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Human Learning Optimization (HLO) is an e�cient metaheuristic algorithm in which three learning operators, i.e., the random
learning operator, the individual learning operator, and the social learning operator, are developed to search for optima by
mimicking the learning behaviors of humans. In fact, people not only learn from global optimization but also learn from the best
solution of other individuals in the real life, and the operators of Di�erential Evolution are updated based on the optima of other
individuals. Inspired by these facts, this paper proposes two novel di�erential human learning optimization algorithms
(DEHLOs), into which the Di�erential Evolution strategy is introduced to enhance the optimization ability of the algorithm. And
the two optimization algorithms, based on improving the HLO from individual and population, are named DEHLO1 and
DEHLO2, respectively. �e multidimensional knapsack problems are adopted as benchmark problems to validate the perfor-
mance of DEHLOs, and the results are compared with the standard HLO and Modi�ed Binary Di�erential Evolution (MBDE) as
well as other state-of-the-art metaheuristics. �e experimental results demonstrate that the developed DEHLOs signi�cantly
outperform other algorithms and the DEHLO2 achieves the best overall performance on various problems.

1. Introduction

In the past decades, traditional optimization algorithms are
widely used in science, engineering, economics, and industry
to solve optimization problems [1]. However, the traditional
optimization algorithms need to learn the mathematical
characteristics of the optimal solution in advance, which can
result in added complexity in the algorithm’s designation. In
addition, the traditional algorithms cannot escape the local
optimal of complex problems e�ectively. With the devel-
opment of technology, engineering problems with optimi-
zation objectives are becoming more and more complicated
and the conventional algorithm to solve the NP problems
has become very di�cult, which forces researchers to study
metaheuristic algorithms [2]. Metaheuristics are general

frameworks to build heuristics for combinatorial and global
optimization problems [3]. �e application of natural or
biology-inspired metaheuristic optimizations, such as Ge-
netic Algorithm [4], Particle Swarm Optimization [5],
Harmony Search [6], Di�erential Evolution (DE) [7–10],
Arti�cial Bee Colony [11], Fruit Fly Optimization [12],
Distributed Grey Wolf Optimizer (DGWO) [13], Moth
Search Algorithm (MSA) [14], Slime Mould Algorithm
(SMA) [15], Gaining Sharing Knowledge-Based Optimiza-
tion [16, 17], Cuckoo Search with Exploratory (ECS) [18],
Discrete Jaya with Refraction Learning and �ree Mutation
(DJRL3M) [19], and Monarch Butter¨y Optimization
(MBO) [20], Hunger Games Search (HGS) [21], Runge
Kutta Method (RUN) [22], and Harris Hawks Optimization
(HHO) [23], has been very successful to solve the complex
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optimization problems, such as feature selection [24–28],
image segmentation [29], controller designation [30], flow-
shop scheduling problem [31, 32], and the node placement
of wireless sensor networks [33].

Human beings are the smartest creature in the world
because of their strongest learning ability; they are smarter
than other living beings, such as birds, ants, and fish. To solve
complex problems effectively, humans are always repetitively
learning to improve their skills for adapting to the external
environment better. Many human learning activities are
similar to the search process of metaheuristics. For example,
when a person learns something new, he or she repeatedly
practices to improve new skills and evaluates his or her
performance for guiding the following study. /e process of
human learning just like the metaheuristic algorithms iter-
atively generates a new solution and calculates the corre-
sponding fitness for adjusting the following search./erefore,
it is reasonable to consider that the metaheuristic algorithm
based on the human learning mechanisms may have ad-
vantages over other biological systems-based algorithms on
complicated problems. Inspired by this thought, Wang et al.
[34] proposed the Human Learning Optimization Algorithm
(HLO) based on a simplified human learning model, in which
three learning operators, i.e., the random learning operator
(RLO), the individual learning operator (ILO), and the social
learning operator (SLO), are developed to search out the
optimal solution, which represents that a person may learn
randomly due to the lack of prior knowledge or exploring new
strategies, learn from his or her previous experience, and learn
from his or her friends and books, respectively.

To strengthen the search efficiency of HLO, a few en-
hanced variants have been subsequently developed. An
adaptive simplified human learning optimization algorithm
(ASHLO) [35] is proposed in which the pr and pi, two control
parameters determining the rates of performing RLO, ILO,
and SLO, are linearly adjusted to achieve the balance between
the global search and local search. Encouraged by the success
of ASHLO, a sine-cosine adaptive human learning optimi-
zation algorithm (SCHLO) [36] is proposed in which the pr
and pi are dynamically tuned in a reasonable range by the sine
and cosine functions so that SCHLO can efficiently escape
from the local optimal. Later, a new improved adaptive
human learning optimization algorithm (IAHLO) [37] is
presented to accurately tune the control parameter pr so that
IAHLO can keep the diversity better at the early stage and
perform the local search more efficiently at the later stages of
iterations. Besides, inspired by the intelligence quotient (IQ)
of humans, a diverse human learning optimization algorithm
(DHLO) [38] is presented in which the control parameter pi is
initialized by a Gaussian distribution and dynamically ad-
justed according to the pi value of the best individual. To
further extend HLO, a novel hybrid-coded HLO (HcHLO)
[39] is proposed to tackle mix-coded problems, in which real-
coded parameters are optimized by a new continuous HLO
(CHLO) [39] and the binary and discrete variables are
handled by the binary learning operators of HLO. Until now,
HLO has been successfully applied to engineering design
problems [37], knapsack problems [40], optimal power flow
calculation [41], extractive text summarization [42], financial

markets forecasting [43], furnace flame recognition [44],
scheduling problems [45], and intelligent control [46]. In
particular, HLO obtained the best-so-far results on two well-
studied sets of multidimensional knapsack problems, i.e.,
5.100 and 10.100 [40], as well as the set of mixed-variable
optimization problems [39] which implies the promising
advantages of HLO.

In HLO, social learning adopts the greedy strategy to
generate a new candidate, i.e., simply yet efficient copying the
bit value from the SKD, whichmakes the algorithm easy to fall
into local optimal. So, the relearning operator is introduced
into HLO [40] to help the algorithm to escape from the local
optimal. However, the relearning operator may destroy the
existing optimal information, which further reduces the
performance of the algorithm. On the other hand, the social
learning of the HLO just learns from the global solution,
which is inconsistent with the actual society. In real life,
people could learn from the best solution of other individuals
in the population./eModified Binary Differential Evolution
(MBDE, modified binary DE which is the previous work) [47]
reverses the updating strategy of the standard Differential
Evolution (DE) [7] so that DE can better keep the robustness
of parameter settings and the diversity of the population to
search for optimal bit information effectively. /erefore, this
paper proposes two novel differential human learning opti-
mization algorithms (DEHLOs), in which the strategy of
MBDE is introduced into HLO to further improve the per-
formance of DEHLOs algorithm by using the optimal in-
formation of other individuals.

