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A B S T R A C T   

Stroke is the second largest cause of mortality in the world. Genome-wide association studies (GWAS) have 
identified some genetic variants associated with stroke risk, but their putative functional causal genes are un-
known. Hence, we aimed to identify putative functional causal gene biomarkers of stroke risk. We used a 
summary-based Mendelian randomisation (SMR) approach to identify the pleiotropic associations of genetically 
regulated traits (i.e., gene expression and DNA methylation) with stroke risk. Using SMR approach, we integrated 
cis-expression quantitative loci (cis-eQTLs) and cis-methylation quantitative loci (cis-mQTLs) data with GWAS 
summary statistics of stroke. We also utilised heterogeneity in dependent instruments (HEIDI) test to distinguish 
pleiotropy from linkage from the observed associations identified through SMR analysis. Our integrative SMR 
analyses and HEIDI test revealed 45 candidate biomarker genes (FDR < 0.05; PHEIDI > 0.01) that were pleio-
tropically or potentially causally associated with stroke risk. Of those candidate biomarker genes, 10 genes 
(HTRA1, PMF1, FBN2, C9orf84, COL4A1, BAG4, NEK6, SH2B3, SH3PXD2A, ACAD10) were differentially 
expressed in genome-wide blood transcriptomics data from stroke and healthy individuals (FDR < 0.05). 
Functional enrichment analysis of the identified candidate biomarker genes revealed gene ontologies and 
pathways involved in stroke, including “cell aging”, “metal ion binding” and “oxidative damage”. Based on the 
evidence of genetically regulated expression of genes through SMR and directly measured expression of genes in 
blood, our integrative analysis suggests ten genes as blood biomarkers of stroke risk. Furthermore, our study 
provides a better understanding of the influence of DNA methylation on the expression of genes linked to stroke 
risk.   

1. Introduction 

Stroke is the second largest cause of mortality in the world and one of 
the major causes of long-term disability [1]. It affects over 15 million 
individuals worldwide, kills over 5.7 million people, and leaves 5 
million people permanently disabled [2]. Stroke is a neurological con-
dition characterised by obstruction of blood circulation in the affected 
regions of the brain, depriving brain tissues of receiving oxygen and 
nutrients, which results in the death of brain cells and damage to the 
central nervous system via cerebral infarction, intracerebral haemor-
rhage or subarachnoid haemorrhage [3]. Stroke is a heterogeneous 
disease with multiple subtypes, each with its own aetiology and risk 
factors [1]. The pathophysiological processes of stroke are very com-
plex, involving numerous molecular events, including energy produc-
tion failure, excitotoxicity, free-radical mediated toxicity, disruption of 

blood–brain barriers and immune system dysfunction, which lead to the 
death of neuronal cells in the brain [4]. The biomarkers for stroke risk 
assessment of individuals are currently unavailable, warranting the 
identification of potential biomarkers for stroke risk, which may 
enhance the stroke risk assessment and develop novel therapeutics. 

Past genome-wide association studies (GWAS) have identified 
several risk loci associated with stroke, including rs2304556 (located in 
FMNL2) and rs1986743 (located in ARL6IP6) [5–10]. The latest GWAS 
meta-analysis of stroke has revealed 89 risk loci associated with stroke 
[11]. In addition, following GWAS meta-analysis, post-GWAS gene- 
based association analyses, including MAGMA [12], transcriptome-wide 
association analysis (TWAS) [13], identified putative genes (e.g., 
SH3PXD2A, FURIN) associated with stroke and stroke subtypes [11]. 
However, the detection of putative causal genes is very challenging due 
to complex linkage disequilibrium [14] and the occurrence of the 
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majority of genetic variants associated with complex traits in non- 
coding regions, which are presumed to affect disease phenotype 
through gene expression regulation having no direct effect on protein 
structure or function [15]. Past reports have highlighted that trait-linked 
genetic variants are more enriched to expression quantitative trait loci 
(eQTLs) or DNA methylation quantitative loci (mQTLs), suggesting ge-
netic variant-trait association could act through gene expression regu-
lation [16–19]. 

Several analytical approaches have proposed to integrate the 
expression quantitative trait loci (eQTLs) data with GWAS, such as 
transcriptome-wide association study (TWAS) framework and colocali-
zation analysis [20,21], but inferring putative causal variants remains 
difficult. TWAS framework integrates eQTLs data with GWAS to reveal 
associations between genes and traits [13]. TWAS studies determine the 
association of genetically predicted gene expression levels of genes with 
complex traits; the TWAS framework is unable to provide the effect of 
causal strength of the variants and horizontal pleiotropy [22]. Colocal-
isation is also an integrative gene-prioritisation method that integrates 
eQTLs data with GWAS signals to identify the co-occurrence of variants 
between pairs of traits [23]. The detected genetic variations (SNPs) are 
more likely to be functional when GWAS signals colocalise with the 
eQTL signal [24]. The colocalisation method, however, is not suggested 
to identify causal associations between pairs of traits. 

Summary based Mendelian randomisation (SMR) approach in-
tegrates GWAS, expression quantitative trait loci (eQTL), and DNA 
methylation quantitative trait loci (mQTL) datasets to predict the 
functional genes which are either pleiotropically (i.e., single genetic 
variant affecting gene expression and disease phenotype) or potential 
causally (i.e., single variant affecting gene expression) associated with 
complex disease [25]. SMR has been used to identify functional genes for 
many complex diseases and traits, demonstrating SMR as a promising 
tool for discovering candidate genes linked to complex disorders 
[25–30]. 

Multi-omics analyses are well-established to discover functional 
genes, drug targets, and biomarkers in various complex diseases, 
including neurological disorders [22,31–34], cancers [35–39], and 
cardiovascular disease [40]. Multi-omics data integration provides an 
innovative avenue to bring multi-layer biological information to sys-
tematically identify novel insights into the complex pathobiology of 
diseases [41,42]. However, even with the crucial findings from past 
GWAS studies, the functional implications and biomarker potentials of 
the causal genes and loci in stroke risk are largely unknown. Therefore, 
an approach to systematically integrate post-GWAS analysis with gene 
expression regulation is desirable for discovering potential biomarkers 
for stroke risk that may be useful for risk assessment and monitoring. 
Our bioinformatics approach, which integrates the largest multi-stage 
multi-omics data integration for stroke, including eQTLs, mQTLs, 
GWAS, genome-wide gene expression profiling, and functional enrich-
ment analysis, is substantially different than other studies. 

Herein, our bioinformatics approach combines SMR method with 
multi-omics systems biology approaches to identify potential bio-
markers, pathways, and therapeutic targets for stroke. We performed an 
integrative systems biology analysis by combining GWAS summary data 
for stroke and stroke subtypes with blood cis-eQTL and cis-mQTL data to 
identify pleiotropic or potential causal genes associated with stroke risk. 
We have identified putative functional genes and DNA methylation sites 
associated with stroke risk. Of those candidate functional genes, ten 
genes were differentially expressed in stroke versus controls, suggesting 
potential biomarkers of stroke risk assessment. Functional enrichment 
analysis suggests gene ontologies and pathways involved in stroke, 
which enhances our understanding of additional biological routes of 
stroke. 

