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ABSTRACT11

Identifying prediagnostic neurodegenerative disease is a critical issue in neurodegenerative disease research, and Alzheimer’s
disease (AD) in particular, to identify populations suitable for preventive and early disease modifying trials. Evidence from
genetic studies suggest the neurodegeneration of Alzheimer’s disease measured by brain atrophy starts many years before
diagnosis, but it is unclear whether these changes can be detected in sporadic disease. To address this challenge we train
a Bayesian machine learning neural network model to generate a neuroimaging phenotype and AD-score representing the
probability of AD using structural MRI data in the Alzheimer’s Disease Neuroimaging Cohort (cut-off 0.5, AUC 0.92, PPV 0.90,
NPV 0.93). We go on to validate the model in an independent real world dataset of the National Alzheimer’s Coordinating
Centre (AUC 0.74, PPV 0.65, NPV 0.80), and demonstrate correlation of the AD-score with cognitive scores in those with an
AD-score above 0.5. We then apply the model to a healthy population in the UK Biobank study to identify a cohort at risk for
Alzheimer’s disease. This cohort have a cognitive profile in keeping with Alzheimer’s disease, with strong evidence for poorer
fluid intelligence, and with some evidence of poorer performance on tests of numeric memory, reaction time, working memory
and prospective memory. We found some evidence in the AD-score positive cohort for modifiable risk factors of hypertension
and smoking. This approach demonstrates the feasibility of using AI methods to identify a potentially prediagnostic population
at high risk for developing sporadic Alzheimer’s disease.

12

Introduction13

A critical task in dementia research is to identify disease at the earliest possible timepoint, permitting early intervention with14

lifestyle change [1] or disease modifying therapies [2] at a time when the disease process could potentially be reversed or halted,15

and quality of life remains high. The difficulty in achieving early and accurate diagnosis has been highlighted as a major factor16

in the lack of success of clinical trials for neurodegenerative diseases, including Alzheimer’s disease [2, 3]. Neuroimaging17

abnormalities in genetic dementia cohorts suggest that neurodegenerative pathologies begin decades before symptoms [4, 5].18

Predicting disease with such certainty before symptom onset is not possible in sporadic forms of dementia, so an alternative19

strategy is needed to identify an at-risk population using disease biomarkers to find people with early stages of neuropathology20

who are at high risk of developing cognitive impairment in the future. This high risk group would be suitable for prevention21

studies or early disease modifying treatment trials [6].22

The challenge of identifying disease at the earliest possibly point has led to proposed criteria for at-risk or presymptomatic23

Alzheimer’s disease that rely on biomarker evidence rather than a clinical syndrome [7]. One set of criteria propose an “ATN”24

classification of Alzheimer’s disease, representing Amyloid (A), Tau (T) and Neuronal loss (N) as central pillars of Alzheimer25

pathology [8]. Many of the biomarkers to assess tau and amyloid pathology in life are expensive and not widely available.26

However, neuronal loss is readily measured in vivo using structural brain imaging.27

Structural neuroimaging has been central in clinical diagnosis and in attempts to classify Alzheimer’s disease using28

neuroimaging for many years [9, 10]. Loss of volume in the hippocampus is well described in Alzheimer’s disease, and whole29

brain volume may also be relevant [11, 12]. Other specific brain regions are less well studied, yet may be relevant in identifying30

people with Alzheimer’s disease - alone or in combination with hippocampal atrophy. More complex analytical approaches31

offer the opportunity to use all the available information from structural neuroimaging data for identifying a specific pattern of32

atrophy relevant to disease.33
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Artificial Intelligence (AI) and Machine learning (ML) describe computational algorithms that can make predictions34

reflecting intuitive human thinking, and can ‘learn’ from new data. A class of AI models called deep learning methods use35

multiple hierarchical levels of data abstraction to identify important features in order to make a prediction. These models36

have been successfully applied to several different contexts in medicine [13, 14], leveraging neuroimaging datasets [15] to37

address a multitude of neuroscientific questions [16]. AI approaches in structural MRI have facilitated the classification of38

Alzheimer’s disease with a good degree of accuracy [17, 18, 19, 20, 21, 22, 23, 24, 25, 26], but few such studies have validated39

their approach in an independent dataset [27, 28].40

Despite these achievements in the neuroimaging field, there are challenges to the generalisability of deep learning41

models [29, 30]. A relatively recent trend applies a probabilistic approach to deep learning by using measures to describe42

Bayesian uncertainty [31, 32]. Such uncertainty measures allow for a better characterisation of the model’s output rather than43

solely a deterministic value [33], ultimately strengthening the confidence in results derived from these stochastic models [34].44

Probabilistic AI approaches are strong candidates to make the best use of all available information in structural neuroimaging.45

The availability of large open access neuroimaging repositories permits us to use distinct datasets for training an AI model and46

assessing its generalisability. In this work, we use a selective and well characterised dataset of Alzheimer’s disease to train the47

model (Alzheimer’s Disease Neuroimaging Initiative dataset, ADNI), and a more ‘noisy’ real world clinical dataset with a48

range of different diseases to assess generalisability (National Alzheimer’s Coordinating Center, NACC).49

To identify a group of people at high risk of developing dementia, we use the trained model to find people with an50

neuroimaging AI derived phenotype of Alzheimer’s disease in a healthy cohort without a diagnosis of dementia from the UK51

Biobank study. We demonstrate poorer cognitive performance in people with an AD-like neuroimaging profile, suggesting that52

this group have a high prevalence of early Alzheimer pathology and may be suitable for screening and selection into disease53

modifying trials. We find that this group report poorer general health and identify hypertension and smoking as potential54

modifiable risk factors in this cohort.55

Methods56

Datasets57

The ADNI study recruits people with Alzheimer’s disease, Mild Cognitive Impairment (MCI), and control participants. It is58

primarily a research cohort and has a well characterised population who have undergone high quality, standardised neuroimaging59

with a standard battery of cognitive and clinical assessments. We used 736 baseline scan sessions from the ADNI dataset with a60

diagnosis of Alzheimer’s disease (n=331) and Controls (n=405) whose demographic data is summarised in table 1.61

Table 1. Summary of demographics of the ADNI dataset.

