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Machine learning-aided generative 
molecular design

Yuanqi Du1,10, Arian R. Jamasb    2,3,9,10, Jeff Guo    4,5,10, Tianfan Fu6, 
Charles Harris3, Yingheng Wang1, Chenru Duan7, Pietro Liò3, 
Philippe Schwaller    4,5  & Tom L. Blundell    8 

Machine learning has provided a means to accelerate early-stage drug 
discovery by combining molecule generation and filtering steps in a 
single architecture that leverages the experience and design preferences 
of medicinal chemists. However, designing machine learning models 
that can achieve this on the fly to the satisfaction of medicinal chemists 
remains a challenge owing to the enormous search space. Researchers 
have addressed de novo design of molecules by decomposing the problem 
into a series of tasks determined by design criteria. Here we provide a 
comprehensive overview of the current state of the art in molecular design 
using machine learning models as well as important design decisions, 
such as the choice of molecular representations, generative methods 
and optimization strategies. Subsequently, we present a collection of 
practical applications in which the reviewed methodologies have been 
experimentally validated, encompassing both academic and industrial 
efforts. Finally, we draw attention to the theoretical, computational 
and empirical challenges in deploying generative machine learning and 
highlight future opportunities to better align such approaches to achieve 
realistic drug discovery end points.

Drug discovery and development is an iterative process of optimizing 
molecules to satisfy a set of specific properties, such as solubility1, 
toxicity2, pharmacokinetics3 and other desirable therapeutic effects. 
Although many therapeutic modalities, such as (macrocyclic) pep-
tides, biologics and oligonucleotide therapies, have shown promise 
and efficacy in the clinic, small molecules have received the most 
attention from the machine learning (ML) community, particularly 
for druggable targets. Owing to the vast search space of traditional 
drug-like small-molecule compounds, estimated to be between 1023 and 
1060 (ref. 4), and the discontinuous nature of optimization functions5, 

development is difficult, expensive and prone to failure. The number 
of novel molecular entities approved per dollar spent on industrial 
research and development activities has decreased exponentially over 
the past 70 years6 and the average development cost has risen to more 
than US$2 billion over a 10–15-year timeline7. However, a recent uptick 
over the past decade is thought to be largely driven by the accumu-
lation of better collection and use of high-quality decision-making 
information and experimental data in the drug discovery process8, 
highlighting growing opportunities for ML in the research and  
development life cycle.
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wide-ranging applications, with notable successes in diffusion models 
for image synthesis and autoregressive language models for text gen-
eration17,18. Similarly, generative modelling has received substantial 
attention in drug discovery, where new molecular structures can be 
generated based on the properties of collections of known compounds.

Generative modelling has the potential to overcome the limita-
tions of screening ultralarge chemical libraries, which are often biased 
owing to our existing knowledge of chemical space (generative molecu-
lar design pipeline in Fig. 1). These models can expand the range of 
discoverable novel molecular entities by generating novel compounds. 
Conditional generative models augur the design of molecules with 
specific desired properties, such as high target-specific activity. As a 
complementary approach to virtual screening, generative modelling 
has successfully identified experimentally validated inhibitor com-
pounds outside existing chemical libraries19,20.

Generative molecular design has experienced remarkable 
advancements in recent years, resulting in an extensive and rapidly 
expanding body of literature (Table 1 includes a glossary of technical 
terminologies used in this paper). Here we offer a comprehensive 
examination of ML methodologies applied to generative molecular 
design, elucidating their motivations and practical applications within 
pharmacology across diverse task settings (‘Generative molecular 
design tasks’ section). We categorize models by design criteria and 
highlight trade-offs (‘Generative molecular design methodologies’ 
section). We emphasize the importance of problem formulation and 
critical assessment to transform ML advancements into real-world 
drug discovery toolkits (‘Evaluating designs of generative ML’ sec-
tion). Finally, we discuss the theoretical, computational and empiri-
cal challenges that the community is currently facing, as well as the 
opportunities to efficient and effective drug discovery assisted by ML 
(‘Future directions’ section).

Generative molecular design tasks
Generative molecular design can be classified into two main para-
digms: distribution learning and goal-oriented generation (Fig. 2), 
where goal-oriented generation can be further broken down into con-
ditional generation and molecule optimization. The suitability of each 
approach depends on the specific task and data involved.

Distribution learning
Given a collection of molecules, distribution learning seeks to 
model their probability distribution to describe the underlying data 

Medicinal chemists face the challenge of designing potent mol-
ecules with optimal biological activity constrained by the intractability 
of exhaustive experimental validation. Often, traditional (computa-
tional) screening strategies are used. Ligand-based drug design (LBDD) 
leverages information from previously studied ligands to develop 
quantitative structure–activity relationship methods. These methods 
correlate molecular structure with activity, enabling scoring of novel 
molecules9,10. Given a target structure, structure-based drug design 
(SBDD) methods are effective in designing ligands with high comple-
mentarity, affinity and specificity for a given target pocket11,12. SBDD 
campaigns typically begin by docking molecular libraries against a 
target; the readouts can be used to directly discover potential ‘hits’ 
or iteratively optimized into ‘lead’ compounds12. However, these 
approaches can be limited by reliance on biased human knowledge13 
with limited exploration of chemical space4.

Despite the challenges, increased availability of computational 
resources has enhanced the capabilities of traditional LBDD and 
SBDD approaches through ultralarge-scale virtual screening libraries 
(108−10; refs. 14–16). With increasingly larger make-on-demand libraries, 
these methods have immediate applicability and provide an attractive 
method to accelerate early-stage drug discovery. Chemogenomics 
offers a complementary approach by screening targeted libraries of 
molecules against panels of related targets. Such screens can identify 
and validate targets, and provide greater insight into the mechanism 
of action of potent compounds, resulting in hypotheses that can be 
used to constrain the search space. Alternatively and concurrently, 
ML methods have demonstrated potential in mitigating the bias chal-
lenge by augmenting human-derived knowledge with data-driven 
insights13. ML techniques enable the direct acquisition of molecular 
descriptors from data through representation learning, enabling, for 
example, improved molecular property prediction accuracy. Learned 
representations can subsequently be employed in scoring functions for 
screening molecular databases. Explicitly optimizing learned represen-
tations using ML is a complementary approach to virtual screening and 
enables directed exploration of chemical space, offering the potential 
to accelerate the identification of suitable candidates.