2. Materials and methods 

2.1. Study design 

Fig. 1 illustrates the overall analytical approach of this study. To 
identify pleiotropic or potential causal genes and DNA methylation sites 
associated with stroke risk, we performed network-based integrative 
SMR analysis by integrating GWAS summary statistics of stroke from the 
MEGASTROKE consortium (https://megastroke.org/) with cis-methyl-
ation quantitative trait loci (cis-mQTLs) and cis-expression quantitative 
trait loci (cis-eQTLs) data. Our study included three distinct SMR tests. 
Firstly, we utilised cis-mQTL data as instrumental variables (IVs), DNA 
methylation as the exposure, and stroke risk as the outcome to identify 
the potential pleiotropic or causal association between DNA methylation 
and stroke risk. Secondly, we used cis-eQTL data as the instrumental 
variables (IVs), gene expression as the exposure, and stroke as the 
outcome to determine the potential pleiotropic or causal association of 
gene expression with stroke risk. Thirdly, we used two molecular traits 
SMR to assess the putative pleiotropic association between DNA 
methylation and gene expression, where cis-mQTL acted as the instru-
mental variables (IV), DNA methylation (mQTL) as exposure, and gene 
expression (eQTL) as the outcome. Fig. 2. represents the potential 
pathways linking genetic variants to stroke risk. 

2.2. Data description 

Table 1 provides the summary of all the datasets used in this analysis. 

2.2.1. Expression quantitative trait loci data 
We used the largest whole blood expression quantitative trait loci 

(eQTL) dataset from the eQTLGen consortium, which includes cis-eQTLs 
data for 19,250 genes expressed in whole blood obtained from 31,684 
individuals. The eQTLs data (i.e., SNP-gene pair) were available for ≥ 2 
cohorts where the SNP-gene distance of ≤ 1 MB was tested as described 
previously [43,44]. In addition to this blood eQTL data, we also used 
another blood eQTL data from the CAGE consortium, which had a total 
of 2765 participants [45]. The eQTL CAGE dataset used in this study 
served as the replication of findings obtained from the eQTLGen dataset. 
The eQTLGen and CAGE eQTL datasets were downloaded on 14 April 
2022. The eQTL datasets used in this study are publicly available in the 
SMR software data resource section (https://yanglab.westlake.edu. 
cn/software/smr/#eQTLsummarydata). 

2.2.2. DNA methylation quantitative trait loci data 
DNA methylation quantitative loci (mQTL) are genetic variants that 

affect DNA methylation levels of a particular transcript. We obtained 
mQTL summary data of blood from a meta-analysis by McRae et al of the 
Brisbane Systems Genetics Study cohorts with 614 individuals [46] and 
Lothian Birth Cohort with 1366 individuals [47,48]. The mQTL data were 
limited to DNA methylation probes with ≥ 1 cis-mQTL with at least a cis- 
mQTL at P < 5e-8 and only SNPs within 2 Mb distance from each probe 
were available. The mQTL data was downloaded on 14 April 2022 from 
https://yanglab.westlake.edu.cn/software/smr/#mQTLsummarydata. 

2.2.3. Stroke GWAS summary statistics data 
We downloaded GWAS summary statistics for stroke and stroke 

subtypes from a meta-analysis of GWAS data by Malik et al. [49] released 
by the MEGASTROKE consortium (https://megastroke.org/). The de-
tails of the study have been described previously[49]. Briefly, a fixed- 
effects meta-analysis was done for GWAS from only European partici-
pants consisting of 40,585 cases and 406,111 controls. Then, a fixed- 
effects trans-ethnic meta-analysis was done including all samples 
(67,162 S cases and 454,450 controls) which consisted of participants of 
European (40,585 cases; 406,111 controls), East Asian (17,369 cases; 
28,195 controls), African (5,541 cases; 15,154 controls), South Asian 
(2,437 cases; 6,707 controls), mixed Asian (365 cases; 333 controls), and 
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Latin American (865 cases; 692 controls) ancestry [49]. The results of 
any stroke, as well as the subtypes of stroke, were reported in distinct 
files which consist of any stroke (AS) cases (67,162), any ischemic stroke 
(AIS) cases (60,341), and large artery stroke (LAS) cases (6,688), 

cardioembolic stroke (CES) cases (9,006), and small vessel stroke (SVS) 
cases (11,710). The datasets were downloaded on 14 April 2022. 

2.3. Summary-based Mendelian randomisation and heterogeneity in 
dependent instruments analysis 

We used the SMR method described by Zhu et al. [25] and details of 
the methods described in the original publication by Zhu and co-workers 
[25]. Briefly, SMR is a data-driven approach used to determine the as-
sociations between genetically regulated traits- gene expression or DNA 
methylation and outcomes of interest- disease phenotypes using genetic 
variants such as single nucleotide polymorphisms (SNPs) as instru-
mental variables (IV) [25]. In principle, SMR uses the SNPs association 
statistics linked to disease phenotype (outcome) regressed on SNPs as-
sociation statistics linked to gene expression (exposure) to estimate the 
effect of an increase in gene expression of a particular transcript on the 
disease phenotype. So, let y be the outcome (e.g., disease phenotype), x 
be the exposure (i.e., gene expression or DNA methylation), and z be the 

Fig. 1. The present study employed a multi-stage analysis methodology. The integrative summary based Mendelian randomisation (SMR) analysis of GWAS summary 
data of stroke with blood cis-expression quantitative trait loci (cis-eQTLs)/cis-methylation quantitative trait loci (cis-mQTL) data was performed to identify potential 
causal or pleiotropic gene biomarkers of stroke. Functional enrichment analysis of genes was performed to identify significant gene ontologies and molecular 
pathways. Differential expression analysis was done on transcriptomic gene expression data of stroke versus healthy individuals. Several SMR-identified genes were 
differentially expressed in the blood of stroke patients. 

Fig. 2. A schematic illustration showing the 
pleiotropic or causal associations between 
genetic variants and stroke risk. Firstly, ge-
netic variants can influence stroke risk 
mediated by DNA methylation. Secondly, 
genetic variants can influence stroke risk 
mediated by gene expression. Thirdly, ge-
netic variants can influence stroke risk 
mediated through genetic regulation of gene 
expression by DNA methylation. The DNA 
methylation quantitative loci (mQTL) and 
expression quantitative loci (eQTL) show 
genetic variants linked to DNA methylation 
and gene expression, respectively. The figure 
was created with BioRender.com.   

Table 1 
Basic information on the eQTL, mQTL, and stroke GWAS data.  

Data source Total participants or 
cases/controls 

Number of genetic 
variants or probes 

Blood-eQTL(Gen) 31,684 19,250 
Blood-eQTL(CAGE) 2,765 36,754 
Blood-mQTL 1,980 52,916 
Stroke GWAS data 

(Europeans) 
40,585 cases; 406,111 
controls 

– 

Stroke GWAS data 
(trans-ethnic) 