Diagnosis n mean age (sd) Sex (male/female)

AD 331 75 (7.8) 181/150

Control 405 74.7 (5.7) 202/203

Because ADNI is a relatively select research cohort, it is vulnerable to selection bias [35]. We therefore used the NACC62

dataset for validation. This is a “real world” memory clinic based cohort, including people with Alzheimer’s disease and a range63

of other cognitive and non-cognitive disorders. Because of its pragmatic nature, the NACC dataset is more heterogeneous in the64

quality of imaging and additional data collected. Therefore, it is an ideal dataset for validation of a tool developed in a more65

‘clean’ dataset such as ADNI. We used 5209 people from the NACC dataset whose demographics are summarised in table 2.66

Table 2. Summary of demographics of the NACC dataset.

Diagnosis n mean age (sd) Sex (male/female)

Control 2,824 68.6 (10.9) 938/1,886
AD 1,706 73.9 (9) 794/912
Other degenerative disorders 326 71.2 (9.9) 196/130
Other non-degenerative disorders 353 69.1 (10) 135/218

Finally, to apply the algorithm to a healthy cohort, we used the UK Biobank as a non-clinical cohort. This dataset is subject67

to potential selection bias, tending to be a population with a low risk for disease [36]. Despite these limitations, the size of68
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the dataset, the age of participants and the high quality neuroimaging data makes it an ideal cohort in which to assess at-risk69

features for neurodegenerative disease. A summary of the UK Biobank neuroimaging data is found in table 3.70

Table 3. Demographics for those in the UK Biobank who underwent neuroimaging.

n mean age (sd) Sex (male/female)

37,104 55.3 (7.4) 19,493/17,611

ADNI Preprocessing71

In each cohort, structural MRI Magnetization Prepared - RApid Gradient Echo (MPRAGE) scans were acquired. Further details72

of the individual imaging protocols are available for ADNI at http://adni.loni.usc.edu/methods/documents/mri-protocols/, for73

NACC at https://files.alz.washington.edu/documentation/rdd-imaging.pdf, and for the UK Biobank at [37]. Scans underwent74

estimation of regional cortical volume, regional cortical thickness, and estimated total intracranial volume using the FreeSurfer75

tool box (version 6.0)1. Given the size of the cohorts, the resulting segementations were assessed for gross abnormalities, but76

minor registration errors were not corrected. Results were obtained for cortical thickness and volume in the 68 surface-based77

regions of the Desikan-Killiany atlas from both hemispheres. In addition, the brainstem volume was also extracted together with78

9 volume features per hemisphere (cerebellum white matter, cerebellum cortex, thalamus proper, caudate, putamen, pallidum,79

hippocampus, amygdala, and accumbens area). In total, 155 features were extracted per brain scan.80

The ADNI dataset was divided into a training set with 662 samples, and a validation set with 74 samples, representing81

approximately 90% and 10% of the original cohort respectively. This division approximately preserved the relative distributions82

of diagnosis, estimated total intracranial volume, sex, and age.83

To regress out confounds from each feature, independent linear regression models were fitted to the training set using84

ordinary least squares (OLS) implemented in statsmodels [38]. For each one of the 68 cortical thickness features, the85

independent variable to be regressed out was age. For the remaining volume features, the independent variables were age,86

estimated total intracranial volume, and sex. These 155 regression models were saved to be later employed on the validation set87

and other external datasets. For numerical stability when training a neural network, all features were independently scaled to88

zero mean and unit variance using Scikit-learn [39]. Statistics were saved for each feature so they could be used to scale the89

values in the validation set and other external datasets.90

Bayesian Machine Learning91

A supervised machine learning (ML) model learns a target function fθ , parameterised by θ , such that it can predict yyy = fθ (xxx).92

In the case of a classification task, the function is such that f : RN →{1, . . . ,k}, where k is the number of possible categories93

(i.e. labels). For example, for a certain image with pixels represented in a feature vector xxx, the function could try to predict94

whether it contains a dog, a cat, or a bird (k = 3); in our context, the binary classification model predicts whether a patient has95

Alzheimer’s disease or not (k = 2). Practically, this function fθ learns how to predict labels yyy from features xxx by estimating the96

probability distribution p(yyy|xxx) that generated those same labels.97

The function fθ can be modelled as a deep neural network. To train such a model with a particular dataset, one needs to98

tune the learnable parameters of that model (i.e. θ ) by minimising a loss function using stochastic gradient descent or another99

optimisation algorithm. In contrast, under Bayesian ML the Bayes rule is used to infer model parameters θθθ from data xxx:100

p(θθθ |xxx) = p(xxx|θθθ) p(θθθ)
p(xxx)

. (1)

