 
is equivalent to maximizing modularity as defined in Eq. 10. One 
of the virtues of the spin glass algorithm is that, although it can be 
applied to graphs with any cost, it can also be appropriately applied 
to the unthresholded connectivity matrix, so we do not have to set 
a threshold (Heimo et al., 2008). One drawback of the algorithm is 
that there is no obvious way to choose between the partitions found 
with different values of γ. A potential solution is to focus on partitions 
that are stable over a range of values of γ if a such a partition exists 
(Lambiotte, 2010). It is also informative to look at the pattern of how 
the modular structure changes with different values of γ.

results
varIabIlIty and covarIabIlIty of the MrI tIMe serIes
There were clear differences between groups in terms of some  statistically 
elementary properties of the images: global mean variability, strength of 
functional connectivity, and within-regional  homogeneity. The global 
mean wavelet-filtered time series had significantly reduced variability 
in COS versus healthy volunteers (sample mean global  variability NV 
= 2.08; COS = 0.95; permutation test p = 0.007; Figures 2A,B). There 

PAM
PAM, like the more widely known method of hierarchical cluster-
ing, is an unsupervised learning algorithm that does not require 
thresholding of the connectivity matrix (Kaufman and Rousseeuw, 
1987). Modules are referred to as “clusters” in the unsupervised 
learning literature, but to avoid confusion we will use the graph 
theory terminology. PAM is a generalization of the k-means algo-
rithm that is more robust to noise and outliers. It requires as inputs 
the number of expected modules and the dissimilarity between 
every pair of nodes i and j. For our purposes, the dissimilarity 
between i and j is defined as 1 − C

i,j
 for the connectivity matrix C. 

The algorithm finds each module a representative node (medoid), 
and assigns other nodes to modules so as to minimize their dis-
similarity with these medoids. The silhouette width, S, can be used 
to assess the quality of this partition:

S
A B

A Bi
i i

i i

=
−( )
( )max ,

 

(8)

Here, i is a brain region, A
i
 is the mean dissimilarity between 

i and the other regions in its module, and B
i
 is the mean dissimi-

larity between i and the regions in the next nearest module. The 
silhouette width ranges from −1 to 1, and a high positive number 
means that i is well-classified. The mean silhouette width over every 
region provides a global measure of the quality of the partition. It 
is explored over a range of possible numbers of modules.

Graph theoretical modularity
The modularity, Q, of a graph G can be quantified as the proportion 
of G’s edges that fall within modules, subtracted by the proportion 
that would be expected due to random chance alone, for a given 
partition of nodes into modules. This can be written as (Newman 
and Girvan, 2004):

Q G
m

A P M Mij ij i j
i j

( ) ,= −( ) ( )
≠
∑1

2
δ

 

(9)

Here, m is the total number of edges; A
ij
 = 1 if an edge links i and 

j and 0 otherwise; δ(M
i
, M

j
) is 1 if i and j are in the same module 

and 0 otherwise, and ensures that only intra-modular edges are 
added to the sum; finally, P

ij
 is the probability that there would be 

an edge between i and j, given a random graph comparable to G. 
The value of P

ij
 depends on what counts as a “comparable” random 

graph, the so-called null model. We use

P
k k

mij

i j=
2  

(10)

where k
i
 is i’s degree, the number of other nodes to which i is linked 

by an edge. We include this information in the null model because 
it affects the expected proportion of intra-modular edges.

Weighted modularity is calculated analogously. In Eqs 9 and 
10, the total number of edges, m, becomes the total weight of 
the edges. The degree, k

i
, is replaced by i’s strength, which is the 

total weight of i’s edges. And finally the adjacency matrix, A, 
is replaced by the weight matrix, W; the ones in the adjacency 
matrix are replaced weights of the edges. P

ij
 can be understood 

as the expected weight between i and j. Note that an edge’s 
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graph theoretIcal propertIes
Comparing locally thresholded with globally thresholded graphs, 
both methods of network construction revealed a similar pattern 
of results. However, there were clear advantages to using locally 
thresholded networks, because differences in node-connectedness 
complicate group comparisons on other metrics at low costs. On 
average, using a global threshold, not all of the graphs become 
connected until a cost of 0.3, and the healthy volunteers gener-
ally become connected at higher costs than the patients (for some 
healthy subjects the minimum cost of node-connectedness >0.5). 
Another way of saying this is that the percolation threshold is set 
higher in healthy volunteers than in people with COS. On one level 
this difference is perhaps diagnostically interesting, but it is also 

