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Transfer learning with graph neural
networks for improved molecular property
prediction in the multi-fidelity setting

David Buterez 1 , Jon Paul Janet 2, Steven J. Kiddle3, Dino Oglic4 &
Pietro Lió 1

We investigate the potential of graph neural networks for transfer learning and
improving molecular property prediction on sparse and expensive to acquire
high-fidelity data by leveraging low-fidelity measurements as an inexpensive
proxy for a targeted property of interest. This problem arises in discovery
processes that rely on screening funnels for trading off the overall costs
against throughput and accuracy. Typically, individual stages in these pro-
cesses are loosely connected and each one generates data at different scale
and fidelity. We consider this setup holistically and demonstrate empirically
that existing transfer learning techniques for graph neural networks are gen-
erally unable to harness the information frommulti-fidelity cascades. Here, we
propose several effective transfer learning strategies and study them in
transductive and inductive settings. Our analysis involves a collection of more
than 28 million unique experimental protein-ligand interactions across 37
targets from drug discovery by high-throughput screening and 12 quantum
properties from the dataset QMugs. The results indicate that transfer learning
can improve the performance on sparse tasks by up to eight times while using
an order ofmagnitude less high-fidelity training data. Moreover, the proposed
methods consistently outperform existing transfer learning strategies for
graph-structured data on drug discovery and quantum mechanics datasets.

We investigate the potential of graph neural networks (GNNs) for
transfer learning and improved molecular property prediction in the
context of funnels or screening cascades characteristic of drug dis-
covery and/or molecular design. GNNs have emerged as a powerful
and widely-used class of algorithms for molecular property prediction
thanks to their natural ability to learn from molecular structures
represented as atoms and bonds1–3, as well as in the life sciences in
general4–6. However, their potential for transfer learning is yet to be
established. The screening cascade refers to a multi-stage approach
where one starts with cheap and relatively noisy methods (high-
throughput screening, molecular mechanics calculations, etc.) that

allow for screening a large number of molecules. This is followed by
increasingly accurate and more expensive evaluations that come with
much lower throughput, up to the experimental characterisation of
compounds. Individual stages or tiers in the screening funnel are, thus,
used tomake a reduction of the search space and focus the evaluation
ofmore expensiveproperties on thepromising regions. In thisway, the
funnel maintains a careful trade-off between the scale, cost, and
accuracy. The progression from one tier to another is typically done
manually by selecting subsets of molecules from the library screened
at the previous stage or via a surrogate model that focuses the
screening budget of the next step on the part of the chemical space
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around the potential hits. Such surrogate models are typically built
using the data originating from a single tier and, thus, without lever-
aging measurements of different fidelity.

For efficient use of experimental resources, it is beneficial to have
good predictive models operating on sparse datasets and guiding the
high-fidelity evaluations relative to properties of interest. The latter is
the most expensive part of the funnel and to efficiently support it, we
consider it in a transfer learning setting designed to leverage low-
fidelity observations to improve the effectiveness of predictivemodels
on sparse and high-fidelity experimental data. In drug discovery
applications of this setup, low-fidelity measurements can be seen as
ground truth values that have been corrupted by noise, experimental
or reading artefacts, or are simply performed using less precise but
cheaper experiments. For quantum mechanics simulations, low-
fidelity data typically corresponds to approximations or truncations
of more complex and computationally-expensive calculations, such
that the low- and high-fidelity labels are closely related. Thus, it is
natural to expect that incorporating low-fidelity measurements as an
input feature into a high-fidelity model typically improves the perfor-
mance on sparse tasks relative to predictors learnt using the high-
fidelity data alone. Despite its apparent simplicity, even in the trans-
ductive learning setting (i.e., low-fidelity and high-fidelity labels are
available for all data points), it is not trivial to define an adequate
workflow that jointly uses both low- and high-fidelity labels. For
instance, devising an end-to-end training scheme with low- and high-
fidelity labels as part of the same model can be challenging for drug
discovery applications, where the disparity between the numbers of
respective observations is larger than two orders-of magnitude (e.g.,
the number of high-fidelity observations can be over 500 times lower
than that of the low-fidelity ones). Previous work has successfully
applied multi-fidelity learning on several problems7, but as we show in
“Comparison with the multi-fidelity state embedding algorithm” sec-
tion that approach is unfortunately not effective in drug discovery.
While successfully exploiting multi-fidelity data in the transductive
setting is valuable on its own, virtually all high-throughput screening
steps in drug discovery are followed by experiments generating high-
fidelity measurements for molecules that were not part of the original
screening cascade, i.e., lacking low-fidelity labels. Devising an in silico
model of the low-fidelity portion of the screening cascade is thus
highly desirable, as it enables the generation of low-fidelity repre-
sentations (e.g., labels) for arbitrarymolecules thatwerenotpart of the
original funnel. This inductive learning capability is crucial, as drug
discovery requires making predictions about molecules that have not
been made yet, and therefore models that rely on transductive infor-
mation (i.e., measured low-fidelity labels) are generally inapplicable.
Even the highest throughput assays require that the molecules of
interest must be synthesised first.

The main motivation for our transfer learning approach is the
desire to leverage representations learnt from low-fidelity data to
improve the predictive performance on sparse high-fidelity tasks. To
support this goal, we incorporatemodern deep learning architectures,
more specifically graph neural networks, in our workflow.We consider
two modes of transferring that knowledge into the high-fidelity mod-
els: (i) learningmodels for each fidelity independently, with the caveat
that the high-fidelity molecular representation includes the feature(s)
generated, as outputs, by the low-fidelitymodel(s), and (ii) pre-training
a graph neural network on the low-fidelity data and then devising an
effective fine-tuning strategy for the high-fidelity data. Both approa-
ches naturally support transductive and inductive learning settings.
While bothmodesof informationpropagationbetweendifferent levels
of fidelity are applicable to vanilla graph neural network architectures,
it is not necessarily the case that representation transfer will yield
performance improvements. More specifically, we have observed that
transfer learning with graph neural networks has been underutilised

and have therefore performed a detailed empirical study to assess the
capabilities of existing graph neural network architectures for transfer
learning between observations associated with different levels of
fidelity. Our empirical results indicate a critical shortcoming in stan-
dard architectures that severely limits their transfer learning potential
on several learning tasks, namely the readout function responsible for
aggregating embeddings of individual atoms into molecule-level
representations. The design of the readout functions is a funda-
mental aspect of geometric deep learning, and a transition to neural
network-based operators, also called adaptive readouts or neural
readouts, over simple and fixed functions such as sum or mean has
only recently been studied extensively8. More specifically, we leverage
the famous attentionmechanism9, which is increasingly used in the life
sciences in different forms10–13. However, adaptive readouts and their
fine-tuning have not been characterised in relation to their transfer
learning potential, which we address as part of this study. The transfer
learning capabilities enabled by adaptive readouts are further sup-
ported with a supervised variational graph autoencoder designed to
learn a structured and expressive chemical latent space that can be
used for downstream sparse high-fidelity tasks.