/is paper is organized as follows. Section 2 gives a brief
review of the HLO and MBDE, respectively. Section 3
presents the concepts, operators, and implementation of the
proposed DEHLO1 and DEHLO2 in detail. Section 4 verified
that the proposed DEHLOs have significant advantages over
the compared algorithms on the multidimensional knapsack
problems. Finally, conclusions are drawn in Section 5.

2. Related Works

2.1. Human Learning Optimization. /e HLO adopts the
binary-coding framework, and consequently an individual
in HLO is represented by a binary string as

xi � xi1 xi2 . . . xij . . . xiM􏽨 􏽩,

xij ∈ 0, 1{ },

1≤ i≤N,

1≤ j≤M,

(1)

where xi denotes the i-th individual, N is the size of the
population, and M is the dimension of solutions. Each bit of
binary string is initialized as “0” or “1” randomly.

Random learning operator: At the beginning of the
learning process, people always keep exploring new strat-
egies to solve problems because there is no prior knowledge
[48]. Besides, an individual cannot fully replicate their
previous experience and social knowledge because of the
disturbance of external and forgetting. To emulate these
phenomena of human random learning, the HLO executes
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random learning operator (RLO) with a certain probability
as

xij � RE(0, 1) �
0, r1 ≤ 0.5,

1, else,
􏼨 (2)

where r1 is a stochastic number between 0 and 1.
Individual learning operator: Individual learning is de-

fined as the ability to build knowledge through individual
reflection about external stimuli and sources [49], which
could be regarded as individual behavior in the trial and
error process of continuous improvement. To mimic human
individual learning, the best individual solutions are re-
served in the individual knowledge database (IKD) as

IKDi �

ikdi1

ikdi2

⋮

ikdip

⋮

ikdiK

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

iki1,1 iki1,2 · · · iki1,j · · · iki1,M

iki2,1 iki2,2 · · · iki2,j · · · iki2,M

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
ikip,1

⋮

ikiK,1

ikip,2

⋮

ikiK,2

· · ·

⋮

· · ·

ikip,j

⋮

ikiK,j

· · ·

⋮

· · ·

ikip,M

⋮

ikiK,M

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

1≤ i≤N,

1≤p≤K,

1≤ j≤M,

(3)

where IKDi denotes the individual knowledge database of
the person i, K is the predefined number of solutions saved
in the IKD, and ikdip represents the p-th best experiment of
the person i. When HLO conducts the individual learning
operator, (4) is operated to generate a new candidate
solution.

xij � ikip,j. (4)

Social learning operator: During social learning, people
can acquire knowledge and experience from other indi-
viduals to further develop their ability directly or indirectly
[50], and the efficiency and effectiveness of learning will be
improved from experience share [51]. To simulate the social
learning of humans in HLO, the social knowledge database
(SKD) is adopted to reserve the best knowledge of the
population as

SK D �

skd1

skd2

⋮

skdq

⋮

skdS

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

sk11 sk12 · · · sk1j · · · sk1M

sk21 sk22 · · · sk2j · · · sk2M

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

skq1

⋮

skS1

skq2

⋮

skS2

· · ·

⋮

· · ·

skqj

⋮

skSj

· · ·

⋮

· · ·

skqM

⋮

skSM

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

1≤ q≤ S,

1≤ j≤M,

(5)

where S is the size of the SKD and skdq is the q-th solution in
the SKD. q is a stochastic number; it decides which one of the
SKD will be used. HLO performs social learning operator as

(6) to generate the new candidate solution during the search
process.

xij � skqj. (6)

In summary, the above operators can be integrated and
operated as

xij �

RE(0, 1), 0≤ r≤pr

ikip,j, pr< r≤pi

skqj, else,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

, (7)

where r is a stochastic number between 0 and 1, and pr and
pi are the control parameters to determine the rates of HLO
performing the three learning operators. Specifically, pr, (pi-
pr), and (1-pi) are the probabilities of random learning,
individual learning, and social learning, respectively. Al-
gorithm 1 describes the implementation of HLO, and more
details can be found in [35].

2.2. Modified Binary Differential Evolution. /e MBDE [47]
adopts the binary-coding scheme and reserves the updating
formulas of the standard DE, including the mutation op-
erator, the crossover operator, and the selection operator. A
probability estimation operator is introduced into MBDE to
integrate the mutant operator.

Probability estimation operator: /e probability esti-
mation operator is used to build the probability distribution
vector f(pG

i ) of the parent individuals. /e new mutant
binary individual u′Gij is generated from parents’ sampling
randomly through the probability estimation vector as
equations (8) and (9),

f p
G
ij􏼐 􏼑 �

1

1 + e
− (2b/1+2F)× pG

r1,j
+F× pG

r2,j
− pG

r3,j􏼐 􏼑− 0.5􏼐 􏼑
, (8)

u
′G
ij �

1, if rand()≤f p
G
ij􏼐 􏼑

0, otherwise,
􏼨 (9)

where F is the scaling factor and b denotes the bandwidth
factor which is a positive real constant; pG

r1,j, pG
r2,j, and pG

r3,j

are the j-th bits of three randomly chosen individuals of G
generation. rand is random number; u′Gij is the mutation of
the current target individual according to the probability
estimation vector f(pG

ij).
Crossover operator: /e crossover operator is used to

produce the trailing individual by mixing the target indi-
vidual and its mutant individual in MBDE. /e trail vector
v′G+1

ij can be obtained as

v
′G
ij �

u
′G
ij , if (rand()≤CR) or (j � rand i),

p
G
ij, otherwise,

⎧⎪⎨

⎪⎩
(10)

where vij
′ is the element of the trailing individual vi

′ and CR is
the crossover probability ranged (0,1). /e rand is a sto-
chastic number uniformly distributed within (0, 1); rand i is
a random integer with 1, 2, . . . , N where N is the length of
the individual.
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Selection: /e selection operator is defined as the fol-
lowing equation:

x
G+1
i �

v
G+1
i , if f v

G+1
i􏼐 􏼑<f x

G
i􏼐 􏼑,

x
G
i , otherwise.

⎧⎪⎨

⎪⎩
(11)

As shown in (11), the MBDE reserved the selection
operator of the standard DE. /e trail individual vi replaces
the target individual xi if its fitness value is better. Otherwise,
the target individual is reserved for the next generation.

3. Differential Human Learning
Optimization Algorithm

/e three operators of HLO represent human learning
randomly, learning from their own experience, and col-
lective experience. However, people could learn from other
excellent individuals in actual life. /e operator of Dif-
ferential Evolution (DE) is updated based on the optimal
information of other individuals in the population. In-
spired by this thought, this paper proposes the differential
human learning optimization algorithm (DEHLO), in
which the learning strategy of the MBDE is introduced into
the HLO to develop a novel probability estimation operator
for generating the offspring individuals. And this paper
modified the HLO from two levels, i.e., individual and
population, and named DEHLO1 and DEHLO2,
respectively.