Generative modelling is a subfield of ML that focuses on develop-
ing algorithms capable of generating new data samples that resemble 
the data distribution from a given training dataset. These models strive 
to learn the underlying structure, patterns or probability distributions 
of the data, enabling the creation of novel compounds. Generative 
models have garnered substantial attention due to their versatility and 
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Fig. 1 | Generative ML-assisted molecular design pipeline. ML serves as a 
powerful accelerator for drug discovery and development, particularly in areas 
such as virtual screening and generative design. It notably streamlines several 
critical processes, including target identification, target-to-hit transformation, 

hit-to-lead conversion and lead optimization. By enhancing the efficiency 
of these steps, ML greatly reduces both the time and costs associated with 
traditional drug discovery methods, thereby bringing substantial benefits to the 
pharmaceutical industry.
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Table 1 | Definitions of technical terms covered in this paper (in alphabetical order)

Term Description

Autoregressive models Autoregressive models are a type of deep generative model that decompose the molecule generation process as a sequence of actions 
by iteratively adding atoms and/or bonds one by one, which loosely mimics the construction of the molecular structure by reaction 
synthesis.

Bayesian optimization Bayesian optimization is a method for optimizing black-box functions that are not analytically available and expensive to evaluate. It 
explores the unknown areas sequentially with an acquisition function to determine the next point to query.

Conditional generation Conditional generation refers to generating data given specific conditions such as context, property value and so on using a conditional 
distribution.

Convolutional neural network CNNs are a type of neural network that process a grid-like data structure by applying a filter to extract features from its adjacent units 
(neighbours), focusing on the local pattern over one unit and its neighbours.

Diffusion models Diffusion models (also known as score-based generative models) are inspired by the diffusion process of heat where it leverages a 
reverse-time diffusion process to transform from the equilibrium distribution (that is, Gaussian) to the complex data distribution. In the 
context of chemistry, diffusion models can be used in low-energy conformations of molecules, docking poses and so on.

Energy-based models Energy-based models (EBMs) can be considered as learning an energy function over the chemical space, which assigns an energy value 
to each molecule; the model learns to sample the lower-energy molecule that is more stable to exist in the real world.

Equivariance Equivariance is a property for a function that the function commutes with certain transformations (actions of a group).

Fine-tuning Fine-tuning is a learning diagram that takes pre-trained models on similar tasks and tunes the parameters on a new task (often with a 
small dataset).

Flow network Flow network is a directed graph where each edge has a non-negative capacity and a flow.

Fragment-based drug design Fragment-based drug design is a method that uses fragments as basic building blocks.

Fragment linking Fragment linking refers to combining fragments to form a larger compound.

Genetic algorithm Genetic algorithm is an evolutionary algorithm that includes several operations inspired by biological evolution such as mutation, 
crossover, selection, reproduction and so on.

Generative adversarial networks GANs resemble the process of a chemist proposing new molecule candidates and another chemist providing critical feedback on the 
proposed molecules. Through time, both chemists are trained better to propose better molecules and distinguish bad molecules.

Gradient-based optimization Gradient-based optimization refers to optimization with a gradient descent/ascent algorithm, which defines directions by the gradient of 
the function at a certain point.

Graph neural network GNNs are a type of neural network that take the graph representation of molecules (that is, atoms as nodes and bonds as edges) and 
model the interaction between neighbouring atoms, which learn a global representation by aggregating node features of the individual 
atoms.

Invariance Invariance is a property where one object remains unchanged after certain transformations.

Latent variable models Latent variable models (LVMs) are a type of statistical model that relate observational variables to latent variables. Many deep generative 
models can be considered latent variable models, such as VAEs, normalizing flows and autoregressive models.

Markov chain Monte Carlo MCMC is a sampling method that samples from the target distribution via constructing a Markov chain and lets the equilibrium of the 
Markov chain be the target distribution.

Monte Carlo tree search MCTS is a heuristic search method that estimates the expected improvement of all the branches via Monte Carlo sampling and 
prioritizes the promising branches to search.

Normalizing flows Normalizing flows are a type of deep generative model that learn a series of transformations of the complex data distribution into a 
simple distribution (for example, Gaussian). Continuous normalizing flows (CNFs) are the continuous perspective of discrete sets of 
transformations that relaxes the restrictions on the neural architectures. Flow matching is an alternative training scheme to maximum 
likelihood that greatly improves the training efficiency of CNFs. In the context of chemistry, they help transform complex molecular 
distribution to simpler ones and the reverse process generates new molecules.

Optimal transport Optimal transport measures the optimal cost of transportation from one distribution to another.

Recurrent neural network Recurrent neural networks (RNNs) are a type of neural network that process a sequence of data; later input is dependent on the former 
input. The chemical metaphor is a sequence of reactions where later reactions may be affected by the previous reactions.

Reinforcement learning Reinforcement learning is an ML method that involves an agent in an environment learning to take actions to maximize the reward 
signal. Reinforcement learning is typically formulated as a Markov decision process, which consists of states, actions, an environment 
and rewards: the agent receives a reward based on its actions and the environment, and the reward signal determines the next action 
and state.

Scaffold hopping Scaffold hopping refers to changing to a similar scaffold while maintaining the desired properties of the original compound.

Scaffold elaboration Scaffold elaboration refers to thoroughly searching within the chemical space of the scaffold.

Structure-based drug design The goal of SBDD is to design a drug molecule that could bind tightly to a target structure (for example, target protein).

Symmetry Symmetry refers to an object that is invariant with certain transformations such as translation, rotation, reflection and so on.

Transformer Transformers comprise a type of neural network that model a molecule by learning all pairwise relationships over all atoms. They can 
better handle long-range interaction and are more suitable for scaling up the number of parameters as foundation models as in the case 
of GPT.

Variational autoencoders Variational autoencoders (VAEs) learn an encoder to map the molecule into a continuous low-dimensional embedding space and a 
decoder to reconstruct the molecule back to its original space. Chemically, it emulates a chemist that extracts essential descriptors of 
the molecule and inverse designs the molecule based on the extracted descriptors.

Virtual screening Virtual screening is a computational technique that exhaustively searches over large-scale molecule libraries/chemical space to identify 
drug molecules with desirable pharmaceutical properties.
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generation process. With this distribution, novel molecules can be 
sampled that mimic the set of training molecules.

Applications. Distribution learning has two primary applications in 
real-world drug discovery. First, it can be used to construct targeted 
virtual screening libraries by sampling the chemical space based on a 
learned distribution of molecules. Second, although distribution learn-
ing does not directly enable generation of molecules with desirable 
properties, it can generate molecules that resemble the training set by 
sampling from the learned distribution. This can assist the design of 
‘me-too’ compounds, which are structurally similar to known drugs and 
can be optimized to improve their efficacy or reduce their side effects. 
However, design criteria in medicinal chemistry can impose constraints 

on the suitability of molecules; while sampling from learned distribu-
tions can be guided towards suitable candidates, this procedure falls 
into conditional generation and molecule optimization.