was a similar but less obvious trend towards decreased variability at 
the regional level in the COS population (Figures 2C,D). The mean 
strength of  between-regional functional connectivity was significantly 
reduced in COS versus healthy volunteers (sample mean pair-wise 
wavelet correlation NV = 0.37; COS = 0.26; permutation test p = 0.001). 
This finding extends to decreased strength of functional connectivity 
at the level of individual regions, if we consider each region’s average 
wavelet correlation with all other regions of the brain (Figure 2E). 
The within-regional  homogeneity of the fMRI signal was significantly 
reduced in COS versus healthy volunteers (sample mean regional con-
cordance, Kendell’s W, NV = 0.11; COS = 0.08;  permutation test p = 
0.002). This decreased regional concordance extends to almost every 
region considered individually (Figure 2F).
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FIguRe 2 | Plots showing differences between the schizophrenic patients 
and the controls in terms of relatively simple, non-graph-theoretical 
properties of their MRI time series. (A) The variability in the scale 2 
(0.05–0.111 Hz) global MR signal is higher in the controls than in the COS 
population. (B) The difference in the variability of the global MR signal is 
illustrated with the time series from the median subjects of each population. 
The green line shows the boundary between the successive scans, whose 
wavelet coefficients were concatenated. (C) There is a trend toward greater 
variability in the MR signal of anatomical regions, in the control population 

relative to the COS population. (D) The difference in the variability of the 
regional MR signals is illustrated with the time series from the median 
subjects of each population for one of the regions that shows a difference, the 
left insula. (e) Regional strength, the average wavelet correlation between 
each region and every other region, is decreased in the COS population. (F) 
Kendall’s coefficient of concordance (W), a measure of the homogeneity of the 
signal within each anatomical region, is decreased in the COS population. Error 
bars are standard mean error, and asterisks signify p < 0.05 uncorrected 
p-value from a t-test.
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cal regions had significantly reduced clustering in COS relative to 
controls [permutation with 2000 tests, corrected for N = 100 mul-
tiple comparisons with false positive correction p < (1/N) = 0.01]. 
The cortical regions with abnormally reduced local connectivity 
included left and right superior temporal gyrus, left ventral occipital 
cortex, right cingulate, right insula, and right frontal operculum. In 
addition there were subcortical decreases of clustering bilaterally 
in the thalamus, caudate, and accumbens. The results for regional 
efficiency were less striking, but five anatomical regions had sig-
nificantly increased efficiency in COS relative to the controls after 
correction for multiple comparisons. These increases were located 
in the right inferior parietal lobule, left ventral temporal cortex, 
bilateral frontal operculum, and right planum polare.

Another way of describing this pattern of global and regional 
topological abnormality is in terms of a relative randomization of 
network organization in childhood-onset schizophrenia. We found 
that we could quite accurately simulate the COS network data by 

methodologically inconvenient because comparison of any other 
network parameter between the two groups will be confounded if 
more of the networks are connected in one group than the other. For 
this reason we judged it was preferable to use a local thresholding 
method to compare graphs with low connection density.

For both types of thresholding, we found that simple binary 
functional networks on average showed decreased clustering and 
local efficiency in people with COS, relative to the healthy con-
trols. These measures of reduced local connectivity in COS were 
associated with increased global efficiency and robustness, both 
implying relatively stronger global connectivity in COS (Table 1; 
Figure 3). Broadly speaking, the balance of global and local con-
nectivity in functional brain networks was abnormally shifted 
toward the global end of the scale in childhood-onset schizophre-
nia. This can be quantified by a change in the small-worldness 
parameter σ. Although networks in both groups were small-world 
(σ > 1) over the whole cost range, indicating that they  generally 
had  greater-than-random clustering but near-random global 
 efficiency, small-worldness was abnormally reduced because of 
the disproportionate reductions in local connectivity or clustering 
in the COS group.