The proposed framework has been evaluated on a heterogeneous
collection of transfer learning tasks, including a drug discovery col-
lection of 37 different protein targets (more than 28 million unique
experimental protein-ligand interactions in total) and 12 quantum
properties from the dataset QMugs (around 650K drug-like mole-
cules). The analysis involves several different baselines, ranging from
graph neural networks to random forests and support vector
machines. Our empirical results highlight the importance of transfer
learning in low-data regimes, which are encountered in drug discovery
projects relying on high-throughput screening and are not uncommon
in quantum simulations. More specifically, we vary the size of the
training set on high-fidelity data and show that transfer learning can
improve the accuracy of predictive models by up to eight times while
using an order of magnitude less high-fidelity training data. In the
transductive setting, we notice that the inclusion of the actual low-
fidelity label typically amounts to performance improvements
between 20% and 60%, and severalfold in the best cases. However, out
of the total of 51 transductive experiments, transfer learning via label
augmentation was the best-performing method in only 10 instances,
with the graphneural network schemes introducedhereproving as the
most effective 80% of the time (Table 1). For the more challenging
inductive learning setup, we notice substantial improvements in per-
formance due to latter methods, typically between 20% and 40% in the
mean absolute error and up to 100% in R2. These performance
improvements are mainly due to alleviating the shortcomings of non-
adaptive readouts in classical graph neural networks. While on quan-
tum mechanics problems standard graph neural networks are com-
petitive, particularly if they are extensive and non-local (which agrees
with the existing literature), they are still outperformed by fine-tuning
strategies involving adaptive readouts. In drug discovery tasks, on the
other hand, the standard/vanilla graph neural networks significantly
underperform the baselines. For completeness, we also provide com-
parisons with state-of-the-art strategies for multi-fidelity learning and
transfer learning with graph-structured data, in the form of the multi-
fidelity state embedding (MFSE) algorithmproposed in7 and a variation
of pre-training and fine-tuning devised by14. Unfortunately, neither of
the two approaches performsparticularlywell on drugdiscovery tasks.
We take several steps towards ensuring that our framework is general
by firstly extending to a scenario with real-world data that has more
than two levels of fidelity. Furthermore, for this setting we also eval-
uate a model operating directly on 3D molecular structures (the
SchNet architecture15,16) in placeof a typical graphneural network, thus
validating transfer learning with adaptive readouts on this family of
widely-used and state-of-the-art models as well.
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Related work
In terms of related work, introducing a funnel of increasingly expen-
sive and accurate measurements is a common feature in molecular
design. In drug discovery, this is exemplified by high-throughput
screening (HTS) and follow-up assays, while in quantum mechanics
(QM) there are different levels of theory. In all cases, practitioners are
most interested in results from the most accurate level, both in
transductive and inductive settings. High-throughput screening is one
of the core methods for identifying starting points in drug develop-
ment and it is responsible for approximately one-third of newly dis-
covered drug candidates17–19. During HTS, the activity of millions of
compounds against a target is evaluated using a multi-stage/tier
approach, generating large data collections with different levels of
fidelity20. The first stage corresponds to primary screening and con-
sists of low-fidelity measurements for up to two million diverse
compounds21. Primary screening traditionally acts only as a filter for
identifying the most likely candidates for the more expensive and
precise second stage, a confirmatory screening. The confirmatory step
typically provides high-fidelity measurements for no more than
10,000 carefully-selected compounds, acting as another filter prior to
lead optimisation. The confirmatory screening is typically done
sequentially via multiple batches, whereas the primary screening is
performed only once and it is impractical to run additional experi-
ments at this scale as subsequent designs are typically synthesised in
small batches. Another example where the funnel approach is relevant
is the prediction of molecular properties by computational chemistry,
typically with quantum mechanics simulations. In these cases, the
accuracy of the simulations is tuned by using different levels of theory
with different computational costs. Currently, QM simulations at the
scale of millions of molecular geometries are possible at the density-
functional levels of theory (DFT) or less accurate semi-empirical
methods22–24, and through approximations of the gold standard
CCSD(T) method25. Due to extreme computational costs, the use of
accurate methods such as G4MP2, CCSD(T), or CCSDT is only feasible
for a few thousand molecular conformations with typically less than a
dozen atoms22,26.

In quantum chemistry, a family of establishedmethods is given by
the so-called Δ-predictors14,23,27,28, which are designed for the trans-
ductive setting and focus on learning additive corrections of the low-
fidelity measurements when estimating the properties of interest.
These approaches are defined only for quantum properties and thus
on a chemical space of limited diversity (e.g., only 3,114 unique mole-
cules for ANI-1x/ANI-1cxx, with the heaviest atom being oxygen). Fur-
thermore, not many high-quality datasets exists to support multi-
fidelity data modelling, with the very recently introduced QMugs
dataset23 and our ownMF-PCBA collection29 being notable exceptions.
As such, the standard choice for data, techniques, and model archi-
tectures remains single-fidelity, even for recent quantum machine
learning efforts (e.g., Alchemy30, QM7-X31, nablaDFT24). Thus, the
benefits of obtaining and holistically modelling molecular data

produced at different fidelity levels remains insufficiently explored. In
drug discovery, for instance, the benefits of leveraging millions of
experimentally-derived molecular measurements at different fidelity
levels is particularly understudied. As recent large-scale drugdiscovery
efforts focus mainly on increased automation, reproducibility, and
cost-effectiveness21, the burden of making sense of the immense col-
lections of molecular interactions falls onto computational methods.
Integrative modelling of multi-fidelity data and improved molecule-
level predictions could lead to cost-savings by reducing or avoiding
some of the expensive wet-lab experiments, the identification of new,
promising compounds, more informed experiments for ongoing
projects, and hybrid wet-lab and in silico workflows. However, existing
studies of real-world drug discovery data are built on a single-fidelity
paradigm, even more so than in the case of quantum mechanics
funnels32–37.

Screening cascades with multi-fidelity outputs have a long-
standing history in materials chemistry as well. For instance, Yang et
al.38 have recently proposed a two-step approach to improve the pre-
dictions of the short circuit density and fill-factor by leveraging data
from low-fidelity simulators. The first step in that approach relies on an
unsupervised autoencoder to extract a compressed representation of
microstructure images. The second step then leverages the learnt
latent space embedding augmented with a low-fidelity label to train a
surrogate model on the high-fidelity dataset. In contrast to our
approach, transfer learning is done on images and not on graph-
structured data, and the latent space embedding is learnt without
supervision done via low-fidelity data points. Furthermore, a com-
pletely unsupervised approach is unlikely to translate to molecules, as
such representations are difficult to use for property-based down-
stream prediction tasks39. Another interesting approach to multi-
fidelity learning is the composite neural network by Meng and
Karniadakis40 that aims to learn the parameters of inverse PDE (partial
differential equation) problems with non-linearities. However, the
approach is designed for problemswhere the correlation between low-
and high-fidelity data is unknown, a case that is not generally
encountered in drug discovery or quantum simulations. It has been
applied in the context of PDEs with shallow and small neural networks
and has only been evaluated on relatively small datasets (between
30,000 and 45,000 samples) with mainly uni-dimensional functions.

Multi-fidelity learning also has applications in active learning and
Bayesian optimisation, where one aims to iteratively optimise a black-
box function using a fixed budget of high-fidelity evaluations. The
main motivation for this setup is the desire to leverage low-fidelity
simulations to eliminate regions with low function values using an
inexpensive proxy for a targeted property of interest. The expensive
high-fidelity evaluations are then used in small but promising regions
to quickly find the optima. Fare et al.41 have used amulti-task Gaussian
process in this setting formaterials design and screening ofmolecules.
While Gaussian processes have the advantage of being able to perform
uncertainty quantification, the computational complexity (cubic) can

Table 1 | A count of the best augmentation strategy for each of the three groups of datasets

Neural Sum

Label Emb. Pred. label Hybrid label Tune readout Emb. Pred. label Hybrid label Tune network

AZ 2 3 1 2 8 0 0 0 0

PubChem 4 2 1 0 15 0 1 0 0

QMugs 4 5 0 0 3 0 0 0 0

Subtotal 10 10 2 2 26 0 1 0 0

Total 10 40 (Neural) 1 (Sum)

AstraZeneca (AZ), PubChem, and the QMugs 10K diverse set, in the transductive setting, and as ranked by ’%MAE decrease’ (see “Results”). The first row of headers (Neural and Sum) refers to the
type of graph readout function used for the low-fidelity models, while the second row specifies the transfer learning strategy. The 10 cases where the labels are preferable are discussed in detail in
Supplementary Notes 15 and Supplementary Table 4. Bold is used for the table headers.

Article https://doi.org/10.1038/s41467-024-45566-8

Nature Communications |         (2024) 15:1517 3



be a challenge for large-scale low-fidelity datasets. The problem setting
in that approach is also significantly different from the one studied
here, as their main focus is to extend Bayesian optimisation for
materials design from a single-task sample-efficient setup to multi-
fidelity models capable of leveraging information from different
sources. Previously, Patra et al.42 have also employed multi-fidelity
Gaussian processes to predict polymer band gaps on a small dataset of
382 polymers. Perhaps the closest to our work is the custommessage-
passing algorithm by Chen et al.7, which is the first notable work on
multi-fidelity graph neural networks. The algorithm, which we refer to
as multi-fidelity state embedding or MFSE for short, proposes a small
modification to the standard message passing workflow, where in
addition to node (atom) and edge (bond) messages and update func-
tions, a statemessage is constructed and updated alongside them. The
state embedding is a global attribute of the graph (molecule), and it is
updated according to a fidelity encoding that is present for each data
point. In other words, during training eachmolecule is associated with
its structure, regression label, and a fidelity indicator (e.g., low or high)
that is used to propagate fidelity-specific messages. The approach has
two shortcomings: (i) as in Fareet al., jointly trainingon allfidelities can
beproblematicwhen the low-fidelity data outnumbers the high-fidelity
samples by more than two orders-of magnitude, as the high-fidelity
information can effectively be lost, and it remains to be explored if the
state embedding mechanism can account for this (see “Comparison
with the multi-fidelity state embedding algorithm” section), and (ii)
coupling low- and high-fidelity training means that to enable high-
fidelity inference, themodelmust be trained on the entirety of the low-
fidelity data, dramatically increasing the training times and resource
utilisation. In43 a general approach has been proposed for recursively
modelling more than two fidelity levels by means of feature augmen-
tation where a high-fidelity data representation includes a predicted
low-fidelity label associated with the previous screening step. This
approach is similar to our baseline for the inductive setupwhere a low-
fidelity proxy is obtained using a surrogate model.

