

https://iaeme.com/Home/journal/IJAIRD 158 editor@iaeme.com

International Journal of Artificial Intelligence Research and Development (IJAIRD)

Volume 2, Issue 1, January-June 2024, pp. 158-175. Article ID: IJAIRD_02_01_014

Available online at https://iaeme.com/Home/issue/IJAIRD?Volume=2&Issue=1

Impact Factor (2024): 6.98 (Based on Google Scholar Citation)

Journal ID: 234A-56Z1

© IAEME Publication

WINDOWS CONTROLLING USING HAND

GESTURE

Pratik Pramod Alkutkar

Electronics and Computer Engineering, P.E.S’s Modern College of Engineering Pune, India

Anurag Chandan Angal

Electronics and Computer Engineering, P.E.S’s Modern College of Engineering Pune, India

Ameya Ajit Kabir

Electronics and Computer Engineering, P.E.S’s Modern College of Engineering Pune, India

Prof. Ashwini A. Kokate

Electronics and Computer Engineering, P. E. S’s Modern College of Engineering,

Pune, India

ABSTRACT

This document gives information about the implementation of the project Windows

Controlling using Hand Gestures. The proposed system uses Computer Vision

techniques to recognize hand gestures captured by a webcam in real time. The system's

architecture comprises three main stages: hand detection, gesture recognition, and

Windows application control. The proposed system makes use of Computer Vision

techniques to recognize and understand hand gestures captured by a webcam in real

time. The system's architecture comprises three main stages: hand detection, gesture

recognition, and Windows application control.

Keywords: Hand Gesture Recognition, Computer Vision, Real-Time Processing,

Webcam Input, Windows Application Control

Cite this Article: Pratik Pramod Alkutkar, Anurag Chandan Angal, Ameya Ajit Kabir

and Prof. Ashwini A. Kokate, Windows Controlling Using Hand Gesture, International

Journal of Artificial Intelligence Research and Development (IJAIRD), 2(1), 2024, pp.

158-175.

https://iaeme.com/Home/issue/IJAIRD?Volume=2&Issue=1

Pratik Pramod Alkutkar, Anurag Chandan Angal, Ameya Ajit Kabir, Prof. Ashwini A. Kokate

https://iaeme.com/Home/journal/IJAIRD 159 editor@iaeme.com

Ⅰ. INTRODUCTION

This project introduces an AI-driven virtual mouse system utilizing computer vision for hand

gesture recognition and fingertip detection, enabling intuitive computer interaction. In a

landscape where compactness and wireless technologies are prevalent, this system offers a

streamlined approach to computing. Gesture recognition systems have emerged as a prominent

technology, superseding conventional mechanical communication methods. This paper

delineates the segmentation of the domain market based on various factors such as technology,

type, application, product, usage, and geographic location. The proliferation of gesture

recognition systems spans diverse applications including virtual controllers, virtual mice, smart

TVs, immersive gaming technologies, assistive robotics, and sign language recognition.

Notably, while a plethora of solutions exist, only a minority directly leverage webcams for

gesture recognition; the majority rely on Arduino and sensor-based approaches. Nevertheless,

challenges persist, particularly in scenarios where the background environment contains

components resembling human skin, potentially leading to misidentifications of motions.

Additionally, ensuring the hand remains within the permitted range poses a significant

constraint. This paper offers a comprehensive overview of gesture recognition systems,

highlighting advancements, applications, and pertinent challenges, thereby providing insights

for future research and development endeavors in this domain.

The usage of a hardware computer mouse in conjunction with manual mouse inputs and

mouse positioning is projected to be replaced by the Virtual Mouse program. With the use of

gestures, every job can be completed with this program, making computer use easier.

Furthermore, by simply displaying the right combination of colors to the webcam, the Virtual

Mouse program enables persons with motor impairments to interact with the computer.

OBJECTIVE OF PROJECT

The main goal of this project, is to provide an alternative to a routine physical mouse so that

there will be less physical contact with the mouse. We can perform all the mouse operations

and a few keyboard operations by just recognizing different hand- gestures through web-cam.

Outline of Project

The outline of this project is as follows, In today’s world, there is

In today's rapidly evolving technological landscape, Artificial Intelligence (AI) plays a pivotal

role in driving innovation. This project focuses on a specific aspect of AI, namely finger

movement gesture detection, to enhance computer interaction. By utilizing a camera, users can

control their computer's interface solely through finger movements, eliminating the need for

physical input devices like a mouse. This approach not only simplifies user interaction but also

promotes accessibility through intuitive finger detection methods. AI virtual mouse and

keyboard are developed using Python and OpenCV, a computer vision library. The proposed

model makes use of, the MediaPipe which is the package for recognizing the hands and the tip

of the fingers, as well as PyAutoGUI and Autopy packages for controlling the system by

performing mouse operations like left click, right click, scroll up/ down, and keyboard

operations like escape, volume up, volume down. The outcome of this model demonstrates a

high-level accuracy that can function extremely well in real-time applications using only a CPU

and no GPU. This system also helps in controlling robots. In the virtual keyboard, the movement

of finger tapping will be captured on the virtual keyboard which will be displayed on the screen

while in the mouse finger movement will be captured with the assistance of the camera.