Conditional generation
In conditional generation, the objective is to generate molecules that 
satisfy or possess specific attributes or properties, rather than simple 
random sampling from a distribution of molecules. Broadly, conditioning 
can be categorized into four types: property conditioned, molecular (sub)
structure conditioned, target conditioned and phenotype conditioned.

•	 Property-conditioned generation refers to generating mole-
cules with specific properties, such as binding affinity, synthetic  
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Fig. 2 | Illustrations for generative tasks, generative strategies and molecular 
representations. Left: generative tasks. Primarily, these encompass three 
fundamental components: distribution learning, conditional generation and 
molecule optimization. These aspects represent the core mechanics of the 
generative process in ML applications within drug discovery. Middle: generative 
strategies. These strategies typically fall into three categories: sequential or 
autoregressive generation, one-shot generation and iterative refinement. These 
paradigms dictate the approach for the generation process, each with unique 
benefits and applications. Right: molecular representations. There are three 
mainstream molecular representations used in this field. A popular string-based  

representation is SMILES, which provides a textual representation of the 
molecule structure. Topological graph-based representations utilize molecular 
graphs, a more natural representation of molecules. Finally, geometric graph-
based representations take the form of geometric graphs, incorporating spatial 
data into the representation. Each representation offers different advantages 
and utilized according to the specific requirements of the task. G = (H, X, E) 
represents a molecular graph with a set of vertices (H), a set of edges (E), and a set 
of Cartesian coordinates (X) if available. fi and hi denote the feature vectors for 
fragments and atoms, respectively.
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accessibility, ADME/T (absorption, distribution, metabolism, 
excretion and toxicity) profiles, other characterizations of bio-
logical activity, or development liability. Property-conditioning 
typically requires property-labelled molecules to access the condi-
tional distribution of molecules. Chemogenomic data can be lever-
aged by training drug–target interaction predictors, which can be 
employed in conditional generation through classifier guidance.

•	 Molecular (sub)structure-conditioned generation generates mol-
ecules with specific structural constraints, such as designing par-
tial structures, scaffold hopping, linker design, redesigning whole 
structures (lead optimization) or whole-molecule conditioning 
(conformer generation). Conditioning can be used to penalize the 
generation of molecules containing undesirable substructures, 
such as structural alerts.

•	 Target-conditioned generation aims to produce molecules with 
high binding affinities to specific disease-associated biomolecular 
targets21. Although property-conditioned generation can condi-
tion on scalar-valued binding affinity measurements to specific 
targets, it differs substantially from target-conditioned genera-
tion, which leverages explicit access to the target structure, facili-
tating molecular design through incorporating direct modelling 
of target–ligand interactions.

•	 Phenotype-conditioned generation involves learning phenotypic 
fingerprints from cell-based microscopy or other bioassay readouts 
such as transcriptomic data to provide conditioning signals to 
guide generation towards a direct biological outcome22. These data 
can be used learn joint embedding spaces (for example, via contras-
tive learning), which can be explored with generative models23,24.

Applications. Conditional generation further equips distribution 
learning to handle conditional inputs. This constrains chemical space 
such that generated outputs are biased towards molecules satisfying 
certain design criteria.

•	 Conditional generation has direct applications to traditional 
problems such as linker design, lead optimization and scaffold 
hopping25–28.

•	 A less considered application of conditional generation is patent 
circumvention such that designs are sufficiently distinct to exist-
ing chemical matter to bypass intellectual property liabilities19.

•	 There is little work on conditional generation of highly specific 
molecules given a panel of targets, despite the common use of 
ligand–target activity matrices29. One study has explored the nega-
tive design of a kinase inhibitor using an evolutionary algorithm 
and a diffusion model30.

Molecule optimization
Although conditional generation provides an efficient way to discover 
molecules with conditions as constraints, real-world drug discovery 
campaigns often involve optimizing properties with expensive and, 
typically, non-differentiable oracle functions. This is further compli-
cated by optimization goals typically being multi-objective.

Applications. Molecule optimization has a crucial role in drug discov-
ery by fine-tuning drug candidates’ properties to improve their safety, 
efficacy and pharmacokinetic profile. This involves introducing small 
modifications to the molecular structure of a candidate to optimize 
drug-likeness properties, such as solubility, bioavailability and target 
affinity to enhance the therapeutic potential of candidates and increase 
downstream likelihood of success in clinical end points.

Generative molecular design methodologies
Several generative design choices need to be made when devising ML 
methods. We address four key design choices that largely affect the 

performance of generative methods: (1) representation types and the 
associated neural architectures, (2) generative methods, (3) generation 
strategies and (4) molecule optimization strategies. We stratify the 
representative literature along these dimensions in Table 2.

Molecular representations
Given data, the first step in developing a neural architecture for molecule 
generation is to determine the machine-readable input and output rep-
resentations of molecular structures. Input representations enable the 
effective infusion of appropriate inductive biases into modelling. Output 
representations determine the optimization landscape search space of 
molecules. Moreover, representation types determine the suitability of 
families of generative methods, for example, discrete search algorithms 
can only be applied to combinatorial representations such as graphs 
and strings. While various input representations have been studied (this 
section), characterization of the trade-offs of the representation types 
and the neural architecture encoding them remains unclear. It is noted 
that conversions between representations are not necessarily bijec-
tive for molecules, for example, density maps and fingerprints cannot 
identify unique molecules and further techniques need to be developed 
to address the non-trivial mapping problem. Common molecular rep-
resentations include strings, two-dimensional topological graphs and 
three-dimensional (3D) geometric graphs (Fig. 2). Further descriptions 
are provided in Supplementary Information section 1.

•	 String-based molecular structures are often encoded as strings 
such as simplified molecular-input line-entry system (SMILES)31 or 
self-referencing embedded strings (SELFIES)32. SMILES represents 
molecules with syntactic rules, but strings can be invalid; SELFIES 
improves validity by refining these rules. Molecular strings are 
commonly encoded as sequential data by recurrent networks and 
transformer models (Table 1).

•	 Topological and geometric graph-based atoms and bonds are 
often represented as nodes and edges in topological graphs. 
Graph neural networks (GNNs) (Table 1) are commonly used to 
model graph-structured molecular data, updating node and 
edge features based on adjacent nodes. Where 3D information is 
available and relevant, geometric GNNs are often used to capture 
application-dependent symmetries in 3D space, such as transla-
tion and rotation invariance or equivariance (Table 1).