Results
This section provides a comprehensive empirical analysis of all the
transfer learning techniques described in the “Feature augmentation
via low-fidelity simulations” section (“Methods”). We evaluate the
effectiveness of different feature augmentations for transfer learning
given by: (1) explicit low-fidelity labels, (2) labels predicted by the low-
fidelity models (with both sum and adaptive readout variants), (3)
explicit low-fidelity labels during training and predicted ones during
inference (a hybrid approach), (4) latent space embeddings generated
by low-fidelity models (with both sum and adaptive readout variants)
and two fine-tuning strategies tailored for graph neural networks: (5)
pre-training and fine-tuning a standard GNN similarly to Smith et al.14,
and (6) fine-tuning of the adaptive readout in models that were pre-
trained on low-fidelity data, while keeping fixed the weights in other
layers. All the methods are compared relative to baselines trained
exclusively on sparse high-fidelity data as the goal is to improve their
predictive ability in that setting. The effectiveness of different strate-
gies is illustrated on a suite of experimentswith the following structure
and goals:

1. Learning with standard and adaptive readout-based VGAEs
exclusively on the low-fidelity data (Fig. 1, step 2, and Fig. 2,
bottom) that is available in large, diverse, and heterogeneous
datasets to assert their capacity to learn structured concepts
(“Learning with graph neural networks via standard and adaptive
readouts” section). This is a foundational contribution that
indicates the potential of adaptive readouts for fitting the data
and their ability to transfer knowledge from latent embeddings to
new tasks via fine-tuning operations.

2. Learning predictive models on sparse high-fidelity data that
incorporate the raw low-fidelity labels, indicating their utility for
transfer learning in the transductive setting (see “Effectiveness of
transfer learning strategies in the transductive setting” section).

3. Learning predictive models on sparse high-fidelity data that
incorporate representations (e.g., latent space embeddings or
predicted labels) generated by low-fidelitymodels in transductive
(see “Effectiveness of transfer learning strategies in the transduc-
tive setting” section) and inductive (see “Effectiveness of transfer
learning strategies in the inductive setting” section) settings.

4. Fine-tuning of low-fidelity models on high-fidelity data, high-
lighting a strategywhere only the adaptive readout is retrained on
small-sample tasks. Our empirical results demonstrate superb
performance of this strategy and that it outperforms fine-tuning
standard GNNs (see “Effectiveness of transfer learning strategies
in the transductive setting” section).

5. Evaluating all the presented strategies while varying the high-
fidelity training set size, demonstrating severalfold improvements
while using an order of magnitude less training data (see
“Effectiveness of transfer learning strategies while varying the
size of the training sample in sparse high-fidelity tasks” section).

6. Evaluating the proposed strategies relative to established multi-
fidelity and transfer learning techniques on a set of representative
datasets. In addition to pre-training and fine-tuning standard
GNNs14, we also compare to the multi-fidelity state embedding
(MFSE) approach of7 and show that neither of them offers
significant improvements on drug discovery tasks (see “Compar-
ison with the multi-fidelity state embedding algorithm” section).

7. Evaluating an extension of transfer learning strategies to more
than two fidelities. More specifically, we demonstrate that mul-
tiple lower-level fidelity inputs can be successfully integrated
and that they can work synergistically, improving performance
of downstream models when used jointly compared to indivi-
dually incorporating them. In this suite of experiments, we use
SchNet as the underlying architecture, further validating the
effectiveness of transfer learning strategies across a different
and widely-used family of GNNs (see “Extending to multiple
fidelities” section).

We conclude this overview of our empirical study by highlighting
two of the main reasons behind our extensive suite of evaluated aug-
mentations (corresponding to points (1)–(4) above): (i) there are
multiple possible ways of transferring knowledge from separately
trained low-fidelity models and some might be more adequate for
certain protein targets or quantum properties, dataset sizes, or fidelity
correlations; (ii) every time an adaptive (neural) readout is used, we
also report the result for the equivalent model with a sum readout (in
an attempt to simulate an approximately similar inductive bias in the
feature extraction part of graph neural networks). The proposed
augmentations are agnostic to the underlying architectures and, thus,
the main goal of these baselines is to illustrate the limited potential of
standard GNN readout functions for transfer learning in multi-fidelity
settings.

Learning with graph neural networks via standard and adaptive
readouts
To assess the potential of adaptive readouts for enabling high-capacity
hypothesis spaces, we train two models on low-fidelity data, with
identical architectures and hyperparameters but different readouts.
More specifically, we use the sum operator as a representative of the
standard readouts (performs similarly to mean and maximum on
bioaffinity tasks8) and the Set Transformer as an adaptive (neural)
readout8. As a further quality check for the drug discovery tasks, we
consider a ‘null hypothesis’ that predicts the dataset mean for each
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molecule, which is a relevant baseline because HTS data is biased
toward low activity.We trained supervised VGAEs independently on all
of the low-fidelity data for each multi-fidelity dataset. Our empirical
results indicate that the performance of the sum readout models
generally closelymatches or even does worse than the null hypothesis
(Fig. 3A, B) for all drug discovery tasks, but is more competitive on the
quantum tasks, particularly for the extensive and global properties
such as the total energy. This agrees with the existing literature and
highlights the unique challenge posed by the HTS data. For drug dis-
covery, the adaptive readout models offer severalfold improvements
in the capacity to learn from the low-fidelity data, as measured by the
MAE (Fig. 3) and R2 (Supplementary Fig. 1), with smaller but noticeable
improvements for QMugs. The uplifts observed here translate to bet-
ter downstream performance in both transductive and inductive set-
tings, as can be seen from “Effectiveness of transfer learning strategies
in the transductive setting” section onward. At the same time, models
using adaptive readouts exhibit a characteristic structuring effect on
the latent space with respect to the low-fidelity domain, as visualised
using 3DUMAP (Fig. 3C). For the drug discovery data, we notice a clear

and often continuous demarcation of active and inactive compounds,
an effect that is not present when using standard readouts, which
generate scattered and less informative representations. Similar
effects can be observed for quantum properties.

Effectiveness of transfer learning strategies in the transductive
setting
In this section, we systematically evaluate the performance of all the
proposed low-fidelity augmentations on our HTS-based drug dis-
covery collection and on QMugs in the transductive setting (i.e., real,
experimentally-derived low-fidelity labels are available for drug dis-
covery, with semi-empirical xTB labels for QMugs), with a standard
train, validation, and test evaluation workflow (Fig. 4). The transduc-
tive setting acts not only as an excellent machine learning benchmark,
but is also of practical use in drug discovery as it enables higher quality
predictions in the high-fidelity domain for the millions of compounds
that are present in the screening cascade. To this end, we train models
on sparse high-fidelity data and incorporate different representations
of low-fidelity information (strategy 1, and strategies 2–4 with both

Fig. 1 | An overview of transfer learning approaches that leverage low-fidelity
data to improve predictions on sparse high-fidelity tasks. The illustration
depicts a typical drug discovery scenario where a large dataset of noisy observa-
tions is followed by a sparse, high-fidelity set of measurements obtained via
expensive and time-consuming assays. The workflow (steps 1, 2, 3) is general and
can be applied to other settings, e.g., quantummechanics. (Top panel) A traditional
HTS (high-throughput screening) experiment generates a massive but noisy set of
low-fidelity measurements (primary screening, measuring the activity ofmolecules
at a single concentration, indicated using the format ‘@concentration’). An orders-
of-magnitude smaller set of molecules is selected for a high-fidelity experiment,
such as a confirmatory screen. (Middle panel, bottom) Our proposed transfer
learning framework illustrated with three high-level steps in a drug discovery

context. Firstly, the corresponding low-fidelity single dose (SD) and high-fidelity
dose-response (DR) data are assembled into a multi-fidelity dataset. DR values
correspond to confirmatory screens measuring a ‘pXC50’ activity value (the effect
X∈ {I = inhibitory, E = effective, A = activatory}), representing the concentration
required for a 50% effect. DR is only available for a fraction of the entire dataset,
hence some compounds are not available (‘N/A’). Secondly, a graph neural network
(GNN) is trained on the large primary screening dataset (low-fidelity or LF),
modelling an extensive and diverse chemical space of interest. Finally, at the third
step, the molecular structure, supplemented with the molecular fingerprint/
representation learnt at the second step, is used to train models of confirmatory
activity (high-fidelityorHF), includingbothdeep learning and classical algorithms.
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sum and neural readout variations), or fine-tune the low-fidelity
models from “Learning with graph neural networks via standard and
adaptive readouts” section (strategies 5 and 6). The number of times
each strategy ends up as the best performing one is provided in
Table 1.