Windows Controlling Using Hand Gesture

https://iaeme.com/Home/journal/IJAIRD 160 editor@iaeme.com

Significance of Problem

In the field of human-computer interaction technology, gesture recognition is a widely used and

sought-after analytical technique. It can be used in a variety of fields, such as sign language

translation, medical applications, music production, robot control, virtual environment

administration, and home automation.

Recent years have seen a particular emphasis on HCI research. Because of its skill, the hand is

the most useful tool for communication in a variety of body regions. Just a few of the situations

when human motion—especially that of the hands, arms, and face—is described with the term

"gesture" is instructive.Ⅱ. Theoretical Aspects

Human-Computer Interaction Technology

Human Computer Interaction is a multidisciplinary field concerned with designing computer

technology to facilitate interaction between Computers and humans (Users). Initially focused

solely on computers, HCI has evolved to encompass the design of various forms of information

technology. It has garnered significant attention within academic circles, with scholars and

practitioners recognizing its importance in establishing computer-user interaction akin to

human-to-human dialogue.

Iterative design stands as a cornerstone principle within HCI. Following an initial

comprehension of the audience targeted, their tasks, and measurements related to interaction,

designers undertake several iterative steps: designing the user interface, conducting user testing,

analyzing test results, and iterating the design process. This iterative cycle continues until a user

friendly interface is achieved.

The interaction between humans and machines can be facilitated through various means,

utilizing different human senses to create user interfaces (UI). These include tactile UI (touch),

visual UI (sight), and auditory UI (sound). HCI (Human-Computer Interaction) practitioners

play a crucial role in determining the optimal combination of these interfaces based on the

product's purpose and user needs. For instance, a mobile app might benefit from a combination

of visual and auditory UI elements to enhance user experience and accessibility. Mouse and

keyboard are one of the brilliant developments of HCI.

Fig 2.1: HCI & Related Research Fields

For instance, interactive input devices encompass speech recognition, keyboards, and

touch-sensitive screens, while sensory perception extends to output devices like printers and

visual displays. Wireless internet applications and virtual reality devices also contribute to this

spectrum of human-machine interaction.

Pratik Pramod Alkutkar, Anurag Chandan Angal, Ameya Ajit Kabir, Prof. Ashwini A. Kokate

https://iaeme.com/Home/journal/IJAIRD 161 editor@iaeme.com

Image Processing

Image processing refers to the digital manipulation of images to achieve various objectives such

as enhancement or extraction of useful information. It falls under the broader umbrella of signal

processing, where the input typically consists of photographs or video frames, and the output

may be an image or a set of parameters related to the image's characteristics.

Within image processing, images are often segmented into regions of interest, reflecting the

presence of distinct objects or areas within the image.

In the realm of image science, image processing encompasses techniques applied to input

images, resulting in outputs that could be images themselves or parameters associated with the

input image. While digital image processing is the most common form, optical and analog

methods are also feasible. The process of obtaining input images is termed imaging.

Image processing treats images as two-dimensional signals, allowing for the application of

standard signal processing techniques. Each image can be analyzed for sub-regions, reflecting

the presence of distinct objects or features. Consequently, image processing finds application

in various domains, including defect identification on surfaces such as ceramic tiles, where the

defective areas constitute regions of interest.

Image Processing stands as a swiftly evolving technology, finding applications across

diverse sectors of business. It constitutes a significant research domain in the Engineering &

Computer Science disciplines.

Essence of the Image Processing encompasses three primary stages:
1. Importing: This initial step involves acquiring the image data, typically achieved through optical

scanners or digital photography.

2. Analysis and Manipulation: Following importation, the image undergoes analysis and

manipulation procedures, which may include tasks such as data compression and enhancement

techniques. These processes aim to improve the quality of the image or extract valuable

information from it.

3. Output: The final stage involves generating the output, which could be an altered image reflecting

the effects of the analysis and manipulation performed, or a comprehensive report based on the

findings of image analysis.

This systematic approach to Image Processing underscores its pivotal role in various fields,

offering solutions to enhance image quality, extract useful insights, and derive actionable

information from visual data.

Image processing encompasses 2 main types:

1. Analog Image Processing:

Analog image processing involves manipulating two dimensional analog signals through

analog means, rather than digitally. It is often utilized for processing hard copies such as

printouts and photographs. Image analysts rely on visual techniques and fundamental

interpretations to analyze images. This approach extends beyond the specific area under

study, leveraging the analyst's knowledge and association capabilities

2. Digital Image Processing:

Digital image processing involves manipulating digital images using computers. The raw data

which is obtained from image sensors, such as those on platforms like satellites, often

contain imperfections. Digital processing techniques are applied to overcome these

deficiencies and extract accurate information.