Representation granularity is another consideration for the design 
of generative models. Typically, approaches leverage either atoms or 
molecular fragments as the fundamental compositional units during 
generation. Fragment-based representations coarsen molecular struc-
tures into larger units containing groups of atoms carrying hierarchical 
information, such as functional group identity, thereby aligning with tra-
ditional fragment-based or pharmacophoric drug design approaches.

Generative methods
Deep generative models comprise a class of methods that estimate the 
probability distribution of the data and draw samples from the learned 
distribution (also called distribution learning).

•	 Variational autoencoders (VAEs)33 (Table 1). Owing to their flex-
ibility and the balance between efficiency and accuracy, VAEs have 
been a popular deep generative model for molecule generation 
since early developments in the field. CVAE34 and GraphVAE35 
develop VAE-based methods employing SMILES and molecular 
graph representations, respectively.

•	 Generative adversarial networks (GANs)36 (Table 1). Several 
GAN-based methods for molecule generation have been devel-
oped. Among them, ORGAN37 and MolGAN38 are representative 
works for molecule generation using SMILES and graph repre-
sentations, respectively.
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Table 2 | Comparison of representative methods

Name Method Input Output Fragment Sequential Validity Distribution Property (Sub) 
structure

Target Goal  
oriented

CVAE34 VAE SMILES SMILES ✗ One shot ✗ ✓ Single ✗ ✗ BO

GraphVAE35 VAE Graph Graph ✗ One shot ✗ ✓ ✗ ✗ ✗ Conditional

JT-VAE63 VAE Graph Graph ✓ Sequential ✓a ✓ Single ✗ ✗ BO

DVAE122 VAE Graph Graph ✗ One shot ✓a ✓ Single ✗ ✗ Conditional

RationaleRL123 VAE Graph Graph ✓ Sequential ✗ ✓ Multi ✗ ✗ RL

ChemSpacE66 LVM Graph Graph ✓ One shot ✓a ✗ Multi ✗ ✗ Latent space 
traversal

QMO124 LVM SMILES SMILES ✗ One shot ✗ ✓ Multi ✗ ✗ Optimization

GraphNVP125 NF Graph Graph ✗ One shot ✗ ✓ Single ✗ ✗ Interpolation

AAE126 GAN + AE Fingerprint Fingerprint ✗ One shot ✗ ✓ Single ✗ ✗ Conditional

ORGAN37 GAN SMILES SMILES ✗ One shot ✗ ✓ Multi ✗ ✗ RL

MolGAN38 GAN Graph Graph ✗ One shot ✗ ✓ Multi ✗ ✗ RL

MolecularRNN44 AR Graph Graph ✗ Sequential ✓a ✓ Single ✗ ✗ RL

ChemTS56 AR SMILES SMILES ✗ Sequential ✗ ✓ Single ✗ ✗ MCTS

REINVENT57 AR SMILES SMILES ✗ Sequential ✗ ✓ Multi ✗ ✗ RL

DeLinker127 VAE Graph Graph ✗ One shot ✓a ✓ ✗ Fragment Protein Conditional

GraphAF40 AR + NF Graph Graph ✗ Sequential ✓a ✓ Single ✗ ✗ RL

GraphEBM128 EBM Graph Graph ✗ One shot ✓a ✓ Multi ✗ ✗ EBM

DiGress129 Diffusion Graph Graph ✗ Iterative ✗ ✓ Multi ✗ ✗ Conditional

GCPN59 RL Graph Graph ✗ Sequential ✓a ✗ Single ✗ ✗ RL

GB-GA55 GA Graph Graph ✗ One shot ✗ ✗ Single ✗ ✗ MCTS

GA+D130 GA SELFIES SELFIES ✗ One shot ✓ ✗ Single ✗ ✗ GA

SynNet96 GA Fingerprint Fingerprint ✓ One shot ✗ ✗ Single ✗ ✗ GA

AutoGrow 4.0131 GA Graph Graph ✓ One shot ✓ ✗ Single Lead  
molecule

Protein GA

Reinforced GA60 GA + RL Graph Graph ✓ One shot ✓ ✗ Single ✗ Protein RL + GA

MIMOSA61 MCMC Graph Graph ✓ Iterative ✓ ✗ Multi ✗ ✗ MCMC

GFlowNet53 Flow 
network

Graph Graph ✓ Sequential ✓a ✗ Single ✗ ✗ Flow 
network

DST62 None Graph Graph ✓ Iterative ✓ ✗ Multi ✗ ✗ Optimization

GraphDG132 VAE Graph Geometry ✗ One shot NA ✓ ✗ Molecule ✗ Conditional

GeoMol133 OT Graph Geometry ✓ Sequential NA ✗ ✗ Molecule ✗ Conditional

E-FM134 FM Graph Geometry ✗ Iterative NA ✗ ✗ Molecule ✗ Conditional

EquiBind135 OT Graph Geometry ✗ One shot NA ✗ ✗ Molecule Protein Conditional

Torsional Diff136 Diffusion Graph Geometry ✗ Iterative NA ✓ ✗ Molecule ✗ Conditional

DiffDock137 Diffusion Graph Geometry ✗ Iterative NA ✓ ✗ Molecule Protein Conditional

liGAN138 VAE Density Density ✗ One shot ✗ ✓ ✗ ✗ Protein Conditional

G-SchNet45 AR Geometry Geometry ✗ Sequential ✗ ✓ Single ✗ ✗ Fine-tuning

Drótar et al.139 AR + VAE Geometry Geometry ✗ Sequential ✓ ✗ ✗ ✗ Protein Conditional

3D-SBDD79 AR Geometry Geometry ✗ Sequential ✗ ✓ ✗ Fragment Protein Conditional

3D-Scaffold140 AR Geometry Geometry ✗ Sequential ✗ ✓ ✗ Scaffold ✗ Conditional

GraphBP141 AR + NF Geometry Geometry ✗ Sequential ✗ ✓ ✗ ✗ Protein Conditional

E-NF142 CNF Geometry Geometry ✗ Iterative ✗ ✓ ✗ ✗ ✗ None

EDM47 Diffusion Geometry Geometry ✗ Iterative ✗ ✓ Single ✗ ✗ Conditional

EquiFM42 FM Geometry Geometry ✗ Iterative ✗ ✓ Singe ✗ ✗ Conditional

DiffSBDD48 Diffusion Geometry Geometry ✗ Iterative ✗ ✓ Multi All 
substructures

Protein Conditional

aValidity is guaranteed by additional post-processing validity checks or correction steps. The table is separated by whether methods involve geometric representations. The ticks (✓) and 
crosses (✗) indicate whether a particular method possesses a certain property or capability. A tick means that the method has that property or capability, whereas a cross means that it does 
not. BO, Bayesian optimization; FM, flow matching; GA, genetic algorithm; NF, normalizing flow; RL, reinforcement learning; OT, optimal transport.
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•	 Normalizing flows39 (Table 1). Normalizing flows are desirable as 
they offer access to the exact log-likelihood of the distribution 
of molecules but impose additional restrictions on the model 
to be invertible. However, they have proven popular by showing 
strong practical performance on molecule generation40. It is noted 
that the discrete sets of invertible layers can be considered as a 
continuous transformation that relaxes the restrictions on the 
neural architectures. Flow matching41 is an alternative optimiza-
tion objective in addition to maximum likelihood for continuous 
normalizing flow that largely improves the performance and has 
been applied to molecular design42.

