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More than three decades after their introduction, diagnostic classification models
(DCM) do not seem to have been implemented in educational systems for the pur-
poses they were devised. Most DCM research is either methodological for model
development and refinement or retrofitting to existing nondiagnostic tests and, in the
latter case, basically for model demonstration or constructs identification. DCMs
have rarely been used to develop diagnostic assessment right from the start with the
purpose of identifying individuals’ strengths and weaknesses (referred to as true
applications in this study). In this article, we give an introduction to DCMs and their
latest developments along with guidelines on how to proceed to employ DCMs to
develop a diagnostic test or retrofit to a nondiagnostic assessment. Finally, we enu-
merate the reasons why we believe DCMs have not become fully operational in edu-
cational systems and suggest some advice to make their advent smooth and quick.

Keywords: attribute, DCM application, diagnostic classification models, model
fit, Q-matrix

Diagnostic classification models (DCMs) provide multiple discrete proficiency
scores which make them apt for situations where fine-grained feedback is
required. In contrast to the more traditional item response theory (IRT) models,
which usually scale test takers according to a continuous unidimensional attribute,
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DCMs classify test takers according to multiple categorical attributes with mas-
tery/nonmastery statuses. Thus, the classification objective makes DCMs more
amenable to the requirements of criterion-referenced assessment. DCMs predict
probability of an observable categorical response from unobservable (i.e., latent)
categorical variables. These discrete latent variables have been variously termed
as skill, subskill, attribute, knowledge, and ability. In the present article, the term
“attribute” is used to refer to the discrete latent predictor variables.

DCMs have been defined by Rupp and Templin (2008) as “… probabilis-
tic, confirmatory multidimensional latent-variable models with a simple or
complex loading structure” (p. 226). They are probabilistic models in that each
DCM expresses a given respondent’s performance level in terms of the prob-
ability of mastery of each attribute, separately, or the probability of belonging
to each latent class (Lee & Sawaki, 2009). Cognitive diagnostic models are
also confirmatory in nature, like confirmatory factor analysis models, in the
sense that latent variables in DCMs are defined a priori through a Q-matrix. A
Q-matrix (Tatsuoka, 1985) is the loading structure of a DCM. It is a hypoth-
esis about the required skills for getting each item right. Q-matrices are formu-
lated in tables with as many rows as there are items and as many columns as
there are attributes (see Table 1). At the intersection of each item and attribute
is a 1 if the item measures the attribute, otherwise a 0. The Q-matrix presented
in Table 1, reproduced from Ravand (2019), shows that Item 1, for example,
measures cohesive meaning, paragraph meaning, and summarizing.

DCMs are notably different from multidimensional IRT models in that the
latent variables in DCMs are discrete or categorical (e.g., masters/nonmasters),
whereas ability estimates (h) in multidimensional IRT models are continuous.
For the purpose of the DCMs, each item typically requires more than one attri-
bute. This leads to a complex loading structure where each item is specified in
relation to multiple attributes. This complex loading structure, in terms of
multidimensional IRT, is known as within-item multidimensionality (e.g.,
Baghaei, 2012).

TABLE 1
A Sample Q-Matrix

Item Lexical Meaning Cohesive Meaning Paragraph Meaning Summarizing Inferencing

1 0 1 1 1 0
2 1 1 1 0 0
3 1 0 0 0 1
4 1 0 0 1 0
5 1 0 0 0 0

Note: Reproduced from Ravand (2019).
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Although DCMs have been around for more than a decade, they have rarely
been applied to provide feedback to tailor instruction to the needs of learners.
The comparative dearth of DCM applications can be blamed on the following
factors (Ravand & Robitzsch, 2015): (1) their lack of accessibility to a broad
audience interested in their application, (2) fast growth of the models which
makes it hard for practitioners to keep up with the latest developments, and (3)
unresolved issues such as sample size in DCMs, which hinder their applications.

There are articles that have attempted to present a user-friendly portrait of
the DCMs (e.g., Ravand, 2016, 2019; Ravand & Robitzsch, 2015).
Nevertheless, to keep up with the latest developments in DCMs, interested
readers must review many articles in diverse sets of journals. To the best
knowledge of the authors, there have been only two review articles on the
important issues related to the theory and practice of DCMs (e.g., DiBello,
Roussos, & Stout, 2007; Rupp & Templin, 2008). However, since then, there
have been a lot of extensions to the models that have addressed some of the
concerns raised by these researchers. Further, there is no study which
addresses practical concerns in DCM applications. To remedy the void in the
literature, the present article aims to encapsulate the most important attempts
at extending and methodologically advancing the DCMs, which readers should
otherwise search through different literature to review.

Furthermore, the present article attempts to address some of the major chal-
lenges which may have discouraged applications of DCMs. To name a few,
the challenges are what DCM model to use, how many items are enough, how
many attributes should be extracted/included, what are the steps involved in
DCM applications, etc. By reviewing the existing literature, the present article
provides some practical suggestions on how DCMs can be implemented. In so
doing, to meet Rupp and Templin’s (2009) concern, the authors present a set
of best practices and codes of conduct, which will hopefully help expedite the
slow pace of DCM application to keep up with its methodological advance-
ment. It should be noted that in the review of the methodological advances,
the year 2008 was set as the point of departure, since although the history of
DCMs dates to many years before 2008, Rupp and Templin’s (2008) paper
and also the special issue of Language Assessment Quarterly journal in 2009
allocated to DCM, set benchmarks in the DCM studies.

APPLICATIONS OF DCMS

DCMs have been popular mainly with psychometricians and researchers with
strong statistical backgrounds. However, the proponents of DCMs have hoped
that the models become available to educational practitioners so that they can
be used to tailor instruction to students’ needs. Ironically, they have rarely

DIAGNOSTIC CLASSIFICATION MODELS 3



found their ways into low-stakes situations to provide feedback to promote
teaching and learning. From the “proof of the pudding is in its eating” perspec-
tive, until DCMs have not benefited their true beneficiaries (i.e., teachers and
learners), hardly can it be claimed that they have delivered the good that their
proponents have long raved about.

DCMs can be used to serve any or a combination of the following three
main purposes: (1) to develop tests for diagnostic purposes and consequently
use the tests thus developed to glean fine-grained information as to the
strengths and weaknesses of the test takers. This is the prototypical aim set
forward by early DCM promoters. As a result, studies carried out to meet this
purpose are referred to as true DCM studies in this article, (2) to extract diag-
nostic information from the existing nondiagnostic high-stakes tests, a practice
referred to as retrofitting. This is the-measure-of-last-resort purpose of DCMs.
Here, studies of this type are referred to as retrofitting studies and the first two
purposes are collectively referred to as DCM applications, (3) to build the
methodological infrastructure for DCM applications. This purpose has
involved attempts to address technical issues such as model fit, growth DCMs,
model selection issues, etc., which have already been addressed by rival mod-
els such as continuous IRT models. Studies intended to extend the methodo-
logical foundation of DCMs are referred to as methodological studies here.
Besides, there are two other purposes DCMs might be used for, which are cor-
ollaries to the above three purposes: (4) to demonstrate that the methodological
issues, addressed through the simulation studies mentioned previously, also
work with real data. These applications have been add-ons to simulation stud-
ies. We refer to these types of studies as example-of-methodology studies and
(5) to investigate the attributes underlying educational constructs. This type of
use is a by-product of the studies mentioned in Purposes 1 and 2.

Googling the two most popular labels of cognitive diagnostic models
(CDMs) and DCMs (the label preferred in the current study) in early 2018
returned over 240 hits, over 95% of which were methodological, about 4% were
retrofitting, and less than 1% were true DCM studies. The true and retrofitting
DCM studies embody the features which DCM promoters have been bragging
about. The conspicuously lopsided makeup of the studies in favor of methodo-
logical studies raises serious concerns about the original promises of the DCMs.