For the drug discovery tasks, we noticed consistent decreases in
MAE between 10% and 40% just by the inclusion of raw low-fidelity
single-dose labels, with only a few exceptions (Supplementary Figs. 2
and 5–7 for the remaining datasets). Moreover, we notice that aug-
menting with neural embeddings can outperform the actual low-
fidelity labels by up to 10%. The predictions generated by neural
readout low-fidelity models, either by themselves or in a hybrid set-
ting, are generally slightly worse than the embeddings but comparable
to the raw labels (Fig. 4). In contrast, the embeddings and predictions
produced by sum readout low-fidelity models struggle to achieve any
decrease in MAE, occasionally even degrading the performance. The

inability of the sum readout low-fidelitymodels to fullymodel the data
is particularly emphasised by the hybrid augmentation, where the
actual experimentally-derived labels are used during training and the
predicted ones for evaluation. The significant decrease in the effec-
tiveness observed in this case indicates the disparity between the
space covered by the raw labels and the information carried by sum
readout low-fidelity models, which agrees with previous observations
(“Learning with graph neural networks via standard and adaptive
readouts” section).

In addition, we evaluate fine-tuning strategies for sum and neural
readout low-fidelity models. The former, without a learnable readout
function and any frozen components, generally struggles to improve
to the same degree or is even worse compared to other sum-based
augmentations. In contrast, pre-training and fixing the graph layers,
followed by fine-tuning of the neural readout generally matches the
other neural-based augmentations and is even preferable by a large

Fig. 2 | The proposed supervised variational graph autoencoder (VGAE) pre-
sented schematically in a typical drug discovery scenario with a large and low-
fidelity (LF) high-throughput screening dataset, and a sparse and high-fidelity
(HF) confirmatory screening dataset. Graph convolutions are used to propagate
and learn atom-wise representations according to the connectivity imposed by the
bonds, which are then aggregated into a single molecule-level representation or
embedding (a fixed-dimension vector). The readouts are standard pooling func-
tions, e.g., sum,mean,max, or neural networks (adaptive aggregators). The symbol
∥ denotes concatenation, μ(x) and σ(x) denote the mean and standard deviation
learnt by the VGAE, and ‘Dense NN’ is amulti-layer perceptron. The four workflows
presented in this figure are listed in the top right and correspond to the first four

experiments presented in “Results”. A low-fidelitymodel is first trained with
supervised information to produce latent space embeddings z*(E1). A separate
model with the same architecture can then be trained to predict high-fidelity
values, by concatenation with either the actual labels (E2) or embeddings/predic-
tions generated by the LFmodel (E3). A strategy unique to graph neural networks
with adaptive readouts is that of pre-training amodel on LFdata as in (E1) and then
fine-tuning exclusively the adaptive readouts with the VGAE layers being frozen
(E4). We also emphasise that the learnt low-fidelity embeddings/predictions can be
integrated into any machine learning algorithm (e.g., support vector machines,
random forests, etc.).
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Fig. 3 | Systematic evaluation of the ability ofmodels based on different graph
readout functions to learn from large-scale and complex datasets. A TrainMAE
for the PubChem low-fidelity models, with amodel predicting the dataset mean for
comparison. The MAE values are scaled to the range [0, 1] for each dataset. B The
same but for the AstraZeneca and QMugs models. C 3D UMAP latent space visua-
lisations for a selection of low-fidelity models using sum and neural readouts.

Similar effects are observed for other datasets. The dataset sizes are: 1581928 (AZ-
SD9), 1700745 (AZ-SD-1), 98472 (AID1949), 311910 (AID449762), and 647794
(QMugs after filtering).MAE denotes themean absolute error and UMAP stands for
uniform manifold approximation and projection. Source data are provided as a
Source Data file.
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margin for datasets such as AZ-DR-R7, AZ-DR-R13, and AZ-DR-R14
(Fig. 4). Tomimic theHTS setting onQMugs, we selected a diverse and
challenging set of 10K molecules (Supplementary Notes 5.1). The QM
models are of particular interest as certain quantum properties are
naturally additive and non-local, such that the sum readout is theore-
tically capable of modelling those tasks44,45. While we explore this
dynamic in46, here we report similar trends as for drug discovery,
namely that the adaptive embeddings and fine-tuning the adaptive
readouts outperform the raw labels by a large margin, with the
exception of the four dipole properties which are particularly difficult
to learn (see Supplementary Notes 15 for a possible explanation).

However, for a large selection of properties such as the HOMO and
LUMOenergies and rotational constants, the low-fidelity xTB labels are
completely ineffective, whereas the adaptive readout strategies lead to
improvements between 20% and 80% in MAE, depending on the
properties. For additive properties such as the atomic, formation, and
total energies, the sum readout is competitive, as expected, although it
is still outperformed by adaptive readouts. In this transductive setting,
for drug discovery and QMugs, we report a statistically significant
relationship between the uplift in performance (‘%MAE decrease’) and
linear correlation (Pearson’s r) between the low and high-fidelity
measurements (Fig. 5A).

Fig. 4 | Systematic evaluation of drug discovery (AstraZeneca, PubChem) and
quantummechanics (QMugs) datasets in the transductive setting. The test set
performance of high-fidelity models with augmentations based on sum and neural
readout-based low-fidelity (‘LF’) models, including fine-tuning (denoted by ‘Tune’,
see “Methods” section) is presented. ‘Emb.’ corresponds to the incorporation of
low-fidelity embeddings, ‘Pred. lbl.’ corresponds to the predicted labels (outputs)
of LF models, ‘Hyb. lbl.’ signifies training with raw labels and evaluating on LF-
predicted labels, and ‘readout’ denotes the graph readout function. The

AstraZenecadatasets arenamedbasedon the high-fidelity (DR, dose-response) and
low-fidelity (SD, single dose) datasets. The abbreviations are: AZ AstraZeneca, AID
assay identifier, VGAE variational graph autoencoder, MAE mean absolute error,
DFT density-functional theory. The remaining results (other datasets) are available
in Supplementary Figs. 2 and5 to7,with random forest and support vectormachine
results in Supplementary Figs. 3, 4 and 8 to 11. Source data are provided as a Source
Data file.
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Effectiveness of transfer learning strategies in the inductive
setting
We now turn our attention to one of the most challenging scenarios
encountered during computationally-assisted early-stage drug dis-
covery: improving predictions in an inductive setting with possible

out-of-distribution test samples relative to the training data. Here, we
used the entire high-fidelity data discussed in the previous section for
training, and used test molecules that were selected later in the drug
discovery campaign (i.e., lacking low-fidelity labels) for evaluation.
This set of test molecules is referred to as a ‘no low-fidelity set’. It is

Fig. 5 | Systematic evaluation of drug discovery (AstraZeneca, PubChem)
datasets in the inductive setting and their learnt trends, and an analysis of
dataset correlations. A Scatter plots of the low-fidelity/high-fidelity correlation
measured by Pearson’s r for each dataset (x-axis) and the relative MAE decrease
computed for the neural embeddings-augmented transductive models with
regards to the non-augmented baseline (y-axis), with the regression line for the two
variables and 95% confidence intervals for the regression. B Systematic evaluation
of high-fidelity models using sum and neural embeddings in an inductive setting,
where the previous train, validation, and test splits from Fig. 4 are used for training
and testing is performed on compounds that were measured in subsequent HTS
stages. We have also observed cases where both sum and neural-based augmen-
tations did not provide uplifts or even decreased performance (Supplementary
Fig. 12 for all the remaining datasets). C Example of a model evaluated in this

inductive setting where we supply low-fidelity labels (Z-Score) ranging from −50 to
50 in 0.5 increments. Models that rely on sum-based low-fidelity predictions learn
nonsensical relationships with linearly increasing pIC50 values. As expected, this is
alleviated by the hybrid augmentation, where training uses the raw labels. In con-
trast, neural-basedpredictions are initiallymore conservative than the baseline and
slowly surpass the non-augmentedmodels in termsof predicted activity. Themulti-
fidelity drug discovery datasets are named based on the high-fidelity (DR dose-
response) and low-fidelity (SD single dose) datasets. The abbreviations are: AZ
AstraZeneca, AID assay identifier, DFT density-functional theory, GFN2-xTB geo-
metry frequency noncovalent eXtended tight binding, pIC50 negative logarithm of
the half maximal inhibitory concentration,MAEmean absolute error, R2 coefficient
of determination, AUROC area under the receiver operating characteristic, MCC
Matthews correlation coefficient. Source data are provided as a Source Data file.
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possible to encounter multiple such sets within the same project. For
brevity, we focus only on embeddings generated by models with
adaptive readouts and the sum counterpart for comparison.