The pattern of reduced local clustering and increased efficiency 
at a whole brain level was reflected by a convergent pattern of 
results at a regional level of analysis (Figure 5). Nineteen anatomi-
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FIguRe 3 | Plots showing differences between the schizophrenic 
patients (red) and the controls (black) in terms of the graph theoretical 
properties of the brain networks, which have been constructed using 
local and global thresholding methods. The two methods produce a similar 
pattern of group differences. However, local thresholding ensures connected 
graphs and appears to be more sensitive to group differences in some 
complex network metrics. The six different graph theoretical measures are 
shown as a function of connection density or topological cost, which is the 
proportion of edges included. Error bars are standard mean error, and 
asterisks signify an uncorrected p < 0.05 for a t-test between the COS 
population and control population.

Table 1 | For 18 metrics, the mean value for the childhood-onset 

schizophrenia (COS) population, the mean value for the controls or 

“normal volunteers” (NV), and the p-value for a permutation test of the 

group difference. Tests were based on 2000 permutations.

 Mean Mean Permutation 

 COS NV p-value

Global variability 0.95 2.08 0.007

Average regional variability 4.20 5.75 0.152

Average regional strength 0.26 0.37 0.001

Average regional concordance 0.08 0.11 0.002

Global efficiency, global threshold* 0.70 0.69 0.025

Local efficiency, global threshold* 0.80 0.83 0.002

Clustering, global threshold* 0.60 0.65 0.003

Robustness, global threshold* 0.90 0.85 0.044

Global efficiency, local threshold* 0.70 0.70 0.002

Local efficiency, local threshold* 0.77 0.80 0.001

Clustering, local threshold* 0.54 0.58 0.001

Robustness, local threshold* 0.96 0.94 0.11

Weighted global efficiency,  0.92 0.94 0.003 

local threshold*

Weighted local efficiency,  0.93 0.96 0.001 

local threshold*

Weighted modularity,  0.24 0.26 0.027 

local threshold*

Modularity, local threshold* 0.19 0.24 0.001

Modularity, global threshold* 0.17 0.19 0.041

PAM modularity** 0.14 0.18 0.005

*For the statistics based on thresholded graphs, the values are the mean over 
the cost range 0.3–0.5. **PAM modularity is summarized as the mean regional 
silhouette width, averaged over partitions with 2, 3, and 4 modules.
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thresholded graphs (not shown). However, there were also quan-
titative differences in modularity between the groups. See Figure 7 
for a representative example of the modular structure of the brain 
networks and the difference between the groups.

Both the graph theoretical and unsupervised learning approaches 
provided evidence for relatively reduced modularity in COS net-
works. Decreased graph theoretical modularity implies that there 
are relatively less intra-modular edges and more inter-modular 
edges, compared to what would be expected by chance, in the COS 
population. For locally thresholded binary graphs, this decrease 
in modularity occurred at all costs >0.1. For weighted graphs and 
globally thresholded binary graphs, modularity was also lower in 
COS, but for a narrower range of costs (Figures 3 and 6A,B). Similar 
results were found with the unsupervised learning algorithm PAM, 
which projects brain regions into n-dimensional functional space 
and groups nearby nodes into the same module. The average sil-
houette width, which quantifies how well the modules are separated 
from each other, was lower in the COS population (Figure 6C).

Decreased modularity in the COS population is most clear when 
the networks are partitioned into fewer than 5 modules. For all 
the subjects, as more edges are included in the graphs at higher 
costs, the optimal partitions include fewer modules. On average, 
modularity is maximized with <5 modules for locally and globally 
thresholded graphs with costs >0.1 and >0.3 respectively. These are 
the same costs at which decreased modularity in COS emerges. 
Consistently, as quantified by decreased average silhouette width, 
the PAM algorithm finds less modular structure only when the 
networks are partitioned into less than 5 modules.

randomizing only 5% of the between-regional connections in the 
healthy volunteer networks (Figure 4). This is true whether the 
edges are randomized so as to preserve the degree distribution, 
or whether the degree distribution is allowed to change; and it 
is true across the range of cost densities, although a greater per-
cent of edges must be randomized to simulate the COS data at 
higher densities.