CATEGORIZATION OF DCMS

In DCMs, item responses are predicted by a set of discrete latent variables
called attributes, subskills, or processes. DCMs make varying assumptions as
to how the predictor latent attributes combine to generate a response to the
item. DCMs have been categorized into conjunctive/disjunctive or
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compensatory/noncompensatory dichotomies. According to the compensatory/
disjunctive models, mastery of one of the required attributes can compensate
for nonmastery of the other attributes. In these models, mastery of more attrib-
utes does not increase the probability of providing the item with a right
answer; that is, under these models, mastery of any subset of attributes is the
same as the mastery of all the required attributes. In noncompensatory DCMs,
on the other hand, the presence of all the required attributes results in a high
probability of a correct answer. More recently, additive DCMs have been pre-
sented as another category of DCMs. Unlike compensatory DCMs, which do
not credit test takers for the number of attributes mastered, in additive DCMs
presence of any one of the attributes affects the probability of a correct
response independent of the presence or absence of other attributes.

Lately, a new categorization of DCMs has been proposed: specific vs. gen-
eral. Specific DCMs are models in which only one type of relationship is pos-
sible within any assessment: disjunctive, conjunctive, or additive. In contrast,
in general DCMs (G-DCMs) such as the generalized deterministic noisy “and”
gate (G-DINA) model (de la Torre, 2011), multiple DCMs are possible within
the same assessment. The G-DCMs do not assume any prespecified relation-
ships among the attributes underlying any assessment. Rather, each item can
select its own model a posteriori. de la Torre (2011) showed that many of the
specific DCMs, regardless of whether they are conjunctive, disjunctive, or
additive, can be derived from the G-DINA by introducing constraints in the
parameterization of the G-DINA.

A more recent extension of the DCMs such as the hierarchical log-linear
CDM (HLCDM; Templin & Bradshaw, 2013) has led to a new category of
DCMs: hierarchical vs. nonhierarchical. In the hierarchical DCMs (HDCMs),
structural relationships among the required attributes are modeled. In instruc-
tional syllabi, some teaching materials are presented prior to others. The
sequential presentation of skills might be reflected in test takers’ responses to
items that require those skills. HDCMs are able to capture the effect of
sequential teaching of materials where learning new skills builds upon pre-
requisite skills.

With the preceding discussion in mind, the categorization in Table 2 is sug-
gested. At a global level, DCMs are divided into general and specific and, at a
local level, specific DCMs are divided into disjunctive, conjunctive, and addi-
tive. Furthermore, HDCMs form a new category in both the general and spe-
cific DCMs. A further point that needs to be made before wrapping up the
discussion of how DCMs can be categorized is that many DCMs are repara-
meterizations of each other. Changing the link function in a DCM would result
in the parameterization of another one. For instance, the additive cognitive
diagnostic model (ACDM, de la Torre, 2011) with the identity link function,
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turns into the linear logistic model (LLM; Maris, 1999) and into the noncom-
pensatory reparametrized unified model (NC-RUM; Hartz, 2002) when the
link function is changed into logit and log, respectively. As another example,
the G-DINA turns into LCDM by the change of the identity link function to
logit. Therefore, it seems that the traditional distinctions between the DCMs
are getting blurred, however, for the ease of reference and continuity with the
DCM literature, the categorization in Table 2 is suggested.

METHODOLOGICAL ADVANCES IN DCMS

Most DCM studies have tried to address the technical questions already
addressed by classical test theory (CTT) or continuous IRT models (Henson,
2009). Back in 2008, Rupp and Templin made a list of to-do tasks for the
researchers in the field of DCM such as the question of growth modeling

TABLE 2
DCM Categorization

DCM Type Examples Author(s)

Specific Disjunctive 1. Deterministic-input, noisy-or-
gate model (DINO)

2. Noisy input, deterministic-or-
gate (NIDO) model

Templin and
Henson (2006)

Conjunctive 1. Deterministic-input, noisy-
and-gate model (DINA)

2. Noisy inputs, deterministic
“and-gate (NIDA)

Junker and Sijtsma
(2001)

DiBello, Stout, and
Roussos (1995);
Hartz (2002)

Additive 1. Additive CDM (ACDM)
2. Compensatory reparameterized

unified model (C-RUM)
3. Noncompensatory reparameter-

ized unified model
(NC-RUM)a

4. Linear logistic
model (LLM)

de la Torre (2011)
DiBello et al. (1995);
Hartz (2002)

Hartz (2002)

Maris (1999)

Hierarchical 1. Hierarchical DINA
(HO-DINA) model

de la Torre (2008)

General Disjunctive,
Conjunctive, and
Additive

Hierarchical

1. General diagnostic
model (GDM)

2. Log-linear CDM (LCDM)
3. Generalized DINA (G-DINA)
Hierarchical diagnostic classifica-

tion model (HDCM)

Von Davier (2005)
Henson, Templin, and
Willse (2009)
de la Torre (2011)
Templin and
Bradshaw (2013)

aOriginally, the NC-RUM has been parameterized as a non-compensatory model. However, Ma,
Iaconangelo, and de la Torre (2016) showed that it is an additive DCM with log link function.
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within DCM framework, the issue of parameter bias and classification accur-
acy when local person dependence (LPD) and local item dependence (LID) is
present and how missing data and differential item functioning (DIF) would
affect DCM results. In the recent years, researchers have tried to address some
of these tasks and other technical issues already established in the competing
psychometric models such as IRT and CTT. In what follows, some of the
major methodological advances in DCMs are discussed.

Extensions to the Models

A very recent attempt in strengthening the methodological infrastructure of
DCMs concerns the development of models which could handle longitudinal
trends (e.g., Kaya & Leite, 2017; Li, Cohen, Bottge, & Templin, 2016;
Madison & Bradshaw, 2018; and Wang, Yang, Culpepper, & Douglas, 2018).
These growth DCMs have combined latent transition analysis (LTA; Collins
& Wugalter, 1992) and the deterministic input noisy and gate (DINA) model
(Junker & Sijtsma, 2001) into a LTA-DINA to analyze changes in the mastery
status of the attributes over time. LTA can be used to identify probability that
subjects belonging to a given latent class will remain in that group or move
into other latent groups. LTA is suitable for studying developmental changes
as stipulated in theories such as that of Piaget. The combination of the LTA
with the DINA can account for transition statuses on several latent dis-
crete variables.

Another new development is the possibility of doing differential item func-
tioning (DIF) within the context of DCMs. DIF in the context of DCMs
(DCM DIF) occurs when probabilities of correct responses to any given item
are different for test takers with the same attribute profiles but from different
observed groups (Hou, de la Torre, & Nandakumar, 2014). In other words in
DCM DIF, the matching criterion is the attribute profile of the test takers.
DCM DIF is different from traditional DIF in two ways: (1) Unlike IRT and
CTT DIF where the ability estimate and observed total score are the condition-
ing/matching variables, respectively, in DCM DIF, the attribute profiles of the
test takers are the matching/conditioning variables. (2) In IRT and CTT DIF,
item difficulties and discriminations are compared for the matched groups
whereas in DCM DIF guessing and slipping parameters are compared across
the groups matched on the attribute profiles. Hou, de la Torre, and
Nandakumar (2014) proposed a DIF detection procedure based on the DINA
model in which they adapted the Wald test (Morrison, 1967) to explore both
uniform and nonuniform DIF. Currently, the CDM package (Robitzsch,
Kiefer, George, & Uenlue, 2017) and GDINA package (Ma & de la Torre,
2018) in R conduct DCM DIF.
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The birth of the general DCMs (G-DCMs) is a highly influential methodo-
logical advancement which has led to the unification of specific DCMs within
the framework of general models. With the G-DCM such as the generalized
deterministic-input noisy-and-gate (G-DINA; de la Torre, 2011), log-linear
CDM (LCDM; Henson, Templin, & Willse, 2009), and general diagnostic
model (GDM; von Davier, 2005), the once sharp boundaries between the spe-
cific DCMs have become fuzzier. Most of the popular specific DCMs such as
deterministic-input noisy-and-gate (DINA) model (Junker & Sijtsma, 2001),
additive CDM (ACDM; de la Torre, 2011), noncompensatory reparameterized
unified model (NC-RUM; Hartz, 2002), etc. can be derived from the G-DCMs
by introducing some constraints to the G-DCMs in their saturated form. Even
at times, as pointed out before, the same constraints but different link functions
would lead to a different specific DCM.