For all categories of datasets (originating from public or private
sources; regression and/or classification tasks), we report substantial
increases in performance when using adaptive readouts, often
between 20%–40% in MAE and up to 100% in R2 (Fig. 5B), with a
remarkable uplift for the classification task AZ-DR-C2, where the MCC
increased from 0.69 to its maximal value of 1.0. We are again able to
identify that the embeddings produced by sum readout low-fidelity
models lead to performance degradation compared to the plain non-
augmented baseline. While the augmentations given by the sum
readout models carry some low-fidelity information, their effective-
ness is further limited by a different problem. Namely, for AZ-DR-R11
we selected the most active compound in the test set (Fig. 5C) and
supplied thehigh-fidelitymodelswith simulated low-fidelity labels (i.e.,
Z-Score values ranging from −50 to 50 in 0.5 increments). We lever-
aged models augmented with predicted labels as we can directly
provide artificial values, unlike for the variation with embeddings. We
discover that models that rely on sum readout-based low-fidelity
models fail to learn a meaningful relationship between the provided
label and the target pIC50, as the pIC50 value steeply increases to
unlikely quantities even for common Z-scores in the range of −20
to −30.

Effectiveness of transfer learning strategies while varying the
size of the training sets in sparse high-fidelity tasks
To illustrate the importance of leveraging low-fidelity measurements
in small-sample regimes characteristic of high-fidelity tasks, we eval-
uate the previously discussed transfer learning strategieswhile varying
the training set sizes of high-fidelity data and maintaining fixed vali-
dation and test sets in the same high-fidelity domain. We selected the
largest drug discovery dataset (AZ-DR-R2), having slightly under

12,000 molecules in the high-fidelity domain (confirmatory screen)
and assembled random training subsets of sizes 1K, 2.5K, 5K, and 10K,
such that larger training samples contain all the molecules of the
smaller subsets, with fixed validation and test sets of equal sizes from
the remaining data outside the 10K training set. For QMugs, we used
the same diverse set of 10Kmolecules with high-fidelity DFT labels as a
starting point and challenging train, validation, and test splits of size
8K, 1K, and 1K respectively (Supplementary Notes 5.1). We then gen-
erated high-fidelity training subsets of sizes 25K, 50K, 100K, and 300K
following the same strategy as for drug discovery, keeping the vali-
dation and test sets of size 1K fixed. We demonstrate the effects of
transfer learning in both transductive (low-fidelity datasets contain the
molecules appearing in the high-fidelity subsets) and inductive set-
tings (adjusted low-fidelity datasets where the molecules appearing in
high-fidelity subsets are removed). For brevity, we illustrate only the
transfer by embeddings strategy, generated by low-fidelity models
trained in either transductive or inductive settings.

The feature augmentations based on adaptive and sum readout
low-fidelity models are compared to baseline non-augmented models
and the raw low-fidelity labels, with test set metrics reported in Fig. 6.
On AZ-DR-R2, we notice a large uplift just by the simple inclusion of
low-fidelity labels (from 0.049 to 0.331 in R2 for the 1K split). In con-
trast, the best performance of non-augmented models is achieved for
the 5K training set size (R2 of 0.220), which ismore than 50% lower than
the performance on the 1K set with low-fidelity labels. Adaptive
embeddings produced in a transductive setting improve over 8 times
over the baseline R2 (0.455) and by 37.39% over the raw labels. The
adaptive embeddings produced in an inductive setting generally
match the raw labels, even outperforming them for the 1K training set
size. Both sum embeddings perform similarly, improving upon the
baseline but not matching the raw labels. We notice similar trends for
different quantum properties. For example, in a transductive setting,
the MAE is almost halved for LUMO energy, and it is reduced by 4–8

Fig. 6 | Evaluation of transfer learning models with different training set sizes.
Test metrics for high-fidelity models with fixed validation and test sets but varying
train set sizes and different strategies, in transductive and inductive settings. The
rest of the quantum properties are available in Supplementary Fig. 13. The

abbreviations are: AZ AstraZeneca, DFT density-functional theory, HOMO highest
occupied molecular orbital, LUMO lowest unoccupied molecular orbital, MAE
mean absolute error, R2 coefficient of determination. Source data are provided as a
Source Data file.
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times on the total and atomic energies and the rotation constants for
the most relevant 8K training split. Interestingly, for that split the
embeddings learnt in the significantly more challenging inductive
setting often outperform the actual low-fidelity label. Depending on
the quantum property, these observations can generalise even to the
splits that use more high-fidelity training data (e.g., for total and
atomic energies, rotational constants, and LUMO and HOMO energies
to an extent). Representations learnt by sum readout low-fidelity
models can lead to an improvement compared to the baseline models
(no augmentation), however by a much smaller amount.

Comparison with the multi-fidelity state embedding algorithm
In this section, we compare the proposed strategies with a recently
proposed graph neural network architecture devised specifically for
multi-fidelity learning onmolecules, whichwe refer to as ‘multi-fidelity
state embedding’ or MFSE for short7. We evaluate MFSE on a

representative selection of 3 public and 3 AstraZeneca drug discovery
datasets. The datasets with the largest performance uplift when using
low-fidelity information were chosen to maximise the chance of MFSE
being effective. Unfortunately, MFSE is not competitive with the pro-
posed methods on any of the selected drug discovery datasets, as can
be seen fromFig. 7B. As a sanity check for the algorithm, we include an
instance where MFSE is trained only on high-fidelity data (‘Only HF’),
which performs similarly to our HF-only baseline. However, when used
in the intended way (‘HF + LF’), the performance does not consistently
increase and even decreases in a number of instances. This inability to
model both fidelities at the same time highlights the unique challenge
posed by HTS drug discovery and the need for more effective transfer
learningmethods. At the same time, the ineffectiveness of MFSE when
using both low- and high-fidelity labels shows that it is not trivial to
incorporate low-fidelity information into a model even when multi-
fidelity data is available.

Fig. 7 | Evaluation of transfer learning models with multiple fidelities and a
comparison with the multi-fidelity state embedding algorithm. A Test metrics
for QM7b models leveraging three fidelities corresponding to the ZINDO, PBE0,
and GW levels of theory (`LoT') and their correlations. B. Evaluation of the transfer
learning strategies in a transductive setting and in the context of the established
multi-fidelity state embedding (MFSE) method. The multi-fidelity drug discovery

datasets are named based on the high-fidelity (DR dose-response) and low-fidelity
(SD single dose) datasets. The abbreviations are: AZ AstraZeneca, AID assay iden-
tifier, HOMO highest occupied molecular orbital, LUMO lowest unoccupied
molecular orbital, MAEmean absolute error. Source data are provided as a Source
Data file.
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Extending to multiple fidelities
Our empirical analysis so far has assumed that transfer learning occurs
between two clearly defined fidelity levels — ‘low’ to ‘high’. This is
traditionally the case for the majority of drug discovery by HTS pro-
jects and QMugs, the first large-scale multi-fidelity QM dataset, with
themajority of the latter being single-fidelity. However, it is interesting
to consider the case where more than two fidelities are present.
Although this is not a common setting, we have selected the well-
known QM7b dataset47–49 which possesses HOMO and LUMO energy
calculations at three different levels of theory: ZINDO, PBE0, and GW.
For QM7b, as for the majority of datasets with more than two levels of
fidelity7 there is an ‘ordering’ of fidelities according to their precision:
ZINDO<PBE0 <GW.

The strategies involving the inclusion of the low-fidelity labels or
embeddings can be trivially extended to a setting with more than two
fidelities. Concretely, a separatemodel is trained for each lowerfidelity
(here, ZINDO and PBE0), and the corresponding labels or embeddings
are added to the high-fidelity model (here, GW) as usual. We have
evaluated the direct inclusion of the low-fidelity labels, as well as
embeddings generated by sum and adaptive readouts, both individu-
ally (i.e., only ZINDO or PBE0 at a time) and jointly (i.e., both labels or
embeddings are concatenated to the internal molecular representa-
tion) and we report the results in Fig. 7A. Interestingly, the direct
inclusion of the labels provides only small (less than 10% MAE
decrease) or no performance uplifts, an observation shared with the
outputs of the sum readout-based low-fidelity models. On the other
hand, models leveraging neural embeddings provide significant
improvements for ZINDO and PBE0 individually, despite the relatively
low correlation between ZINDO and GW in particular (Fig. 7A). Fur-
thermore, models jointly using ZINDO and PBE0 embeddings perform
slightly better than PBE0. This is an interesting result as ZINDO is a
relatively crude approach that is by definition more approximate
than PBE0.