Windows Controlling Using Hand Gesture

https://iaeme.com/Home/journal/IJAIRD 162 editor@iaeme.com

The digital processing workflow typically comprises three phases:

i. Pre-processing: It Involves preparing the raw data for subsequent processing stages by

noise removal, correction of distortions, and standardizing the format.

ii. Enhancement and Display: Focuses on improving visual quality of the image for human

perception, enhancing specific features, and adjusting contrast and brightness.

iii. Information Extraction: This involves extracting relevant information or features from

the processed image for analysis or further utilization.

In our case, digital computers are employed to execute image-processing tasks. The process

involves converting the image into a digital format using a scanner or digitizer, followed by

subsequent manipulation. Image processing is defined as subjecting numerical representations

of objects to a sequence of operations to achieve a desired outcome. It entails taking an initial

image and generating a modified version thereof, effectively transforming one image into

another.

The term "image processing" commonly refers to the manipulation of two-dimensional

images by a digital computer. However, in a broader sense, it encompasses the digital

processing of two-dimensional data. A digital image is essentially an array of real numbers

represented by a finite number of bits. One notable advantage of digital image processing lies

in its versatility, repeatability, and ability to preserve the precision of the original data

throughout the processing pipeline.

Machine Learning

Machine learning (ML) is a branch of artificial intelligence (AI) that enables software

applications to enhance their accuracy in predicting outcomes without explicit programming.

ML algorithms leverage historical data to forecast new output values. It encompasses the study

of computer algorithms capable of autonomous improvement through experience and data

utilization, representing a crucial aspect of AI.

ML algorithms construct models based on sample data, known as training data, facilitating

predictions or decisions without explicit programming. This technology finds widespread

application across various domains, including medicine, email filtering, speech recognition, and

computer vision, addressing tasks where conventional algorithms may be impractical.

A subset of ML closely intersects with computational statistics, focusing on prediction using

computers. However, not all ML falls within the realm of statistical learning. Mathematical

optimization contributes methods, theories, and application domains to the ML field. Data

mining, an associated discipline, emphasizes exploratory data analysis through unsupervised

learning.

Certain ML implementations employ data and neural networks to emulate biological brain

functionality. In business contexts, ML is often referred to as predictive analytics, aiding in

decision-making processes. This interdisciplinary field continues to advance, driving

innovation and automation across various industries.

Machine learning has given computer systems the ability to automatically learn without

being explicitly programmed. So, it can be described using the life cycle of machine learning.

The machine learning life cycle is a cyclic process to build an efficient machine learning project.

The main purpose of the life cycle is to find a solution to the problem or project.

Pratik Pramod Alkutkar, Anurag Chandan Angal, Ameya Ajit Kabir, Prof. Ashwini A. Kokate

https://iaeme.com/Home/journal/IJAIRD 163 editor@iaeme.com

Fig.2.2: Machine Learning Lifecycle

The machine learning life cycle involves seven major steps, which are given below:

1. Data Preparation

2. Data Wrangling

3. Analyze Data

4. Train the model

5. Test the model

6. Deployment

Computer Vision

Computer vision, a captivating form of AI, is likely encountered in various instances without

awareness. It mimics aspects of human vision, enabling computers to recognize and analyze

objects in images and videos. Recent advancements in artificial intelligence, particularly in deep

learning and neural networks, have propelled significant progress in this field, even

outperforming humans in certain object detection and labeling tasks. The proliferation of data

plays a pivotal role in enhancing computer vision capabilities through training and refinement

processes.

Ⅲ. SYSTEM DESIGN

The primary goal of proposed system is to facilitate computer mouse cursor functionalities

utilizing either an integrated camera within the computer, thereby eliminating the need for a

conventional mouse device. Human-Computer Interaction (HCI) is achieved through hand

gesture and hand tip detection employing computer vision techniques. The system employs an

AI virtual mouse system to track fingertip movements captured by the built-in or external

camera, enabling cursor operations and scrolling functions without the use of additional

hardware such as a wireless or Bluetooth mouse.

In the proposed system, the webcam captures frames, which are subsequently processed to

identify various hand gestures and hand tip movements, leading to the execution of

corresponding mouse functions. Development of the AI virtual mouse system is conducted

using the Python programming language, leveraging the OpenCV library for computer vision

tasks.

The system utilizes the MediaPipe package for hand tracking and tracking of hand tip

movements. Additionally, the Autopy and PyAutoGUI packages are employed to facilitate

Windows Controlling Using Hand Gesture

https://iaeme.com/Home/journal/IJAIRD 164 editor@iaeme.com

window screen navigation, including left-click, right-click, and scrolling functionalities.