Another recent development that is closely related to the advent of G-DCMs
and has been touted for sparing the researchers the toil of a priori model selec-
tion is the possibility of investigating model fit at item level proposed by de la
Torre and Lee (2013). According to this procedure, the LCDM or the G-DINA
is first applied to the data and in a next step fit of the specific models is com-
pared against that of the general model. If the specific model does not worsen
the fit it is retained as the best model for the respective item. Through these pro-
cedures, researchers are no longer forced to impose a single model on all items
of a given assessment, a practice that has been argued not to be viable. In other
words, this new development makes item selection at item level possible.

Another important development is the introduction of DCMs that can take
into account possible multiple strategies that test takers might employ to reach
the correct answer. One of the common assumptions of the conventional DCMs
is that all the test takers follow uniform strategies/attributes to solve the items
on any given assessment. However, this assumption might not hold in some edu-
cational contexts where alternative plausible strategies can be used to solve any
given item. Students might be taught different ways of solving the same problem
or they may devise their own ways of doing the problems. Conventional DCMs
are not able to distinguish these alternative strategies from lucky guessing cap-
tured by the guessing parameter in these models. de la Torre and Douglas
(2008) extended the DINA model to capture use of alternative strategies to solve
test items. Later, Huo and de la Torre (2014) extended and improved upon the
multistrategy DINA (MS-DINA). They suggested the use of MS-DINA on util-
ity considerations because it can better capture strategies the students (especially
the advanced ones) use to solve complex problem.

All the extensions discussed so far assume there is no hierarchical structure
among the attributes, an assumption that might not be plausible in educational
arenas. Instructional syllabi design teaching materials sequentially where some
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prerequisite skills are presented first and then new skills build upon the previous
ones. This hierarchical presentation of teaching materials may be reflected in
test takers’ responses to those items measuring the skills taught. If so, appropri-
ate DCMs are required to capture the underlying structure of students’ know-
ledge reflected in the item responses. Templin and Bradshaw (2013) presented
an adaptation of the LCDM (called hierarchical diagnostic classification model
[HDCM]) which bridges DCMs with the Attribute Hierarchy Method [AHM;
Gierl, Leighton, & Hunka, 2007] and the Rule Space Method [RSM; Tatsuoka,
1983]). Unlike AHM and RSM, which do not have a statistical test to check the
presence of attribute hierarchies, HDCM provides statistical tests to explore
such hierarchies and does so within the flexible framework of the LCDM. For
an application of HDCM to language assessment data see Ravand (2019).

Q-Matrix Validation Extensions

A pivotal element of any DCM is the Q-matrix (Tatsuoka, 1983). In most
DCM studies (e.g., Jang, 2009; Lee & Sawaki, 2009; Li, 2011; Ravand, 2016)
Q-matrices have been specified through qualitative analysis using expert
judgement. Gorin (2009) called into question the wholly subjective process of
Q-matrix development in DCMs. More recently, some empirical methods of
Q-matrix validation have been proposed (e.g., Barnes, 2010; Chen, Liu, Xu, &
Ying, 2015; Chiu, 2013; de la Torre, 2008; de la Torre & Chiu, 2016;
De Carlo, 2012; Desmarais & Naceur, 2013; Liu, Xu, & Ying, 2012; Templin
& Henson, 2006). Some of these methods are completely data-driven (e.g.,
Barnes, 2010; Chen, Li, Liu, & Ying, 2017; Chen, Liu, Xu, & Ying, 2015;
Liu et al., 2012). In these methods the underlying attributes are derived from
test takers’ responses. On the other hand, some others have been developed to
detect misspecifications in the expert-defined provisional Q-matrices.

The methods proposed by De Carlo (2012) and Templin and Henson
(2006) are suitable for situations where the potential misspecifications in the
Q-matrix can be identified. Desmarais and Naceur (2013) proposed a factor-
ization method which could assist to derive a Q-matrix from test takers'
responses using an expert-defined Q-matrix as the initial Q-matrix. de la Torre
(2008) proposed a validation method for identifying misspecifications in
Q-matrices. de la Torre’s method is compatible with data that conform with
the DINA. de la Torre and Chiu (2016) developed a generalization of the
discrimination index in de la Torre (2008), which is compatible with the
G-DINA and all the specific DCMs subsumed under it. Chen et al. (2017) pro-
posed the regularized latent class analysis (RLCA), a method which does not
need a provisional Q-matrix and assumes that both the true model and Q-
matrix are unknown; the only thing that should be known is the number of the
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latent classes, which in turn is dependent on the number of attributes underly-
ing performance on any given test.

Software Developments

A major breakthrough in DCM applications is the development of software
programs that can estimate a wide variety of DCMs. One of the proposed rea-
sons for under-application of the DCMs to real problems of education has
been the issue of inaccessibility of DCM software (Ravand & Robitzsch,
2015). Formerly, DCM software programs have been mostly proprietary and
tied to just one DCM (e.g., Arpeggio). As Table 3 shows, R packages are both
free and can handle multiple DCMs.

In their review of the GDINA and CDM packages in R (R Core Team,
2018), Rupp and van Rijn (2018), concluded that despite the striking similar-
ities between the routines in both packages, the CDM package is preferable in
terms of user-friendliness, the coverage of DCM extensions, and model fit
indices, etc. which have been implemented into the package. They also found
that the CDM package is more time-efficient.

The CDM package is the most comprehensive software program (Ravand &
Robitzsch, 2015), which is capable of estimating all the general models such
as the G-DINA, LCDM, and GDM, and many of the specific models including
but not limited to DINA, deterministic-input, noisy-or-gate model (DINO;

TABLE 3
DCM Software Programs/Codes

Software/Code Models Estimated Access and Cost

Arpeggio (Bolt
et al., 2008)

RUM and RRUM A former commercial software
but is free of charge now,
available by contacting Lou
DiBello at ldibello@uic.edu

Mplus code (Muthen &
Muthen, 2013)

LCDM and constrained model Commercial software, code
downloadable from http://
jonathantemplin.com

MDLTM (von
Davier, 2006)

GDM and constrained models,
latent class models, IRT models

Free research license, available
by contacting Matthias von
Davier at mvondavier@
yahoo.com

R-package CDM
(Robitzsch, et al., 2016)

G-DINA, LCDM, GDM, and con-
strained models, GDM, latent
class models, IRT models

Freely downloadable from the
R website

R-package GDINA (Ma &
de la Torre, 2016)

G-DINA and constrained Models Freely downloadable from the
R website

Note. Adapted from Li, Hunter, and Lei (2015).
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Templin & Henson, 2006), ACDM, reparameterized unified model (C-RUM;
Hartz, 2002), NC-RUM (Hartz, 2002), LLM, higher-order LCDM (HDCM;
Templin & Bradshaw, 2013), and higher-order DINA (de la Torre, 2004). The
package also generates a lot of fit indices both relative and absolute, which
can be used to evaluate model-data fit or compare models with each other.
The possibility to estimate a wide array of DCMs by a single software pro-
gram facilitates comparison of different DCMs within the same framework
using the same estimation methods.