67,162 cases; 454,450 
controls 

– 

GWAS: Genome-wide association studies; eQTL: Expression quantitative trait 
locus; mQTL: Methylation quantitative trait locus. 
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instrumental variable (i.e., SNPs). SMR determines the effect of gene 
expression or DNA methylation (exposure) on disease phenotype 
(outcome) as the ratio of the calculated effect of instrumental variables 
(SNPs) on disease phenotype (bzy) and calculated effect of instrumental 
variable (SNPs) on gene expression (bzx), which can be expressed as (bxy 
= bzy/bzx) with no non-genetic confounders [25]. SMR predicts the 
putative functional genes either pleiotropically (i.e., single genetic 
variant has effect on both gene expression and disease phenotype), po-
tential causally (i.e., single variant has direct effect on disease pheno-
type mediated by gene expression) or linkage (two shared genetic 
variants where one variant has effect on gene expression and another 
variant has effect on disease phenotypes) [50]. As stated above, an 
observed association in SMR test could be due to two separate under-
lying causal variants due to linkage disequilibrium (LD) where one 
variant has effect on gene expression and another variant has effect on 
phenotype. This scenario is called linkage. To identify an actual un-
derlying single causal/pleiotropic genetic variant/SNPs from linkage in 
SMR analysis, we applied a heterogeneity in dependent instruments 
(HEIDI) test to distinguish the linkage from pleiotropy in the observed 
association [25]. It was implemented against the null hypothesis that 
there is a single causal variant deriving the association between expo-
sure (i.e., gene expression/DNA methylation) and outcome (disease 
phenotype). We excluded the SMR association results when HEIDI test 
determined the significant heterogeneity of top cis-eQTLs in LD with two 
distinct causal variant (PHEIDI < 0.01), suggesting the presence of linkage 
in the observed associations in SMR analysis [25,51]. Therefore, we used 
PHEIDI > 0.01 as a cut-off to exclude linkage from pleiotropy [51]. The 
pleiotropic and causal genes are of biological interest for functional 
characterisation in follow-up studies to develop mechanistic insights of 
genes in stroke pathogenesis. We did three SMR analyses including (1) 
SMR analysis with cis-eQTL and stroke GWAS to identify association of 
gene expression change of each gene and stroke risk; (2) SMR analysis 
with cis-mQTL and stroke GWAS to identify association of change of 
DNA methylation levels and stroke risk; (3) two molecular traits SMR 
analysis using cis-mQTL (exposure) and cis-eQTL (outcome) to identify 
association of change of DNA methylation level with gene expression. 
Therefore, our SMR analyses yielded pleiotropic associations between 
DNA methylation, gene expression, and stroke risk. We used the default 
parameters in SMR analysis (e.g., minor allele frequency [MAF] > 0.01, 
PeQTL < 5 × 10− 8, eliminating SNPs having low LD or not in LD [r2 <
0.05] and high linkage disequilibrium [LD, r2 > 0.9] with the top 
associated eQTL. We adjusted the raw p-value yielded in SMR analyses 
with Benjamini-Hochberg [52] method implemented in the R environ-
ment to control the false discovery rate (FDR) for multiple testing error. 
We employed the SMR method in command line Linux environment (htt 
ps://cnsgenomics.com/software/smr/). To note, we annotated the CpG 
sites with the closest genes using Illumina HumanMethylation450 
BeadChip (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc =

GPL13534). 

2.4. mRNA expression levels of SMR-identified genes leveraging blood 
transcriptomics of stroke cases versus healthy individuals 

We have obtained a microarray gene expression dataset (accession 
no: GSE58294) containing human peripheral whole blood gene 
expression of cardioembolic stroke and healthy controls from the NCBI 
gene expression omnibus (NCBI-GEO) database [53].GSE58294 was 
deposited in NCBI-GEO by Stamova et al. [54] [PMID: 25036109]. 
GSE58294 dataset contained 23 healthy controls and 23 cardioembolic 
stroke patients using Affymetrix U133 Plus 2.0 microarray technology 
[54]. The blood samples were taken at three time points following stroke 
(n = 23), at 3 h, 5 h, and 24 h. The first blood was drawn before 
treatment (≤3 h) and consecutive blood samples were drawn following 
treatment with 5 h and 24 h of post-onset of stroke. Herein, we analysed 
differential gene expression patterns at all three time points. We used 
GEO2R online software integrated in NCBI-GEO database to identify 

differential expression of genes in stroke cases versus healthy in-
dividuals. The differentially expressed genes which passed adjusted p- 
value < 0.05 and absolute log fold change > 0.5 as statistically 
significant. 

2.5. Functional enrichment analysis of the SMR identified genes 

We performed gene set enrichment and pathway analysis using 
bioinformatics tools called ConsensusPath DB [55], accessed on 5 July 
2022, to identify significant gene ontology (GO), including biological 
processes, molecular functions, and potential pathways associated with 
stroke. ConcensusPathDB is the largest database for pathways, including 
Wikipathways, Reactome, BioCarta, and the KEGG pathway. The p-value 
obtained from the hypergeometric test was adjusted for the correction of 
multiple testing errors in the enrichment analysis. GO terms and path-
ways that passed the adjusted p-value < 0.05 were considered 
significant. 

3. Results 

3.1. Expression of pleiotropic genes is modulated by stroke risk loci in 
Europeans 

To test the association of genetically determined gene expression and 
stroke risk in the European population, we used summary based Men-
delian randomisation (SMR) analysis, which integrated stroke GWAS 
summary statistics data with the largest blood eQTL summary data from 
eQTLGen consortium data (eQTLGen hereafter) and another blood eQTL 
data from CAGE consortium (CAGE eQTL hereafter), to identify pleio-
tropic or potentially causal genes associated with stroke. SMR and het-
erogeneity in dependent instruments (HEIDI) tests demonstrated 
pleiotropic association of 8 genes with stroke (any stroke; AS), 7 genes 
with ischemic stroke (any ischemic stroke; AIS), one gene for small 
vessel stroke (SVS) (Table 2), which passed the SMR (FDR < 0.05) and 
HEIDI test (PHEIDI > 0.01). Notably, we have also obtained three genes 
(PMF1, RERE, and OBFC1) in SMR analysis with CAGE eQTL, where 
PMF1 and RERE were found in SMR analysis using eQTLGen (Table 2). 
The low number of genes were identified in CAGE eQTL due to relatively 
smaller size data than eQTLGen. 

3.2. Expression of SMR identified pleiotropic genes is modulated by stroke 
risk loci in trans-ancestral participants 

We used SMR to identify potential genetically determined blood gene 
expression associated with stroke in trans-ethnic populations and iden-
tified several genes with significant pleiotropic or potential causal links 
with stroke after multiple testing corrections (FDR < 0.05) and the 
HEIDI test (PHEIDI > 0.01). Specifically, we found that the expression of 9 
genes was pleiotropic or causal for stroke (AS), 5 genes with AIS, and 5 
genes with SVS (Table 3). Next, in SMR analysis with CAGE eQTL 
datasets, we found two genes (2 mRNA probes) associated with the 
stroke while two genes showed potential pleiotropic/potential causal 
association with AIS. Notably, rs2758600 and rs887953 SNP tagging 
genes PMF1 showed significant association with stroke in both SMR 
analyses using eQTLGen and CAGE eQTLs (Table 3). 

3.3. Genetically determined expression of common genes overlaps 
between Europeans and transethnic ancestry 

We compared the SMR-identified genes in European and transethnic 
ancestries to find overlap genes. In SMR with eQTLGen, 4 genes (PMF1, 
SH3PXD2A, TSPOAP1, and PHETA1) associated with any stroke were 
overlapped between European and trans-ethnic populations. In addition, 
and 2 genes (PMF1, PHETA1) associated with ischemic stroke were 
overlapped between European and trans-ethnic populations. In SMR 
with CAGE eQTL, we found PMF1 overlapped in both European and 
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trans-ethnic ancestry (Supplementary Table 1). 

3.4. Methylation at CpG sites is modulated by stroke risk loci in European 
population 

To identify CpG methylation sites associated with stroke in European 
populations, we performed SMR analysis of GWAS summary data for 
stroke and blood cis-DNA methylation quantitative trait loci (cis-mQTL) 
data using McRae et al. mQTL summary data [48]. We interrogated the 
relationship between DNA methylation (i.e., CpG probes) and five 
different types of strokes. Our analysis identified pleiotropic or potential 
associations of 22 CpGs with any stroke (AS), 8 CpGs with any ischemic 
stroke (AIS), and 1 CpG with cardioembolic stroke (CES) (FDR < 0.05 
and PHEIDI > 0.01) (Supplementary Table 2). We did not find any sig-
nificant associations of CpGs with large artery stroke (LAS) and small 
vessel stroke (SVS) after correction of multiple testing and HEIDI test. 