Experimental results demonstrate the proposed model's high accuracy and suitability for real-

world applications, even when utilizing a CPU without GPU acceleration.

MediaPipe

Recognizing the shape and movements of hands holds immense potential for enhancing user

experiences across a spectrum of technological domains and platforms. These applications

range from facilitating sign language understanding and hand gesture control to enabling

augmented reality experiences by overlaying digital content onto the physical world. Despite

being a natural ability for humans, achieving robust real-time hand perception presents

formidable challenges in computer vision due to factors such as self-occlusions and the lack of

distinct patterns in hand features.

MediaPipe Hand introduces an advanced solution for hand and finger tracking, leveraging

machine learning (ML) methodologies to infer the precise 3D coordinates of 21 key landmarks

within a hand from a single input frame. While existing state-of-the-art approaches

predominantly depend on powerful desktop environments for inference, our method

demonstrates real-time performance even on resource-constrained mobile devices.

Furthermore, our system seamlessly scales to accommodate the tracking of multiple hands

concurrently.

By democratizing access to this sophisticated hand perception functionality within the wider

research and development community, we anticipate the emergence of a multitude of innovative

applications and novel research avenues. This accessibility is poised to catalyze exploration

into creative use cases, thereby fostering advancements in both practical applications and

theoretical understanding within the field of computer vision.

MediaPipe hands utilize an ML pipeline consisting of multiple models working together.

The proposed system comprises two main components: a palm detection model, which operates

on the entire image to identify and delineate the orientation of a hand bounding box, and a hand

landmark model, which operates on the cropped image region defined by the palm detector to

extract precise 3D hand key points. This approach mirrors the methodology utilized in our

MediaPipe Face Mesh solution, which combines a face detector with a face landmark model.

Fig 3.1: Landmarks of Hand

By providing the hand landmark model with accurately cropped hand images, the reliance

on data augmentation techniques such as rotations, translations, and scaling is significantly

reduced.

The system is implemented as a MediaPipe graph, incorporating a hand landmark tracking

subgraph sourced from the hand landmark module, and rendering functionalities facilitated by

a dedicated hand renderer subgraph.

Internally, the hand landmark tracking subgraph utilizes a hand landmarks graph from the

same module, along with a palm detection subgraph sourced from the palm detection model.

Pratik Pramod Alkutkar, Anurag Chandan Angal, Ameya Ajit Kabir, Prof. Ashwini A. Kokate

https://iaeme.com/Home/journal/IJAIRD 165 editor@iaeme.com

This modular design enhances system flexibility and facilitates seamless integration of

additional functionalities within the pipeline.

Fig 3.2: Flowchart of MediaPipe

Open CV

OpenCV stands as a robust open-source library pivotal in computer vision, machine learning,

and image processing domains, significantly contributing to real-time operations crucial in

contemporary systems. Leveraging OpenCV, users can effectively process images and videos

to detect various entities such as objects, faces, or human handwriting. Integration with libraries

like NumPy enhances Python's capability to analyze OpenCV array structures, facilitating the

identification of image patterns and their distinct features through vector space representation

and mathematical operations.

Since its inception with the first version, OpenCV 1.0, the library has been released under

a BSD license, rendering it freely available for both academic and commercial utilization.

Supporting interfaces in C++, C, Python, and Java, and compatibility with Windows, Linux,

Mac OS, iOS, and Android platforms, OpenCV offers versatility in application development.

Notably, OpenCV's design prioritizes real-time applications, emphasizing computational

efficiency. To achieve this, the library is predominantly implemented in optimized C/C++,

harnessing the capabilities of multi-core processing architectures.

Python

Python has emerged as a cornerstone in the realm of programming languages, renowned for its

versatility, readability, and extensive ecosystem of libraries and frameworks. Its simplicity and

expressive syntax make it accessible to both novice and experienced programmers alike,

fostering rapid development and prototyping across various domains. Python's ubiquity spans

diverse fields including web development, data science, machine learning, artificial

intelligence, scientific computing, and automation. Leveraging libraries such as NumPy,

Pandas, TensorFlow, and sci-kit-learn, Python facilitates complex data manipulation, statistical

analysis, and machine learning tasks with ease. Furthermore, frameworks like Django and Flask

empower developers to build scalable web applications efficiently.

The robustness of Python is augmented by its vibrant community, which actively contributes

to its development, documentation, and support. As Python continues to evolve and adapt to

Windows Controlling Using Hand Gesture

https://iaeme.com/Home/journal/IJAIRD 166 editor@iaeme.com

emerging technologies, it remains a pivotal tool for tackling contemporary challenges and

driving innovation across industries.