Despite all the methodological advances made, there are few studies on
issues such as the effect of sample size (e.g., Kunina-Habenicht, Rupp, &
Wilhelm, 2012), grain size (e.g., Skaggs, Hein, & Wilkins, 2016), and per-
formance of fit indices (e.g., Chen, de la Torre, & Zhang, 2013; Hu, Miller,
Huggins-Manley, & Chen, 2016), among others. Also, to keep up with the
competing alternative models such as continuous IRT models, DCMs still
need to address some more methodological concerns such as the question of
parameter bias and classification accuracy when local person dependence and
item dependencies are present and how missing data would affect DCM
results. Another equally important concern that needs to be addressed is the
issue of linking in DCMs. Methodological infrastructure should be devised
through which one can make sure that attribute mastery takes the same level
of knowledge and expertise across different administrations of a test.

SUGGESTED STEPS FOR THE APPLICATION OF DCMS

Here, steps for applying DCMs to develop diagnostic tests and to retrofit exist-
ing nondiagnostic tests for diagnostic purposes are suggested, separately. It
should be noted that the procedures can be transferred across tests of different
constructs including, but not limited to, math and language skills. However,
the procedures of Q-matrix development for constructs such as writing, as
practiced so far (e.g., Kim, 2011) are somehow different from the common
drill for constructs such as math and reading comprehension.

Common to applications of DCMs, be they true DCM studies or retrofitting
studies, is a cognitive theory underlying test performance. Because such cogni-
tive theories in educational assessments are few and far between, researchers
should make do with an implicit theory of test performance.

To develop a diagnostic test from the beginning using DCMs, the following
steps are suggested:

1. Consult the relevant theories, expert judgment, and the previous DCM
studies on the construct under study to draw a list of attributes (i.e., to
construct the implicit theory).
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2. Because in educational assessment there is no consensus as to exactly what
attributes underlie the constructs, ask at least five expert judges to decide on
the importance of the attributes according to your definition of the construct.
For example, you could ask them to rate the importance of the attributes on
a scale of 1 to 5 and include those which were rated at least 4 by at least
two thirds of the judges. See below for considerations concerning the num-
ber of attributes in the test and the number of attributes per item.

3. Construct the Q-matrix (decide on the number of items, attributes, how
many attributes each item should measure, how many times an attribute
should be measured).

4. Construct the test.
5. At this stage, to make sure whether the items measure the subskills you

have intended, you can use expert judges and think-aloud technique.
6. Revise items according to the results obtained.
7. Administer the test.
8. So far you have only used qualitative analysis in item development. After

the test data have been collected, you can use the empirical procedures
suggested by de la Torre and Chiu (2016) or Chen et al. (2017) to ensure
that the item-by-attribute relationships as specified in the Q-matrix have
been reflected in the items of the test.

As to model selection, there are two possible lines of actions: In the first line
of action, which is the popular one, the researcher applies a single specific model
to all items of any given test whereas in the second line of action, he applies dif-
ferent specific models to different items of any given test. It should be noted that
the second line of action entails applying a general DCM to the whole test first
and then applying different specific DCMs to different items of the test. Model
selection can proceed in two ways: in a confirmatory manner (when there is good
theoretical evidence) and in an exploratory manner (when the researcher does not
have any sound reason why a given DCM should fit). Regardless of what line of
action is taken, model application can be either confirmatory or exploratory. If
the first line of action (i.e., application of a single model to all items) is taken and
the researcher is dealing with math items, for example, he might have substantive
reasons for a wholesale application of a single noncompensatory model.

However, if he is dealing with reading comprehension items, based on the
available substantive evidence in the literature, he might decide to apply a sin-
gle compensatory DCM to all the items. Otherwise, if there is no substantive
reason for wholesale application of either a compensatory or noncompensatory
model, the researcher may decide to rely on statistics and apply both compen-
satory and noncompensatory models and let the fit indices decide on the model
to be selected. In the same vein, if the researcher is interested in model

12 RAVAND AND BAGHAEI



selection at item level rather than test level (for the discussion of model selec-
tion at item level see Ravand, 2016 and Ravand & Robitzsch, 2018), depend-
ing on whether there are substantive reasons for how the attributes measured
by each single item interact (i.e., compensatory, noncompensatory, or addi-
tive), he might intend to apply different DCMs to different items of the test in
a confirmatory manner or let the DCM software program select the best-fitting
model for each items in an exploratory manner.

In a nutshell, if the first line of action is taken and the approach is con-
firmatory:

9. Choose the specific DCM based on the extant theoretical evidence.
10. Check model fit.

If the first line of action is taken and the approach is exploratory:

9. Apply DCMs of different types, i.e., general, compensatory, noncompen-
satory, and additive.

10. Compare fit of the models.

A point worth mentioning is that because there are no cutoffs or signifi-
cance tests for most of the fit indices in DCMs, many DCM studies (e.g., Lei
& Li, 2016; Ravand, 2016; Ravand & Robitzsch, 2018; Yi, 2012) have
checked fit of the specific models against that of the G-DINA model. As noted
by Chen, de la Torre, and Zhang (2013), “any saturated DCM will always fit
the data better than any reduced DCM because of their more complex parame-
terization.” This practice might be justified on the grounds that when working
with real data, the true model is ordinarily unknown.

However, if the second line of action is taken and the approach is confirmatory:

9. Select different DCMs for different items.
10. Run the multi-DCM model and check model fit.

If the second line of action is taken and the approach is exploratory:

9. Run the G-DINA and let each single item select its own model
a posteriori.

10. Check the fit of the model.

Both lines of action are possible with the CDM package (Robitzsch, Kiefer,
George, & Uenlue, 2017). For an example of how the two lines of action can
be applied see Ravand and Robitzsch (2018). Because currently explicit
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cognitive theories that underlie design and development of educational assess-
ments are few and far between, it may be a long time before truly diagnostic
assessments can be developed (Liu, Huggins-Manley, & Bulut, 2018).
Therefore, in coming years, most of the applications of the DCMs might
involve retrofitting.

For retrofitting practices the following steps are suggested:

1. Identify the attributes underlying the test. The process of developing a
DCM starts with a cognitive processing model. However, in retrofitting
DCMs “some type of implicit substantive model is generated post hoc by
reviewing the existing item” (Gierl & Cui, 2008). To come up with the
“implicit substantive model” in retrofitting contexts, first, a list of attrib-
utes is drawn from any or the combination of the following sources (1)
the existing literature, the theories of the construct under study, or con-
struct models, (2) verbal reports or protocol studies, (3) eye tracking
research, (4) expert panels, and (5) test specifications. Expert judgment is
the most frequently employed source of attribute identification in the lit-
erature (e.g., Kim, 2015; Lee & Sawaki, 2009; Ravand, 2016).

2. Specify attribute-by-item relationships in a Q-matrix. After the list of
attributes being measured by the assessment under study has been drawn,
a group of experts or alternatively students similar in characteristics to
whom the test was intended for (or a combination of both), may be asked
to read the items on the test carefully and identify the attributes they use
to answer items of the test. DCM studies have mostly relied on expert
judgment to identify item-by-attribute relationship in a Q-matrix
(Tatsuoka, 1985). There is one caveat about using expert judgment in
identifying attributes measured by each item. Expert judges’ abilities are
usually well above those of the students, and the students do not necessar-
ily follow the same processes as specified by expert judges.

3. Empirically validate the Q-matrix (optional).

In the vein of true DCM studies, Steps 9–10 can be followed to apply
DCMs in a retrofitting mode.