3.5. Methylation at CpG sites is modulated by stroke risk loci in trans- 
ethnic participants 

To identify CpG methylation sites associated with stroke in trans- 
ethnic populations, we conducted SMR analysis of trans-ethnic GWAS 
summary data of stroke with blood cis-mQTL data as mentioned above. 

We assessed the association between CpG probes with five types of 
stroke. We detected 47 CpG methylation sites that showed pleiotropic or 
potential causal association with AS (Supplementary Table 3). In addi-
tion, we found that 41CpG methylation sites and 4 CpG methylation sites 
had significant associations with AIS and CES, respectively, after 
correction for multiple testing and HEIDI test (FDR < 0.05 and PHEIDI >

0.01). We did not find any significant CpG sites in LAS and SVS after the 
correction of multiple tests and HEIDI test (Supplementary Table 3). 

3.6. Multi-omics SMR to prioritise genes mediated by DNA methylation 
regulating gene expression in stroke 

To identify potential associations between DNA methylation and 
gene expression, we performed two molecular traits SMR analyses by 
integrating cis-mQTL data with cis-eQTL data. We identified 46,698 
associations between 59,975 CpGs and 13,171 mRNA probes after 
multiple testing corrections (FDR < 0.05) and the HEIDI test (PHEIDI >

0.01) (Supplementary Table 4). To determine the association between 
DNA methylation sites that regulate gene expression, we performed an 
overlapping analysis of CpG methylation sites identified from SMR 
analysis of mQTL and stroke with the CpG methylation sites identified 
from SMR analysis of mQTL and eQTL. We found 16 DNA methylated 
probes regulating the expression of 8 genes (CAZ1, ACAD10, SLC44A2, 

Table 2 
Pleiotropic association between gene expression and stroke risk using blood cis-eQTLs and GWAS of Europeans.  

eQTL 
data 

Type of 
stroke 

probeID Gene topSNP CHR p_GWAS p_eQTL b_SMR se_SMR p_SMR p_HEIDI p_SMR_ 
adj 

eQTLGen AS ENSG00000160783 PMF1 rs2758600 1 2.50E- 
11 

1.32E- 
38 

5.39E-01 9.11E- 
02 

3.23E- 
09 

2.51E- 
01 

5.07E-05 

ENSG00000142599 RERE rs301802 1 1.08E- 
05 

0 9.31E-02 2.12E- 
02 

1.18E- 
05 

6.23E- 
01 

3.09E-02 

ENSG00000175164 ABO rs550057 9 1.54E- 
05 

0 − 7.36E- 
02 

1.71E- 
02 

1.72E- 
05 

1.33E- 
01 

3.67E-02 

ENSG00000107957 SH3PXD2A rs10786772 10 5.70E- 
07 

1.11E- 
186 

2.03E-01 4.12E- 
02 

8.74E- 
07 

3.27E- 
01 

6.85E-03 

ENSG00000198324 PHETA1 rs11065884 12 1.55E- 
06 

9.12E- 
60 

− 3.48E- 
01 

7.52E- 
02 

3.83E- 
06 

4.20E- 
01 

1.50E-02 

ENSG00000005379 TSPOAP1 rs12948345 17 2.92E- 
07 

1.14E- 
39 

4.27E-01 8.94E- 
02 

1.83E- 
06 

1.76E- 
01 

9.56E-03 

ENSG00000108375 RNF43 rs12948345 17 2.92E- 
07 

6.08E- 
18 

6.53E-01 1.48E- 
01 

1.07E- 
05 

2.66E- 
02 

3.09E-02 

ENSG00000005381 MPO rs12940119 17 1.72E- 
05 

1.27E- 
295 

1.30E-01 3.03E- 
02 

1.87E- 
05 

9.07E- 
02 

3.67E-02 

AIS ENSG00000160783 PMF1 rs2758600 1 4.34E- 
08 

1.32E- 
38 

4.80E-01 9.52E- 
02 

4.68E- 
07 

4.69E- 
01 

3.67E-03 

ENSG00000198324 PHETA1 rs11065884 12 2.79E- 
07 

9.12E- 
60 

− 4.05E- 
01 

8.25E- 
02 

9.41E- 
07 

4.37E- 
01 

4.92E-03 

ENSG00000111252 SH2B3 rs587914 12 2.96E- 
06 

5.82E- 
126 

2.53E-01 5.51E- 
02 

4.48E- 
06 

3.51E- 
02 

1.76E-02 

ENSG00000198270 TMEM116 rs4767068 12 9.09E- 
06 

0 − 1.20E- 
01 

2.72E- 
02 

1.06E- 
05 

1.60E- 
01 

2.77E-02 

ENSG00000111271 ACAD10 rs10774634 12 2.50E- 
06 

1.05E- 
23 

− 5.87E- 
01 

1.38E- 
01 

2.11E- 
05 

4.45E- 
02 

3.69E-02 

ENSG00000182511 FPS rs8027450 15 3.25E- 
05 

0 − 1.17E- 
01 

2.83E- 
02 

3.34E- 
05 

1.80E- 
01 

4.98E-02 

ENSG00000005379 TSPOAP1 rs12948345 17 1.28E- 
05 

1.14E- 
39 

3.94E-01 9.52E- 
02 

3.49E- 
05 

2.10E- 
01 

4.98E-02 

SVS ENSG00000043591 ADRB1 rs4917675 10 1.82E- 
06 

4.82E- 
137 

5.00E-01 1.07E- 
01 

2.70E- 
06 

1.97E- 
02 

4.24E-02 

CAGE 
eQTL 

AS ILMN_1756445 PMF1 rs887953 1 2.26E- 
11 

5.02E- 
10 

3.71E-01 8.15E- 
02 

5.18E- 
06 

2.68E- 
01 

2.21E-02 

ILMN_1802380 RERE rs301802 1 1.08E- 
05 

8.58E- 
116 

6.43E-02 1.49E- 
02 

1.60E- 
05 

4.59E- 
01 

3.26E-02 

ILMN_2327795 RERE rs301802 1 1.08E- 
05 

8.50E- 
77 

7.95E-02 1.86E- 
02 

1.91E- 
05 

1.26E- 
01 

3.26E-02 

ILMN_1789186 OBFC1 rs6584579 10 1.34E- 
07 

8.29E- 
24 

1.78E-01 3.81E- 
02 

3.19E- 
06 

3.48E- 
01 

2.21E-02 

eQTL: Expression quantitative trait loci; SNP: Single nucleotide polymorphism; CHR: Chromosome; p_GWAS: Genome wide association study P-value; p_mQTL: DNA 
methylation quantitative trait loci P-value; p_eQTL: Expression quantitative trait loci P-value; P_SMR: P-value Summary based Mendelian randomisation;P_HEIDI: 
Heterogeneity in dependent instruments P-value; LogFC: Log fold change; DEG: Differentially expressed genes; p_SMR_adj: Adjusted P-value from summary based 
Mendelian randomisation. The genes overlapped between European and trans-ancestral participants were bolded. 
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SH3PXD2A, PMF1, SUPT4H1, ABO, SLC25A44) in any stroke (AS), and 5 
DNA methylated probes regulating the expression of 4 genes (ACAD10, 
SLC44A2, PMF1, SLC25A44) in any ischemic stroke (AIS) in Europeans 
(SNP → DNA methylation → Gene expression → Stroke) (Supplementary 
Table 5). 