3.1. DEHLO1. During the real learning process, different
teams always adopt different strategies to search for the
optimal solution for the same complex problem. To
emulate the phenomena of dividing into groups, the
operators of HLO and MBDE are utilized to generate the
new solution in DEHLO1, so that the DEHLO1 algorithm
could obtain the performance of HLO and MBDE. In

DEHLO1, half of the population is updated by using the
operator of HLO as (7) to generate a new solution, and the
rest of the population is updated by using the mutation
operator of MBDE as equations (8)–(10) to acquire the
new individual. /e DEHLO1 algorithm could possess
both the advantages and shortcomings of the HLO and
MBDE, and a dynamic competition strategy is used in
DEHLO1 to avoid the disadvantages of the HLO and
MBDE. At the beginning of a search, the population is
divided into two equal parts which adopt the strategy of
HLO and MBDE, respectively. With the progress of the
search, the optimal fitness of the HLO and that of MBDE
are compared under the specified iterations, and the in-
dividual proportion of better fitness value corresponding
algorithm will be increased while the individual pro-
portion of the other algorithm will be decreased corre-
spondingly. /erefore, the DEHLO1 algorithm can
adaptively compete and use the optimal learning strategy
to search for the optimal solution, which effectively en-
hances the optimization ability of the algorithm. /e
procedure of DEHLO1 can be illustrated in Figure 1.

3.2. DEHLO2. In real society, the same problem could be
solved by using different approaches. But there might be a
mainstreammethod in a certain period, and the mainstream
method might be switched to another method due to the
needs of the problem. Exactly as the way of human learning:
“practice, knowledge, again practice, and again knowledge”
[52], this form repeats itself in endless cycles, and with each
cycle, the content of practice and knowledge rises to a higher
level. /is learning process is a vivid metaphor for the spiral.
In DEHLO2, the HLO and the MBDE on the whole pop-
ulation are mixed and executed alternately by mimicking
these learning behaviors. Firstly, the entire population
adopts the HLO algorithm to search for the optimal solution.
If it cannot be updated after a specified iteration, the learning
process of HLO will be considered to encounter the

(1) Initialize the population X randomly
(2) Calculate the fitness of the whole population f(X)
(3) Initialize the IKDs and SKD
(4) while conditions on the stop criterion do
(5) for i� 1 to N do
(6) for j� 1 to M do
(7) if (r≥0 and r≤pr) then
(8) Generate xij as equation (2)
(9) else if (r> pr and r≤pi) then
(10) Generate xij as equation (4)
(11) else if (r> pi and r< 1) then
(12) Generate xij as equation (6)
(13) end if
(14) end for
(15) end for
(16) Calculate the fitness function f(X)
(17) Update the IKDs and SKD
(18) end while

ALGORITHM 1: Pseudocode of HLO.

4 Computational Intelligence and Neuroscience
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bottleneck; then the strategy of MBDE will be executed,
which might make the algorithm escape from the bottleneck
and vice versa: if the MBDE algorithm cannot find the
optimal solution after certain iterations, the HLO algorithm
will be executed to update the individual of the population.
/e flowchart of DEHLO2 is shown in Figure 2.

/e procedure of DEHLO2 can be described as follows:
Step 1: Set control parameters, including the population

size (popSize), the maximum generation (Gmax), the itera-
tions of the search strategy, and the control parameters of
HLO and MBDE; Step 2: Initialize the population randomly,
calculate the fitness of each individual, and initialize the IKD
and SKD; Step 3: Update the individual of the population as
equations (8)–(11) of the MBDE algorithm; when the global
optimal of MBDE cannot update after the set iterations, use
the HLO algorithm to update the individual of the pop-
ulation as equation (7), and so forth, to generate the new
population; Step 4: Calculate the fitness of the new individual
and update the IKD and SKD; Step 5: If the terminal

conditions are met, terminate the iteration; otherwise go to
step 3; Step 6: Output the optimal solution.

3.3. Algorithm Complexity. DEHLO1 and DEHLO2 both
have two phases, i.e., the population initialization and the
iterative search. /e running times of generating the
initial population X, individual knowledge database
(IKD), and social knowledge database (SKD) are N × M,
N × M, and (M + log N), respectively, where M and N
represent the dimension of solutions and the size of the
population, respectively. So, the overall running time of
the population initialization is ((2N + 1) × M + log N).
During the iterative search of DEHLOs, generating new
individuals costs time N × M, performing crossover op-
eration costs time N × M, and updating the IKD and SKD
costs times N × (M + log K) and (log N + log S + M),
respectively, where K is the predefined number of solu-
tions saved in the IKD and S denotes the size of the SKD.

Start

Set the parameters of DEHLO1 such as the population size N, Gmax,
b, F, CR, pr, pi, Cn, K, and initialize the population randomly

Calculate the fitness value of the initial individuals and the number 
of individual groups Th=N×0.5

Terminate 
the iteration ?

Yield new candidate solutions 
through performing the 

operators of MBDE

i < Th ?

Calculate the fitness of new 
solutions and choose the better 

solutions according to fitness

Yield new candidate solutions 
through performing the 

operators of HLO

Calculate the fitness of new 
solutions and choose the better 

solutions according to fitness

Reserve the corresponding 
fitness in one-dimensional

array fit_MBDE

Reserve the corresponding 
fitness in one-dimensional

array fit_HLO

t%Cn =0 ?

t=t+1

min (fit_MBDE) <min (fit_HLO) ?

Th (t+1)=Th (t) + N×KTh (t+1)=Th (t) – N×K

Output the results

End

Yes
No

No

Yes

Yes

Yes

No

No

Figure 1: /e flowchart of DEHLO1.
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/erefore, the running time of each iterative step is
((3N + 1) × M + log(N × S × KN)). Assume that the
maximum generation of DEHLOs algorithms is G, so the
iterative search phase takes time
G × ((3N + 1) × M + log(N × S × KN)). In general, the
maximum generation G is much greater than N, K, and S,
and therefore the time complexity of DEHLOs is
O((3N + 1) × G × M).

4. Experimental Results and Discussions

To verify the performance of the two algorithms, i.e.,
DEHLO1 and DEHLO2, the proposed DEHLOs as well as
other six binary-coding optimization algorithms, i.e.,
Improved Adaptive Human Learning Optimization
(IAHLO) [37], Simple Human Learning Optimization
(SHLO) [34], Modified Binary Differential Evolution
(MBDE) [47], Novel Binary Differential Evolution
(NBDE) [53], Improved Binary Particle Swarm Optimi-
zation (IBPSO) [54], and Novel Binary Gaining Sharing
Knowledge-based optimization (NBGSK) [17], were ap-
plied to solve multidimensional knapsack problems [55].
/e parameters pr, pi, CR, F, and b adopt the default

values of HLO and MBDE, and a set of fair parameters,
i.e., Cn and K of DEHLO1 and NM and NH of DEHLO2, is
chosen for DEHLO1 and DEHLO2 by trial and error in
this paper, that is, Cn � 100, K � 5%, NM � 100, and
NH � 50. For a fair comparison, the recommended pa-
rameters of all compared algorithms were used to tackle
the problem, which is listed in Table 1. Since DEHLOs are
designed for solving “single-objective” problems, the sizes
of IKDs and SKD are both set to 1 [35] to enhance search
efficiency and reduce the cost of computation. Besides, the
IKD of DEHLOs was reinitialized to further enhance the
diversity if it is not updated in the successive 100 gen-
erations. /e computations were carried out using a PC
with Intel Core i5-6402P @ 2.8 GHz CPU and 8 GB RAM
while running Java 1.70 on Windows 8.1, 64-bit operating
system.