KEY ISSUES IN Q-MATRIX DEVELOPMENT

The importance of the Q-matrix in DCMs cannot be overstated since the validity
of the inferences made about test takers’ performance hinges upon the accuracy
of the Q-matrix. The most critical and challenging step in DCMs is Q-matrix
development (Gorin, 2009). A Q-matrix contains information as to what attributes
are measured by each item. In designing a Q-matrix the following considerations
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need to be taken into account. (1) Correct specification of the Q-matrix: What
attributes each item measures should be accurately specified, (2) design of the Q-
matrix: what is the configuration of the attributes in the Q-matrix, and (3) the
grain size of the attributes: how finely the attributes should be specified.

Misspecifications of the Q-matrix decrease classification accuracy (Kunina-
Habenicht et al., 2012; Rupp & Templin, 2008). Rupp and Templin (2008)
found that incorrect deletion of attributes from the Q-matrix resulted in high
slipping1 parameters and addition of attributes to the Q-matrix led to under-
estimation of guessing2 parameter. They also found that deletion of certain
combinations of attributes resulted in misclassification. Since the main object-
ive of all the DCMs is classification of test takers, all the variables that might
impact accuracy of classifications should be carefully taken into account.

Besides the accuracy of the Q-matrix, the design of the Q-matrix would also
affect classification accuracy. De Carlo (2012) and Chiu, Douglas, and Li
(2009) showed that the DINA model requires a Q-matrix where each attribute
is measured in isolation at least once. Attributes that are not measured in isola-
tion and those which are always measured in conjunction with other attributes
can be causes for concern. Madison and Bradshaw (2015) found that keeping
the number of items constant, the more an attribute is measured in isolation,
the higher the accuracy of classifications in the LCDM will be. On the con-
trary, they found classification accuracy degenerated when two attributes were
always measured together. Consequently, when two attributes are always meas-
ured together, they recommended combining them into a composite attribute.

Another key consideration in Q-matrix development is the level of specifi-
city of the attributes or their grain size. The more specifically the attributes
are defined, the better they can inform instruction, the more computationally
intensive they get, and the more difficult to interpret they will be (Embretson
& Yang, 2013; Xu & Zhang, 2016). Form a diagnostic perspective, the attrib-
utes should be as specific as possible. However, as the number of attributes
increases there will be an exponential increase in the number of latent classes
(for k attributes there are 2k latent classes) and in turn larger number of items
and large sample sizes are required. As a rule of thumb, de la Torre and
Minchen (2014) recommended 10 attributes at the most. However, with 10
attributes there will be 210 ¼ 1024 latent classes. If we have a sample as large

1Slips are aberrant responses. Simply put, slips are careless errors. Slipping occurs if a
respondent who has mastered all the attributes required by a given item, slips and answers the
item incorrectly.

2Guesses are another type of aberrant responses. They are lucky guesses. Guessing occurs if a
person provides a correct answer to the item although he has not acquired all the attributes meas-
ured by the item.
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as 1000, on average, there will be 1000/1024¼ 0.98 test taker in each class.
As previous research has shown (e.g., Lee & Sawaki, 2009; Li, 2011; Ravand,
2016) the majority of the test takers are usually assigned to one of the two flat
profiles, i.e., latent classes where either all the attributes or none of them have
been mastered. Thus with 1024, most of the latent classes will be either empty
or assigned to very few test takers. In a scenario such as this, classification
consistency and accuracy might also be compromised. Most DCM studies
have specified up to five attributes (e.g., Lee & Sawaki, 2009; Li, Hunter, &
Lei, 2015; Ravand, 2016; Ravand, 2019; von Davier, 2005).

As to the specificity of the attributes, it should be born in mind that when
coding items for attributes, one needs to take the level of the ability of the test
takers into account. It may be argued that lower level attributes of vocabulary
and syntax are required for every item of reading comprehension, for example.
However, if language proficiency of the test takers is high and basic English
grammar and vocabulary knowledge are required to deal with the items of the
test, coding the items for vocabulary and syntax might lead to low discrimina-
tions for the respective attributes, hence low-quality items. In other words, the
items might not be able to discriminate between masters and nonmasters of the
respective skills. High levels of item discrimination, which is the index of item
quality, have been shown to play an important role in diagnostic assessment.
Madison and Bradshaw (2015) found that high item discrimination can miti-
gate potential problems that might arise out of Q-matrix design.

One final note as to model and Q-matrix selection should be made. In
model or Q-matrix comparison situations, fit indices help select the model or
the Q-matrix, which is the most appropriate among the competing ones, even
though the true Q-matrix and model may not be among models and matrices
studied (Lei & Li, 2016). Therefore, Lei and Li (2016) suggested that model
and Q-matrix selection be informed by interpretability of the attributes as well
as the fit indices. To ensure that the selected model and Q-matrix are as close
to the true ones as possible, one should replicate the selected model and
Q-matrix with other samples.

MODEL SELECTION

With the wide array of the available DCMs, selecting the most appropriate
model for any given assessment situation has become a challenge (Ravand,
2019). Choice of the most suitable model has been taken for granted in most
applications of DCMs. Model selection has mostly been driven by software
availability and familiarity rather than the degree of match between the
assumptions of the models and how the attributes underlying the test are
assumed to interact (Ravand & Robitzsch, 2018). Relationships among the

16 RAVAND AND BAGHAEI



attributes required by any given item can be either compensatory, or noncom-
pensatory. Choice of the right model is of critical importance because model
selection affects classification of test takers (Lee & Sawaki, 2009), which is
the primary purpose of the DCMs.

G-DCMs, resting at the pinnacle of the evolutionary lineage of DCMs
(Templin, 2009) , may provide a solution to the challenge of model selection.
G-DCMs such as the G-DINA and LCDM have been hailed for their flexibility
to allow each item on an assessment to pick its own model depending on how
the attributes required by the item combine to generate an observed response. In
other words, with G-DCMs researchers need not to apply a single DCM across
the board, rather several DCMs are possible within the same assessment.
According to Ravand (2016) it sounds more viable to hypothesize that due to
the complexity of the cognitive processes underlying successful performance on
items and the variety of factors affecting performance, the difficulty of the
attributes, the domain of the construct tapped by the items, the cognitive load of
the attributes (e.g., whether they tap higher or lower order thinking), etc., the
relationships among the attributes might change across items. Therefore, one
cannot assume the same relationship across all items of a test.

However, flexibility of the G-DCMs comes at a price. G-DCMs in their
saturated form estimate more item and person parameters that may result in
overly complex models with the following ramifications: (1) interpretation of
the model output may be difficult, (2) more estimation time may be needed,
(3) there might be convergence issues, (4) large sample sizes are required, and
finally (5) as Yi (2012, p. 49) noted: “… if the model is too complex for the
given data, it may result in overfitting…” which is inconsistent with the parsi-
mony principle. In contrast, specific DCMs have been lauded for their more
straightforward interpretation, the smaller sample size they require, their con-
sistency with the parsimony principle, and provision of more accurate classifi-
cations when sample size is small (Ma, Iaconangelo, & de la Torre, 2016). It
should be noted that the possibility of model selection at item level as a corol-
lary of G-DCMs application renders the interpretability concern unwarranted.

MODEL EVALUATION

DCMs can be evaluated from different perspectives: fit, classification consist-
ency and accuracy, item discrimination, and congruence of attribute difficulty
with substantive expectations.

Fit in DCMs can be studied from three aspects: model fit, person fit, and
item fit. Model-data fit can be evaluated at the level of test or item (i.e., item
fit). Most of the fit indices reported for DCM are test-level model fit. Person
fit refers to the degree to which test takers’ observed responses deviate from
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what is expected based on their attribute profiles (Liu, Douglas, & Henson,
2009). Nonmasters of any one of the required attributes who correctly answer
a lot of items and masters of all the attributes who get many items wrong are
examples of aberrant-behaving persons. Item fit is judged based on a discrep-
ancy measure obtained from the difference between the actual responses to a
given item and predictions made by a DCM. To this end, test takers are classi-
fied into different proficiency groups and the mean discrepancy between the
observed and predicted responses for each group is calculated. From among
the three aspects of fit, most fit studies in DCMs have addressed model fit. In
what follows considerations regarding model fit at test and item levels
are discussed.