•	 Autoregressive models43 (Table 1). Although autoregressive mod-
els can be trained by directly maximizing the log-likelihood of the 
molecule distribution, they introduce an additional assumption 
about the order of the generation trace for molecules, typically 
requiring supervision through teacher forcing. Many autoregres-
sive models have been developed to generate molecules with 
graph and point cloud representations44,45.

•	 Diffusion models46 (Table 1). EDM47 devises a diffusion model equiv-
ariant to translation and rotation to generate molecules in 3D 
space. It has also been applied to target-conditioned design, linker 
design and molecular conformation generation48–50. It has also been 
connected with an evolutionary algorithm for molecule optimiza-
tion and inpainting for substructure-conditioned generation48.

Generation strategies
Generation strategies refer to the manner in which models output 
molecular structures, and can generally be grouped into one-shot, 
sequential or iterative refinement (Fig. 2).

•	 One-shot generation produces a complete molecular structure 
in a single forward pass of a model. This approach is often lim-
ited by difficulty in producing realistic and plausible molecular 
structures with high accuracy. Furthermore, one-shot generation 
often cannot accommodate explicit constraints, such as valence 
constraints51, which are critical for ensuring the accuracy and 
validity of the generated structures.

•	 Sequential generation constructs the molecular structure through 
a sequence of steps, either in atoms or fragments52. It is often easy 
to inject valency constraints into sequential generation, which 
improves the quality of the generated molecules. However, the 
major limitation of sequential generation is that it requires the defini-
tion of an arbitrary ordering of the generation trace during training 
and results in slow inference. GFlowNets53 overcomes this problem 
by forcing a reward function to be proportional to the probability 
of sampling the same molecule, regardless of the trajectory taken.

•	 Iterative refinement frames design by predicting a series of updates to 
manipulate predictions, side-stepping difficulties in one-shot meth-
ods, as exemplified by the successful application of recycling and 
the recurrent structure module to refine backbone frames in Alpha-
Fold254. This approach has inspired related strategies to molecule 
generation. Diffusion models46 are a prevalent technique, generating 
new data through a sequence of denoising steps. So far, diffusion 
models have been applied to a variety of molecule generation prob-
lems, including conformer generation50, SBDD48 and linker design49.

Optimization strategies
Combinatorial optimization. For combinatorial encodings of mol-
ecules, such as graphs or strings, optimization techniques from the 
combinatorial optimization domain can be directly applied.

•	 Genetic algorithm (Table 1) focuses on the interaction between can-
didates within a defined population with crossover and mutation  

operations to increase the diversity of the offspring55. Each new 
population is selected by an oracle function as the starting point 
of the next iteration.

•	 Monte Carlo tree search (MCTS) (Table 1) starts with a root node 
and iteratively updates and expands the search tree by the reward 
function over the simulated molecule in each step until a stopping 
criterion is reached55,56.

•	 Reinforcement learning (Table 1) has been used to estimate 
expected rewards for search branches, suppressing the random-
ness of traditional heuristic search by adaptively prioritizing 
promising branches. Reinforcement learning methods have been 
developed to generate molecules using policy networks to predict 
a series of actions for the generation process57–60.

•	 Markov chain Monte Carlo (MCMC) (Table 1) formulates the opti-
mization problem as a sampling problem based on probabilistic 
formulation and constructs a Markov chain to traverse the chemi-
cal space61.

Continuous optimization. Molecules can be either represented or 
encoded in continuous domains, that is, point clouds and geometric 
graphs embedding in Euclidean space, or deep generative models that 
encode discrete data into a continuous latent space.

•	 Gradient-based optimization (Table 1) requires a differentiable 
oracle function (often trained neural networks) and directly opti-
mizes the molecule input62 or encoded latent vectors34.

•	 Bayesian optimization (Table 1) uses surrogate models (often 
Gaussian processes) to estimate the uncertainty of the optimi-
zation process. Bayesian optimization can be used to optimize 
expensive oracle functions and can be combined with active learn-
ing to prioritize experiments. Frequently, Bayesian optimization 
is combined with VAEs, enabling property optimization through 
latent space navigation34,63–65.

•	 Latent space traversal (Table 1) directly leverages simple heuristics 
(for example, linear separability) about the learned latent space 
of deep generative models and often achieves a good trade-off 
between accuracy and efficiency66.

Evaluating designs of generative ML
For practical applications, generated molecules must be qualitatively 
and quantitatively evaluated. Depending on the model deployment, 
careful consideration into how metrics are calculated is important. 
Often, individual property profiles of generated molecules are 
reported, for example, binding affinity, which fails to consider the 
fundamental multi-objective optimization challenge of drug discov-
ery; for example, jointly optimizing binding affinity and ADME/T 
properties.

Although we discuss evaluation methodologies for ML-based 
models, it is important to acknowledge existing computational chem-
istry tools for molecular design. Software from Schrödinger67 and 
OpenEye68 provide industry-standard tooling, including docking69,70 
and molecular dynamics simulations. Comparisons of generative 
modelling should also include traditional methods, with appropriate 
resources made available to both approaches.

Computational evaluation
Standard metrics include validity, uniqueness and novelty (Table 3), 
which broadly assess the ability to generate valid molecules and extrap-
olate beyond the training data. Generative models can cover an expan-
sive chemical space, despite being trained on comparatively small 
datasets71. Early benchmarks such as GuacaMol72 and MOSES73 highlight 
these metrics and propose a set of diverse benchmark tasks. However, 
these metrics by themselves provide only a baseline assessment, as the 
goal is to generate molecules satisfying a target objective.
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Physicochemical properties. Commonalities in requirements for 
drug-like molecules typically result in compounds satisfying empiri-
cal profiles of physicochemical properties as codified in Lipinski’s rule  
of 574. Often, measured properties include logP, solubility or aggregates 
thereof, such as the quantitative estimate of drug likeness75. It is noted 
that these are coarse descriptors and many current drugs would be 
deemed ‘unsuitable’; blindly optimizing for these metrics is currently 
a common pitfall in the ML literature.