4.1. A Set of Multidimensional Knapsack Problems.
Knapsack problems have been studied intensively in the last
few decades, and multidimensional knapsack problems
(MKPs) [55] are multiconstrained problems instead of only
one constraint. It can be formulated as

Start

Set the parameters of DEHLO2 such as the population size N, Gmax,
b, F, CR, pr, pi, NM, NH, and initialize the population randomly

Calculate the fitness value of the initial individuals; set the switching 
parameter Sp=1 and the count parameter Cp=0

Terminate 
the iteration ?

Yield new candidate solutions 
through performing the 

operators of MBDE

Sp=1 ?

Calculate the fitness of new 
solutions and choose the better 

solutions according to fitness

t=t+1

Output the results

End

Yes
No

Yes

Update the 
global optimal?

Cp=Cp+1

Cp=NM?

Cp=0 and Sp=0

Yes

No

Yes

No

Yield new candidate solutions 
through performing the 

operators of HLO

Calculate the fitness of new 
solutions and choose the better 

solutions according to fitness

Update the 
global optimal?

Cp=Cp+1

Cp=NH?

Cp=0 and Sp=1

No

Yes

Yes

No

No

Figure 2: /e flowchart of DEHLO2.
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Maxf x1, x2, . . . , xn( 􏼁 � 􏽘

n

j�1
pjxj,

s.t.
􏽘

n

j�1
wjxj ≤C

xj ∈ 0, 1{ }, j ∈ 1, 2, . . . , n{ },

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(12)

where the binary decision variables xj are used to indicate
whether the item j is included in the knapsack or not.
Without loss of generality, knapsack problems assume that
all profits and weights are positive and all the weights are
smaller than the capacity C. Since the maximal volume of the
knapsack is limited in knapsack problems and the total
volume of the items packed in the knapsack may exceed the
constraint, the violation is unacceptable and must be
checked. /us, the penalty function method as (13) is
adopted to deal with the infeasible solutions,

MaxF(x) � 􏽘
n

j�1
pjxj − β · max 0, 􏽘

n

j�1
wjxj − C⎛⎝ ⎞⎠,

s.t.xj ∈ 0, 1{ }, j � 1, 2, . . . , n,

(13)

where the penalty coefficient β is a big constant which can
lead the algorithm to escape from the infeasible area.

For a comprehensive comparison, a total of 30 mul-
tidimensional knapsack problems (MKPs), i.e., the in-
stances 5.250.00-29, are adopted to test the performance
of DEHLOs as well as the other metaheuristics. /e
population size and the maximum generation of all the
algorithms are set to 100 and 5000. Four indicators, i.e.,
the best fitness value (Best), the mean best fitness value
(Mean), the worst fitness value (Worst), and the standard
deviation (Std), are used to evaluate the performance of
DEHLOs. Each algorithm ran 100 times on all the
problems independently. /e numerical results are given
in Table 2.

To better compare the performance of DEHLOs with
other algorithms, the results of student’s t-test (t-test) and
Wilcoxon signed-rank test (W-test) are also listed in Table 2
where “1” indicates that DEHLO2 is significantly better than
the compared algorithms at the 95% confidence, “− 1”
represents that DEHLO2 is significantly worse than the
compared algorithms, and “0” denotes that the performance
of DEHLO2 is equivalent to other algorithms. Note that the
t-test, a parameter test, needs to satisfy the normality and

homogeneity of variance, while the W-test, a nonparametric
test, does not need. /erefore, the t-test is more reliable
when the Gaussian distribution assumption is met while the
W-test would be more powerful when this assumption is
violated [35]. For convenience, the results of the t-test and
W-test are summarized in Table 3.

Table 2 shows that the proposed DEHLO2 obtains the
best numerical results on 26 out of 30 instances. Besides, the
summary results of the t-test show that DEHLO2 is obvi-
ously better than DEHLO1, IAHLO, HLO, MBDE, NBDE,
IBPSO, and NBGSK on 21, 30, 30, 24, 30, 30, and 30 out of 30
instances. And W-test results also show that DEHLO2 is
significantly superior to DEHLO1, IAHLO, HLO, MBDE,
NBDE, IBPSO, and NBGSK on 21, 30, 30, 23, 30, 30, and 30
out of 30 instances. Based on Tables 2 and 3, it is fair to say
that DEHLO2 outperforms other algorithms on the mul-
tidimensional knapsack problems.

4.2. Another Set of Multidimensional Knapsack Problems.
To further verify the performance of the proposed algorithm,
another set of multidimensional knapsack problems [53] is
adopted as the test benchmark, which is listed in Table 4./e
results of all algorithms on the MKPs are given in Table 5
where the best solutions have been highlighted in bold. And
the summary results of the t-test andW-test are summarized
in Table 6. To analyze the superiority of the proposed
DEHLOs, the convergence curves of all algorithms on the
MKPs are drawn in Figure 3.

It can be seen from Tables 5 and 6 and Figure 3 that
DEHLO2 provides the best results and obtained the
minimum error among the other algorithms. Specifically,
DEHLO2 attains the best numerical results on 13 out of 14
instances and is only inferior to DEHLO1 on the instance
5.500.01. /e summarized t-test and W-test results in-
dicate that the proposed DEHLO2 significantly surpasses
IAHLO, HLO, MBDE, NBDE, IBPSO, and NBGSK on all
the instances while it is better than, competitive to, and
worse than DEHLO1 on 10, 4, and 0 instances on the t-test
and 11, 3, and 0 instances on the W-test, respectively.
Furthermore, Figure 3 shows that the proposed DEHLOs
algorithm has a faster convergence rate and higher so-
lution accuracy than the compared algorithms. /erefore,
with the introduction of the strategy of MBDE, the op-
timization performance of the DEHLOs algorithm is
significantly enhanced.

Table 1: /e recommended parameter values of all the algorithm.