Here, the model parameters are represented by the posterior distribution p(θθθ |xxx), where the model parameters θθθ are101

conditioned on the data xxx. The goal of Bayesian ML is then to estimate this distribution given the likelihood p(xxx|θθθ) and the102

prior distribution p(θθθ) (i.e. belief of what the model parameters might be). The prior p(xxx) cannot be generally computed but103

as it is a normalising constant not dependent on θθθ and it stays the same for any model, it can be dropped from calculations104

when estimating the posterior. The posterior distribution cannot usually be analytically calculated using big data in a practical105

way, and therefore there are several methods to calculate these distributions and approximate the intractable posterior [40].106

We use Monte Carlo dropout [41, 42] to approximate Bayesian inference by using dropout during the inference phase107

of the model [43]. Dropout is a regularisation approach often employed in deep neural networks to avoid overfitting and it108

1https://surfer.nmr.mgh.harvard.edu/fswiki/BrainstemSubstructures
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Figure 1. Architecture of the neural network model used in this paper. The neural network consists of two hidden layers
of 128 dimensions and non-linear activation function σ = tanh(). For each set of 155 inputs, N = 50 forward passes are run,
each time with a different dropout mask sampled from a Bernoulli distribution. An AD likelihood score is generated as the
mean, and model uncertainty as the standard deviation calculated from the 50 forward passes.

works by randomly dropping nodes during the training process. With Monte Carlo dropout, nodes are also randomly dropped109

during inference which means that for the same input, each forward pass will generate a different output; this is possible as110

for each pass a different Bernoulli mask is applied to the neural network’s weights. Gal and Ghahramani [41] show that each111

forward pass on the neural network corresponding to a different dropout mask is a good approximation to sampling from the112

true posterior distribution p(θθθ |xxx).113

With this simple yet powerful approximation, one can have the statistical power of a Bayesian ML model at very little114

added computational cost. Indeed, the Monte Carlo dropout method was chosen as it works well on a wide variety of previously115

trained neural networks, therefore could be used in other clinical contexts without the requirement for a full knowledge of116

Bayesian statistics. Furthermore, Monte Carlo dropout is known to bring advantages in modelling uncertainty [41], which is of117

paramount importance in a clinical context, as well as better overall performance for certain downstream tasks [44].118

Deep Neural Network Implementation119

As depicted in figure 1, we implemented a neural network with two hidden layers, each with 128 dimensions and using the120

hyperbolic tangent function (tanh()) as the non-linear activation function to leverage both the positive and negative value ranges121

of the input. The sigmoid function was applied to the last output node to give a value between 0 and 1 to represent a probability122

that the individual has Alzheimer’s disease. The dropout rate was set to 80% and Monte Carlo dropout was employed by123

sampling (i.e. making a forward pass) 50 times from the model, after which a mean and standard deviation was calculated. The124

mean corresponds to the final model prediction (i.e. probability of Alzheimer’s disease) and standard deviation represents the125

uncertainty of the model [42]).126

The model was implemented using Pytorch [45] and trained for 100 epochs using an Adam optimiser [46] with learning127

rate of 0.001, weight decay of 0.0001, and binary cross entropy loss. The training procedure took 9 seconds on a server with128

a TITAN X Pascal GPU and an Intel(R) Core(TM) i7-6900K CPU with 16 cores. The model with the smallest loss on the129

validation set during the training procedure was selected as the final model for evaluation. Inference time (i.e. 50 forward130

passes with output calculation) took an average of 12.7 ms (std: 1.78 ms) on GPU (average calculated over 1000 runs for the131

same batched input). The training log was saved using Weights & Biases [47]. In total, the model contained 36,609 trainable132

parameters.133

Statistical Analysis134

To assess group differences in the association between AD scores and clinical measures we used a Bayesian statistical approach135

given the different sizes of the cohorts used in this study, and the limitations of frequentist analysis in identifying statistically136

significant but clinically irrelevant group differences. We used Stan [48, 49] implemented in R (version 4.1.0) using linear137

regression and logistic regression implemented in the brms library [50, 51], and the rstan library for piecewise linear regression.138

To assess evidence for group differences we use the Region of Practical Equivalence (ROPE), which is an a priori effect size139

considered to be significant between groups. The 95% distribution of the Bayesian posterior is termed the Critical Interval140
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(CI); if the mean lies outside the ROPE there is some evidence to accept a hypothesis, between groups, and where the CI lies141

outside the ROPE there is strong evidence for accepting a hypothesis [52]. Where the CI lies completely within the ROPE,142

the null hypothesis can be accepted. The ROPE is either set by knowledge of the variable, or set to be 0.1 of the standard143

deviation of the control group. Model comparison used the loo package [53]. To assess the validity of our chosen breakpoint144

against variable or no breakpoint, we used the Expected Log Pointwise Predicted Density (ELPD) as the measure of model fit,145

assessing the difference in ELPD value between models and its standard error to consider whether there was evidence of a146

difference between models.147

Results148

Model Evaluation and Performance149

We trained our deep learning model to detect Alzheimer’s disease from structural neuroimaging using the ADNI dataset.150

To evaluate model performance in the test set of the ADNI cohort and the NACC cohort, we report ROC curve analyses in151

table 4. For the NACC dataset we evaluated AD identification against two comparator groups: (1) controls alone, and (2)152

combined controls and non-AD diagnoses. As expected given the similarity to the training set and selective nature of the153

cohort, the highest accuracy was found in the ADNI test set. In NACC, a completely independent dataset, accuracy was154

lower, but still reasonable and in line with a previous similar study using SVM for out-of-distribution classification of AD155