Test-Level Model Fit

As with other statistical models, before interpreting parameter estimates of
DCMs, fit of the models should be explored. Misfit in DCMs could be due to
any or a combination of the following reasons: (1) assumptions of the selected
DCM (i.e., compensatory/noncompensatory) do not match those assumed by
the researcher and (2) the Q-matrix is misspecified. Q-matrices may be under-
specified (a 1 has been erroneously specified as 0, indicating an attribute is not
measured by a given item when it really is) or over-specified (a 0 has been
erroneously specified as 1). Relative fit indices compare fit of different DCMs
to a given data set and are appropriate for model selection purposes. Absolute
fit indices are used to evaluate fit of any given model to the data. Relative fit
indices that are usually used to compare different DCMs are Akaike
Information Criterion (AIC) and Bayesian Information Criterion (BIC). Both
AIC and BIC impose penalty for the number of parameters in the model. BIC
introduces larger penalty for overparameterization and also for larger sample
sizes. The smaller values for both indices indicate a better model-data fit.
Studies have shown that AIC has a better accuracy rate than BIC in selecting
the best model when the Q-matrix was specified correctly and the generating
model was a complicated model such as general models whereas performance
of BIC is better when the generating model is simpler and sample size is larger
(Kunina-Habenicht et al., 2012; Lei & Li, 2016).

Absolute fit indices are based on the residuals obtained from the difference
between the observed and model predicted values. However, some researchers
have resorted to absolute fit indices in model comparison (e.g., Li, Hunter, &
Lei, 2015; Ravand, 2016; Ravand & Robitzsch, 2018; Yi, 2017). Kunina-
Habenicht et al. (2012) suggested that the use of absolute indices for model
comparison purposes could yield useful information especially when cutoffs
are not available for these indices. On the other hand, some other researchers
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have found that absolute fit indices are not suitable for model or Q-matrix
selection for model comparison purposes (e.g., Chen et al., 2013; Hu et al.,
2016; Lei & Li, 2016).

The following fit indices have been used in the literature:

1. X2 (Chen & Thissen, 1997) is a measure of local dependence (LD) used
in IRT. It is an index of independence of pairwise item response frequen-
cies. The test-level MX2 is an adaptation of the item-levelX2; which is
averaged over all the item pairs. It is the mean difference between the
model-predicted and observed response frequencies. Large differences are
taken as evidence that there are dependencies between the items. Because
respondents draw upon the same cognitive processes to respond to the
items, dependencies are expected. However, if a given DCM fits the data
well, “the X2-test statistic is expected to be 0 within each latent class as
the attribute profile of the respondents would perfectly predict the
observed response patterns” (Rupp, Templin, & Henson, 2010, p. 269).

2. The mean absolute difference for the item-pair correlations (MADcor)
statistic (DiBello et al., 2007) is also a measure of LD, which is averaged
across all the item correlation residuals: the difference between the
observed and the model-predicted item correlations.

3. The mean residual covariance (McDonald & Mok, 1995; MADRES) is another
LD index that is averaged over all the item covariances residuals: the mean dif-
ference between matrices of observed and reproduced item covariances.

4. The Q3 statistic (Yen, 1984) is another LD index used in IRT contexts. It
is calculated by subtracting the model-predicted responses from the
observed responses of the respondents and computing the pairwise correl-
ation of these residuals. The average of Q3s over all the items’ residuals
(MADQ3) is used as another test-level absolute fit index.

5. The root mean square error (RMSEA) is the mean difference between
response proportions predicted by the model and those observed for each
response category within each latent class weighted by the proportion of
the test takers within the respective latent class.

6. The standardized root mean squared residual (SRMSR) is a fit index bor-
rowed from factor analysis. For any item pair, SRMSR is the observed
correlation between the items minus the expected correlation. Maydeu-
Olivares (2013, p. 84) considered SRMSR values of below 0.05 as indicat-
ing “a substantively negligible amount of misfit.”

It should be noted that Lei and Li (2016) found that the above fit indices
except for the MX2 were very much sensitive to sample size. MX2 was the
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least impacted by sample size under the condition that the selected model and
Q-matrix were the true ones.

Classification Consistency and Accuracy

As the Standard 5.12 of the Standards for Educational and Psychological
Testing (American Educational Research Association, American Psychological
Association, & National Council on Measurement in Education, 1999)
requires, reliability, and validity of scores should be established before they
are reported. Thus, the burden of establishing reliability and validity of attri-
bute classifications before reporting the DCM profile scores lies on the
researcher. To this end, classification consistency and accuracy have also been
used in the literature to evaluate models (Lee & Sawaki, 2009; Ravand, 2016;
Ravand & Robitzsch, 2018).

Cui, Gierl, and Chang (2012) presented two indices namely classification
consistency (Pc) and accuracy (Pa) to refer to the reliability and validity of the
examinees’ classification into the latent classes or master/nonmaster of each
separate skill. Pc is an indicator of the degree to which an examinee is consist-
ently classified into the same latent class or will be indicated as master/non-
master of the same attribute on readministration of the same or a parallel form
of the test, and Pa refers to the degree to which an examinee’s classification
matches his true latent class or he is truly identified as master/nonmaster of
any given attribute.

Discrimination Indices

According to Rupp et al. (2010), assessments with higher discrimination indi-
ces are expected to lead to more reliable classification of test takers as master
or nonmasters of any given attribute. Thus, a DCM with higher discrimination
indices should be preferred because it results in more accurate classifications.
Discrimination definitions in educational assessment in general are either
grounded in CTT or IRT. In both approaches, discrimination can refer to glo-
bal item discrimination and attribute discrimination. In the CTT-based defin-
ition, it is a matter of the degree to which an item can discriminate between
the test takers who have mastered all the attributes necessary to get the item
right and those who have mastered none of the measured attributes. In other
words, in the CTT-based definition, item discrimination compares the prob-
ability of getting a given item right for those who have mastered all the attrib-
utes required by the item to the probability of getting the same item right for
those who have not mastered any of the required attributes.
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Attribute discrimination is a more specific measure of discrimination which
measures the degree to which probability of getting an item right is different
between those who have mastered any given attribute and those who have not
mastered that attribute. The IRT approach zeros in on the notion of statistical
information. In this approach an index of discrimination is derived through
Kullbach-Leibler information (KLI), which gauges how informative a diagnos-
tic assessment is for the classification of test takers. Nontechnically speaking,
in the KLI approach, the predicted response patterns for any given item are
compared for test takers from two different latent classes. An assessment that
provides more pronounced discriminations between test takers from different
attribute profiles is considered a better assessment. In the KLI approach, for
any given item, the discrimination indices are calculated for any pairs of pos-
sible attribute profiles for that item. For a complete discussion of KLI see
Rupp et al. (2010).

Congruence of Attribute Difficulties with Substantive Expectation

DCMs provide the prevalence of attributes among the subjects studied which
could indicate how difficult the attributes are for the given subjects. To check
the degree of match between the order of attribute difficulty generated by the
DCMs and what is substantively expected, one can ask expert judges to rate
the involved attributes in terms of difficulty and then compare the order with
the DCM output.

Model Selection at Item Level

As it was alluded to before, a very recent development in DCM is the possibil-
ity of fitting specific models to individual items, because test-level model fit
takes into account all the items on the test. In cases of misfit, it is not clear
which subset of items should shoulder the blame. Henson et al. (2009) intro-
duced the first method of item-level model fit by which the best specific
model could be selected through visual inspection. Later on, de la Torre and
Lee (2013) successfully used the Wald test to compare fit of the DINA,
DINO, and ACDM against the G-DINA. In two other very recent studies, Ma,
Laconangelo, and de le Torre (2016) and Sorrel, Abad, Olea, de la Torre, and
Barrada (2017) also investigated model selection at item level. There are two
R-packages, GDINA (Ma & de la Torre, 2018) and CDM (Robitzsch, Kiefer,
George, & Uenlue, 2017) that implement the Wald test to compare the fit of
DCMs at the item level.