Discussion
We have investigated the problem of learning an effective model for
molecular property prediction on small-sample datasets typically
encountered in the final stages of screening cascades characteristic of
molecular design and drug discovery. Our focus was on showing the
utility of transfer learning with graph neural networks for the multi-
fidelity nature of this generative data process. More specifically, we
have mainly focused on knowledge transfer between large-scale low-
fidelity measurements that are inexpensive to obtain and sparse high-
fidelity observations that are labour and resource-intensive. Typically,
the effectiveness of the whole discovery process hinges on the
assumption that one will be able to successfully select candidates for
the final high-fidelity screening step. While prior work in materials
chemistry has studied aspects of learning inmulti-fidelity settings7,38,41,
here we tackle understudied and heterogeneous drug discovery by
HTS tasks and quantum mechanics simulations through transfer
learning with GNNs. We demonstrated a high level of generality
through the successful application to quantum chemistry where we
outperform existing methods, through explicitly evaluating trans-
ductive and inductive cases, through consistently strong results not
only for our supervised VGAE architecture but also for 3D-aware net-
works like SchNet, and through extensions tomore than two fidelities.

Our main algorithmic contribution lies in identifying and
addressing the shortcomings of classical graph neural networks that
are unable to harness the multi-fidelity observations produced by
screening funnels. More specifically, we have proposed two main
transfer learning schemes that enable effective knowledge transfer
betweenfidelities: transfer by embeddings orpredictions generatedby
models trained on low-fidelity data, and (supervised) pre-training on
low-fidelity and fine-tuning on high-fidelity. All approaches are

independent of the convolution operator used for feature extraction
within graph neural networks. While learning molecular properties
with architectures involving standard readouts is competitive on a
range of tasks, particularly quantum properties that are extensive and
not localised, this is generally not the case with large-scale and noisy
drug discovery datasets. For those tasks, graph neural networks with
adaptive readouts excel and unlock the transfer learning capability of
supervised pre-training and fine-tuning, which is notoriously challen-
ging for GNNs in general and molecular data in particular50.

Our empirical analysis is extensive and covers several real-world
datasets, various different baselines, and different problem domains
and settings. The overall effectiveness and generality of the proposed
approaches augur well for future applications of graph neural net-
works for transfer learning. More specifically, we envision impactful
drug discovery applications in live high-throughput screening pro-
jects. The results in the inductive setting indicate that the massive
amount of data collectedduring these campaigns canbe transferred to
predict high-fidelity activity for new compounds that did not exist
during the HTS screening campaign, without needing to synthesise
them first. Furthermore, from a resource and cost utilisation per-
spective, such projects operate on tight schedules and a fixed budget
of high-fidelity evaluations (e.g., 10,000). Here, we have shown that
transfer learning is particularly useful when a low amount of high-
fidelity data is available (Fig. 6). Transfer learning can inform and
improve the effectiveness of these costly steps, resulting inmuchmore
diverse and promising active molecules as well as lower costs to the
discovery processes. In hybrid experimental and in silicoworkflows, as
few as 500–1000 high-fidelity evaluations could be performed by
traditional selection, with the rest of the budget invested into
recommendations made with the help of transfer learning (operating
in the inductive setting).

Ultimately, we hypothesise that multi-fidelity data and archi-
tectures are the natural step forward for a wide variety of molecular
tasks specified by small-sample datasets. Transfer learning by
embeddings is particularly interesting due to its high effectiveness and
wide applicability. For instance, we have shown that the embeddings
can successfully be used by models such as random forests and sup-
port vector machines, and envision applications to probabilistic
methods such as Gaussian processes that can provide uncertainty
estimates. Furthermore, the supervised variational graph autoencoder
architecture has the potential to be useful in a generative setting,
allowing a more informed and varied compound generation protocol
since primary screens are designed to be diverse and are between 4
and 8 times larger than the commonly used ZINC dataset51. Another
promising direction32,52,53 might be to train low-fidelity predictors on
multipleHTSprojects at the same time, including potentially hundreds
of protein targets, and aiming towards a ‘universal’ latent space orga-
nised by function or protein-ligand interactions. Extensions to other
drug discovery technologies such as DNA-encoded molecule libraries
are also an exciting direction.

Methods
We start with a brief review of transfer learning and a formal descrip-
tion of our problem setting. This is followed by a section covering the
preliminaries of graphneural networks (GNNs), including standardand
adaptive readouts, as well as our supervised variational graph auto-
encoder architecture. Next, we formally introduce the considered
transfer learning strategies,while also providing a brief overviewof the
frequently used approach for transfer learning in deep learning – a two
stage learningmechanism consisting of pre-training and fine-tuning of
a part or the whole (typically non-geometric) neural network14. In
“Results” section, we perform an empirical study validating the effec-
tiveness of the proposed approaches relative to the latter and state-of-
the-art baselines for learning with multi-fidelity data.

Article https://doi.org/10.1038/s41467-024-45566-8

Nature Communications |         (2024) 15:1517 12



Overview of transfer learning and problem setting
LetX be an instance spaceandX = fx1, . . . ,xng � X a sample fromsome
marginal distribution ρX . A tupleD= ðX ,ρX Þ is called a domain. Given a
specific domainD, a task T consists of a label spaceY and an objective
predictive function f : X ! Y that is unknown and needs to be learnt
from training data given by examples ðxi,yiÞ 2 X ×Y with i = 1,…, n. To
simplify the presentation, we restrict ourselves to the setting where
there is a single source domainDS, and a single target domainDT . We
also assume thatXT � XS, and denote withDS = fðxS1

,yS1 Þ, . . . ,ðxSn
,ySn Þg

and DT = fðxT 1
,yT1

Þ, . . . ,ðxTm
,yTm

Þg, the observed examples from source
and target domains. While the source domain task is associated with
low-fidelity data, the target domain task is considered to be sparse and
high-fidelity, i.e., it holds thatm≪ n.

Definition 1. (54,55). Given a source domain DS and a learning task T S, a
target domainDT and learning task T T , transfer learning aims to help
improve the learning of the target predictive function fT in DT using
the knowledge in DS and T S, where DS ≠DT or T S ≠ T T .

The goal in our problem setting is, thus, to learn the objective
function fT in the target domain DT by leveraging the knowledge from
low-fidelity domainDS. Themain focus is ondevising a transfer learning
approach for graph neural networks based on feature representation
transfer. We propose extensions for two different learning settings:
transductive and inductive learning. In the transductive transfer learn-
ing setup consideredhere, the target domain is constrained to the set of
instances observed in the source dataset, i.e.,XT � XS. Thus, the task in
the target domain requires us to make predictions only at points
observed in the source task/domain. In the inductive setting,we assume
that source and target domains could differ in themarginal distribution
of instances, i.e., ρXS

≠ρXT
. For both learning settings, we assume that

the source domain dataset is significantly larger as it is associated with
low-fidelity simulations/approximations.

Graph neural networks
Here, we follow the brief description of GNNs from8. A graph G is
represented by a tuple G= ðV,EÞ, where V is the set of nodes (or ver-
tices) and E � V ×V is the set of edges. Here, we assume that the nodes
are associated with feature vectors xu of dimension d for all u 2 V. The
graph structure is represented byA, the adjacencymatrix of a graph G
such thatAuv = 1 if ðu,vÞ 2 E andAuv =0 otherwise. For a node u 2 V the
set of neighbouring nodes is denoted byN u = fvjðu, vÞ 2 E _ ðv,uÞ 2 Eg.
Assume also that a collection of graphs with corresponding labels
fðGi,yiÞgni = 1 has been sampled independently from a target probability
measure defined over G ×Y, where G is the space of graphs and Y � R
is the set of labels. From now on, we consider that a graph G is
represented by a tuple (XG,AG), withXGdenoting thematrix with node
features as rows and AG the adjacency matrix. The inputs of graph
neural networks consist of such tuples, outputting predictions over
the label space. In general, GNNs learn permutation invariant
hypotheses that have consistent predictions for the same graph when
presented with permuted nodes. This property is achieved through
neighbourhood aggregation schemes and readouts that give rise to
permutation invariant hypotheses. Formally, a function f defined over
a graph G is called permutation invariant if there exists a permutation
matrix P such that f(PXG,PAGP⊤) = f(XG,AG). The node features XG and
the graph structure (adjacency matrix) AG are used to first learn
representations of nodes hv, for all v 2 V. Permutation invariance in
the neighbourhood aggregation schemes is enforced by employing
standard pooling functions — sum, mean, or maximum. As succinctly
described in56, typical neighbourhood aggregation schemes char-
acteristic of GNNs can be described by two steps:

aðkÞv =AGGREGATEðfhðk�1Þ
u ju 2 N vgÞ and

hðkÞ
v =COMBINEðhðk�1Þ

v , aðk�1Þ
v Þ

ð1Þ

where hðkÞ
u is a representation of node u 2 V at the output of the kth

iteration.
After k iterations the representation of a node captures the

information contained in its k-hop neighbourhood. For graph-level
tasks such as molecular prediction, the last iteration is followed by a
readout (also called pooling) function that aggregates the node fea-
tures hv into a graph representation hG. To enforce a permutation
invariant hypotheses, it is again common to employ the standard
pooling functions as readouts, namely sum, mean, or maximum.