The different global network measures are correlated with each 
other and with the non-graph theoretical measures, as shown in 
Figure 8. For example, binary global efficiency and robustness are 
correlated, as are local efficiency and clustering, for both locally and 
globally thresholded graphs. Weighted global network measures pro-
vide complementary results to the binary measures (not shown). 
Weighted local efficiency is decreased in the schizophrenia popula-
tion, similar to binary local efficiency. However, weighted global effi-
ciency was higher in the schizophrenic population than in the normal 
population, a reversal of the finding for binary global efficiency. In 
fact weighted global efficiency is correlated with weighted local effi-
ciency, average regional strength, and clustering. This indicates that 
between-group differences in strength or weight of functional con-
nectivity between pairs of regions, rather than differences in topology, 
are driving the difference in weighted global efficiency.

ModularIty
The functional networks of both the patients and the controls have 
a modular community structure. All of the graphs were signifi-
cantly more modular than random graphs with the same degree 
distributions, for the whole cost range of both globally and locally 
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FIguRe 4 | The quantitative properties of the schizophrenic patients’ brain 
networks can be approximated by randomizing a small proportion of the 
edges of the controls’ brain networks. Illustrated on graphs with 0.2 
topological cost (A) and on graphs with 0.4 topological cost (B), the control 
networks have 0–20% of their edges randomized. The straight lines show the 
mean values of the controls (black) and patients (red) in clustering coefficient, 

global efficiency and small-worldness (sigma). The gray curves show the effect 
on these network properties of randomizing the control networks: The light gray 
curves result if the edges are rewired completely at random, whereas the dark 
gray curves result if the edges are rewired so as to preserve the degree 
distribution of the original graphs. See Section “Materials and Methods” for 
explanations of the network measures and the randomization procedures.
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network properties found in COS, e.g., relative to an ADHD cohort. 
Randomization of functional network topology is arguably consist-
ent with various neurodevelopmental models of the pathogenesis of 
schizophrenia, including abnormal axonal growth, synaptic prun-
ing (Feinberg, 1982) or white matter development (Davis et al., 
2003). We cannot distinguish between these and other putative 
developmental mechanisms for abnormal brain network organiza-
tion based solely on a cross-sectional study of fMRI networks in 
patients compared to healthy volunteers. However, one potential 
advantage of using graph theory to describe network organiza-
tion empirically is that graphical models of network growth or 
development can be formulated computationally and used to test 
various competing hypotheses about growth mechanisms driving 
the formation of the observed network. A classic example of this 
approach was the demonstration that the observed scale-free degree 
distribution of the worldwide web could be plausibly explained 
by a simple growth rule based on preferential attachment (new 
nodes added to the network tend to become attached preferentially 
to existing nodes of high degree) (Barabasi and Albert, 1999). In 
future, it may be possible to use biologically more sophisticated 

In terms of the multi-resolution structure of the graphs as 
explored with the spin glass algorithm, none of the brain graphs 
have a clear plateau in their structure, indicating that the  modularity 
of the graphs is not specific to a certain scale. There is group 
 difference in that the graphs of the healthy controls are on average 
more sensitive to changes in the γ parameter (Figure 6D), separat-
ing into a greater number of modules, each of which is composed 
of fewer nodes on average.

dIscussIon
the balance betWeen global and local connectIvIty In 
schIzophrenIa
The data suggest the intriguing possibility that COS networks could 
be less effectively configured for topologically local communication, 
but better configured for global communication, relative to healthy 
adolescents, as evidenced by reduced clustering and modularity 
but greater connectedness, robustness, and global efficiency. Other 
resting-state fMRI studies of adult-onset schizophrenia have found 
decreased clustering (Liu et al., 2008) and increased robustness (Lynall 
et al., 2010). As far as the anatomical foci of the network differences 
are concerned (Figure 5), Lynall et al. (2010) also found decreased 
clustering in the superior temporal gyrus and anterior cingulate. 
Looking to the broader literature on task-activated fMRI, almost all 
of the brain areas that show decreased regional clustering or increased 
efficiency in COS – including the insula, the ventral occipital lobe, 
and the inferior parietal lobule – have been previous implicated in 
schizophrenia (Glahn et al., 2005; Minzenberg et al., 2009).