Algorithm Parameters settings
DEHLO1 pr� 5/M, pi� 0.85 + 2/M, CR� 0.2, F� 0.8, b� 20, Cn� 100, K� 5%
DEHLO2 pr� 5/M, pi� 0.85 + 2/M, CR� 0.2, F� 0.8, b� 20, NM� 100, NH� 50
IAHLO [37] prmin1 � 0.02, prmin2 � 0.05, prmax � 0.15, pi� 0.85 + 2/M, Sp� 0.2×Gmax
SHLO [34] pr� 5/M, pi� 0.85 + 2/M
MBDE [47] CR� 0.2, F� 0.8, b� 20
NBDE [53] F� 1.0, CR� 0.5, filp� 0.2, Umin � 0.1×M, Umax � 0.9×M
IBPSO [54] ωmin� 0.0, ωmax� 2.0, c1� 1.75, c2� 2.00, Vmin � − 6, Vmax � 6
NBGSK [17] NPmin � 12, Npmax � 200, kf � 1.0, kr � 0.9, p� 0.1, δ � 100, λ� − 100
Note. M is the dimension of solutions.

Computational Intelligence and Neuroscience 7
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Table 2: /e results of all algorithms on the multidimensional knapsack problems.

Problem Algorithm Best Mean Worst Std t-test W-test

5.250.0

DEHLO2 59208 59071.35 58968 45.81 — —
DEHLO1 59196 59054.47 58941 46.52 1 1
IAHLO 58541 58145.82 57831 130.21 1 1
SHLO 59170 58990.19 58845 65.47 1 1
MBDE 58900 58765.98 58643 47.17 1 1
NBDE 58745 58269.03 57715 229.58 1 1
IBPSO 58935 58521.45 57942 188.27 1 1
NBGSK 57486 56579.44 55336 411.20 1 1

5.250.1

DEHLO2 61446 61381.94 61268 50.44 — —
DEHLO1 61377 61308.04 61209 46.25 1 1
IAHLO 60550 60117.68 59695 158.28 1 1
SHLO 61435 61274.52 61138 62.09 1 1
MBDE 61139 61096.41 60969 40.32 1 1
NBDE 61078 60269.88 59566 380.60 1 1
IBPSO 61213 60795.96 60073 214.59 1 1
NBGSK 59324 58075.21 56888 516.38 1 1

5.250.2

DEHLO2 62057 61959.72 61876 45.92 — —
DEHLO1 62028 61946.21 61855 43.06 1 1
IAHLO 61013 60599.87 60309 154.33 1 1
SHLO 62008 61865.90 61682 54.89 1 1
MBDE 62057 61937.51 61850 41.77 1 1
NBDE 61417 60780.85 60265 225.67 1 1
IBPSO 61640 61166.56 60485 240.18 1 1
NBGSK 60205 59110.06 58296 395.35 1 1

5.250.3

DEHLO2 59343 59235.19 59143 39.21 — —
DEHLO1 59315 59233.84 59123 41.67 0 0
IAHLO 58615 58294.18 58042 117.85 1 1
SHLO 59304 59162.28 58988 61.14 1 1
MBDE 59334 59238.46 59158 40.94 0 0
NBDE 58760 58388.26 57986 184.56 1 1
IBPSO 59168 58752.84 58406 163.98 1 1
NBGSK 57855 57014.16 56243 340.69 1 1

5.250.4

DEHLO2 58913 58799.33 58665 44.29 — —
DEHLO1 58935 58791.13 58696 47.27 0 0
IAHLO 57865 57540.15 57145 143.82 1 1
SHLO 58878 58703.24 58564 60.21 1 1
MBDE 58877 58758.46 58631 44.55 1 1
NBDE 58176 57666.00 57090 239.22 1 1
IBPSO 58608 58171.05 57670 190.88 1 1
NBGSK 56972 55896.45 55107 417.30 1 1

5.250.5

DEHLO2 60005 59884.27 59786 43.45 — —
DEHLO1 59980 59865.34 59752 52.38 1 1
IAHLO 58760 58457.12 57975 149.44 1 1
SHLO 59969 59784.46 59645 65.58 1 1
MBDE 59945 59842.43 59696 47.81 1 1
NBDE 59220 58724.95 58246 209.78 1 1
IBPSO 59714 59151.86 58576 258.90 1 1
NBGSK 58032 56999.98 56025 441.22

5.250.6

DEHLO2 60363 60300.41 60222 29.38 — —
DEHLO1 60358 60281.02 60199 32.38 1 1
IAHLO 59378 58953.02 58536 163.95 1 1
SHLO 60353 60221.83 59964 58.84 1 1
MBDE 60341 60295.39 60216 31.27 0 0
NBDE 59968 59306.75 58585 334.58 1 1
IBPSO 60128 59697.42 58954 210.21 1 1
NBGSK 58256 57192.39 55838 529.42 1 1

8 Computational Intelligence and Neuroscience
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Table 2: Continued.

Problem Algorithm Best Mean Worst Std t-test W-test

5.250.7

DEHLO2 61443 61364.97 61258 38.19 — —
DEHLO1 61443 61354.31 61227 45.12 0 0
IAHLO 60401 60031.70 59625 147.33 1 1
SHLO 61443 61276.94 61141 61.80 1 1
MBDE 61443 61329.16 61185 45.60 1 1
NBDE 60741 60127.33 59586 285.43 1 1
IBPSO 61195 60793.69 60209 183.45 1 1
NBGSK 59397 58110.16 57055 496.41 1 1

5.250.8

DEHLO2 61885 61783.26 61698 37.56 — —
DEHLO1 61873 61776.09 61688 38.60 0 0
IAHLO 60832 60330.40 59847 192.49 1 1
SHLO 61849 61711.02 61579 53.10 1 1
MBDE 61831 61750.80 61627 36.37 1 1
NBDE 61332 60640.49 59841 293.99 1 1
IBPSO 61626 61116.24 60530 208.09 1 1
NBGSK 59896 58378.40 57110 608.34 1 1

5.250.9

DEHLO2 58906 58825.17 58768 26.75 — —
DEHLO1 58915 58818.13 58755 31.43 0 0
IAHLO 58085 57822.15 57505 127.82 1 1
SHLO 58865 58759.37 58618 51.08 1 1
MBDE 58918 58831.57 58695 43.94 0 0
NBDE 58651 58235.22 57531 240.98 1 1
IBPSO 58803 58407.19 57940 165.90 1 1
NBGSK 57454 56359.20 55279 444.44 1 1

5.250.10

DEHLO2 109031 108945.41 108878 35.61 — —
DEHLO1 109051 108935.47 108850 37.12 0 0
IAHLO 108164 107737.36 107401 157.60 1 1
SHLO 109013 108879.42 108723 49.85 1 1
MBDE 109047 108930.03 108875 29.74 1 1
NBDE 108652 108235.63 107873 188.02 1 1
IBPSO 108820 108358.03 107786 183.12 1 1
NBGSK 107078 105016.71 102248 830.71 1 1