Three-dimensional structural design. Molecular docking is the most 
common method to assess protein–ligand complementarity, and 
can be explicitly optimized for by generative models30,76. It is noted 
that many docking algorithms reward large molecules on the basis 
of forming more interactions, which can be promiscuous binders77. A 
complementary metric is ligand efficiency, where the score is normal-
ized per heavy atom78. Absent protein structural information, LBDD 
performs pharmacophore matching (Table 3) to mimic ligand–pro-
tein interactions of a known molecule. Several studies jointly gener-
ate molecules and their 3D pose within a binding site48,49,79. However,  
Harris et al.80 demonstrated that many methods produce poses of dubi-
ous biophysical plausibility, often with steric clashes. Furthermore, the 
common practice of re-docking generated ligands masks issues with 
poses during generation80.

Diversity. Diversity is an important and oft-overlooked metric. To 
maximize the likelihood that generated ideas are actionable, that is, 
deemed reasonable candidates after post-processing to propose for 
experimental validation, it is usually important to generate diverse 
solutions, or at least possess the capability to do so. An exception to 
encouraging diversity is lead optimization, where the goal may be to 
explore minor structural modifications on an intermediate molecule 
to fine-tune its properties.

Diversity-assessment metrics include scaffold diversity, that is, 
how many unique scaffolds are generated that satisfy the target objec-
tive. Another metric is pharmacophore diversity or functional group 
diversity. In addition, an internal diversity metric was introduced in 
MOSES and quantifies the fingerprint similarity within a set of gener-
ated molecules73.

Synthetic accessibility. Molecules proposed by generative models 
typically fail to explicitly account for synthetic accessibility. Addressing 
synthesizability is an ongoing challenge, considering many proposed 
ideas may not have known synthetic routes and a chemist can only tri-
age a fraction of proposed ideas. Consequently, this has become a core 
focus of research and proposed solutions can be broadly categorized 
into heuristic-based, computer-aided synthesis planning (CASP) and 
generative model-based approaches.

Many heuristic-based approaches (Table 3) count substruc-
ture frequency compared with known synthesized molecules81–83.  
Alternatively, ref. 84 tasked a neural network to learn a behaviour 
where products are more complex than their reactants. It is noted 
that these scores assess molecular complexity as a proxy for synthetic 
feasibility, and one should only expect to derive correlation from 
such metrics. Contrariwise, CASP tools can post-process generated 
ideas by suggesting potential retrosynthetic routes85–87. MCTS88,89 
recursively decomposes a target molecule into precursors and can 
explicitly encode synthetic feasibility through reaction templates. 
However, the generalizability of these methods deeply depends 
on the template set and abstraction level. A related paradigm 
involves training models on the output of CASP tools to accelerate  
inference90,91.

Recent studies have proposed to incorporate synthetic constraints 
into generative models explicitly. Exemplary studies have trained 
models capable of predicting how to combine commercially avail-
able building blocks with reaction rules, while optimizing for target 

properties92–97. Similarly, ref. 98 biases generation with user-specified 
reaction rules to promote synthetic compatibility. Other studies  
perform de novo design using reaction-based expansion from a library 
of building blocks99,100. Again, performance depends on template  
quality and granularity in the encoded chemistry. While contin-
ued efforts in the research community will drive the field forward,  
synthesizability will probably remain an important consideration in 
post-processing pipelines for the foreseeable future.

Experimental validation of generated molecules
Generated molecules can only be unequivocally validated by wet-lab 
experimentation and is in stark contrast to existing studies that pre-
dominantly focus solely on the computational contribution. While 
generative models are far from without weaknesses, the disconnect 
between prediction and experiment is also attributed to the expertise 
required to perform such validation. Albeit much fewer, we summa-
rize existing studies reporting experimental validation (Table 4) and  
highlight selected examples of generated molecules (Fig. 3).

Observations from the literature. Most studies reporting experimen-
tal validation utilize either RNNs and/or VAEs and operate on SMILES 
(Table 4). We make four key observations: first, SMILES, although 
capturing limited 3D information, are an efficient representation 

Table 3 | Common metrics (but not exhaustive) to assess 
molecular generative models

Category Metric Definition

Standard Validity Percentage of viable molecules, 
that is, obey chemical laws.

Uniqueness Fraction of non-repeated 
molecules.

Novelty Fraction of molecules not in the 
training set.

Physicochemical logP Octanol–water partition coefficient 
that measures lipophilicity.

logS log of the solubility.

tPSA Topological polar surface area 
measuring the surface spanned by 
the polar atoms of a molecule.

QED Quantitative estimate of drug 
likeness.

Lipinski ‘Rule of 5’ empirical guidelines: 
≤5 hydrogen-bond donors, ≤10 
hydrogen-bond acceptors, ≤500 
molecular weight, ≤5 logP.

Structural Molecular docking Simulation predicting the 
orientation and binding affinity of a 
molecule against a target protein. 
The number of steric clashes 
and interaction fingerprints are 
important.

Pharmacophore 
matching

Volume and functional groups 
overlap relative to a known ligand.

Diversity Internal diversity Fingerprint similarity within a set of 
generated molecules.

Synthesis SA score Heuristic measuring synthetic 
complexity by scoring 
substructures.

SC score Feed-forward neural network 
trained on Reaxys data to predict 
synthetic complexity.

Standard metrics assess the base behaviour of the generative model while the other 
categories represent properties to optimize for. In real-world applications, a combination of 
metrics (necessarily multi-objective) should be used to assess the generative performance.
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Table 4 | Experimentally validated small-molecule generative design case studies