As small-world networks like the human brain are a balance 
between global and local efficiency (Watts and Strogatz, 1998; 
Achard et al., 2006), it could be argued that a global optimization 
process that is crucial for healthy neurodevelopment has been abnor-
mally biased in schizophrenia. Decreased small-worldness, which 
has also been reported previously in adult-onset schizophrenia (Liu 
et al., 2008; Lynall et al., 2010), could result if the increase in global 
efficiency comes at the expense of a disproportionate decrease in 
clustering. Taken a speculative step further, if an intermediate phe-
notype with increased global efficiency were evolutionarily favored, 
this could help explain the persistence of schizophrenia as a disease 
(Lynall et al., 2010). Admittedly this argument is limited by the 
fact that while the increase in binary global efficiency is statisti-
cally significant, the absolute difference between the groups is quite 
small. Indeed while decreased clustering in schizophrenia has been 
replicated in other studies, the story for global efficiency is less clear 
(Liu et al., 2008; Bassett et al., 2009). Sibling studies will be crucial 
to better characterize potential intermediate phenotypes.

The shift in the balance between local and global efficiency is 
consistent with a process of randomization in COS. For all of the 
network measures that we investigated, the schizophrenic graphs 
were roughly equivalent to healthy graphs with 5% of the edges 
randomized (Figures 4A,B). This represents a quantification of 
what has been previously described as the “subtle randomization” 
of schizophrenia (Rubinov et al., 2009). Encouragingly it is also 
testable model for future experiments, because it predicts the direc-
tion of the change in schizophrenics relative to controls for any 
network measure. As network randomization or dedifferentiation 
has been suggested as an intermediate phenotype for a variety of 
diseases, it would be very informative to look at the specificity of 

Regional Differences in Clustering between COS and NV

Regional Differences in Efficiency between COS and NV

 7 4.6/4.6  7

COS > NV NV > COS

          -log(p value < .01)

 7 4.6/4.6  7

COS > NV NV > COS

          -log(p value < .01)

FIguRe 5 | Illustrations of the anatomical foci of decreased clustering 
and increased global efficiency in schizophrenic (COS) patients relative 
to controls (NV). At a local threshold of 0.3 topological cost, permutation 
tests estimated the significance of the differences in regional clustering and 
efficiency, which are calculated in the same way as the clustering coefficient 
and the global efficiency, but for each of the 100 nodes individually. 
Estimations of significance were based on 2000 permutations per region, 
with p-values corrected for 100 multiple comparisons using a false positive 
correction p < 1/N = 0.01 Surface representations were created using Caret 
(http://brainmap.wustl.edu/caret/).
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Alon, 2005), predicting cognitive deficits. Decreased topological 
modularity is also consistent with David’s neurocognitive (1994) 
hypothesis of dysmodularity in schizophrenia. Of course topological 
modularity in fMRI networks is not equivalent to neurocognitive 
modularity. For example, while the relationship between perceptual 
and attentional systems is crucial to most renditions of the thesis 
of psychological modularity (Fodor, 1983), our data is agnostic on 
this issue. David’s account in particular implies that brain systems 
are hyperconnected in an absolute sense, whereas graph theoretical 
dysmodularity signifies increased inter-modular connectivity only 
relative to intra-modular connectivity, and is compatible with the 
absolute decrease in average connectivity that we also observe in 
this patient sample. Still, our results provide experimental support 
for the core prediction of a breakdown of the boundaries between 
specialized brain systems.

growth models (Goh et al., 2006) to explain the generative devel-
opmental mechanisms driving formation of normal and abnormal 
brain networks.

ModularIty
The convergence of our evidence from different methodologi-
cal approaches points to a disrupted modular organization, with 
less community structure, in the brain networks of COS patients 
(Figures 3, 6, and 7). This finding makes sense in the context of a 
vast literature on the modularity of complex systems, the brain and 
the mind. As modularity is thought to lessen the potential for error 
in the construction of complex systems (Simon, 1962), decreased 
modularity may jeopardize the development of a functional brain 
network. In theory, a less modular brain would be less able to adapt 
to multiple and changing goals in the environment (Kashtan and 
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FIguRe 6 | The modular structure of brain networks is disturbed in the 
childhood-onset schizophrenia (COS) population (red) relative to the control 
population (black). (A) Modularity is calculated using the fast greedy algorithm 
on binary, locally thresholded graphs. The COS networks have lower modularity, 
especially in the range of topological costs where the networks are partitioned 
into less than 5 modules. (B) The fraction of intra-modular edges, which link nodes 
in the same module, is decreased in COS. This value is the same as modularity 

except not normalized by the expected fraction of intra-modular edges. (C) Using 
the unsupervised learning algorithm Partition Around Medoids (PAM), when the 
graphs are partitioned into less than 5 modules, the healthy controls have higher 
modularity as quantified by the average silhouette width. (D) Using a spin glass 
model with simulated annealing, which looks at the modular structure at different 
resolutions depending on the gamma parameter, the controls have a wider range 
of modular structure at different scales.