5.250.11

DEHLO2 109788 109724.02 109671 30.13 — —
DEHLO1 109821 109715.09 109620 34.97 0 0
IAHLO 108832 108389.65 108106 157.90 1 1
SHLO 109778 109643.79 109526 55.61 1 1
MBDE 109821 109731.71 109666 33.94 0 0
NBDE 109407 109035.96 108574 182.36 1 1
IBPSO 109498 109134.90 108575 203.18 1 1
NBGSK 107415 105664.99 102848 960.86 1 1

5.250.12

DEHLO2 108480 108421.36 108341 31.26 — —
DEHLO1 108481 108391.59 108271 44.11 1 1
IAHLO 107602 107248.20 106838 147.38 1 1
SHLO 108472 108308.74 108154 63.91 1 1
MBDE 108504 108402.61 108317 36.50 1 1
NBDE 108108 107752.60 107255 177.67 1 1
IBPSO 108202 107802.48 107355 188.54 1 1
NBGSK 106129 104260.07 101348 956.81 1 1

5.250.13

DEHLO2 109352 109291.79 109229 28.48 — —
DEHLO1 109356 109279.64 109210 31.72 1 1
IAHLO 108392 108113.52 107871 117.43 1 1
SHLO 109325 109220.67 109081 45.88 1 1
MBDE 109351 109276.32 109208 31.63 1 1
NBDE 109124 108621.42 108222 192.78 1 1
IBPSO 109113 108650.60 107755 230.00 1 1
NBGSK 107356 105919.36 104001 825.83 1 1

Computational Intelligence and Neuroscience 9
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Table 2: Continued.

Problem Algorithm Best Mean Worst Std t-test W-test

5.250.14

DEHLO2 110654 110559.06 110476 37.70 — —
DEHLO1 110639 110537.86 110459 35.69 1 1
IAHLO 109510 109124.47 108774 150.24 1 1
SHLO 110602 110469.79 110342 56.66 1 1
MBDE 110632 110553.12 110462 33.98 0 0
NBDE 110256 109752.20 109320 231.02 1 1
IBPSO 110359 109948.59 109246 222.17 1 1
NBGSK 108155 106374.74 104159 818.68 1 1

5.250.15

DEHLO2 110202 110108.40 110006 36.40 — —
DEHLO1 110191 110092.18 109992 42.80 1 1
IAHLO 109213 108875.59 108564 125.81 1 1
SHLO 110136 110005.03 109797 58.11 1 1
MBDE 110175 110078.90 110001 40.38 1 1
NBDE 109892 109405.00 108941 221.35 1 1
IBPSO 109885 109526.95 108827 227.84 1 1
NBGSK 107897 106311.66 103800 828.51 1 1

5.250.16

DEHLO2 108990 108921.89 108852 29.26 — —
DEHLO1 109002 108905.32 108811 33.75 1 1
IAHLO 107916 107558.11 107196 146.05 1 1
SHLO 108987 108837.38 108712 52.22 1 1
MBDE 109002 108914.46 108837 25.72 1 0
NBDE 108638 108251.11 107792 185.92 1 1
IBPSO 108741 108383.70 107829 186.15 1 1
NBGSK 106606 105029.12 103040 813.45 1 1

5.250.17

DEHLO2 108978 108880.64 108798 38.02 — —
DEHLO1 108979 108875.64 108794 40.73 0 0
IAHLO 107931 107553.41 107164 154.42 1 1
SHLO 108942 108807.05 108662 58.16 1 1
MBDE 108931 108861.85 108756 33.72 1 1
NBDE 108555 108011.37 107658 197.88 1 1
IBPSO 108695 108306.38 107821 190.34 1 1
NBGSK 106414 104892.29 102497 910.07 1 1

5.250.18

DEHLO2 109944 109831.24 109759 33.43 — —
DEHLO1 109908 109821.03 109746 37.57 0 0
IAHLO 109171 108759.55 108514 122.98 1 1
SHLO 109858 109722.03 109575 62.95 1 1
MBDE 109956 109814.82 109654 57.86 1 1
NBDE 109703 109325.19 108829 164.61 1 1
IBPSO 109647 109241.38 108573 212.85 1 1
NBGSK 108304 106184.02 103343 1013.96 1 1

5.250.19

DEHLO2 107023 106945.49 106871 27.69 — —
DEHLO1 106999 106927.56 106833 27.89 1 1
IAHLO 106167 105667.04 105270 154.47 1 1
SHLO 107009 106872.17 106786 49.62 1 1
MBDE 107023 106952.87 106844 27.00 0 0
NBDE 106694 106226.87 105724 248.58 1 1
IBPSO 106679 106364.73 105897 181.83 1 1
NBGSK 104423 102663.29 99947 962.96 1 1

5.250.20

DEHLO2 149623 149543.31 149484 29.41 — —
DEHLO1 149634 149533.39 149468 34.64 1 1
IAHLO 148681 148320.02 147978 140.74 1 1
SHLO 149573 149470.07 149382 41.14 1 1
MBDE 149539 149342.64 149032 110.93 1 1
NBDE 148884 148622.34 148307 123.10 1 1
IBPSO 149306 148955.74 148331 181.61 1 1
NBGSK 147760 146521.63 143993 672.83 1 1

10 Computational Intelligence and Neuroscience
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Table 2: Continued.

Problem Algorithm Best Mean Worst Std t-test W-test

5.250.21

DEHLO2 155940 155897.43 155838 23.65 — —
DEHLO1 155944 155875.40 155806 30.46 1 1
IAHLO 155065 154738.49 154326 144.47 1 1
SHLO 155890 155820.99 155677 41.30 1 1
MBDE 155898 155721.54 155461 99.55 1 1
NBDE 155431 155258.09 154912 91.96 1 1
IBPSO 155691 155382.19 154855 175.20 1 1
NBGSK 154255 152302.20 150353 840.25 1 1

5.250.22

DEHLO2 149301 149239.94 149187 27.44 — —
DEHLO1 149301 149218.06 149147 32.76 1 1
IAHLO 148471 148143.82 147699 146.26 1 1
SHLO 149301 149172.26 149075 45.63 1 1
MBDE 149229 149013.95 148749 114.15 1 1
NBDE 148639 148381.64 147994 137.00 1 1
IBPSO 149091 148772.64 148339 160.97 1 1
NBGSK 147441 146336.57 144699 605.23 1 1

5.250.23

DEHLO2 152130 152084.27 152009 20.64 — —
DEHLO1 152124 152070.18 151999 24.23 1 1
IAHLO 151098 150707.83 150292 169.01 1 1
SHLO 152114 152007.41 151871 49.62 1 1
MBDE 152073 151899.50 151719 90.65 1 1
NBDE 151686 151389.37 150953 159.61 1 1
IBPSO 151898 151463.97 151054 178.66 1 1
NBGSK 150151 148785.67 146882 693.66 1 1