Next, we also determined the association of DNA methylation regu-
lating gene expression in trans-ethnic ancestry. Similarly, we performed 
the overlap analysis of CpG methylated sites identified from SMR 
analysis of mQTL and stroke with the CpG methylated sites identified 
from SMR analysis of mQTL and eQTL. We identified 34 DNA methyl-
ated probes regulating the expression of 16 genes (CAZ1, SLC38A3, 
SLC44A2, ILF3, ACAD10, CDKN1A, SH3PXD2A, PMF1, QTRT1, 
SUPT4H1, HTRA1, SLC25A44, KCNJ11, C9orf84, FBN2, TTBK1) in AS 
and 27 DNA methylated probe regulating the expression of 12 genes 
(CAZ1, SLC44A2, ILF3, ACAD10, DUS3L, SH3PXD2A, PMF1, QTRT1, 
SCARF1, SLC25A44, KCNJ11, FAM109A) in AIS in trans-ethnic ancestry 
(SNP → DNA methylation → Gene expression → Stroke) (Supplementary 
Table 6). 

3.7. Prioritisation of genes associated with stroke risk 

Using blood-eQTL and GWAS summary data of stroke, we performed 
SMR analysis to identify potential pleiotropic or causal associations 
between gene expression and stroke. Our study found 14 unique gene 
from Europeans (Table 2) and 15 unique genes from trans-ethnic 
ancestry (Table 3). Similarly, using blood-mQTL and GWAS summary 
data of stoke, we also performed SMR analysis to identify pleiotropic or 
causal association between DNA methylation and stroke. We found total 
23 unique CpGs that code for 11 unique genes in European ancestry 
(Supplementary Table 2) and 58 unique CpGs that code for 24 unique 
genes in trans-ethnic ancestry (Supplementary Table 3). Considering 
both gene expression (SMR analysis with eQTL and stroke) and DNA 
methylation (SMR analysis with mQTL and stroke), we found total 45 
unique genes that were pleiotropically or causally associated with stroke 
risk (Table 4 and Table 5). 

Table 3 
Pleiotropic association between gene expression and stroke risk using blood cis-eQTLs and GWAS of transethnic populations.  

eQTL 
data 

Type of 
stroke 

probeID Gene topSNP CHR p_GWAS p_eQTL b_SMR se_SMR p_SMR p_HEIDI p_SMR_adj 

eQTLGen AS ENSG00000160783 PMF1 rs2758600 1 9.62E- 
12 

1.32E- 
38  

0.489799  0.081165 1.59E- 
09  

0.389283 1.24E-05   

ENSG00000146215 CRIP3 rs2242416 6 1.25E- 
06 

6.77E- 
107  

0.222992  0.047372 2.51E- 
06  

0.510285 1.31E-02   

ENSG00000112658 SRF rs4398731 6 1.72E- 
08 

2.05E- 
10  

− 0.84693  0.200524 2.40E- 
05  

0.159261 4.00E-02   

ENSG00000119408 NEK6 rs72759285 9 3.34E- 
05 

0  − 0.06601  0.015854 3.13E- 
05  

0.367791 4.00E-02   

ENSG00000107957 SH3PXD2A rs10786772 10 7.10E- 
10 

1.11E- 
186  

0.214956  0.035552 1.48E- 
09  

0.345716 1.24E-05   

ENSG00000107960 STN1 rs11191865 10 1.16E- 
05 

9.82E- 
70  

0.165804  0.038857 1.98E- 
05  

0.052539 4.00E-02   

ENSG00000187486 KCNJ11 rs2074310 11 8.78E- 
06 

4.37E- 
38  

0.239204  0.057165 2.86E- 
05  

0.951468 4.00E-02   

ENSG00000198324 PHETA1 rs11065884 12 1.34E- 
05 

9.12E- 
60  

− 0.26632  0.063152 2.48E- 
05  

0.138374 4.00E-02   

ENSG00000005379 TSPOAP1 rs12948345 17 8.46E- 
07 

1.14E- 
39  

0.399789  0.086708 4.01E- 
06  

0.031304 1.57E-02  

AIS ENSG00000160783 PMF1 rs2758600 1 9.29E- 
09 

1.32E- 
38  

0.438813  0.083221 1.34E- 
07  

0.600982 2.10E-03   

ENSG00000107957 SH3PXD2A rs10786772 10 3.27E- 
07 

1.11E- 
186  

0.188558  0.037437 4.74E- 
07  

0.396084 3.70E-03   

ENSG00000187486 KCNJ11 rs2074310 11 9.40E- 
06 

4.37E- 
38  

0.249383  0.059227 2.55E- 
05  

0.931033 3.98E-02   

ENSG00000198324 PHETA1 rs11065884 12 5.82E- 
06 

9.12E- 
60  

− 0.29452  0.067404 1.25E- 
05  

0.080327 2.78E-02  

SVS ENSG00000156735 BAG4 rs11779986 8 5.12E- 
06 

1.24E- 
177  

− 0.27591  0.061264 6.68E- 
06  

0.053734 3.24E-02   

ENSG00000147548 NSD3 rs2234555 8 7.51E- 
06 

3.51E- 
84  

− 0.44622  0.102186 1.26E- 
05  

0.929188 3.24E-02   

ENSG00000107957 SH3PXD2A rs10786772 10 8.01E- 
06 

1.11E- 
186  

0.327253  0.074183 1.03E- 
05  

0.421115 3.24E-02   

ENSG00000120798 NR2C1 rs35583 12 1.59E- 
06 

3.21E- 
82  

0.550962  0.118234 3.16E- 
06  

0.424414 3.24E-02   

ENSG00000180263 FGD6 rs10128863 12 5.47E- 
06 

3.27E- 
209  

− 0.22033  0.049042 7.03E- 
06  

0.060097 3.24E-02 

CAGE 
eQTL 

AS ILMN_1785175 SWAP70 rs173396 11 9.51E- 
07 

1.84E- 
69  

− 0.08469  0.01796 2.41E- 
06  

0.155065 2.05E-02   

ILMN_1756445 PMF1 rs887953 1 1.45E- 
11 

5.02E- 
10  

0.32905  0.071773 4.55E- 
06  

0.224843 9.69E-03  

AIS ILMN_1785175 SWAP70 rs173396 11 6.38E- 
06 

1.84E- 
69  

− 0.07309  0.016807 1.37E- 
05  

0.395793 2.34E-02   

ILMN_1792305 ZNF318 rs1563788 6 4.68E- 
06 

3.75E- 
52  

− 0.0909  0.020637 1.06E- 
05  

0.032915 4.51E-02 

eQTL: Expression quantitative trait loci; SNP: Single nucleotide polymorphism; CHR: Chromosome; p_GWAS: Genome wide association study P-value; p_mQTL: DNA 
methylation quantitative trait loci P-value; p_eQTL: Expression quantitative trait loci P-value; P_SMR: P-value from summary based Mendelian randomisation; P_HEIDI: 
Heterogeneity in dependent instruments P-value; LogFC: Log fold change; DEG: Differentially expressed genes; p_SMR_adj: Adjusted P-value from summary based 
Mendelian randomisation. The genes overlapped between European and trans-ancestral participants were bolded. 
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3.8. mRNA expression of SMR prioritised gene in the blood of stoke cases 
versus controls 

We directly examined the expression of SMR identified genes in 
genome-wide blood transcriptomics, leveraging GSE58294 data of 
stroke versus controls. we identified ten genes (HTRA1, PMF1, FBN2, 