[54]. Overall accuracy was above 0.7, although with a loss in positive predictive value (0.56). Of particular importance, the156

negative predictive value remained relatively high (0.83). This means our algorithm is balanced toward missing some people157

with Alzheimer’s disease, but is less likely to label healthy people as having an Alzheimer’s disease neuroimaging phenotype.158

This is a desirable property of the model given the application to UK Biobank data where the rate of Alzheimer’s disease159

will be substantially lower than either ADNI or NACC, so there is a greater risk of misclassifying healthy people as having160

Alzheimer’s disease.161

Table 4. Performance metrics across datasets with a model trained on the ADNI training set, using a cut-off of and AD score
of 0.5 and employing inference using MC Dropout with 50 samples. AUC=Area under the ROC curve. PPV=Positive
predictive value. NPV=Negative predictive value.

Dataset Accuracy AUC Sensitivity Specificity PPV/Precision NPV

ADNI test set 0.92 0.97 0.90 0.93 0.90 0.93

NACC (only AD/Control) 0.74 0.79 0.68 0.78 0.65 0.80

NACC (AD/All) 0.72 0.76 0.68 0.73 0.56 0.83

We investigated the relationship between uncertainty measures generated by the model and the predicted value (AD score)162

in figure 2a. There was a wider range of uncertainty values when the average AD score was closer to 0.5 than closer to the163

extremes; in other words when the probability of classification was greater (towards 0 or 1) the AD score was more certain.164

Figure 2b demonstrates that when the model prediction was incorrect, its corresponding uncertainty value was higher on average165

compared to correct predictions.166

We further compared the Bayesian ML model (including calculation of uncertainty with multiple passes) to a non-stochastic167

(single pass) one. In our analysis explained in detail in supplementary figures S1-S3, the Bayesian ML model consistently168

achieved better performance.169

ADNI170

Clinical scores171

To assess the clinical validity of the AD score, we assessed the difference in clinical scores between those categorised as172

positive or negative by AD score using a cut-off of 0.5 and applying Bayesian regression models with age as a covariate;173

the posterior distributions are shown in figure 3. Skewed Gaussian families were used for MMSE and CDR Sum of Boxes,174

otherwise Gaussian distributions were assumed with cauchy distribution priors in all cases. All models converged well (R̂ ≈175

1.00). We report four key cognitive measures from the ADNI dataset, finding very strong evidence for difference between AD176

score positive and negative groups in MMSE (Effect size -5.2, 95% Credible Interval -5.5 to -4.8), MoCA (-8.2, CI -9.1 to -7.4),177

CDR (3.7, CI 3.5 to 3.9), and Trails B (-13.0, CI -13.6 to -12.4).178
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(a) (b)

Figure 2. Model uncertainty for the NACC dataset, where uncertainty was measured as the standard deviation of the
model’s sampled outputs. (a) Relation of model’s output and uncertainty. The model was more certain (i.e. smaller standard
deviation) for more extreme mean outputs. For a mean output closer to 0.5, more variable and generally greater uncertainty was
seen. (b) Uncertainty levels for different categories in the confusion matrix applying a cut-off of 0.5. On average, uncertainty
levels are higher for incorrect predictions (i.e. FP, FN) when compared to correct predictions (i.e. TP, TN). There was a
significant difference among these four groups (Kruskal-Wallis H-test, p < 3.79×10−58).

NACC179

Clinical scores180

We applied the trained model to the NACC datasets and assessed the relation of the model derived AD-score against clinical181

scores. Group differences were assessed with Bayesian analysis using the ROPE to assess the strength of evidence, shown in182

figure 4. There was strong evidence that people with a positive AD score had lower MMSE scores (-3.82, CI -4.62 to -3.02),183

MoCA scores (-7.00, CI -8.33 to -5.69), semantic fluency (-4.64, CI -5.49 to -3.80) and executive function (time taken to184

complete trails B 44.43, CI 33.36 to 55.63). For WAIS scores (-6.61, CI -9.12 to -4.10) and Boston naming test (-2.97, CI185

-3.95 to -1.98) there was moderate evidence of a difference in that the mean effect size of the AD score positive group fell186

outside the ROPE but the critical interval overlapped with the AD score negative, suggesting imprecision in the estimate of187

the AD score negative group; this may be explained by the relatively low Positive Predictive Value so that some people with188

Alzheimer’s disease are included in the negative AD score group. Finally there was good evidence that the AD score does not189

predict forward (-0.19, CI -0.57 to 0.19) or backward (-0.46, CI to -0.86 to -0.06) digit span given the distribution of the AD190

score positive scores is completely contained within the critical interval of the AD score negative group.191

To assess whether severity of disease was associated with the strength of expression of the AD neuroimaging phenotype we192

regressed the AD score against z-scored clinical measures. We used piecewise linear regression analysis given that we did193

not expect an association in the AD score negative group (below 0.5) compared with the AD score positive group. Firstly, we194

assessed whether the piecewise regression model was superior to a linear model, and whether our chosen breakpoint of 0.5 was195

reasonable by comparing piecewise linear regression models with a fixed breakpoint of 0.5, with variable breakpoint (permitted196

to vary between 0.25 and 0.75), and with no breakpoint (ie completely linear). The analysis presented in table 5 shows that197

models including a breakpoint were superior to the model without a breakpoint for all measures where we found evidence for198

difference between the AD score positive and AD score negative groups, specifically MMSE, MoCA, Semantic fluency. There199

was no substantial difference in whether the breakpoint was fixed at 0.5 or permitted to vary for almost all measures; for the200