Model Input Output Design task Target Hit rate Outcome Publication year

Distribution learning

LSTM RNN146 SMILES SMILES De novo RXR 4/5 (80%) nM agonist 2018

LSTM RNN147 SMILES SMILES De novo RXR 2/4 (50%) μM agonist 2018

GraphGMVAE148 Graph SMILES Scaffold hopping JAK1 7/7 (100%) nM inhibitor 2021

LSTM RNN106 SMILES SMILES De novo LXR 17/25 (68%) μM agonist 2021

LSTM RNN149 SMILES SMILES De novo RORγ 3/3 (100%) μM agonist 2021

LSTM RNN150 SMILES SMILES De novo FLT-3 1/1 (100%) μM inhibitor 2022

GGNN GNN151 Graph Graph Fragment linking CDK8 9/43 (21%) nM inhibitor 2022

GRU RNN152 SMILES SMILES De novo Bacteria 0/1 (0%)a μM inhibitor 2022

BiRNN 
encoder–decoder153

SMILES SMILES De novo DDR1 2/2 (100%) nM inhibitor 2021

GRU RNN154 SMILES SMILES Reaction-based 
de novo

MERTK 15/17 (88%) μM inhibitor 2022

LSTM RNN155 SMILES SMILES De novo PI3Kγ 3/18 (17%) nM inhibitor 2023

Transformer156 SMILES SMILES Fragment linking TBK1 1/1 (100%) nM inhibitor 2023

VAE and transformer157 SMILES SMILES Fragment 
hopping/linking

CDK2 17/23 (74%)c nM inhibitor (MC)b 2023

LSTM RNN102 SMILES SMILES De novo Nurr1γ 2/6 (33%) nM inhibitor 2023

Graph 
transformer-LSTM 
RNN158

Graph SMILES De novo PPARγ 2/2 (100%) μM agonist 2023

Goal oriented

DNC159 SMILES SMILES De novo Kinases 0d μM inhibitor 2018

AAE (conditional)160 SMILES SMILES De novo JAK3 1/1 (100%) μM inhibitor 2018

VAE19 SMILES SMILES De novo DDR1 4/6 (67%) nM inhibitorb 2019

LSTM RNN108 SMILES SMILES De novo ligand 
based

DDR1 4/6 (67%) nM inhibitor 2021

Stack-GRU RNN161 SMILES SMILES De novo EGFR 4/15 (27%) nM inhibitor 2022

LSTM RNN 
(conditional)107

SMILES SMILES De novo RIPK1 4/8 (50%) nM inhibitorb 2022

Chemistry4220 Mixed Mixed De novo structure 
based

CDK20 6/13 (46%)a nM inhibitor 2023

Chemistry42162 Mixed Mixed De novo structure 
based

CDK8 1/1 (100%) nM inhibitorb 2023

Chemistry42105 Mixed Mixed De novo structure 
based (R-group)

SIK2 6/6 (100%) nM inhibitor 2023

VAE163 SMILES SMILES De novo structure 
based

KOR 2/5 (40%) μM antagonist 2023

Chemistry42164 Mixed Mixed De novo structure 
based

PHD enzymes 1/1 (100%) nM inhibitorb 2024

GRU 
RNN-transformer165

SMILES SMILES De novo activity 
model

NLRP3 0e nM inhibitorb 2024

Transformer-VAE 
(conditional)166

Geometry-SMILES SMILES De novo Tuberculosis ClpP 1/6 (17%)a μM inhibitor 2024

QC-LSTM 
RNN-Chemistry42167

SMILES SMILES De novo structure 
based

KRAS 1/12 (8%)a μM inhibitor 2024

Graph transformer168 Graph Graph De novo activity 
model

MGLL 1/3 (33%)a μM inhibitor 2024

Chemistry42169 Mixed Mixed Fragment linking Polθ 4/6 (67%) μM inhibitorb 2024

Chemistry42114,115 Mixed Mixed De novo structure 
based

TNIK Unknownf nM inhibitorb 2024

Attention-convolution 
layers170

Substructure vector SMILES Scaffold based Factor Xa Unknowng μM inhibitor 2024

Flow (conditional)171 Geometry Geometry De novo HAT1 and YTHDC1 0/2 and 0/3 (0%)a Both μM inhibitora 2024
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with encoded chemical knowledge. This makes SMILES-based mod-
els well suited for distribution learning and fine-tuning with small  
datasets101,102. Fine-tuning is the dominant method used in the dis-
tribution learning examples in Table 4. Second, many studies with 
experimental validation target kinases, which are prevalent in popular 
open-source datasets such as ChEMBL103. Third, most goal-oriented 
approaches use reinforcement learning (either alone or as a compo-
nent) as the optimization algorithm, and encompass both LBDD and 
SBDD. These studies also extensively feature Chemistry42104, which is 
a proprietary generative platform from Insilico Medicine containing 
over 40 models. Lastly, AlphaFold54 predicted structures can be suc-
cessfully used for generative SBDD20,105.

Generated molecules have novel scaffolds. Figure 3 highlights 
selected examples of generated designs encompassing distribution 
learning and goal-oriented generation approaches. Reference106 used 
a SMILES-based RNN to perform distribution learning to generate liver 
X receptor (LXR) agonists validated using automated on-chip synthe-
sis, providing a glimpse of the integration of generative models with 
synthesis platforms. Compound 17 has micromolar potent activity 
with a sixfold selectivity for LXRα over LXRβ. Reference102 used the 
same model in an extreme low-data regime (fine-tuning with a single 
positive example) to design a high nanomolar potent orphan nuclear 
receptor related 1 (NURR1) agonist. Using another RNN, ref. 107 demon-
strated the combination of generative design and virtual screening by 
triaging a generated library of potential receptor-interacting protein  
kinase 1 (RIPK1) inhibitors with pharmacophore features and dis-
covering a nanomolar potent inhibitor with in vivo tolerability. 
Goal-oriented generative approaches have also been experimentally 
validated. Reference 108 used REINVENT57,109 and pharmacophore 
matching to design a novel nanomolar potent discoidin domain 
receptor1 (DDR1) inhibitor. In a seminal work, ref. 19, introduced the 
generative tensorial reinforcement learning (GENTRL) VAE model 
and successfully demonstrated design, synthesis and experimental 
validation of a DDR1 inhibitor within 21 days. However, the novelty of 
the most potent design is a point of contention as it has high struc-
tural similarity to potanitib, a known inhibitor. Notably, ref. 20 used 
a similar model to design a micromolar potent cyclin-dependent 
kinase 20 (CDK20) inhibitor in 30 days using an AlphaFold54 predicted 
structure. A second round of generation identified a nanomolar 
potent inhibitor. Overall, both distribution learning and goal-oriented 
approaches have been experimentally validated. Generated mol-
ecules have novel scaffolds and demonstrate the possibility of 

generative design to accelerate discovery. Moreover, apart from gen-
erative approaches, in vitro validation has also been demonstrated 
by leveraging reaction-based expansion110–112. Finally, we highlight 
the growing prevalence of ML-aided commercial drug discovery 
campaigns from industry that have been exhaustively compiled in 
ref. 113. A notable example is from Insilico Medicine114,115, which has 
progressed the first drug candidate from generative design to phase 
two clinical trials.

Future directions
In this paper, we have reviewed the current progress of ML-aided molec-
ular design. We started by introducing the problem setting before 
delving into how design decisions around the granularity of molecular 
representation and architecture can affect downstream performance. 
In the latter part of the Review, we discussed the evaluation of genera-
tive models, specifically around the importance but also limitations of 
in silico metrics, and emphasizing that experimental validation should 
always be the end goal. Finally, we comprehensively report literature 
examples that have achieved experimental validation, encompass-
ing both academic and industrial efforts. While progress in the field 
has demonstrated that generative molecular design can accelerate 
early-stage drug discovery, challenges in adopting such workflows to 
real-world discovery campaigns remain, partly owing to unrealistic 
problem formulations and evaluation protocols. Correspondingly, 
we close our paper with a discussion of current challenges and future 
opportunities to better align computational efforts to achieve realistic 
drug discovery end points.