C9orf84, COL4A1, BAG4, NEK6, SH2B3, SH3PXD2A, ACAD10) were 
differentially expressed between healthy versus stroke individuals at 
(≤3 h) time point. Of those genes, seven genes (HTRA1, PMF1, FBN2, 
C9orf84, COL4A1, BAG4, NEK6,) were up regulated and SH2B3, 
SH3PXD2A, and ACAD10 were downregulated in stroke versus controls 
(FDR < 0.05; absolute log fold change > 0.50) (Table 6) and Fig. 3. 
Considering gene expression at 5 h time point, we found nine genes 
(HTRA1, PMF1, FBN2, C9orf84, BAG4, SUPT4H1, RERE, SH3PXD2A, 
ACAD10) were differentially expressed in stroke where seven genes 
(HTRA1, PMF1, FBN2, C9orf84, BAG4, SUPT4H1, RERE) were up regu-
lated and two genes (SH3PXD2A, ACAD10) were down regulated 
(Table 6). To note, we found seven common genes were differentially 
expressed in stroke in two time-points (i.e., ≤ 3 h and 5 h, respectively). 
Similarly, we also considered gene expression in 24 h time point and 
found ten genes (HTRA1, PMF1, FBN2, C9orf84, COL4A1, BAG4, NEK6, 
RERE, SH3PXD2A, ACAD10) were differentially expressed in stroke 
where eight genes ((HTRA1, PMF1, FBN2, C9orf84, COL4A1, BAG4, 
NEK6, RERE) were up regulated and two genes (SH3PXD2A, ACAD10) 
were down regulated (Table 6). To note, of those ten genes identified at 
24 h time point, we found nine common genes were also differentially 
expressed in stroke at ≤ 3 h time point. 

Table 4 
Total unique genes prioritised using summary based Mendelian randomisation.  

Category European 
ancestry 
unique gene 

Trans-ethnic 
ancestry 
unique gene 

Total unique gene 
between European and 
trans-ethnic ancestry 

eQTL 
prioritised 
gene 

14 15 26 

mQTL 
prioritized 
gene 

11 24 25 

Total unique gene (eQTL + mQTL) between European 
and trans-ethnic ancestry 

45 

eQTL: Expression quantitative trait loci; mQTL: Methylation quantitative trait 
loci. 

Table 5 
Summary statistics of multi-omics prioritised genes associated with stroke risk.  

Gene topSNP CHR A1 A2 Freq b_GWAS p_GWAS p_SMR p_HEIDI p_SMR_adj 

PMF1 rs2758600 1 T C  0.343936  − 0.0574 4.34E-08 4.68E-07  0.469249  0.003672 
PHETA1 rs11065884 12 G A  0.224652  − 0.0617 2.79E-07 9.41E-07  0.437127  0.004919 
SH2B3 rs587914 12 C T  0.202783  − 0.0575 2.96E-06 4.48E-06  0.035064  0.017577 
TMEM116 rs4767068 12 G A  0.167992  − 0.0575 9.09E-06 1.06E-05  0.15958  0.02767 
ACAD10 rs10774634 12 G A  0.16998  − 0.0615 2.50E-06 2.11E-05  0.044532  0.036853 
FPS rs8027450 15 T C  0.323062  0.0454 3.25E-05 3.34E-05  0.179592  0.049774 
TSPOAP1 rs12948345 17 T C  0.213718  0.0558 1.28E-05 3.49E-05  0.210455  0.049774 
RERE rs301802 1 T A  0.471173  − 0.0413 1.08E-05 1.18E-05  0.623319  0.030876 
ABO rs550057 9 T C  0.282306  0.0484 1.54E-05 1.72E-05  0.133303  0.036698 
SH3PXD2A rs10786772 10 A G  0.309145  − 0.0484 5.70E-07 8.74E-07  0.3274  0.006852 
RNF43 rs12948345 17 T C  0.213718  0.0604 2.92E-07 1.07E-05  0.026604  0.030876 
MPO rs12940119 17 C T  0.172962  0.053 1.72E-05 1.87E-05  0.090682  0.036698 
ADRB1 rs4917675 10 C T  0.241551  0.1247 1.82E-06 2.70E-06  0.019732  0.042355 
OBFC1 rs6584579 10 G A  0.362823  − 0.0494 1.34E-07 3.19E-06  0.348092  0.022136 
CRIP3 rs2242416 6 A G  0.423459  0.04 1.25E-06 2.51E-06  0.510285  0.013072 
SRF rs4398731 6 A G  0.329026  0.0469 1.72E-08 2.40E-05  0.159261  0.039991 
NEK6 rs72759285 9 G A  0.187873  0.0413 3.34E-05 3.13E-05  0.367791  0.039991 
STN1 rs11191865 10 A G  0.537773  0.0343 1.16E-05 1.98E-05  0.052539  0.039991 
BAG4 rs11779986 8 G A  0.258449  0.0894 5.12E-06 6.68E-06  0.053734  0.03241 
NSD3 rs2234555 8 A C  0.242545  0.0838 7.51E-06 1.26E-05  0.929188  0.03241 
NR2C1 rs35583 12 G A  0.147117  0.1124 1.59E-06 3.16E-06  0.424414  0.03241 
FGD6 rs10128863 12 C T  0.148111  0.1049 5.47E-06 7.03E-06  0.060097  0.03241 
ZNF318 rs1563788 6 T C  0.333002  0.0405 4.68E-06 1.06E-05  0.032915  0.045126 
SWAP70 rs173396 11 G A  0.405567  − 0.0416 9.51E-07 2.41E-06  0.155065  0.020541 
SLC25A44 rs2842857 1 C T  0.351889  − 0.057 8.72E-08 1.71E-07  0.341619  0.005076 
CASZ1 rs880315 1 C T  0.356859  0.0518 9.99E-07 2.01E-06  0.789051  0.023493 
LRCH1 rs912426 13 C T  0.183897  − 0.0629 6.22E-07 1.01E-06  0.028712  0.015497 
HTRA1 rs3793917 10 G C  0.195825  − 0.0531 2.06E-06 3.80E-06  0.058166  0.019935 
SUPT4H1 rs2526375 17 G A  0.213718  0.0597 3.62E-07 9.37E-06  0.213157  0.039818 
SLC44A2 rs2060236 19 G C  0.399602  − 0.0465 1.54E-06 2.15E-06  0.631647  0.013684 
TMEM51 rs10927727 1 T C  0.161034  − 0.0491 6.47E-06 7.18E-06  0.357166  0.023023 
CDKN1A rs762624 6 C A  0.237575  − 0.0483 2.36E-07 8.60E-07  0.054201  0.006601 
ARMS2 rs11200630 10 C T  0.195825  − 0.0453 5.35E-06 1.87E-05  0.301292  0.044843 
KCNJ11 rs5219 11 T C  0.352883  0.0416 1.65E-05 2.29E-05  0.872022  0.049515 
FAM109A rs7398833 12 C T  0.246521  − 0.0431 1.78E-05 1.72E-05  0.030243  0.044531 
SCARF1 rs28749238 17 G A  0.069583  0.0808 6.25E-07 1.38E-05  0.13406  0.036701 
ILF3 rs4435370 19 G A  0.370775  − 0.0445 9.84E-07 1.90E-06  0.521175  0.009819 
DUS3L rs45459297 19 A G  0.019881  0.1283 3.13E-06 6.39E-06  0.033327  0.021201 
QTRT1 rs2229383 19 G T  0.400596  − 0.0476 4.72E-08 1.24E-05  0.085246  0.033934 
SLC38A3 rs4688745 3 C T  0.441352  0.0341 1.83E-05 2.56E-05  0.046776  0.044901 
FBN2 rs73350117 5 C A  0.171968  0.056 5.77E-07 1.09E-05  0.717204  0.025797 
TTBK1 rs6930689 6 C T  0.33002  0.0455 5.68E-08 8.58E-06  0.517744  0.022191 
C9orf84 rs823643 9 C A  0.439364  0.0378 6.58E-06 1.90E-05  0.017133  0.034724 
COL4A1 rs2131938 13 T C  0.354871  0.0386 1.85E-06 1.11E-05  0.287121  0.025797 
PITX2 rs2739206 4 G C  0.302187  0.1203 1.76E-10 1.81E-06  0.445129  0.028187 