Boston naming task, the variable breakpoint analysis was a better fit than the fixed breakpoint analysis, speculatively because201

executive cognitive function appears later than other cognitive impairments.202

We therefore proceeded with our estimated breakpoint of 0.5 to differentiate AD score positive from AD score negative203

scores, shown in figure 4. There was evidence of a relationship between stronger expression in the AD score positive group204

than the AD score negative group of the AD score with more impaired cognitive function measured by MMSE, MoCA, forward205

digit span, trails B and semantic fluency and the Boston naming task, all with a credible interval lying outside the range -0.1 to206

0.1 standard deviations of the control group mean.207

UK Biobank208

Using a cut-off for the AD score of 0.5, we divided the UK Biobank cohort into AD score positive or AD score negative groups.209

There were 1,304 (3.4%) with a positive AD score and 36,663 (96.6%) with a negative AD score.210
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Figure 3. Bayesian analysis of cognitive tests in the ADNI dataset Bayesian posterior estimates of the mean of cognitive
tests in AD score positive and negative groups with the Region Of Practical Equivalence (ROPE) as a shaded column. As
expected in this well characterised dataset, for all measures there was very strong evidence of difference between groups
classified as positive or negative by AD score derived from structural neuroimaging, indicated by mean AD score in the AD
score positive group and the 95% credible intervals (indicated by the thin horizontal bars) falling outside the ROPE.

AD scores predict cognitive differences in healthy individuals with an AD imaging phenotype211

To assess for differences in cognitive scores between the groups we used Bayesian linear or logistic regression models. All212

models achieved good convergence (R̂≈ 1) and results are shown in figure 5.213

There was strong evidence of worse fluid intelligence in the AD score positive group (-0.35, CI -0.46 to -0.21) with the214

95% CI lying completely outside the ROPE. There was moderate evidence to support poorer performance in matrix pattern215

completion (-0.35, CI -0.50 to -0.20), numeric memory (-0.17, CI -0.27 to -0.07), and reaction time for correct trials (13.11 ms,216

CI 7.12 to 19.33 ms), where the mean estimate was outside the ROPE, but the CI overlapped with the ROPE. On a working217

memory task (pairs matching) there was only weak evidence to suggest a poorer performance in the AD positive groups218

performance using logistic regression with an adjacent categories model; with AD positive participants slightly more likely to219

have 1 rather than 2 correct answers out of four (boundary effect size -0.14, CI -1.02 to 0.65), and slightly more likely to have220

2 rather than 3 correct answers (boundary effect size -1.74, I -5.19 to 0.79), and slightly more likely to have 3 rather than 4221

correct answers (boundary effect size 0.95, CI -0.36 to 3.46). There was also weak evidence to suggest poorer performance on222

a prospective memory task (increased probably of an incorrect answer in the AD positive group (0.09, CI 0.00 to 0.18).223

On tests of executive function there was clear evidence of no difference in the number of errors on the Trails B test (0.12,224

CI -0.24 to 0.48) where the credible interval was completely within the ROPE, and weak evidence against an effect in tower225

rearranging (-0.31, CI -0.53 to -0.08) where the mean lies within the ROPE but the credible interval extends beyond the ROPE.226

AD score predicts worse reported overall health227

In non-cognitive measures, there was strong evidence that people in the AD group were more likely to report their overall228

health as ‘poor’ or ‘fair’ rather than ‘good’ or ‘excellent’7 (probit 0.14, CI 0.09 to 0.19). There was weak evidence that hand229

grip was weaker in the AD positive group with a mean outside the ROPE but the CI overlapping with the ROPE (mean -1.10,230

CI -1.70 to -0.51). There was also weak evidence that the AD positive group were more likely to report one fall than no falls231

and more likely to report two or more falls than no falls (probit regression 0.07, CI 0.06 to 0.08).232
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Figure 4. A: Bayesian analysis of the NACC clinical scores. There is strong evidence for impairment in the AD score
positive group for MMSE, MoCA, and trails B since the posterior estimate of the effect size lies outside the 95% credible
interval, and outside the Region Of Practical Equivalence (ROPE). There is good evidence of no difference for forward and
backward digit span, since in both cases the distribution of the AD score positive group completely overlaps with the
distribution of the AD score negative group. B: Breakpoint analysis of the NACC clinical scores. Disease severity
correlated with the AD positive group (AD score >0.5) with evidence for difference in correlation from the AD negative (AD
score <0.5) group in MMSE, MoCA, forward digits span, Trails B and the Boston naming task.
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AD scores are associated with modifiable risk factors233

Having identified a cohort potentially at risk of Alzheimer’s disease, the next step was to consider whether other health measures234

or modifiable risk factors are more common in this subgroup. We report the results of a number of risk factors in figure 6 and235

other health markers in figure 7.236

There was some evidence of a difference in both diastolic blood pressure (1.12, CI 0.53 to 1.72) and systolic blood pressure237

(2.29, CI 1.26 to 3.30). Additionally, there was weak evidence that smoking (current or ex-smoker) was associated with AD238

positive score (0.06, CI -0.06 to 0.18) demonstrating a mean outside the ROPE, but a wide CI. Among those who smoked, there239

was moderate evidence that a greater smoking history (i.e. more pack years) was associated with an AD positive score (2.98, CI240