Challenges

•	 Out-of-distribution generation. Known chemical matter occupies 
a small fraction of chemical space. While deep generative models 
can propose molecules outside the training distribution, care must 
be taken to ensure plausibility.

•	 Unrealistic problem formulation. Precise formulation of design 
tasks is crucial to develop models applicable to real-world 
drug discovery. Fundamental aspects, such as conformational 
dynamics, the role of water and entropic contributions, are 
frequently overlooked and unrealistic assumptions such as 
unlimited access to oracle calls are often made. The latter is 
encapsulated by the sample efficiency problem and recent stud-
ies make progress in efficient goal-oriented generation under a 
limited oracle budget116–119.

Model Input Output Design task Target Hit rate Outcome Publication year

Activity model 
(MCTS)97

Variable Variable Reaction based Bacteria 6/58 (10%) μg inhibitorb 2024

Chemistry42172 Mixed Mixed De novo structure 
based

KIF18A Unknownh nM inhibitorb 2024

Diffusion 
(conditional)173

Geometry Geometry Lead optimization CDK2 7/7 (100%) nM inhibitor (MC) 2024

The table is separated by whether distribution learning or goal-oriented generation was used. Hit rate is defined as the percentage of actives in an in vitro assay (<10 μM potency) out of all 
reported synthesized designs. Hit rate is defined strictly based on generated designs and omits actives from manual domain-expert modifications. Denoted nanomolar (nM) potent if the 
most potent design (including generated and domain-expert designed derivatives based on generated designs) possessed half-maximal inhibitory concentration (IC50) or half-maximal 
effective concentration (EC50) values < 10 nM. R-group indicates a core scaffold was fixed and only variable R-groups were generated. Chemistry42104 contains over 40 generative models with 
varying input and output encompassing SMILES, fingerprints and graphs. To summarize this information, we have denoted the input and output of Chemistry42 as ‘mixed’. ‘Variable’ denotes 
variable inputs/outputs were used depending on the model. aThere were additional actives with a concrete potency measured >10 μM. bIn vivo validation was also performed. cSome manual 
modifications were made to the generated molecules for synthetic ease. dAn in-house library was screened to identify high-Tanimoto-similarity molecules to the generated set. Therefore, none 
of the generated molecules were directly experimentally validated. e12 generated molecules were selected for docking and analysis of the binding poses short-listed two scaffolds. Derivatives 
were designed based on these two scaffolds, resulting in a nM inhibitor. Therefore, none of the generated molecules were directly experimentally validated. f79 molecules were synthesized 
in total114. g8 commercially available generated molecules were purchased. The most potent affinity was reported. h110 molecules were synthesized in total145. AAE, adversarial autoencoder144; 
BiRNN, bidirectional recurrent neural network; DNC, differentiable neural computer143; QC, quantum computing; GGNN, gated graph neural network; GRU, gated recurrent unit neural network; 
LSTM, long short-term memory recurrent neural network; MC, macrocycles.

Table 4 (continued) | Experimentally validated small-molecule generative design case studies

http://www.nature.com/natmachintell


Nature Machine Intelligence

Review article https://doi.org/10.1038/s42256-024-00843-5

•	 Low-fidelity oracles. Effectively scoring designs along dimen-
sions relevant to drug discovery remains difficult and a bottle-
neck in deploying generative models in industrial settings. For 
example, high-throughput binding affinity prediction is typically 
inaccurate in both data-driven and physics-based workflows. 
While alternative, higher-accuracy oracles exist, their compu-
tational demands limit scalability. Moreover, inaccessibility of 
high-quality labelled data presents a barrier to developing ora-
cles with both high accuracy and manageable compute during  
inference.

•	 Lack of unified evaluation protocols. The evaluation pro-
tocol used for assessing the quality of a drug candidate is 
closely linked to how we define what makes a good drug. 
Easy-to-compute physicochemical descriptors typically used 
by the ML community remain questionable and certainly paint 
an incomplete picture of performance. Rigorous comparisons 
between generative molecular design and virtual screening are  
also lacking.

•	 Lack of large-scale studies and benchmarks. Many ML methods 
have been developed but there are no fair benchmark results on 
many types of model in different key tasks. For example, only a small 
fraction of available data is used for training, limiting understand-
ing of model scalability. Recent benchmarks are important contri-
butions to standardizing computational evaluation protocols80,120.

•	 Lack of interpretability. Interpretability is an important yet 
under-explored area for molecular generative models. For exam-
ple, insights into how the generative or optimization process 
composes molecules could lead to chemical rules interpret-
able by medicinal chemists. This is especially important in the 
small-molecule regime where generative models are often used to 
submit ideas to medicinal chemists as synthesis barriers precludes 
testing of all generated designs.

Opportunities

•	 Applications beyond small-molecule design. The approaches 
discussed here may have broader applications for designing other 
richly structured materials, such as polysaccharides, proteins 
(in particular, antibodies), nucleic acids, crystal structures and 
polymers121.

•	 Large language models show the potential to revolutionize molec-
ular design with text-guided discovery and decision-making as 
agents, due to vast available training data, including the body of 
scientific literature. In addition, models tailored or fine-tuned 
on molecular structures present additional opportunities for 
researchers to draw on proven advances in natural language 
processing.

•	 Later phases in drug development. Molecular design/opti-
mization occupies early phases in drug discovery. However, 
late-stage failures due to limited efficacy, poor ADME/T pro-
files and safety concerns are pain points in drug development 
pipelines. While limited, integrating clinical data into design 
pipelines is a promising direction to improve the downstream 
success rate.

•	 Focused model purpose. The drug discovery pipeline is the result 
of decades of experience and hard-learned lessons within pharma-
ceutical companies. ML researchers should aim to design not only 
pure de novo models, (particularly when lacking the capabilities 
to characterize them in depth) but also models that are focused 
on improving specific steps subject to realistic constraints in the 
multi-year process.

•	 Self-driving labs. Increasing demand for high-throughput exper-
iments to provide feedback for ML-designed molecules place 
growing attention on self-driving labs to serve a critical role in 
expediting the design–make–test–analyse cycle.
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b Goal-orientated generation
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Fig. 3 | Selected examples of experimentally validated generative designs. a, Distribution learning approaches. b, Goal-oriented generation approaches.
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