To find the best DCM for each item first, the G-DINA is fitted to the data
in its saturated form. As it is a general model, the G-DINA is expected to
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show better fit than the constrained models. Therefore, it can be used as a met-
ric against which fit of the constrained models could be compared. In the
second step, reduced models are fitted to each item. If fit of the reduced model
to each item does not results in a worse fit as compared to that of the
G-DINA, the reduced model is preferred, otherwise the G-DINA is the best
model. According to Ma et al. (2016), the process of model selection at item
level can be described as follows: First, the Wald statistic for the reduced
models for individual items is calculated. The null hypotheses are the fit of the
reduced model equals the fit of the general model. If the null hypothesis is
rejected (p <.05) the reduced model is rejected. If more than one reduced
models are retained and the DINA or DINO are among the retained models,
the DINA or DINO with the largest p value are selected, but if the DINA and
DINO are not among the retained models, the reduced model with the largest
p value is selected. It should be noted that when several reduced DCMs have p
values larger than .05, DINA or DINO are preferred over the other specific
DCMs as they are statistically the least complex DCMs (Rupp &
Templin, 2008).

OPTIMAL NUMBER OF ITEMS, GRAIN SIZE, AND SAMPLE SIZE

As the number of attributes required per item increases, issues of identifiability
of the DCMs might occur (DiBello et al., 2007). DCMs may be made complex
to make them represent the cognitive theory of test performance, which might
lead to estimation error and identifiability issues. A review of the rather scant
literature on the optimal number of attributes (i.e., granularity) measured by an
assessment shows that as the number of attributes increases, the number of
items and the sample size should increase as well. Also, the selected model
can impact considerations regarding the number of attributes and sample size.
When the selected DCM is, for example, a general model in its saturated form,
more attributes for each item mean more n-way interactions among the attrib-
utes, which in turn requires larger sample sizes and more items. Model identi-
fication, computational time and resource considerations may limit the number
of attributes an item can measure (Templin & Bradshaw, 2013). Skaggs, Hein,
and Wilkins (2016) found that as the number of attributes measured by the
whole test and the number of attributes measured by each item increased, the
standard errors of item parameters increased as well. Skaggs et al. also found
that item parameter bias tended to be larger as the number of attributes meas-
ured by the whole test and those measured by each single item increased.

In a simulation study, Kunina-Habenicht et al. (2012) investigated the effect
of sample size on parameter recovery. They applied the LCDM and found that
with a sample size of 1,000 and one or two attributes per item, the main effects
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were measured accurately whereas estimation of two-way interactions were
unreliable. They also found with sample size of 1,000 and three attributes
measured by each item, neither the main nor the interaction effects were
accurately estimated. Furthermore, they found that the three-way interactions
could not be reliably estimated even with sample sizes of 10,000. Especially,
they found when the sample size is small and the number of items equals or is
less than the number of latent classes, recovery of parameter estimates for the
interaction terms is seriously impaired. Accordingly, they suggested the use of
simple constrained DCMs when sample size is small.

In another study, Galeshi and Skaggs (2016) examined parameter recovery
and classification accuracy within the framework of the compensatory repara-
metrized unified model (Hartz, 2002). The study included sample sizes of 50,
100, 500, 1,000, 5,000, and 10,000 and different combinations of attribute-
item. They found that accuracy of both parameter recovery and classification
was a function of the number of items and attributes as well as the sample
size. The results of the study showed that as the number of attributes required
by an item increases and the number of items decreases, larger sample sizes
are required to obtain accurate estimates. They argued that with the same num-
ber of items, the smaller the number of attributes measured by an item the
smaller the required sample size is.

Lei and Li (2016) studied performance of fit indices in choosing correct
DCMs and Q-matrices and found sample size was the most influential factor.
They found that sample size had a negligible effect on classification accuracy but
a substantial effect on performance of fit indices. Increase in sample size resulted
in increase in the relative fit indices but decrease in the absolute fit indices.

As to the grain size of the attributes, Jang (2009) suggested that the issue
be considered from at least three aspects: first, theoretical (construct represen-
tativeness). Measurement of any attribute with as few as three to five attrib-
utes, for example, is likely to lead to content coverage/construct representation
issues. According to Jurich and Bradshaw (2014), when the breadth of an attri-
bute is underrepresented test takers may be misclassified. Second aspect is
technical (number of items per attribute). From a statistical point of view,
attributes measured by more items are expected to have higher attribute reli-
abilities. Besides, if few items measure an attribute and just one of the items,
for example, discriminates highly between masters and nonmasters of the attri-
bute (i.e., the attribute has a large main effect), yet the other items poorly dis-
criminate, performance on the highly discriminating item determines
classification of the test takers: those who have responded correctly to the
item with the large main effect for that attribute are classified as the master of
the attribute, yet those who have missed the item may be classified as nonmas-
ters and, third, practical (usefulness for diagnostic feedback).
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As a safe rule of thumb, it can be suggested that more fine-grained attrib-
utes should only be used when we are applying simpler DCM models and
when there are larger number of items and test takers. As to the number of
items, Hartz (2002) recommended at least three items for any given attribute.
However, Jang (2009) suggested at least five items per attribute. It should be
noted that high-quality items, that is, items which discriminate highly between
masters and nonmasters of the skills are required for successful application
of DCMs.

OUTLOOK

As mentioned earlier, DCMs have not yet penetrated into the mainstream
classroom assessment for the purposes of providing diagnostic feedback to
improve learning and teaching. The main reason perhaps is that diagnostic test-
ing in general does not have a well-defined place in education. Diagnostic
assessment has a separate identity from the psychometric models referred to as
DCMs. Long before DCMs were introduced, diagnostic assessment existed.
However, its existence was limited to a definition in test development text-
books. In the classification of different types of tests, diagnostic testing is usu-
ally defined as a test designed to identify learners’ strengths and weaknesses
(Hughes, 2003). Nevertheless, few, if any, attempts have been made to design
diagnostic tests in education. Most educational tests are achievement or com-
petency tests developed to locate individuals on a continuum of ability for the
purpose of comparison and pass or fail. DCMs can complement and inform
the practice of diagnostic assessment. As long as diagnostic testing has not
been fully implemented in educational systems, the merits DCMs add to this
enterprise will not be known. We believe the reason why DCMs have not been
applied in true diagnostic situations is that educators do not need them because
little diagnostic testing takes place in schools. If diagnostic testing existed, we
believe, educators would have embraced DCMs as extremely useful develop-
ments to help them in their endeavor.

Other reasons include the complexity of the models and their inaccessibility
for classroom teachers, lack of user-friendly programs to estimate the models,
and, most importantly, the sample size requirements of the models that make
their applications in small-scale classroom contexts almost impossible.

To integrate DCMs into the classroom activities so that they become the
stock-in-trade of the teachers, more orchestrated efforts should be made on at
least two fronts: (1) methodological and (2) practical. Methodologically, more
studies on the effect of sample size on the performance of DCMs such as clas-
sification accuracy, model fit, etc. should be conducted. Practically, the prob-
lems that would get in the way of DCM applications should be eased. We
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believe the complexity issue is not very serious. Although the mathematical
bases of DCMs are extremely sophisticated, practitioners do not need to get
involved with them. On the contrary, we think that understanding what DCMs
do and their benefits are easy to explain for teachers. All school teachers with
minimum teaching certification requirements are familiar with diagnostic test-
ing, providing feedback for improved learning, and the topic of subskills
underlying basic skills in math, languages, sciences, etc. Therefore, it should
be a lot easier for teachers to grasp and appreciate the applications of DCMs
in their career than the application of IRT models or structural equa-
tion models.