1.23 to 4.73).241

There was moderately strong evidence for no difference in waist circumference (0.62, CI -0.11 to 1.35), consultation with242

GP for depression (logistic regression 0.03, CI -0.10 to 0.16), consultation with a psychiatrist for depression (logistic regression243

0.02, CI -0.19 to 0.23), hearing difficulties (logistic regression -0.01, CI -0.14 to 0.12). There was strong evidence of no244

difference in hip circumference (-0.12, CI -0.63 to 0.38), sleep duration (-0.01 hrs, CI 0.07 to 0.06), and neuroticism (0.11,245

-0.09 to 0.32) score.246

Figure 5. Bayesian analysis of cognitive tests in the UK Biobank group. It is possible to see a reduced cognitive function
in participants with an AD score >0.5. In particular, there is strong evidence for impaired visual memory, and good evidence for
impaired fluid intelligence, numeric memory and some evidence for impaired executive function. The shaded area represents
the Region Of Practical Equivalence (ROPE) - if the distribution of the AD-positive group lies outside the ROPE there is strong
evidence for a difference between the groups, and if the mean only lies outside the ROPE then there is some to good evidence
for a group difference. There was strong evidence for no difference between groups in errors on the trials B task or reaction
time, where the distributions lie completely inside the ROPE. For the pairs matching task we used Bayesian ordinal regression,
plotting here the 95% credible intervals demonstrating only weak evidence of fewer correct answers in the AD positive group.

Discussion247

We have identified a cohort of healthy individuals in the UK Biobank with an Alzheimer’s disease-like neuroimaging-based248

intermediate phenotype, by leveraging developments in Bayesian deep learning. Despite having no diagnosis or reported249
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Figure 6. Results from Bayesian analysis of potentially modifiable risk factors in the UK Biobank population. There
is partial evidence to support an higher diastolic and systolic blood pressure among participants with an AD score >0.5,
indicated by a mean effect size lying outside the ROPE but with a distribution overlapping with the ROPE. No other risk factors
were associated with a positive AD score.

symptoms of dementia, this AD-like cohort demonstrate a cognitive profile in keeping with early Alzheimer’s disease and250

report worse general health. In addition they have evidence of slightly higher blood pressure and longer smoking history as251

potentially modifiable risk factors.252

Our approach offers the opportunity to identify and study presymptomatic idiopathic Alzheimer’s disease. The search for the253

earliest possible changes in Alzheimer’s disease has mainly focused on genetic forms of dementia [4, 10], with neuroimaging254

changes in presymptomatic genetic Alzheimer’s disease described since the 1990s using PET [55] or structural MRI [56]. We255

are aware of one promising study in idiopathic Alzheimer’s disease using a machine learning approach with multimodal imaging256

data to try to predict individualised presymptomatic disease in the ADNI cohort, currently in pre-print [57], an approach that257

will need independent validation. A study of cognitively normal adults over 70 years of age attempted to detect presymptomatic258

Alzheimer’s disease using FDG-PET, suggesting two-thirds of people in this age group had an abnormal FDG-PET scan which259

were associated with psychiatric symptoms [58]. This proportion of patients seems high for the age group under consideration,260

and abnormalities on PET have been associated with depression [59], so the relevance of these findings is unclear. In a small261

study using Pittsburgh Compound B (PiB) PET to detect presymptomatic Alzheimer’s disease in a healthy and MCI cohort there262

was a correlation between β -amyloid load and poorer episodic memory, though only one person converted to Mild Cognitive263

Impairment [60]. Another much larger study found a high rate of positive β -amyloid PET scans in otherwise cognitively264

normal older adults and no association with cognition, so the role and timing of β -amyloid PET abnormalities remain uncertain265

in the detection of presymptomatic Alzheimer’s disease [61].266

In this context, our approach has improved on previous efforts by identifying individuals with possible early sporadic AD, a267

supposition that is supported by finding a cognitive profile in keeping with AD. Our findings are strengthened by identifying268
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Figure 7. Other measures of health from the UK Biobank. People with positive AD scores were more likely to report
their general health to be ‘fair’or ‘poor ’and less likely to report their general health as ‘good’or ‘excellent’ . In addition, they
had lower grip strength which has previously been associated with Alzheimer’s disease. There was weak evidence to suggest
that people with a positive AD score were more likely to have had one or more falls in the previous year.

strong correlations between the AD scores and relevant cognitive tests in the independent NACC study. We found the AD score269

was associated with worse performance on global cognitive tests such as the MMSE and MoCA, and on more AD specific270

cognitive domains of memory and semantic fluency. In the UK Biobank cohort the AD score was associated with key cognitive271

domains of AD including memory and fluid intelligence.272

In terms of the prospect for disease prevention, our results suggest that a smoking history, in particular a greater pack year273

history, and both systolic and diastolic hypertension as risk factors. Both smoking and hypertension are reported as risk factors274

in the 2020 Lancet Commission on Dementia [62]. Smoking is a particularly well established risk factor for dementia [63].275