Graph neural networks with adaptive (neural) readouts
Standard readout functions (i.e., sum, mean, and maximum) in graph
neural networks do not have any parameters and are, thus, not
amenable for transfer learning between domains. Motivated by this,
we build on our recent work8 that proposes a neural network archi-
tecture to aggregate learnt node representations into graph embed-
dings. This allows for freezing the part of a GNN architecture
responsible for learning effective node representations andfine-tuning
the readout layer in small-sample downstream tasks. In the remainder
of the section, we present a Set Transformer readout that retains the
permutation invariance property characteristic of standard pooling
functions. Henceforth, suppose that after completing a pre-specified
number of neighbourhood aggregation iterations, the resulting node
features are collected into amatrixH 2 RM ×D, whereM is themaximal
number of nodes that a graph can have in the dataset and D is the
dimension of the output node embedding. For graphs with less thanM
vertices, H is padded with zeros.

Recently, an attention-based neural architecture for learning on
sets has been proposed by Lee et al.57. The main difference compared
to the classical attention model proposed by Vaswani et al.9 is the
absence of positional encodings and dropout layers. As graphs can be
seen as sets of nodes, we leverage this architecture as a readout
function in graph neural networks. For the sake of brevity, we omit the
details of classical attention models9 and summarise only the adapta-
tion to sets (and thus graphs). The Set Transformer (ST) takes as input
matrices with set items (in our case, graph nodes) as rows and gen-
erates graph representations by composing encoder and decoder
modules implemented using attention:

STðHÞ= 1
K

XK
k = 1

Decoder Encoder Hð Þð Þ½ �k ð2Þ

where �½ �k refers to a computation specific to head k of a multi-head
attentionmodule. The encoder-decodermodules follow the definition
of Lee et al.57:

Encoder Hð Þ= MABn H,Hð Þ ð3Þ
Decoder ðZÞ=FF MABm PMA ðZÞ, PMA ðZÞð Þ� � ð4Þ

PMAðZÞ=MABðs, FFðZÞÞ ð5Þ
MABðX,YÞ=A+FFðAÞ ð6Þ

A=X +MultiHeadðX,Y,YÞ: ð7Þ

Here, H denotes the node features after neighbourhood aggregation
and Z is the encoder output. The encoder is a chain of n classicalmulti-
head attention blocks (MAB) without positional encodings. The
decoder component consists of a pooling by multi-head attention
block (PMA) (which uses a learnable seed vector s within a multi-head
attention block to create an initial readout vector) that is further
processed via a chain of m self-attention modules and a linear
projection block (also called feedforward, FF). In contrast to typical
set-based neural architectures that process individual items in
isolation (most notably deep sets58), the presented adaptive readouts
account for interactions between all the node representations

Article https://doi.org/10.1038/s41467-024-45566-8

Nature Communications |         (2024) 15:1517 13



generated by the neighbourhood aggregation scheme. A particularity
of this architecture is that the dimension of the graph representation
can be disentangled from the node output dimension and the
aggregation scheme.

Supervised variational graph autoencoders
We start with a review of variational graph autoencoders (VGAEs),
originally proposed by Kipf and Welling59, and then introduce a var-
iation that allows for learning of a predictive model operating in the
latent space of the encoder. More specifically, we propose to jointly
train the autoencoder together with a small predictive model (multi-
layer perceptron) operating in its latent space by including an addi-
tional loss term that accounts for the target labels. Below, we follow
the brief description of 6.

A variational graph autoencoder consists of a probabilistic
encoder and decoder, with several important differences compared
to standard architectures operating on vector-valued inputs. The
encoder component is obtained by stacking graph convolutional
layers to learn the parameter matrices μ and σ that specify the
Gaussian distribution of a latent space encoding. More formally, we
have that

qðZ jX,AÞ=
YN
i = 1

qðzi jX,AÞ and qðzi jX,AÞ=N ðzi jμi, diag ðσ2
i ÞÞ,

ð8Þ
with μ =GCNμ,n(X,A) and logσ =GCNσ,nðX,AÞ. Here, GCN⋅,n is a graph
convolutional neural network with n layers, X is a node featurematrix,
A is the adjacency matrix of the graph, and N denotes the Gaussian
distribution. Moreover, the model typically assumes the existence of
self-loops, i.e., the diagonal of the adjacency matrix consists of ones.

The decoder reconstructs the entries in the adjacency matrix by
passing the inner productbetween latent variables through the logistic
sigmoid. More formally, we have that

pðA jZÞ=
YN
i= 1

YN
j = 1

pðAij j zi,zjÞ and pðAij = 1 j zi,zjÞ= τðz>i zjÞ, ð9Þ

where Aij are entries in the adjacency matrix A and τ(⋅) is the logistic
sigmoid function. A variational graph autoencoder is trained by opti-
mising the evidence lower-bound loss function that can be seen as the
combination of a reconstruction and a regularisation term:

~LðX,AÞ= EqðZjX,AÞ logpðA j ZÞ� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
LRECON

�KL qðZjX,AÞ k pðZÞ½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
LREG

ð10Þ

where KL[q(⋅)∥p(⋅)] is the Kullback-Leibler divergence between the
variational distribution q(⋅) and the prior p(⋅). The prior is assumed to
be a Gaussian distribution given by pðZÞ=QipðziÞ=

Q
iN ðzi j0, IÞ. As

the adjacencymatrices of graphs are typically sparse, instead of taking
all the negative entries when training one typically performs sub-
sampling of entries with Aij =0.

We extend this neural architecture by adding a feedforward
component operating on the latent space and account for its effec-
tiveness via the mean squared error loss term that is added to the
optimisation objective. More specifically, we optimise the following
loss function:

LðX,A, yÞ= ~LðX,AÞ+ 1
N

XN
i = 1

k νðZiÞ � yik2, ð11Þ

where ν(Z) is the predictive model operating on the latent space
embedding Z associated with graph (X, A), y is the vector with target
labels, andN is the number of labelled instances. Figure 2 illustrates the

setting and our approach to transfer learning using supervised varia-
tional graph autoencoders.

We note that our supervised variational graph autoencoder
resembles the joint property prediction variational autoencoder (JPP-
VAE) proposed by Gómez-Bombarelli et al.39. Their approach has
been devised for generative purposes, which we do not consider
here. The main difference to our approach, however, is the fact that
JPP-VAE is a sequence model trained directly on the SMILES60 string
representation of molecules using recurrent neural networks, a
common approach in generative models61,62. The transition from
traditional VAEs to geometric deep learning (graph data) in the first
place, and then to molecular structures is not a trivial process for at
least two reasons. Firstly, a variational graph autoencoder only
reconstructs the graph connectivity information (i.e., the equivalent
of the adjacencymatrix) and not the node (atom) features, according
to the original definition by Kipf and Welling. This is in contrast to
traditional VAEs where the latent representation is directly optimised
against the actual input data. The balance between reconstruction
functions (for the connectivity, and node features respectively) is
thus an open question in geometric deep learning. Secondly, for
molecule-level tasks such as prediction and latent space repre-
sentation, the readout function of the variational graph auto-
encoders is crucial. As we have previously explored in8 and further
validate in “Results” section, standard readout functions such as sum,
mean, or maximum lead to uninformative representations that are
similar to completely unsupervised training (i.e., not performing well
in transfer learning tasks). Thus, the supervised or guided variational
graph autoencoders presented here are also an advancement in
terms of graph representation learning for modelling challenging
molecular tasks at the multi-million scale.

Feature augmentation via low-fidelity simulations
In the context of quantum chemistry and the design of molecular
materials, themost computationally demanding task corresponds to
the calculation of energy contribution that constitutes only a minor
fraction of total energy, while the majority of the remaining calcu-
lations can be accounted for via efficient proxies28. Motivated by
this, Ramakrishnan et al.28 have proposed an approach known as
Δ-machine learning, where the desired molecular property is
approximated by learning an additive correction term for a low-
fidelity proxy. For linear models, an approach along these lines can
be seen as feature augmentation where instead of the constant bias
term one appends the low-fidelity approximation as a component
to the original representation of an instance. More specifically, if
we represent a molecule in the low-fidelity domain via x 2 XS then
the representation transfer for DT can be achieved via the feature
mapping