Autopy

Autopy is a Python library designed to automate GUI interactions and simulate human input

such as keyboard presses, mouse movements, and clicks. It provides a simple and intuitive

interface for performing tasks like window management, screen capturing, and pixel-level

manipulation. Autopy is particularly useful for automating repetitive tasks, testing graphical

applications, and creating interactive simulations. With its cross-platform compatibility and

ease of use, Autopy empowers developers to streamline workflows and enhance productivity

in a variety of software development and testing scenarios.

PyAutoGUI

PyAutoGUI is a popular Python library that enables the automation of GUI interactions on

desktop platforms. It provides functionalities to control the keyboard and mouse, capture

screenshots, and perform GUI operations such as clicking, dragging, and typing. PyAutoGUI

is platform-independent, making it suitable for automating tasks across various operating

systems including Windows, macOS, and Linux. With its intuitive API and extensive

documentation, PyAutoGUI simplifies the process of automating repetitive tasks, testing GUI

applications, and creating user-friendly automation scripts. Additionally, PyAutoGUI can be

integrated with other Python libraries and frameworks to build complex automation workflows

and enhance efficiency in software development and testing processes.

Ⅳ. LITERATURE REVIEW

Several research studies have been conducted in the field of deep learning, with a specific focus

on Convolutional Neural Networks (CNNs) and their applications in hand gesture recognition.

One of these studies explores how CNNs have significantly improved the precision and speed

of systems designed for recognizing hand gestures. This research highlights the remarkable

advancements in this technology and its potential to revolutionize gesture recognition.

Another research effort, involving multiple authors, delves into the comprehensive

understanding of CNN architectures and their broad range of applications. It traces the

evolutionary progression of CNNs and underscores their significance in tasks related to image

and pattern recognition. This study sheds light on the foundational aspects of CNNs, offering

insights into their adaptability and versatility in various domains.

In a different study, the emphasis shifts to the real-time capabilities of CNNs in the context

of computer vision applications, particularly in the domain of hand gesture recognition. The

critical role of CNNs in achieving low-latency recognition is highlighted, underscoring its

significance for real-time systems dedicated to recognizing hand gestures. This research

acknowledges the practical implications of low-latency recognition, which is vital for

applications requiring quick and responsive interaction.

The introduction of the Windows Gesture Recognition Framework by Microsoft is a

noteworthy development in the realm of gesture recognition. This framework offers software

developers the means to seamlessly integrate gesture-based control into applications designed

for the Windows operating system. It provides valuable insights into Microsoft's approach to

gesture recognition, indicating a growing interest in making gesture-based interaction more

accessible and widespread.

Another study explores the various interfaces within the Windows environment that can be

controlled through hand gestures. It scrutinizes different methods and technologies employed

for implementing gesture-based control and provides a comparative analysis of their usability

Pratik Pramod Alkutkar, Anurag Chandan Angal, Ameya Ajit Kabir, Prof. Ashwini A. Kokate

https://iaeme.com/Home/journal/IJAIRD 167 editor@iaeme.com

and accuracy. This research aids in understanding the diverse possibilities and challenges

involved in integrating gesture recognition into mainstream computing systems.

An additional research project focuses on the integration of CNNs with real-time systems

for recognizing hand gestures. It discusses the technical challenges encountered in developing

systems capable of understanding and responding to dynamic hand movements. This

integration of deep learning with real-time applications represents a significant step forward in

the field of human-computer interaction.

Furthermore, a study presents a practical application of CNN-based hand gesture

recognition for controlling the Windows operating system. It offers insights into the

implementation of a real-time system that responds to hand gestures to perform a variety of

tasks within the Windows environment. This research demonstrates the tangible benefits of

incorporating CNNs into everyday computing tasks.

Lastly, another work outlines the challenges faced in achieving real-time gesture

recognition and proposes potential solutions. It particularly emphasizes the need for enhanced

accuracy and user-friendliness in these systems, recognizing the importance of making gesture-

based control both reliable and user-accessible.

In summary, these research endeavors collectively contribute to the evolving landscape of

hand gesture recognition, where CNNs and real-time capabilities are at the forefront of

technological advancements, offering a promising outlook for the integration of gestures into

various applications and interfaces, especially within the Windows environment.

Ⅴ. METHODOLOGY

Various functions and conditions we used in the system are explained in the flowchart of the

system shown in Fig 3.3.

1. The AI virtual mouse system relies on webcam frames captured by a laptop or PC. Utilizing

the Python computer vision library OpenCV, a video capture object is initialized to begin

video capture from the webcam. These captured frames are then passed to the AI virtual

system for processing and interaction.

2. In the AI virtual mouse system, the webcam continuously captures video frames throughout

the program's runtime. These frames undergo processing, transitioning from BGR to RGB

color space, facilitating the identification of hands within each frame of the video, done

frame by frame.

3. In the AI virtual mouse system, a transformational algorithm is employed to convert

fingertip coordinates from the webcam screen to the full computer window screen, enabling

mouse control. Upon hand detection and identification of the specific finger used for mouse

functions, the webcam captures the relevant frame, initiating further processing operations.