In keeping with our findings, Rusanen et al [64] studied over 21,000 people finding that heavy smoking in middle age was276

associated with developing Alzheimer’s disease, and more specifically that greater cigarette use was associated with a higher277

risk of developing dementia. Our results suggest that the effect of smoking is mediated through structural volume loss in key278

brain regions.279

The difference between blood pressure in the AD positive and AD negative groups was small, approximately 2.5mmHg for280

systolic BP and 1mmHg for diastolic BP. There has been much debate in the relationship between blood pressure and cognitive281

impairment, with studies finding both high and low diastolic blood pressure to be related to Alzheimer’s disease [65, 66]. More282

recent evidence from a meta-analysis has suggested that mid-life hypertension is a greater risk factor, with a systolic blood283

pressure above 140mmHg conferring a relative risk of 1.2 for developing dementia, and systolic blood pressure above 80mmHg284

conferring a relative risk of 1.54 [67]. However, the small increase in blood pressure we identified in the AD score positive285

group, and the overlap with the AD score negative group in both systolic and diastolic blood pressures suggests heterogeneity286

within the AD positive group.287

We did not find differences in other potentially modifiable risk factors. Here the Bayesian approach is helpful, since we can288

confidently reject the possibility of some risk factors being associated with the AD neuroimaging phenotype in this group. For289

example, some risk-factors highlighted in the Lancet Commission 2020 report [62], were not identified as risks in the current290

study (i.e. alcohol frequency, hip circumference, sleep duration) since the distribution of the AD positive group lies wholly291

within the ROPE (see figure 6). For depression and hearing difficulty, there was a wide distribution of estimated risk beyond292

the ROPE suggesting an imprecise estimate of the risk. For these measures we cannot rule out an association with an AD293

neuroimaging phenotype.294

Two factors may have limited our ability to identify potentially modifiable risk factors. Firstly, the UK Biobank has a sample295

bias towards people who are healthier with fewer disease risk factors than the general UK population [68]. For example, the296

proportion of people currently smoking in the UK Biobank population is 10.7% compared to 14.7% in the general population297

(data from the Office for National Statistics2).298

Secondly, our model was biased towards a high negative predictive value, meaning that we may have ‘missed’ some people299

with early Alzheimer’s disease pathology. Whilst providing more confidence in the identification of an AD-like cohort, the300

potential classification of people with latent AD in the AD negative group may have reduced the power to detect a difference in301

risk factors between the AD positive and AD negative groups. We anticipate that combining neuroimaging with other risk302

biomarkers could improve the selection of a high risk group, for example blood biomarkers [69, 70] or polygenic risk scores303

[71, 72].304

Despite these caveats, this approach has the potential to enrich dementia prevention trials. It is important to note that305

the impact of addressing risk factors on preventing dementia is not yet well established. The World Wide FINGERS study306

2https://www.ons.gov.uk
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has reported a trial of a multi-domain intervention with a small but significant effect size [1], although this was not targeted307

at smoking cessation or lowering blood pressure specifically, and there was no difference in blood pressure between the308

intervention and control groups at the end of the study. Our findings support the need for such trials, but raise some caution309

about the prevalence and strength of the association between risk factors and AD pathology.310

To identify the AD positive group we used a state-of-the-art Bayesian ML approximation method (i.e. Monte Carlo311

dropout [41]) to identify the cohort of interest in the UK Biobank. The Bayesian approach allows a model to predict not only a312

single AD-likelihood value as in typical deterministic neural networks, but also a measure of uncertainty (see figure 1). A key313

advantage of this approach is the additional information about the generalisability of the model to challenging out-of-distribution314

datasets, such as we have done in this paper; for example we were able to identify that greater uncertainty was associated with315

incorrect predictions (see figure 2b).316

Our approach is particularly well validated compared to other similar models. The model was trained only on the ADNI317

dataset before validation on the completely independent and significantly more noisy NACC data, prior to application to the318

UK Biobank. All the confound corrections on the input data were conducted in the training dataset (i.e. ADNI) alone, and319

correction statistics are then applied to the external datasets; in this way we avoid biases that would have been introduced had320

we corrected the model on all the available data.321

There are limitations to our approach. Most importantly, we do not know at present whether the people identified as having322

a positive AD score will go on to develop the syndrome of Alzheimer’s disease. At the time of analysis only 17 people in the323

neuroimaging cohort have developed dementia (6 of these self-reported at the baseline visit). The neuroimaging sub-study324

began later than the main biobank study, so it may be some years before a sizeable population of people with dementia and325

neuroimaging is available. Despite this caveat, we propose that the group we identified from their AD-like imaging phenotype326

are at higher risk of future clinical Alzheimer’s disease.327

Whilst our model performed very well in the ADNI population in which is was trained, it performed, as expected, less328

well in the independent NACC population. There are a number of reasons for this. Firstly, there is a recognised selection bias329

when using the ADNI cohort which may lead to an overly optimistic classification [35]. Secondly, the NACC dataset relies on330

clinical diagnosis rather than a defined set of diagnostic criteria without pathological information or biomarkers such as CSF,331

therefore a lower diagnostic accuracy might be expected. Thirdly, the neuroimaging quality varies significantly in the NACC332

dataset, for example both 1.5T and 3T MRI scans were included. For these reasons, it is not surprising that the classification333

was poorer in the NACC dataset, though still with good metrics for the task at hand.334

Using Bayesian statistics for group comparison and regression models provided several clear advantages for this study.335

Firstly, given the unequal sizes of the positive and negative groups we were able to focus on the precision of parameter estimates336

given the available data which differed between the two groups; this meant that we could distinguish a small effect size from an337

imprecise parameter estimate. Secondly, we were able to use effect size to detect evidence of difference between groups; if we338

had used a traditional frequentist approach we would have had difficult choices about correction for multiple comparisons and339

concern about detecting small but clinically irrelevant differences. Finally, using Bayesian analysis enabled us to explicitly340

accept the null hypothesis (i.e. no difference between groups) in a number of statistical comparisons.341