5.250.24

DEHLO2 150353 150297.60 150229 20.04 — —
DEHLO1 150351 150277.77 150199 30.33 1 1
IAHLO 149405 148986.69 148598 153.20 1 1
SHLO 150310 150235.86 150136 40.98 1 1
MBDE 150353 150096.92 149785 137.68 1 1
NBDE 149678 149484.92 149221 103.73 1 1
IBPSO 150095 149672.29 148886 212.06 1 1
NBGSK 148524 146966.44 145005 709.20 1 1

5.250.25

DEHLO2 150045 149978.52 149870 31.92 — —
DEHLO1 150045 149954.51 149868 38.76 1 1
IAHLO 149308 148912.90 148632 131.50 1 1
SHLO 149983 149871.36 149720 53.00 1 1
MBDE 149918 149742.86 149387 99.89 1 1
NBDE 149352 149183.69 148878 83.20 1 1
IBPSO 149895 149532.97 148973 165.35 1 1
NBGSK 148482 147229.26 144434 827.86 1 1

5.250.26

DEHLO2 148574 148507.49 148446 24.57 — —
DEHLO1 148553 148499.85 148425 28.71 1 1
IAHLO 147764 147416.29 147078 146.96 1 1
SHLO 148542 148445.73 148306 46.31 1 1
MBDE 148512 148362.46 148147 91.14 1 1
NBDE 148199 147972.07 147504 106.02 1 1
IBPSO 148405 148015.40 147518 206.74 1 1
NBGSK 146709 145373.45 143358 782.85 1 1

5.250.27

DEHLO2 149767 149746.97 149714 14.04 — —
DEHLO1 149782 149736.77 149684 20.57 1 1
IAHLO 148940 148436.47 147929 186.75 1 1
SHLO 149767 149694.35 149579 36.13 1 1
MBDE 149767 149523.50 149257 103.60 1 1
NBDE 148887 148601.80 148006 185.60 1 1
IBPSO 149628 149230.72 148773 172.73 1 1
NBGSK 147575 146086.06 144103 771.83 1 1
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Table 2: Continued.

Problem Algorithm Best Mean Worst Std t-test W-test

5.250.28

DEHLO2 155075 155012.04 154961 25.70 — —
DEHLO1 155075 154993.48 154914 31.91 1 1
IAHLO 154135 153707.79 153291 165.97 1 1
SHLO 155029 154927.58 154814 38.04 1 1
MBDE 155032 154900.12 154715 69.24 1 1
NBDE 154664 154414.09 153963 144.58 1 1
IBPSO 154806 154514.11 153986 160.66 1 1
NBGSK 153292 151840.26 149513 704.28 1 1

5.250.29

DEHLO2 154668 154640.60 154590 17.70 — —
DEHLO1 154668 154623.56 154542 21.97 1 1
IAHLO 153751 153406.13 153011 140.95 1 1
SHLO 154668 154562.83 154434 52.21 1 1
MBDE 154653 154460.96 154239 76.42 1 1
NBDE 154298 154056.73 153720 108.12 1 1
IBPSO 154641 154136.17 153595 209.88 1 1
NBGSK 152952 151403.32 148808 859.73 1 1

Table 3: /e summary results of the t-test and W-test on multidimensional knapsack problems.

Metric DEHLO2 DEHLO1 IAHLO SHLO MBDE NBDE IBPSO NBGSK

t-test
1 21 30 30 24 30 30 30
0 9 0 0 6 0 0 0

− 1 0 0 0 0 0 0 0

W-test
1 21 30 30 23 30 30 30
0 9 0 0 7 0 0 0

− 1 0 0 0 0 0 0 0

Table 4: /e multidimensional knapsack problem benchmarks.

Benchmark NO. Benchmark name Best known n M
1 mknapcb1–5.100–00 244381 100 5
2 mknapcb1–5.100–01 24274 100 5
3 mknapcb2–5.250–00 59312 250 5
4 mknapcb2–5.250–01 61472 250 5
5 mknapcb3–5.500–00 120130 500 5
6 mknapcb3–5.500–01 117837 500 5
7 mknapcb4–10.100–00 23064 100 10
8 mknapcb4–10.100–01 22801 100 10
9 mknapcb5–10.250–00 59187 250 10
10 mknapcb5–10.250–01 58662 250 10
11 mknapcb6–10.500–00 117726 500 10
12 mknapcb6–10.500–01 119139 500 10
13 mknapcb8–30.250–29 150038 250 30
14 mknapcb9–30.500–29 301021 500 30

Table 5: /e results of all algorithms on the multidimensional knapsack problems.

Problem Algorithm Best Mean Worst Std t-test W-test

NO.1

DEHLO2 24381 24373.92 24337 8.95 — —
DEHLO1 24381 24364.37 24315 18.76 1 1
IAHLO 24381 24297.24 24187 41.30 1 1
SHLO 24357 24347.09 24292 14.41 1 1
MBDE 24332 24327.72 24288 6.59 1 1
NBDE 24381 24285.06 24185 42.22 1 1
IBPSO 24381 24177.04 23862 106.18 1 1
NBGSK 24047 23721.87 23395 140.08 1 1
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Table 5: Continued.

Problem Algorithm Best Mean Worst Std t-test W-test

NO.2

DEHLO2 24274 24274.00 24274 0.00 — —
DEHLO1 24274 24262.90 24149 35.50 1 1
IAHLO 24274 24136.40 23911 89.93 1 1
SHLO 24250 24243.75 24125 27.38 1 1
MBDE 24225 24222.67 24101 16.43 1 1
NBDE 24274 24194.46 23878 95.50 1 1
IBPSO 24274 23964.76 23575 143.60 1 1
NBGSK 23893 23388.82 22930 174.22 1 1

NO.3

DEHLO2 59208 59071.35 58968 45.81 — —
DEHLO1 59196 59054.47 58941 46.52 1 1
IAHLO 58541 58145.82 57831 130.21 1 1
SHLO 59170 58990.19 58845 65.47 1 1
MBDE 58900 58765.98 58643 47.17 1 1
NBDE 58745 58269.03 57715 229.58 1 1
IBPSO 58935 58521.45 57942 188.27 1 1
NBGSK 57486 56579.44 55336 411.20 1 1

NO.4

DEHLO2 61446 61381.94 61268 50.44 — —
DEHLO1 61377 61308.04 61209 46.25 1 1
IAHLO 60550 60117.68 59695 158.28 1 1
SHLO 61435 61274.52 61138 62.09 1 1
MBDE 61139 61096.41 60969 40.32 1 1
NBDE 61078 60269.88 59566 380.60 1 1
IBPSO 61213 60795.96 60073 214.59 1 1
NBGSK 59324 58075.21 56888 516.38 1 1

NO.5

DEHLO2 119661 119457.17 119243 75.81 — —
DEHLO1 119588 119409.80 119223 80.53 0 0
IAHLO 116330 115483.56 114961 249.75 1 1
SHLO 119582 119303.70 119008 110.02 1 1
MBDE 119372 119153.95 118985 93.96 1 1
NBDE 116080 115220.19 114501 406.61 1 1
IBPSO 118959 118292.17 117429 361.22 1 1
NBGSK 115208 112449.12 111021 919.05 1 1