Frontiers in Systems Neuroscience www.frontiersin.org October 2010 | Volume 4 | Article 147 | 12

Alexander-Bloch et al. Modularity and local connectivity in schizophrenia

controls than the COS population, as reflected by greater sensitivity 
to the gamma parameter of the spin glass algorithm, but quantify-
ing this hypothesis is an area for future work.

tIMe serIes statIstIcs
It is unsurprising that in counterpoint to the differences in the 
complex networks, simpler properties of the MRI time series 
also differ in COS. The COS population shows decreased inter-
nal homogeneity of the MRI signal within anatomical regions, 
decreased variability of the signal, and decreased average con-
nectivity between anatomical brain regions. Although the exact 
metric is different, decreased homogeneity of the MRI signal 
within anatomical regions is consistent with decreased regional 
homogeneity (ReHo; Zang et al., 2004), which has been reported 
in some brain regions in an adult-onset schizophrenia population 
(Liu et al., 2006). The decreases reported with ReHo were for 
spatial volumes at the scale of a voxel and its nearest neighbors, 
between 7 and 27 voxels total, so our finding of a decrease of the 
homogeneity within regions hundreds of voxels in volume is a 
similar finding at a lower spatial resolution. Decreased regional 
homogeneity could also be interpreted as yet another aspect 
of decreased modularity, at a different spatial scale. As for the 
decreased variability of the global MRI signal, nothing similar 
has to our knowledge been reported in schizophrenia. A metric 
called the “resting state activity index” (RSAI), which is ReHo 
multiplied by the variance of the band-pass filtered time series 
of a voxel, has been reported as increased in some brain regions 
in an ADHD cohort (Tian et al., 2008). Our results indicate that 
this measure would be decreased in COS, although at a different 
spatial scale.

Finally, decreased average strength or connectivity between 
anatomical brain regions is a confirmation of a finding in two 
adult-onset samples (Liu et al., 2008; Lynall et al., 2010). There 
is a potential link between decreased average strength and topo-
logical randomness. Since the connectivity matrices of the graphs 
are composed of thresholded correlation coefficients, decreased 
overall connectivity implies that, at a given graph density, there 
is a lower signal-to-noise ratio in the COS graphs. Assuming that 
this increased noise is spread equally throughout the nodes, it 
would be expected to result in increased topological randomness. 
Topological randomness could also result from other processes, 
e.g., highly correlated regional time series could result in graphs 
with the same properties as random graphs. But since our study 
shows both decreased correlations and increased randomness, it 
seems likely that they are two sides of the same coin.

MethodologIcal Issues
As the globally thresholded graphs show group differences in 
connectedness, it would not be implausible for this to drive 
the differences in other network metrics. The introduction of 
local thresholding ensures that the disparity between the COS 
and controls are not due simply to this issue. The known lack 
of uniformity in the quality of the MR signal from different 
anatomical regions also makes it reasonable to employ a local 
threshold, rather than apply the same threshold to regions with 
different signal-to-noise. The limitations of simply applying a 

Although differences in modularity have not previously been 
reported in human brain networks, differences have been found in 
the modular partition itself, i.e., which brain regions are grouped 
together into functional communities. For example, Meunier et al. 
(2009a) found that the brains of a healthy aging population con-
tained more functional modules than younger adults, and Fair et al. 
(2009) found that during adolescence modules are composed of 
brain regions that are further apart in physical space. We do not 
find strong evidence for a group difference in the physical disper-
sion of brain modules, but it is slightly greater in the controls (not 
shown). Although the finding that brain networks are modular at 
multiple resolutions is anticipated by their hierarchical modular 
organization (Meunier et al., 2009b; Bassett et al., 2010), this is 
the first study to define modularity across a continuous range of 
resolutions. Our results may suggest that the modular structure of 
the functional brain networks is more multi-scale in the healthy 