SNP: Single nucleotide polymorphism; CHR: Chromosome; A1: Effect allele; A2: Other allele; Freq: Frequency of the effect allele; b_GWAS; effect size from GWAS; 
p_GWAS: Genome wide association study P-value; p_SMR: P-value from summary based Mendelian randomisation using eQTL/mQTL; p_HEIDI: P-value from Het-
erogeneity in dependent instruments test; p_SMR_adj: Adjusted P-value of summary based Mendelian randomisation. 
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3.9. Functional enrichment 

To better understand the potential biological roles of the identified 
candidate genes in this study, we performed functional enrichment 
analysis of SMR identified genes. Our functional enrichment analysis of 
the SMR prioritised genes revealed some significant gene ontology and 
pathways. They were enriched in some gene ontology terms such as 
“response to extracellular stimulus”, “cell aging”, “metal ion binding” 
(Fig. 4A and Supplementary Table 7) and pathways, particularly 
“oxidative damage”, “extracellular matrix organisation”, “transcrip-
tional regulation by the AP-2 (TFAP2) family of transcription factors”, 
“heart development”, and “coregulation of androgen receptor activity” 
(Fig. 4B and Supplementary Table 8). 

4. Discussion 

In this present study, we comprehensively integrated multi-omics 
data, particularly GWAS of stroke, eQTLs, and mQTLs using SMR to 
identify gene biomarkers of stroke risk. Our network SMR analyses 
aimed to identify the pleiotropic association of genetically regulated 
traits- DNA methylation and gene expression with the phenotype of 
interest. We identified a total of 45 pleiotropic or potential causal gene 
biomarkers associated with stroke risk. Of those 45 genes, 10 genes 
(HTRA1, PMF1, FBN2, C9orf84, COL4A1, BAG4, NEK6, SH2B3, 
SH3PXD2A, ACAD10) were differentially expressed in the blood of 
stroke patients versus controls, suggesting potential biomarkers of 
stroke risk. Despite many efforts to identify stroke risk loci, the putative 
functional gene biomarkers of stroke risk remain unknown. Past studies 
attempted to explore the risk genes associated with stroke, but the 
dearth of systems biological approaches undermined the potential to 
uncover functional risk biomarkers. Therefore, we conducted the largest 
study to date to systematically search for blood gene biomarkers for 
stroke risk and validate them in the blood transcriptomics of stroke 
patients compared to controls. Of those identified putative gene bio-
markers, PMF1, SH3PXD2A, SH2B3, COL4A1, and HTRA1 were previ-
ously known as stroke risk genes according to GWAS catalogues, while 
the causal associations of FBN2, ACAD10, C9orf84, BAG4, and NEK6 
were not previously known, suggesting novel gene biomarkers of stroke. 
The identified genes have been implicated in stroke pathogenesis. PMF1 
is associated with intracerebral haemorrhagic stroke [56,57]. PMF1 
encodes polyamine-modulated factor 1 that plays a significant role in 
chromosomal alignment and kinetochores formation during mitosis 
[57]. A previous study found genetic variants of the SH2B3 gene were 
significantly associated with the pathogenesis of ischemic stroke, large 
artery stroke, and coronary artery disease [58]. Past studies reported 

that mutations in COL4A1 gene were linked to a wide range of disorders, 
including haemorrhagic stroke, cerebral small vessel disease, myopathy, 
glaucoma, and among others [59,60]. Mutation in HTRA1 is responsible 
for cerebral autosomal recessive arteriopathy with subcortical infarcts 
and leukoencephalopathy (CARASIL) and cerebral small vessel disease 
[61]. CARASIL is a hereditary condition in which small blood vessels in 
the brain are damaged, resulting in stroke and other disabilities [62]. 
Moreover, the HTRA1 gene is also associated with lacunar stroke [63]. 
FBN2 gene encodes fibrillin-2 protein, which is involved in tissue elas-
ticity, providing connective tissues with the strength and flexibility to 
maintain joints and organs in the body [64]. FBN2 is strongly associated 
with age-related macular degeneration (AMD) [65], and AMD increases 
the risk of stroke by 2-fold more than patients without AMD [66]. 
SH3PXD2A (SH3 And PX Domains 2A) is a protein coding gene and was 
previously associated with ischemic stroke and lacunar stroke [63]. 
ACAD10 encodes a component of acyl-CoA dehydrogenase enzymes 
family, which participate beta-oxidation of fatty acids. The variant of 
ACAD10 gene was previously been found associated with ischemic 
stroke [67], coronary artery disease [68], type 2 diabetes, insulin 
resistance, and lipid oxidation [69]. The role of C9orf84 in stroke risk is 
still unknown. BAG4 gene encodes for BAG cochaperone 4 proteins 
which is involved in different biological processes such as cell prolifer-
ation, survival, and apoptosis processes. Overexpression of BAG4 pro-
tein was observed in different types of cancers [70]. However, the role of 
BAG4 gene in stroke risk is still elusive. The risk gene NEK6 encodes 
protein kinase which plays a role in apoptosis, cell cycle regulation, 
chemoresistance, and telomere maintenance [71]. NEK6 genes promote 
cell proliferation and develop head neck squamous cell carcinoma [72]. 
In addition, our study also highlighted that among the ten differentially 
expressed genes, three genes (PMF1, SH3PXD2A, ACAD10) were 
modulated by DNA methylation and gene expression in Europeans (SNP 
→ DNA methylation → Gene expression → Stroke) and six genes 
(HTRA1, PMF1, FBN2, C9orf84, SH3PXD2A, ACAD10) were modulated 
by DNA methylation and gene expression in trans-ethnic ancestry group 
(SNP → DNA methylation → Gene expression → Stroke).However, we 
demonstrated their causal and functional insights as they could be 
modulated through DNA methylations, which could influence gene 
expression. 

Our study demonstrated the pleiotropic association between gene 
expression and stroke. Our analysis revealed four genes (PMF1, 
SH3PXD2A, TPSPOAP1, PHETA1) were overlapped between Europeans 
and trans-ethnic ancestry. The trans-ethnic ancestral GWAS meta-anal-
ysis consisted of substantial European participants (~60%) than other 
ancestries. Next, pleiotropic association between DNA methylation and 
stroke revealed ten genes (ARMS2, ACAD10, CASZ1, SH3PXD2A, 

Table 6 
Ten genes from SMR study were differently expressed in stroke cases and control subjects.  