4. During this phase, the system identifies the lifted finger by utilizing the tip ID obtained

through MediaPipe, along with the corresponding fingertip coordinates. Based on this

information, the system executes the appropriate mouse function corresponding to the

detected finger position.

Table 5.1 Finger Assignment Table

Windows Controlling Using Hand Gesture

https://iaeme.com/Home/journal/IJAIRD 168 editor@iaeme.com

5. Mouse and keyboard Functions Depending on the Hand Gestures and Hand Tip Detection

Using Computer Vision

a. If the index and middle fingers with tip id 1 and 2 are up then the mouse is moved

around the window of the computer by using the AutoPy package.

b. If the index finger is depressed and the middle finger is up, the Left-click operation is

performed by using the PyautoGUI package.

c. If the index finger with tip id 1 is up and the middle finger with tip id 2 is depressed,

then the Right-click operation is performed by using the PyautoGUI package.

d. If both the thumb finger with tip id 0 and index finger with tip id 1 are up then the

volume-up operation is performed by using the PyautoGUI package.

e. If no finger is up then the grab operation is performed by using the PyautoGUI package.

f. if all fingers are up then the mouse is put into the neutral position.

Fig 5.1: Flow-chart of the system

Model Creation

A model for a hand gesture recognition system for Windows control has been developed,

necessitating the creation of a proprietary dataset due to encountered overfitting issues with

available datasets. The initiative involved the collection of data comprising six distinct hand

gestures aimed at executing various activities such as cursor movement, left click, right-click,

no action, drag, and drop functionalities. This bespoke dataset was meticulously curated to

Pratik Pramod Alkutkar, Anurag Chandan Angal, Ameya Ajit Kabir, Prof. Ashwini A. Kokate

https://iaeme.com/Home/journal/IJAIRD 169 editor@iaeme.com

encompass diverse hand gestures essential for effective Windows control operations. The

inclusion of these specific gestures facilitates comprehensive training of the model, ensuring

robust performance in accurately recognizing and interpreting user hand gestures for controlling

Windows functionalities. By leveraging this custom dataset, the developed system endeavors

to mitigate overfitting challenges and enhance the accuracy and reliability of hand gesture

recognition for Windows control applications.

Our Dataset Includes various sets of images for various purposes:

For the testing phase, we took a total of 3k images 300 for each gesture.

For training the model, we considered 2k images 200 for each gesture, and for the validation

dataset, 500 images total images were generated.

VI. RESULTS AND DISCUSSIONS

While developing a hand gesture recognition system for computer control, we learned important

lessons in the process, which will help us in the future. Even though the validation accuracy of

80.40% showed a strong base, we weren't content to accept "good enough." The model's

accuracy increased to an impressive 85.90% in a real-world testing setting, indicating its

potential for useful implementation. But the real test will be how well the model can interpret

the subtleties of hand motions made by people. This is where the intriguing difficulties, or our

model's own "demons," as you put it, were exposed by the classification reports.

Several issues arose during our analysis, particularly with movements such as "cross,"

"scissor," and "up," resulting in consistent model inaccuracies. These errors could stem from

various sources. Firstly, these movements may exhibit similar hand configurations, leading to

ambiguity in the model's recognition capabilities. This ambiguity becomes pronounced when

distinguishing between subtle variations, such as a closed fist and a slightly open hand,

particularly in low-quality images. Additionally, deficiencies in the training data might

contribute to these inaccuracies. It's possible that the training set lacked an adequate variety of

hand postures for these specific movements. Similar to teaching a child to differentiate between

dog breeds, the model needs exposure to a broad range of hand gestures within each category.

If the training set predominantly featured rigid "cross" gestures, for instance, the model may

struggle to identify more relaxed variations of the same gesture. Despite these challenges, our

utilization of various techniques yielded an accuracy rate of 85.9%.

Fig 6.1: Recognition Hand, Mouse Neutral

If all tip IDs are up then the hand is recognized, which can be observed in Fig 6.1., When a

hand is in this position mouse is in the neutral position. Meaning the hand can move freely and

the mouse cursor won’t move.