 NV and COS Subjects with Median Modularity

COS

Cortical
Partition

Edges 
Within 
Modules 
(67%)

Edges 
Between 
Modules 
(33%)

Cortical
Partition

NV
Modularity
0.338

Edges 
Within 
Modules 
(76%)

Edges 
Between 
Modules 
(24%)

Modularity
0.305

FIguRe 7 | An illustration of modularity, using representative brain 
networks from the childhood-onset schizophrenia (COS) population and 
the control (NV) population. At a local threshold of 0.22 topological cost, the 
modular partition is shown for the median NV subject (above) and the median 
COS subject (below), in terms of modularity estimated by the fast greedy 
algorithm. Each module is assigned a specific color, and the modular structure 
of each subject is illustrated in three different ways: the cortical partition shows 
the anatomical location of the modules; the left-hand topological plot shows 
the density of intra-modular edges, between nodes in the same module; and 
the right-hand topological plot shows the density of inter-modular edges, 
between nodes in different modules. The layouts of the topological plots are 
determined by a force-directed algorithm (Fruchterman and Reingold, 1991).
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global threshold to a correlation matrix have previously been 
documented in physics and economics, and several alternatives 
have been proposed (Onnela et al., 2002; Tumminello et al., 2005; 
Serrano et al., 2009). Our method is fast, simple, ensures con-
nected graphs, and is defined over the whole cost range. Lacking 
knowledge of a “true” functional network to provide a gold stand-
ard for evaluation of results, it is inappropriate to be too assertive 
about which graph construction algorithm is best. From a statisti-
cal perspective on the individual pairs of time series, we have the 
most confidence that the edges in a globally thresholded network 
are genuine functional connections, but the locally thresholded 
networks have desirable topological constraints and facilitate 
group comparisons. Side by side contrasts – whether visually 
on small “model” networks (Figure 1) or in terms of statistical 
comparisons between groups (Figure 3) – reveal a high degree 
of similarity in the differently constructed graphs, with some 
divergence probably due to network fragmentation issues that 
arise with global thresholding. In addition, for both threshold-
ing schemes, the patient trend in complex network properties 
is consistent with randomization of a small percentage of the 
edges in the control networks, as illustrated in Figure 4 for locally 
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FIguRe 8 | An illustration of the relationship between the different properties of brain networks, including both graph theoretical and non-graph-theoretical 
metrics. The metrics from Table 1 are correlated between all the subjects in the study and presented as a heat map, with the color value corresponding to the 
Pearson’s correlation coefficient. The layout is organized by complete linkage hierarchical clustering, according to the dendrogram shown at the left of the figure.

thresholded graphs. In short, on the basis of current data, it seems 
likely that both global and local thresholding rules can be used to 
construct broadly consistent results but that the between-group 
comparisons based on local thresholding are simpler to interpret 
because these networks will all be node-connected by design even 
at low connection densities. Future studies should attempt to 
compare these and other methods of graph construction more 
rigorously using modeled data with known and biologically 
plausible properties.

Unsupervised learning and graph theoretical algorithms to 
quantify the community structure of a functional brain network 
have different strengths and weakness. In the context of fMRI net-
works, one strength of unsupervised learning algorithms such as 
partition around medoids (PAM) is that they deal with similarities 
between objects in n-dimensional space, while graph theory deals 
with relations between objects. Unsupervised learning methods are 
thus appropriate to the complete, unthresholded correlation matrix. 
In contrast graph theoretical approaches allow us to query the com-
munity structure of the same, thresholded graphs for which we 
discuss other network properties. Another difference is that graph 
theoretical algorithms naturally output an optimum number of 
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modules, which is non-trivial for unsupervised learning algorithms. 
With PAM, one solution is to maximize the silhouette width over a 
range of possibilities for the number of modules; this is a potential 
virtue of PAM compared to hierarchical clustering as it is generally 
implemented, where the dilemma becomes one of how to cut the 
dendrogram. In a sense the spin glass algorithm with simulated 
annealing is intermediate between the two other classes of methods. 
Similarly to PAM, it can be applied to the unthresholded, weighted 
graphs, but it also outputs an optimal number of modules, at least 
for a given value of the gamma parameter. However the inclusion of 
the gamma parameter, while allowing us to explore the multi-scale 
modular structure of the graphs, introduces the non-trivial ques-
tion of which if any scale of description best captures the modular 
structure. Another serious drawback of the spin glass algorithm is 
that it is by far the slowest computationally of the 3.