NO.6

DEHLO2 117579 117494.62 117356 44.63 — —
DEHLO1 117662 117498.59 117359 54.85 1 1
IAHLO 114647 113959.66 113396 248.20 1 1
SHLO 117543 117345.74 117099 89.98 1 1
MBDE 117501 117326.38 117141 80.53 1 1
NBDE 115477 113941.85 112855 586.89 1 1
IBPSO 116956 116314.68 115314 330.61 1 1
NBGSK 113416 111349.51 109234 887.34 1 1

NO.7

DEHLO2 23064 23054.91 23026 3.19 — —
DEHLO1 23057 23052.57 22959 11.49 0 1
IAHLO 23055 23040.13 22901 36.68 1 1
SHLO 23041 23032.01 23027 1.17 1 1
MBDE 23018 23009.34 23009 1.36 1 1
NBDE 23064 23029.70 22845 51.32 1 1
IBPSO 23055 22863.90 22574 117.69 1 1
NBGSK 22876 22593.57 22282 113.85 1 1

NO.8

DEHLO2 22801 22714.70 22541 60.08 — —
DEHLO1 22801 22713.56 22547 60.03 0 0
IAHLO 22739 22517.76 22344 78.27 1 1
SHLO 22801 22690.79 22502 79.50 1 1
MBDE 22755 22666.18 22539 53.80 1 1
NBDE 22801 22478.81 22323 77.18 1 1
IBPSO 22725 22386.50 21994 127.65 1 1
NBGSK 22422 22067.62 21844 113.60 1 1

Computational Intelligence and Neuroscience 13
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Table 5: Continued.

Problem Algorithm Best Mean Worst Std t-test W-test

NO.9

DEHLO2 59071 58853.87 58679 73.36 — —
DEHLO1 59012 58796.65 58614 72.72 1 1
IAHLO 58309 58031.44 57679 128.93 1 1
SHLO 59071 58768.92 58551 95.55 1 1
MBDE 58438 58254.09 58112 54.10 1 1
NBDE 58410 57849.68 57416 212.98 1 1
IBPSO 58756 58337.24 57861 182.21 1 1
NBGSK 57378 56515.92 55741 420.44 1 1

NO.10

DEHLO2 58637 58519.04 58359 62.07 — —
DEHLO1 58567 58449.57 58324 53.74 1 1
IAHLO 57946 57355.51 57014 155.67 1 1
SHLO 58599 58447.36 58292 70.06 1 1
MBDE 58596 58457.51 58348 54.78 1 1
NBDE 57715 57135.82 56790 177.76 1 1
IBPSO 58277 57812.49 57285 209.48 1 1
NBGSK 56931 55925.43 55228 289.04 1 1

NO.11

DEHLO2 117149 116895.63 116606 103.48 — —
DEHLO1 117001 116672.01 116433 112.36 1 1
IAHLO 114617 114048.13 113553 230.22 1 1
SHLO 117194 116847.53 116390 130.52 1 1
MBDE 116734 116456.38 116209 118.63 1 1
NBDE 114440 113394.71 112891 300.95 1 1
IBPSO 116597 115690.33 114316 391.02 1 1
NBGSK 112953 111386.10 110305 639.62 1 1

NO.12

DEHLO2 118732 118554.12 118281 98.71 — —
DEHLO1 118663 118426.25 118216 95.64 1 1
IAHLO 116171 115720.44 115233 236.82 1 1
SHLO 118768 118446.03 118100 122.62 1 1
MBDE 118501 118219.57 118029 103.17 1 1
NBDE 115669 114706.44 114207 314.98 1 1
IBPSO 118270 117310.97 116181 383.94 1 1
NBGSK 115125 112837.49 110855 878.62 1 1

NO.13

DEHLO2 149595 149437.59 149346 42.40 — —
DEHLO1 149593 149432.14 149291 49.73 0 0
IAHLO 148784 148447.93 148047 151.62 1 1
SHLO 149496 149374.31 149222 63.78 1 1
MBDE 149510 149352.93 149270 60.66 1 1
NBDE 149204 148977.35 148506 128.08 1 1
IBPSO 149249 148737.54 147408 321.85 1 1
NBGSK 148428 146898.01 144999 821.84 1 1

NO.14

DEHLO2 300152 299931.22 299756 68.23 — —
DEHLO1 300093 299889.33 299704 87.69 1 1
IAHLO 295779 295030.14 294131 367.14 1 1
SHLO 300070 299778.88 299484 117.69 1 1
MBDE 300107 299854.78 299698 71.82 1 1
NBDE 298960 298199.49 295981 600.02 1 1
IBPSO 299290 298355.63 296002 736.99 1 1
NBGSK 296573 293231.65 287069 2210.58 1 1

Table 6: /e summary results of the t-test and W-test on multidimensional knapsack problems.

Metric DEHLO2 DEHLO1 IAHLO SHLO MBDE NBDE IBPSO NBGSK

t-test
1 10 14 14 14 14 14 14
0 4 0 0 0 0 0 0

− 1 0 0 0 0 0 0 0

W-test
1 11 14 14 14 14 14 14
0 3 0 0 0 0 0 0

− 1 0 0 0 0 0 0 0
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Figure 3: Continued.
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Figure 3: Continued.

16 Computational Intelligence and Neuroscience

 8483, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2022/5699472, W

iley O
nline L

ibrary on [12/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



5. Conclusions and Future Work

Human learning optimization is a simplified model of
human learning; it develops three learning operators, i.e.
the random learning operator, the individual learning
operator, and the social learning operator, to search for the
optimal solution. However, the standard HLO just learns
from the global optimal solution; this is inconsistent with
reality. In real life, people can learn from the optimal
solution of other individuals. And the operators of Dif-
ferential Evolution (DE) are updated based on the optimal
solution of other individuals. Inspired by this fact, this
paper introduces the optimization strategy of MBDE into
HLO and presents two novel differential human learning
optimization algorithms based on individual and pop-
ulation. To comprehensively and fairly evaluate the per-
formance of proposed algorithms, the multidimensional
knapsack problems were adopted as the benchmark
problems to test DEHLOs, as well as the standard HLO,
MBDE, and other metaheuristics. /e experimental results
demonstrate that the proposed DEHLOs can utilize the

learning ability of the two algorithms to search for the
optimal solution more efficiently and have a robust search
ability for different problems.

It is well known that humans can adaptively choose and
adjust these approaches to solve problems efficiently and
effectively. However, the impact of adaptive learning strategy
on algorithm parameters is not considered in this paper.
/erefore, one of our future works is to develop adaptive
switching learning strategies to better release the power of
different learning strategies for different problems, which
will be very challenging for future work.
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processed data required to reproduce these findings cannot
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