Windows Controlling Using Hand Gesture

https://iaeme.com/Home/journal/IJAIRD 170 editor@iaeme.com

Fig 6.2: Gesture for mouse movement

If both index finger with tip id 1 and middle finger with tip id 2 are up then the Mouse

movement operation is performed by using the PyautoGUI package as shown in Fig 6.2

Fig 6.3: Gesture for left click function

If the middle finger with tip ID 2 and is up then the Left Click operation is performed by

using the PyautoGUI package as shown in Fig 6.3

Fig 6.4: Gesture for right click function

If the index finger with tip id 1 is up and all other fingers are depressed, then the right click

function is performed using the PyautoGUI package as shown in Fir 6.4

Pratik Pramod Alkutkar, Anurag Chandan Angal, Ameya Ajit Kabir, Prof. Ashwini A. Kokate

https://iaeme.com/Home/journal/IJAIRD 171 editor@iaeme.com

Fig 6.5: Gesture for volume up function

If both the thumb finger with tip id 0 and the index finger with tip id 1 are up then the

volume-up operation is performed by using the PyautoGUI package as shown in Fig 6.5

Fig 6.6: Grab function

If no finger is up as shown in Fig. 6.6, then the Grab operation is performed, this operation

can be used to drag and drop operations or for selecting multiple items using the grab method

by using the PyautoGUI package as shown in Fig 5.9.

Ⅶ. FLOW CHART

Fig 7: Flowchart of the Model

Windows Controlling Using Hand Gesture

https://iaeme.com/Home/journal/IJAIRD 172 editor@iaeme.com

VIII. SYSTEM EVALUATION

When training a machine learning model, particularly those using deep learning architectures

like Convolutional Neural Networks (CNNs), evaluating its performance involves looking at

two sets of metrics: training accuracy/loss and validation accuracy/loss. Both accuracy and loss

provide insights into how well the model is learning from the data.

Training Accuracy and Loss: These metrics focus on the model's performance on the

training data. Training accuracy simply represents the percentage of training examples the

model predicts correctly. The lower the training accuracy, the more mistakes the model makes

on the data it's specifically trained on. Train loss, on the other hand, measures the average error

between the model's predictions and the actual labels for the training data. Ideally, as the model

learns from the training examples, the training accuracy should increase (meaning it's making

fewer mistakes) and the training loss should decrease (indicating the errors are becoming

smaller).

Fig. 8.1 Train accuracy vs Valid accuracy

Validation Accuracy and Loss: These metrics shift the focus to a separate dataset called the

validation data. This data is crucial because it's not used to train the model. Instead, it serves as

a real-world test to see how well the model generalizes to unseen data. Just like train accuracy

and loss, validation accuracy reflects the percentage of predictions made correctly on the

validation data, and validation loss measures the average error. In an ideal scenario, both

validation accuracy and validation loss should show improvement as the model is trained.

However, this isn't always guaranteed.

Fig 8.2 Train Loss vs Valid Loss

Analyzing these four values together (train/valid accuracy and loss) is key to understanding

the training process. Here's where it gets interesting:

A crucial aspect is discerning between overfitting and underfitting scenarios. Overfitting is

indicated by exceedingly high training accuracy coupled with markedly low training loss, while

validation accuracy and loss remain stagnant or deteriorate.

Pratik Pramod Alkutkar, Anurag Chandan Angal, Ameya Ajit Kabir, Prof. Ashwini A. Kokate

https://iaeme.com/Home/journal/IJAIRD 173 editor@iaeme.com

This phenomenon signifies the model's tendency to excessively memorize the training data,

thereby failing to generalize effectively to unseen data. Analogously, overfitting resembles

exhaustive preparation solely on practice test questions, resulting in exemplary performance on

practice tests but poor outcomes on the actual exam. Conversely, underfitting is characterized

by minimal improvements in both training and validation accuracy and loss metrics. This

indicates the model's incapacity to grasp intricate data patterns, akin to attending lectures

without comprehending the material, resulting in subpar performance on both practice problems

and actual exams. Striking a balance between these extremes is paramount, aiming for a model

that exhibits robust performance on both training and validation datasets. Achieving this

equilibrium signifies the model's ability to extract salient patterns from training examples while

retaining the capacity to generalize to unseen data, thereby making accurate predictions on

novel instances. Vigilant monitoring of these metrics throughout the training process enables

the derivation of valuable insights and facilitates adjustments to hyperparameters or model

architecture, thereby guiding the training toward optimal performance. This holistic approach

ensures the model's efficacy in practical applications while mitigating the risks of overfitting or

underfitting.

Fig 8.3 Confusion Matrix

CPU Performance

Recorded CPU Utilization while our project was working was 19% on average PC. The base

speed was 3.93 GHz. and the average recorded memory usage was very low

VIII. CONCLUSION

This project investigated the feasibility of utilizing a deep learning model for hand gesture

recognition in a human-computer interaction (HCI) context. The model, trained using Python

and OpenCV, aimed to enable computer control through a set of ten predefined hand gestures.

While the initial validation accuracy of 80.4% demonstrated a promising foundation, further

testing revealed areas for improvement.

The evaluation metrics, particularly the classification reports, highlighted specific gestures

that posed challenges for the model. Gestures like "cross," "scissor," and "up" were identified

Windows Controlling Using Hand Gesture

https://iaeme.com/Home/journal/IJAIRD 174 editor@iaeme.com

as stumbling blocks, potentially due to their inherent visual similarities or a lack of sufficient

variation within the training data.