In conclusion, we demonstrate an approach to identify a cohort of potentially presymptomatic sporadic Alzheimer’s disease342

using AI with structural neuroimaging to identify a neuroimaging phenotype.343
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Table 5. Here we test the cut-off AD score value of 0.5 in the NACC dataset by applying linear analysis of the relationship
between AD score and cognitive scores using Bayesian piecewise linear regression analysis. For the slope estimates we include
the 95% Credible Interval (CI). Given the data are z-scored, we use 0.1 as the Region of Practical Equivalence (ROPE) which
represent 0.1 of the standard deviation of the data. If the CI lies outside -0.1 to 0.1 we consider there is good evidence to of a
relationship between the AD score and clinic score. For models with variable breakpoints, the breakpoint values obtained were
similar to 0.5, and comparing models with the Expected Log Pointwise Predicted Density (ELPD) the difference between
variable and fixed breakpoint models was negligible, except for the Boston naming task. There was good evidence for a
breakpoint in MMSE, MoCA, forward digit span, semantic fluency and the Boston naming task, and further evidence
supporting no difference between the two breakpoint models, but both being superior to the non-breakpoint model. These
findings support our use of a breakpoint of 0.5. BP = Breakpoint, MMSE = Mini Mental State Examination, MoCA = Montreal
Cognitive Assessment, WAIS = Wechsler Adult Intelligence Scale.

Variable breakpoint
BP Slope < BP (CI) Slope > BP (CI) Slope diff (CI) ELPD diff (se)

MMSE 0.67 -0.19 (-1.8, -0.94) -1.4 (-1.8, -0.94) -1.2 (-1.7, -0.65) 0.0 (0.0)
MoCA 0.6 -0.18 (-0.35, 0.03) -1.40 (-1.8, -1.0) -1.2 (-1.8, -0.77) 0.0 (0.0)
Backward digit span 0.56 -0.08 (-0.25, 0.08) -0.51 (-0.96, -0.13) -0.43 (-1.0, 0.10) 0.0 (0.0)
Forward digit span 0.59 0.09 (-0.08, 0.26) -0.62 (-1.1, -0.2) -0.71 (-1.3, -0.16) 0.0 (0.0)
Semantic fluency 0.59 -0.22 (-0.34, -0.10) -1.0 (-1.3, -0.74) -0.8 (-0.18, -0.44) 0.0 (0.0)
Trails B 0.44 0.2 ( 0.079, 0.35) 0.66 (0.45, 0.89) 0.46 ( 0.13, 0.79) 0.0 (0.0)
WAIS 0.53 -0.24 (-0.42, -0.07) -0.59 (-0.97, -0.25) -0.35 (-0.82, 0.13) -0.1 (0.1)
Boston naming task 0.66 -0.08 (-0.23, 0.056) -1.3 (-1.7, -0.81) -1.2 ( -1.70, -0.64) 0.0 (0.0)

Fixed breakpoint (0.5)
BP Slope < BP (CI) Slope > BP (CI) Slope diff (CI) ELPD diff (se)

MMSE [0.5] -0.17 (-0.32, -0.02) -1.12 (-1.4, -0.82) -0.95 (-1.4, -0.53) -1.3 (1.0)
MoCA [0.5] -0.16 (-0.34, 0.03) -1.3 (-1.6, -1.0) -1.1 (-1.6, -0.72) -0.5 (0.6)
Backward digit span [0.5] -0.08 (-0.26, 0.09) -0.47 (-0.81, -0.13) -0.38 (-0.87, 0.10) -0.3 (0.2)
Forward digit span [0.5] 0.10 (-0.07, 0.28) -0.53 (-0.87, -0.2) -0.63 (-1.1, -0.15) -0.3 (0.3)
Semantic fluency [0.5] -0.21 (-0.34, -0.08) -0.94 (-1.20, -0.72) -0.74 (-1.1, -0.41) -0.5 (0.4)
Trails B [0.5] 0.22 (0.08, 0.36) 0.67 ( 0.46, 0.89) 0.46 (0.13, 0.77) 0.0 (0.2)
WAIS [0.5] -0.24 (-0.40, -0.07) -0.58 (-0.87, -0.24) -0.34 (-0.79, 0.13) 0.0 (0.0)
Boston naming task [0.5] -0.07 (-0.23, 0.09) -1.0 (-1.3, -0.7) -0.94 (-1.4, -0.49) -1.7 (0.8)

Linear model (no breakpoint)
Slope (CI) ELPD diff (se)

MMSE -0.47 (-0.55, -0.39) -10.0 (5.3)
MoCA -0.60 (-0.69, -0.51) -12.4 (6.8)
Backward digit span -0.2 (-0.29, -0.12) -0.5 (1.6)
Forward digit span -0.1 (-0.18, -0.02) -2.6 (2.6)
Semantic fluency -0.46 (-0.52, -0.40) -9.6 (4.5)
Trails B 0.39 (0.36, 0.45) -2.7 (2.8)
WAIS -0.35 (-0.43, -0.26) -0.3 (1.4)
Boston naming task -0.37 (-0.45, -0.29) -9.6 (4.7)

Table 6. Demographics of the UKBB AD score positive and negative groups the

AD score n Age (sd) Male/female (%) Handedness right/left/ambi
Negative 33529 63.9 (7.5) 52.8/47.2 88.9/9.3/1.9
Positive 1304 64.9 (8.1) 51.5/48.5 88.6/9.7/1.8
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