This study is based on a small sample size with short MRI scans. 
With only 13 COS subjects included, the group differences that we 
have found will need to be verified in a larger study. In terms of the 
scans, concatenating two consecutive 3-min scans is probably infe-
rior to having one 6-min scan; however, it would seem comparable 
to concatenating the interleaved rest blocks from a task-activation 
study, which has been suggested as acceptable data for a resting-state 
fMRI study (Fair et al., 2007). In our case, the short consecutive scans 
are unavoidable, because children and adolescents with severe neu-
ropsychiatric disease often find it difficult to tolerate longer scans. 
The total acquisition time of 6 min is also quite short, but it has 
been argued that correlations between brain regions stabilize with 
even shorter acquisition times (Dijk et al., 2010). The short scanning 
time does prevent us from looking at very low frequency fluctuations 
(<0.05 Hz), as the statistical power starts to become quite low.
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Minimum spanning tree (MST): For a weighted graph, an MST 
is composed of the edges that connect all of the nodes of the graph 
while including the lowest possible total weight.

Modularity: A measure of the community structure of a graph, 
based on an optimal partition of the nodes into distinct communi-
ties or modules, which can be defined for weighted or unweighted 
graphs. There are many different approaches to this problem. In 
the multi-resolution spin glass model, the gamma (γ) parameter 
adjusts the resolution of the modular partition.

Network: See Graph.
Node or vertex: An object in a graph, usually illustrated as a 

circle.
Path length: The shortest path length between two nodes is the 

length of the shortest sequence of edges that links the nodes. The 
characteristic path length of a graph is the average shortest path 
length between every pair of nodes.

Random graph: A random graph is generated by a set of rules 
with minimal topological constraints. For example, each edge 
could occur independently with some probability. Different meth-
ods of generating random graphs result in different topological 
properties.

Sigma (σ): See Small-world.
Small-world: A small-world graph has a high clustering coef-

ficient and a low characteristic path length, compared to random 
graphs. The extent to which a graph is small-world is captured by 
the quantity sigma (σ).

Strength: The strength of a node is the sum of the weights of all 
of its edges. Depending on the context, “strength” can also refer to 
the average functional connectivity of a brain region

Weighted graph: A graph where each edge is assigned a quan-
titative value, which could for example reflect how strongly the 
nodes interact. Depending on the context, it can be convenient 
to assign higher weights either to stronger interactions or to 
weaker interactions. An unweighted graph is also called a “binary” 
graph.
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appendIx
graph theory terMs
Clustering coefficient: A measure of cliquishness, or the extent to 
which edges are locally agglomerated, which can be defined for a 
graph as a whole or for each node individually.

Complete graph: A graph where every node is linked by an edge 
to every other node.

Connected or node-connected graph: A graph in which each 
node is linked by a finite number of edges to every other node, i.e., 
all nodes are part of a giant connected component. A disconnected 
graph is also called “fragmented.”

Connection density or topological cost: The number of edges 
in a graph, divided by the number of edges in a complete graph 
with the same number of nodes.

Degree: The degree of a node is its number of edges.
Edge or link: An interaction between nodes in a graph, usually 

illustrated as a straight line.
Gamma (γ): See Modularity.
Global efficiency: A measure of global integration, which can 

be defined for a graph as a whole or for each node individually, for 
weighted or unweighted (binary) graphs.

Graph: A group of elements and their interactions, represented 
as nodes and edges.

k Nearest Neighbors Graph (k-NNG): For a weighted graph, the 
k-NNG includes edges linking each node to its k nearest neighbors, 
where the weight of an edge is interpreted as the distance between 
the nodes.

Local efficiency: Conceptually similar to the clustering coef-
ficient, a measure of the local agglomeration of edges, which can 
be defined for weighted or unweighted (binary) graphs.