These findings underscore the importance of meticulous training data curation and

potentially refining the model architecture for enhanced performance. Addressing the identified

shortcomings could involve enriching the training data with additional variations of the

problematic gestures to capture their subtle nuances. Alternatively, exploring modifications to

the model architecture might improve its capability to differentiate between visually similar

postures.

Overall, this project successfully established the groundwork for a hand gesture recognition

system using a deep learning model. The achieved accuracy of 85.9% during real-world testing

demonstrates the model's potential for practical applications. However, the encountered

challenges highlight the need for further development to achieve robust performance across a

wider range of hand gestures. Future work will focus on refining the training data and

potentially modifying the model architecture to enhance its ability to differentiate between

visually similar gestures. This continuous improvement process will ultimately lead to a more

user-friendly and intuitive HCI system based on hand gesture recognition.

REFERENCES

[1] S. Ahmad, “A usable real-time 3D hand tracker,” proceedings of 1994 28th Asilomar Conference

on Signals, Systems and Computers, Pacific Grove, CA, USA, 1994, pp-1257-1261 vol.2, doi:

:10.1109/ACSSC.1994.471660.

[2] C. Patlolla, S. Mahotra and N. Kehtarnavaz “Real-time hand-pair gesture recognition using

stereo webcam,” 2012 IEEE International Conference on Emerging Signal Processing

Applications Las Vegas, NV, USA, 2012, pp. 135-138, doi: 10.1109/ESPA.2012.6152464

[3] C. Jeon, O. -J. Kwon, D. Shin and D. Shin, “Hand-Mouse Interface Using Virtual Monitor

Concept for Natural Interaction,” in IEEE Access, vol. 5, pp. 25181-25188, 2017, doi:

10.1109/ACCESS.2017.2768405.

[4] C. Jeon, O. -J. Kwon, D. Shin and D. Shin, “Hand-Mouse Interface Using Virtual Monitor

Concept for Natural Interaction,” in IEEE Access, vol. 5, pp. 25181-25188, 2017, doi:

10.1109/ACCESS.2017.2768405.

[5] S. -H. Yang, W. -R. Chen, W. -J. Huang and Y. -P. Chen, “DDaNet: DualPath DepthAware

Attention Network for Fingerspelling Recognition Using RGB-D Images,” in IEEE Access, vol.

9, pp. 7306-7322, 2021, doi: 10.1109/ACCESS.2020.3046667.

[6] J. W. Smith, S. Thiagarajan, R. Willis, Y. Makris and M. Torlak, “Improved Static Hand Gesture

Classification on Deep Convolutional Neural Networks Using Novel Sterile Training

Technique,” in IEEE Access, vol. 9, pp. 10893- 10902, 2021, doi:

10.1109/ACCESS.2021.3051454.

[7] M. N. Islam et al., “Developing a Novel Hands-Free Interaction Technique Based on Nose and

Teeth Movements for Using Mobile Devices,” in IEEE Access, vol. 9, pp. 58127-58141, 2021,

doi: 10.1109/ACCESS.2021.3072195.

[8] L. Jiashan and L. Zhonghua, “Dynamic gesture recognition algorithm Combining Global

Gesture Motion and Local Finger Motion for interactive teaching,” in IEEE Access, doi:

10.1109/ACCESS.2021.3065849.

Pratik Pramod Alkutkar, Anurag Chandan Angal, Ameya Ajit Kabir, Prof. Ashwini A. Kokate

https://iaeme.com/Home/journal/IJAIRD 175 editor@iaeme.com

[9] J. Xu, H. Wang, J. Zhang and L. Cai, “Robust Hand Gesture Recognition Based on RGBD Data

for Natural Human–Computer Interaction,” in IEEE Access, vol. 10, pp. 54549-54562, 2022,

doi: 10.1109/ACCESS.2022.3176717.

[10] G. Park, V. K. Chandrasegar and J. Koh, “Accuracy Enhancement of Hand Gesture Recognition

Using CNN,” in IEEE Access, vol. 11, pp. 26496-26501, 2023, doi:

10.1109/ACCESS.2023.3254537.

Citation: Pratik Pramod Alkutkar, Anurag Chandan Angal, Ameya Ajit Kabir and Prof. Ashwini A. Kokate,

Windows Controlling Using Hand Gesture, International Journal of Artificial Intelligence Research and

Development (IJAIRD), 2(1), 2024, pp. 158-175

Abstract Link: https://iaeme.com/Home/article_id/IJAIRD_02_01_014

Article Link:

https://iaeme.com/MasterAdmin/Journal_uploads/IJAIRD/VOLUME_2_ISSUE_1/IJAIRD_02_01_014.pdf

Copyright: © 2024 Authors. This is an open-access article distributed under the terms of the Creative

Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,

provided the original author and source are credited.

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

✉ editor@iaeme.com