Therefore, the major phase of DCM analysis, namely, Q-matrix develop-
ment, can efficiently be conducted by teachers. Even in theoretical applica-
tions teachers are always invited as experts to code the items to construct Q-
matrices. DCM outputs do not seem to pose any difficulty for teachers either.
Understanding which subskills a student has mastered and which s/he has not
or which attributes are the hardest and which are the easiest, the main useful
messages of DCMs are not difficult for teachers, students, their parents and
other stakeholders to follow.

If the application of the models for classroom diagnostic purposes is truly
desired, theoretical DCM researchers and model developers should give top pri-
ority to two other major issues. The first one is the advancement of estimation
and model evaluation methods which do not require large sample sizes for sta-
ble and reliable estimates. A common feature of classroom settings is small
sample sizes. As long as DCMs need sample sizes in the magnitude of
1,000–2,000, they never leave the psychometric laboratories, and school teach-
ers and other stakeholders never take advantage of them. The second important
issue that should be addressed is the development of more user-friendly soft-
ware programs that can easily be used by school teachers. The current pro-
grams, whether R-packages or other commercial programs are difficult to work
with and the outputs are rather hard to interpret. These future programs should
be “click and point” programs with no code writing and with simple outputs
that clearly depict the most important things a school teacher needs to know
about their students and the syllabi they have taught.

Although the second issue is easier to deal with and can easily be addressed
by some interested and creative program writers the first one may take a cou-
ple of decades to materialize. Meanwhile, for practical purposes, practitioners
can use the available less-complex models that require smaller sample sizes.
Depending on the assumptions regarding how the attributes underlying any
given test interact to generate responses, one can select models with fewer
parameters, hence smaller sample size requirements. If the attributes interact
in a noncompensatory way, the DINA model, which is one of the simplest
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available DCMs, may be appropriate. The DINA estimates two parameters per
item, regardless of the number of attributes required. If the attributes interact
in a compensatory way, the additive cognitive diagnostic model (ACDM; de la
Torre, 2011) is recommended. The ACDM estimates only main effects of the
attributes. Research (e.g., Kunina-Habenicht et al., 2012) has shown that esti-
mation of main effects requires smaller sample sizes than estimation of the
interaction effects.

ARE CONCERNS RAISED 10 YEARS BACK STILL IN PLACE?

Our article attempts to portray the current status of the DCMs in terms of both
their method and practice. Methodologically, we reviewed some of the most
important extensions to DCMs developed post-2008. We tried to suggest some
future directions in light of the current concerns and also consider the concerns
raised in Rupp and Templin (2008) and the commentaries it received.

Method-wise, it seems that DCMs have firmed their foundation so that they
can compete with their rival predecessors such as continuous IRT models.
However, despite all the methodological advancements, there are still other
issues that need to be addressed in the future studies: the effect of sample size,
missing data, and item and person local dependence on DCM results.
Furthermore, algorithms that could yield stable estimates with sample sizes
typically found in normal classroom is what is most wanted. On the contrary,
application-wise, DCMs have moved at a pace much slower than their method-
ology. It seems that after 10 years still most of the commentators’ concerns as
to the practice of DCMs linger on.

There have been relatively few applications of DCM (in the sense we
used the term application in the present study). Most of these applications
have concerned retrofitting to high-stakes tests. Most of the commentaries
(e.g., Gierl & Cui, 2008; Gorin, 2009; Jiao, 2009; Sinharay & Haberman,
2009; Tatsuoka, 2009) on Rupp and Templin’s article advised against retro-
fitting DCMs to assessments supposed to be unidimensional. To deliver their
original mission, they have to be used in true DCM studies to develop tests
from scratch. Therefore, it can be concluded that, methodologically, DCMs
have been fruitful whereas, practically, they seem to be still as lagging
behind as they were about 10 years ago. To fill in the void in the practice of
DCMs, a set of measures, some which also echoed in Rupp and Templin
(2009) and Henson (2009), are suggested: accessible software programs,
didactic materials in order to establish a set of best practices and codes of
conduct, redefining test development procedures to align them with the
requirements of DCMs, among others. Studies such as the present serve to
suggest a set of hands-on procedures for the implementation and reporting
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the results of DCMs. As to the availability of DCM software program, com-
pared to 10 years back, there are more software programs available.
Nonetheless, the available programs are not of the point-and-click nature that
appeals to most researchers.

As to the alignment of test development procedures, many of the commen-
tators (e.g., Gierl & Cui, 2008; Henson, 2009) believe that full potentials of
the DCMs will be realized only when test development procedures are rede-
fined so that they are in line with requirements of the DCMs. To this end,
Gierl and Cui suggest some requirements for test design and analysis besides
the standard practices of test development. Their principled test design and
analysis starts with a cognitive model which describes the processes, strategies
and attributes needed to be applied to solve tasks or problems. Items are devel-
oped to measure the knowledge and skills specified in the cognitive model
and finally the DCMs are applied to analyze the data. Thus, the cognitive the-
ory plays a key role in test construction and score interpretation. Without a
detailed cognitive theory of response processes, “that can support and add
practical benefit of DCMs over alternative measurement models, we do have
somewhat of an identity crisis indeed” (Rupp & Templin, 2008).

Making do without a cognitive theory, a common practice in retrofitting,
would compromise the quality of DCM results. A corollary of the above con-
cern associated with the example-of-methodology studies is that they have
invariably been retrofitting cases. It is not clear whether new extensions work
with true DCM studies in the same way. Moreover, most of these retrofitting
studies have used the popular fraction-subtraction data. It should be noted that
educational testing and assessment is not confined to just math. DCMs hold
promise for other areas such as language testing. Future application studies
should be of true DCM studies and to demonstrate that the results obtained in
simulation studies can also be replicated with real data, data from true DCM
studies should be used. That being said, it seems that a pressing need is devel-
opment of cognitive theories of response processes, which is beyond the realm
of DCM research.

As to model selection, we share the concern of Wilhelm and Robitzsch
(2009) that choice of the DCMs is commonly an arbitrary process rather than
being informed by substantive considerations. As to model selection, there are
at least three possibilities: (1) blanket imposition of a single specific DCM on
all the items of a test, a practice we advise against, (2) running several specific
models and selecting the one fitting the data the best, and (3) running a G-
DCM and letting each item pick its own model, hence several specific models
within the same DCM. When sample size is large enough (> 5,000) we rec-
ommend the third possibility. However, if the sample size is not large enough
to run a G-DCM, the second possibility is what we recommend.
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Finally, it may be too soon to expect DCMs become the stock-in-trade of class-
room teachers. The evolution of DCM is reminiscent of how another latent trait
model namely structural equation modeling (SEM) has evolved. In its early stages
of development, SEM was so arcane that only scientists well-versed in matrix lan-
guage and computer programming, had the privilege of benefiting from its robust
modeling capabilities. However, along their evolutionary path, the matrix language
was translated into a language shared by a wider group of researchers which could
be implemented in several user-friendly software programs. Above all, more
recently, with the development of the partial least squares SEM (PLS-SEM, see
Ravand & Baghaei, 2016), working with small sample sizes, which was once a
wild dream, has turned into a kitchen appliance for the SEM community. In the
same vein, as Henson (2009) aptly reminded us, more pedagogical things including
but not limited to easy-to-use software programs, articles that set out best practices
and a set of good conduct should be produced to make the DCMs accessible to a
wider community of researchers. More importantly, new algorithms need to be pro-
grammed so that DCMs can be reliably estimated in low-stakes situations with sam-
ple sizes as small as those normally found in a classroom.
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