ΨLabelðxÞ= k ð f SðxÞ,xÞ ð12Þ

where ∥(⋅, ⋅) denotes concatenation in the last tensor dimension and fS
is the objective prediction function associated with the source (low-
fidelity) domain DS defined in “Overview of transfer learning and
problem setting” section. We consider this approach in the context of
transfer learning for general methods (including GNNs) and standard
baselines that operate on molecular fingerprints (e.g., support vector
machines, random forests, etc.). A limitation of this approach is that it
constrains the high-fidelity domain to the transductive setting and
instances that have been observed in the low-fidelity domain. A related
set of methods in the drug discovery literature called high-throughput
fingerprints34–37 function in effectively the samemanner, using a vector
of hundreds of experimental single-dose (low-fidelity) measurements
and optionally a standardmolecular fingerprint as a general molecular
representation (i.e., not formulated specifically for transductive or
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multi-fidelity tasks). In these cases, the burden of collecting the low-
fidelity representation is substantial, involving potentially hundreds of
experiments (assays) that are often disjoint, resulting in sparse
fingerprints and no practical way to make predictions about
compounds that have not been part of the original assays. In drug
discovery in particular it is desirable to extend beyond this setting and
enable predictions for arbitrary molecules, i.e., outside of the low-
fidelity domain. Such a model would enable property prediction for
compounds before they are physically synthesised, a paradigm shift
compared to existing HTS approaches. To overcome the transductive
limitation, we consider a feature augmentation approach that
leverages low-fidelity data to learn an approximation of the objective
function in that domain. Then, transfer learning to the high-fidelity
domain happens via the augmented feature map

ΨðHybrid labelÞðxÞ=
k ð fSðxÞ,xÞ if x 2 XS,

k ð~fSðxÞ,xÞ otherwise

(
ð13Þ

where ~f S is an approximation of the low-fidelity objective function fS.
This is a hybrid approach that allows extending to the inductive setting
with a different treatment between instances observed in the low-
fidelity domain and the ones associated with the high-fidelity task
exclusively. Another possible extension that treats all instances in the
high-fidelity domain equally is via the map Ψ(Predicted label) that
augments the input feature representation using an approximate
low-fidelity objective (~fS), i.e.,

ΨðPredicted labelÞðxÞ=k ð~f SðxÞ,xÞ ð14Þ

Our final feature augmentation amounts to learning a latent repre-
sentation of molecules in the low-fidelity domain using a supervised
autoencoder (see “Supervised variational graph autoencoders” sec-
tion), then jointly training alongside the latent representation of a
model that is being fitted to the high-fidelity data. This approach also
lends itself to the inductive setting. More formally, transfer learning in
this case can be achieved via the feature mapping

ΨEmbeddingsðxÞ=k ðψSðxÞ,ψT ðxÞÞ ð15Þ

whereψS(x) is the latent embedding obtained by training a supervised
autoencoder on low-fidelity data DS, and ψT(x) represents the latent
representation of amodel trained on the sparse high-fidelity task. Note
thatψS(x) is fixed (the output of the low-fidelitymodel which is trained
separately), while ψT (x) is the current embedding of the high-fidelity
model that is being learnt alongside ψS (x) and can be updated.

Pre-training and fine-tuning of graph neural networks
Supervised pre-training and fine-tuning is a transfer learning strategy
that haspreviouslyproven successful for non-graphneural networks in
the context of energy prediction for small organic molecules. In its
simplest form, and as previously used by Smith et al.14, the strategy
consists of first training a model on the low-fidelity data DS (the pre-
training step). Afterwards, the model is retrained on the high-fidelity
data DT , such that it now outputs predictions at the desired fidelity
level (the fine-tuning step). For the fine-tuning step, certain layers of
the neural network are typically frozen, which means that gradient
computation is disabled for them. In other words, their weights are
fixed to the values learnt during the pre-training step and are not
updated. This technique reduces the number of learnable parameters,
thus helping to avoid over-fitting to a smaller high-fidelity dataset and
reducing training times. Formally, we assume that we have a low-
fidelity predictor ~f S (corresponding to pre-training) and define the
steps required to re-train or fine-tune a blank model ~f T0

(in domain T )

into a high-fidelity predictor ~f T

WS = Weights ð~f SÞ ð Extract weights of pre-trained model ~f SÞ ð16Þ
WS = Freeze ðWSGCN

, . . .Þ ð Freeze components ,e.g. GCN layers Þ ð17Þ
~f T0

=WS ðAssign weights of ~f S to a blank model ~f T0
Þ ð18Þ

where ~f T0
is fine-tuned into ~f T . As a baseline, we define a simple

equivalent to the neural network in Smith et al., wherewepre-train and
fine-tune a supervised VGAE model with the sum readout and without
any frozen layers. This is justified by GNNs having a small number of
layers to avoid well-known problems such as oversmoothing. As such,
the entire VGAE is fine-tuned and the strategy is termed Ψ(Tune VGAE):

WS =Freezeð+Þ ðNo component is frozenÞ ð19Þ
~f T0

=WS ðAssign initial weights Þ ð20Þ

Ψ Tune VGAEð ÞðxÞ= ~f T ðxÞ ðThe final model is the fine-tuned ~fT Þ ð21Þ

Standard GNN readouts such as the sum operator are fixed functions
with no learnable parameters. In contrast, adaptive readouts are
implemented as neural networks, and the overall GNN becomes a
modular architecture composed of (1) the supervised VGAE layers and
(2) an adaptive readout. Consequently, there are threepossibleways to
freeze components at this level: (i) frozen graph convolutional layers
and trainable readout, (ii) trainable graph layers and frozen readout,
and (iii) trainable graph layers and trainable readout (no freezing).
After a preliminary study on a representative collection of datasets, we
decided to follow strategy (i) due to empirically strong results and
overall originality for transfer learning with graph neural networks.
More formally, we have that

WS = Freeze ðWSGCN
Þ ð Freeze allGCN layers Þ ð22Þ

~f T0
=WS ðAssign initial weights Þ ð23Þ

Ψ Tune readoutð ÞðxÞ= ~f T ðxÞ ðThe final model is the fine-tuned ~f T Þ ð24Þ

Data selection and filtering
For drug discovery tasks, low-fidelity (LF) data consists of single-
dose measurements (SD, performed at a single concentration) for
a large collection of compounds. The high-fidelity (HF) data
consists of dose-response (DR) measurements corresponding to
multiple different concentrations that are available for a small
collection of compounds (see Fig. 1, top). In the quantum
mechanics experiments, we have opted for the recently-released
QMugs dataset with 657K unique drug-like molecules and 12
quantum properties. The data originating from semi-empirical
GFN2-xTB simulations act as the low-fidelity task, and the high-
fidelity component is obtained via density-functional theory
(DFT) calculations (ωB97X-D/def2-SVP). The resulting multi-
fidelity datasets are defined as datasets where SMILES-encoded
molecules are associated with two different measurements of
different fidelity levels.

As modelling large-scale high-throughput screening data and
transfer learning in this context are understudied applications, a sig-
nificant effort wasmade to carefully select and filter suitable data from
public (PubChem) and proprietary (AstraZeneca) sources, covering a
multitude of different settings. To this end, we have assembled several
multi-fidelity drug discovery datasets (Fig. 1, top) from PubChem,
aiming to capture the heterogeneity intrinsic to large-scale screening
campaigns, particularly in terms of assay types, screening technolo-
gies, concentrations, scoring metrics, protein targets, and scope. This
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has resulted in 23 multi-fidelity datasets (Supplementary Table 1) that
are now part of the concurrently published MF-PCBA collection29. We
have also curated 16 multi-fidelity datasets based on historical Astra-
Zeneca (AZ) HTS data (Supplementary Table 2), the emphasis now
being put on expanding the number of compounds in the primary (1
million+) and confirmatory screens (1000 to 10,000). The search,
selection, and filtering steps, along with the naming convention are
detailed in Supplementary Notes 5 and29. As the QMugs dataset con-
tains a few erroneous calculations, we apply a filtering protocol similar
to the drug discovery data and remove the values that diverge bymore
than 5 standard deviations, which removes just over 1% of the mole-
cules present. The QMugs properties are listed in Supplementary
Table 3. For the transductive setting, we selected a diverse and chal-
lenging set of 10K QMugsmolecules (Supplementary Notes 5.1), which
resembles the drug discovery setting.

While methods to artificially generate multi-fidelity data with
desired fidelity correlations have recently been proposed63, we did not
pursue this direction as remarkably large collections of real-world
multi-fidelity data are available, covering a large range of fidelity cor-
relations and diverse chemical spaces. Furthermore, the successful
application of such techniques to molecular data is yet to be
demonstrated.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The MF-PCBA, QMugs, and QM7b datasets are publicly available and
accessible by following the instructions presented in their respective
papers. We provide additional instructions relevant to our workflow in
our code repository. The proprietary AstraZeneca HTS data collection
is not publicly available. For the purposes of this work, the proprietary
data are pre-processed and used within our computational workflow
following identical steps to MF-PCBA. Source data are provided with
this paper (for all Figures and Supplementary Figs., with the exception
of the UMAP plots of Fig. 3C). Due to the large size, the UMAP data is
instead hosted on the GitHub repository listed below.

Code availability
The source code that enables all experiments to be reproduced and
the instructions for accessing the datasets are hosted on GitHub64:
https://github.com/davidbuterez/multi-fidelity-gnns-for-drug-
discovery-and-quantum-mechanics.
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