Gene    SMR Study DEGs(3 h) DEGs(5 h) DEGs(24 h)  

topSNP CpG CHR P_GWAS P_mQTL 
/P_eQTL 

P_SMR P_HEIDI Log2FC FDR Log2FC FDR Log2FC FDR 

PMF1 rs3768276 cg25465065 1 1.36E-07 0 1.37E-07  0.014  1.038 9.23E-10  1.084 4.78E-12  0.926 5.08E-10 
FBN2 rs73350117 cg23213887 5 5.77E-07 2.11E-20 1.09E-05  0.717  1.028 1.23E-05  1.122 2.05E-06  1.384 1.56E-07 
C9orf84 rs823643 cg01822570 9 6.58E-06 7.03E-43 1.90E-05  0.017  0.925 4.34E-03  1.215 3.62E-06  1.630 1.80E-06 
COL4A1 rs2131938 cg13424422 13 1.85E-06 7.66E-30 1.11E-05  0.287  0.594 7.29E-03  – –  0.583 2.38E-02 
NEK6 rs72759285 – 9 3.34E-05 0 3.13E-05  0.367  0.550 2.47E-04  – –  0.521 1.63E-04 
HTRA1 rs3793917 cg25446361 10 1.25E-06 8.39E-96 9.04E-03  0.383  1.355 1.39E-04  1.511 1.15E-05  1.930 5.50E-07 
BAG4 rs11779986 – 8 5.12E-06 1.2E-177 6.68E-06  0.053  0.590 4.22E-03  0.713 2.20E-04  0.631 1.63E-03 
SH2B3 rs587914 – 12 2.96E-06 5.8E-126 4.48E-06  0.035  − 0.510 2.13E-05  – –  – – 
SH3PXD2A rs11191833 cg01727419 10 1.66E-10 0 1.77E-10  0.396  − 0.588 3.89E-04  − 0.710 1.04E-06  − 0.639 6.29E-06 
ACAD10 rs642898 cg08577424 12 1.37E-07 3.3E-187 2.17E-07  0.039  − 0.837 5.76E-05  − 0.502 1.61E-02  − 0.524 6.20E-03 
SUPT4H1 rs2526375 cg14996805 17 6.68E-07 3.99E-19 1.42E-05  0.026  – –  0.553 1.2E-04  – – 
RERE rs301802 – 1 1.08E-05 0 3.23E-09  0.251  – –  0.679 3.59E-04  0.644 7.52E-04 

SNP: Single nucleotide polymorphism; CHR: Chromosome; p_GWAS: Genome wide association study P-value; p_mQTL: DNA methylation quantitative trait loci P-value; 
p_eQTL: Expression quantitative trait loci P-value; P_SMR: P-value from summary based Mendelian randomisation; P_HEIDI: P-value from Heterogeneity in dependent 
instruments test; DEG: Differentially expressed genes; LogFC: Log fold change; 3 h, 5 h,24 h:Blood samples taken at three time points 3 h(3 h), 5 h(5 h), and 24 h(24 h) 
following stroke; FDR: False discovery control rate. 
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HTRA1, PMF1, SUPT4H1, SLC25A44, LRCH1, SLC44A2) were over-
lapped between European ancestry and trans-ethnic ancestry. To note, 
we identified PMF1, HTRA1, ACAD10 and SH3PXD2A were differen-
tially expressed in the blood of stroke versus healthy individuals, sug-
gesting potential common biomarkers of stroke risk in both ancestries. 

Next, our results revealed important biological insights of the iden-
tified genes, including “oxidative damage”, “extracellular matrix orga-
nisation”, and “coregulation of androgen receptor activation, suggesting 
potential mechanisms and pathways involved in stroke pathogenesis 
[73,74]. It is believed that oxidative stress along with chronic neuro-
inflammation results in neuronal damage associated with stroke [75]. 
Oxidative stress develops due to the imbalance between the formation 
and clearance of free radicals during pathological conditions [76]. It is 
also linked to the aging processes that increase risk of stroke[77]. The 
brain cells are more susceptible to oxidative damage due to their 
excessive metabolic rate and sensitivity to ischemia damage [75,78]. In 

addition, several pioneering next-generation sequencing studies, 
particularly transcriptomic and epitranscriptomic studies, have sug-
gested substantial contribution of oxidative damage, neuro-
inflammation, and angiogenesis regulation pathways in response to 
physiological alterations in brain arteriovenous malformation, cerebral 
cavernous malformation, and retinal degeneration [79–82]. The extra-
cellular matrix (ECM) contains collagen, fibrous proteins, elastin, lam-
inins, and microfibrils that give structural support, integrity, and 
elasticity to the tissue [83]. The structure and expression of ECM alter 
after a stroke [84,85]. Our study also highlighted some molecular 
functions, particularly metal ion binding and RNA polymerase II tran-
scription factor binding. Some metal ions are important nutrients for 
brain function and development [86]. Evidence shows that excessive 
amounts of some metal ions (e.g., Ca, Zn, Fe, or Cu) contribute to brain 
injury after stroke. Moreover, numerous exogenous metal ions have also 
been associated with stroke risk, including cadmium, nickel, arsenic, 

Fig. 3. The violin plot represents the significant differential expression of the genes in blood of stroke compared to healthy individuals at ≤ 3 h.  

T. Islam et al.                                                                                                                                                                                                                                    



Journal of Biomedical Informatics 141 (2023) 104345

10

mercury, and aluminium [86]. 
There are several strengths in this study. We did the largest inte-

gration of multi-omics datasets for stroke to identify candidate bio-
markers, including the largest eQTL datasets, mQTL datasets, GWAS 
datasets, followed by validation of the candidate biomarkers as differ-
entially expressed in blood transcriptomic in stroke compared to healthy 
individuals [25]. In addition, we validated our candidate biomarkers in 
real human blood gene expression datasets of stroke versus healthy in-
dividuals, suggesting support for blood biomarkers of stroke. 

Like other multi-omics approaches, it is important to acknowledge a 
few limitations as various bioinformatics analyses have been provided in 
this study, which need to be considered when interpreting the results. 
We used multiple corrections to limit the false positive rates. As with 
other SMR investigations, we cannot rule out the potential that any of 

the associations (crucial SNPs, genes, and DNAm sites) identified in this 
study were false positives. In addition, we used eQTLs and mQTLs data 
to investigate the impact of genetic variant on gene expression and DNA 
methylation using SMR. Although the majority of eQTLs and mQTLs can 
reveal certain causal variants, the presence of complex linkage 
disequilibrium structure and secondary signals either from GWAS or 
eQTLs make it challenging to identify actual causal variant. Although we 
tried to guard against potential biases in our analyses with the use of cis- 
eQTL and cis-mQTLs, assessment for heterogeneity (HEIDI test), and 
multiple error corrections, the actual causal associations could still come 
from remote variants [28,87,88]. We analysed an independent blood 
transcriptomic dataset of 23 S and 23 controls for the differential 
expression of potential gene biomarkers. This dataset has a limited 
sample size. Therefore, we propose future work with a larger sample size 

Fig. 4. (A) Gene enrichment analysis (blue colour represent biological process and purple colour represents molecular function). (B) The pathway enrichment 
analysis. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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for further validation of ten candidate blood biomarkers. There is a lack 
of publicly available data on global methylation profiling on stroke, 
therefore, we could not assess whether the DNA methylation level of 
candidate biomarkers was altered in stroke patients versus healthy 
controls. Future studies should be conducted to validate these candi-
dates in large-scale human DNA methylation profiling and gene 
expression profiling datasets to gain a better understanding of the 
functions of those genes in the aetiology of stroke risk and establish them 
as biomarkers of stroke before clinical use. We propose further experi-
mental validation of candidate biomarkers using relevant clinical sam-
ples in future studies since our approach focused on identifying potential 
candidate biomarkers for stroke risk. 

5. Conclusions 

Overall, we leveraged large-scale multi-omics datasets using a sys-
tems biology approach to identify putative pleiotropic and potential 
causal gene biomarkers of stroke risk. We identified 45 candidate gene 
biomarkers by network SMR approach. Of those genes, ten genes were 
differentially expressed in the blood of stroke patients compared to 
healthy individuals. Our approach showed the importance of gene 
expression modulation by DNA methylation in stroke risk. Furthermore, 
our results suggest potential biological processes and pathways under-
lying the pathophysiology of stroke. The genetic variants, DNA 
methylation sites, and genes associated with stroke risk identified in this 
study demand further wet-lab experimental validation to evaluate their 
potential utility in stroke assessment. 
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