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Introduction

In this paper we consider a quadratic programming
(QP) problem of the following form:

. I p T
min xX)==x Ox+c x
f(x) > 0 )

S.t. xeD

where D is a polyhedron in R”, ¢ € R”. Without any
loss of generality, we can assume that Q is a real sym-
metric (n x n)-matrix. If this is not the case, then the
matrix Q can be converted to symmetric form by re-
placing Q by (Q + QT)/2, which does not change the
value of the objective function f(x). Note that if Q is
positive semidefinite, then Problem (1) is considered to
be a convex minimization problem. When Q is negative
semidefinite, Problem (1) is considered to be a concave
minimization problem. When Q has at least one positive
and one negative eigenvalue (i. e., Q is indefinite), Prob-
lem (1) is considered to be an indefinite quadratic pro-
gramming problem. We know that in the case of convex
minimization problem, every Kuhn-Tucker point is a lo-
cal minimum, which is also a global minimum. In this
case, there are a number of classical optimization meth-
ods that can obtain the globally optimal solutions of
quadratic convex programming problems. These meth-
ods can be found in many places in the literature. In
the case of concave minimization over polytopes, it is
well known that if the problem has an optimal solution,
then an optimal solution is attained at a vertex of D. On
the other hand, the global minimum is not necessarily
attained at a vertex of D for infinite quadratic program-
ming problems. In this case, from second order opti-
mality conditions, the global minimum is attained at the
boundary of the feasible domain. In this research, with-
out loss of generality, we are interested in developing
solution techniques to solve general (convex, concave
and indefinite) quadratic programming problems.

Complexity of Quadratic Programming

In this section we discuss the complexity of quadratic
programming problems. The complexity analysis can
give an idea of the possibility of developing efficient al-
gorithms for solving the problem. In [10], the QP was
shown to be TL®P-hard in the case of a negative definite
matrix Q. The QP was also proven to be TL®-hard by
reduction to the satisfiability problem [11], and reduc-
tion to the knapsack feasibility problem [5]. Moreover,
it has also been shown that checking local optimality
for the QP itself is an TL(®-hard problem [11]. In addi-
tion, checking for strict convexity (checking local opti-
mality as part of the second order necessary conditions)
in the QP was proven to be TL®-hard [8]. In fact, find-
ing a local minimum and proving local optimality of
such a solution to the QP may take exponential time.
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Pleae provide a list of MSC.

Editor’s or typesetter’s annotations (will be removed before the final TgX run)

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82



83

84

85

86

87

88

89

920

91

92

93

94

95

96

97

98

929

100

101

102

103

104

105

106

107

108

109

110

11

112

113

114

115

116

17

118

119

120

121

122

123

124

Kao: Encyclopedia of Optimization — Entry 139 — 2008/1/23 — 12:54 — page 2 — LE-TgX

2 Quadratic Integer Programming: Complexity and Equivalent Forms

This is true even in the case of a small number of con-
cave variables. For instance, although the matrix Q is of
rank one with exactly one negative eigenvalue, the QP
is still TL®-hard [9]. However, a large number of neg-
ative eigenvalues does not necessarily make the prob-
lem harder to solve. For example, consider the follow-
ing problem:

o1
min ExTQx +clx

st. x>0.

If the matrix Q has (n — 1) negative eigenvalues, then
there must be at least (n — 1) active constraints at the
optimal solution [3]. Correspondingly, it is sufficient to
solve (n — 1) different problems, in each case setting
(n—1) of the constraints to equalities, to find the optimal
solution. In general, if the matrix Q has (n — k) negative
eigenvalues, then we are required to solve #Lk)v inde-
pendent problems. In addition, the total computational
time required to solve this problem is proportional to
% Thus, if k is an constant and independent of
n, then the computational time is bounded by a polyno-
mial in n. On the other hand, if k grows with n, then the
computational time can grow exponentially with n [3].

Equivalence Between Discrete
and Continuous Problems

Before we show the equivalence between discrete and
continuous programs, it is important to discuss an
equivalence property between two extremum prob-
lems [2]. Therefore, we refer to the following theorem
(see [2] for a proof).

Theorem 1 Let Z and X be compact sets in R", R
be a closed set in R", and let the following hypotheses
hold.

H;) f: R" — R is a bounded function on X, and

there exists an open set A C Z and real number

o, L > 0 suchthat, foranyx, y € S, f satisfies

the following Holder condition: | f(x) — f(y)|

< Ljx—y[*

It is impossible to find ¢ : R" — R such that

(i) ¢ is continuous on X,

(i) ¢(x)=0,x€Z; p(x)>0, xe X —Z,

(iii) Yz € Z, there exists a neighborhood S(z)
and a real & >0 such that, for any x <
Sz)N (X —2), ¢x) = &|x —z||*.

H;)

Then a real | exists such that for any real © > [,
min f(x), x € Z N R is equivalent to min[ f(x) +
we(x)], x e X N R.

Now we can show an equivalence between discrete and
continuous programs from the following theorem [2].
Theorem 2 Lete” =(1,1,...,1),Z=B", X ={x €
R"; 0 < x <e}, R={x € R"; g(x) > 0}. Consider
the problem

min  f(x) ) 2
s.1. gx)>0, xeB",
and the problem
in [f(x)+px'(e—x)]
min [ f(x)+pux' (e —x 3)

s.1. gx)>0, 0< x<e.

Then we suppose that f verifies assumption H; from
Theorem 1 with o = 1; that is, it is bounded on X and
Lipschitz continuous on an open set A D Z. Subse-
quently, there exists some (1o € R such that Vi < o
Problems (2) and (3) are equivalent.

Integer Programming Problems
and Complementarity Problems

The connections between integer programs and com-
plementarity problems can be exhibited by applying
KKT conditions. The results can be generalized in the
quadratic programming case [4].

Theorem 3 Let us first assume

3a) f: R* - R, g: R*" — R are continuously
differentiable functions.

3b) g(x) satisfies a constraint qualification condition
at X’ to ensure that KKT conditions are validated.

Then the nonlinear programming problem

min  f(x)

st g(x)>0, @

x>0,

has an optimal solution x° if there exist u® € R”,

y°, v° € RY such that (x°, y°,u®, v°) is an optimal
solution to the following problem:
min  f(x)
st flo)—yTg'(x)—u=0,
gx)—v=0,
. (5)
yv=0
xtu=0

xX,y,u,v>0.
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Proof 1 Necessity. If x° is an optimal solution to Prob-
lem (4), from KKT conditions we obtain ( yo, u%) such
that

F1a% g6 —u= 0
gxH = 0

xoTuO: 0,
0

xO’ yO’ uO

)

A%

)

A%

Let v0 = g(x?), then (x°, y°, %, v°) is an optimal solu-
tion to Problem (5).
Sufficiency. The proof is trivial. O

We now generalize the results of Theorem 3 to the
quadratic programming case. Consider the following
problem

1
—xT0x +c"x

min
2

s.t.  Ax > b, ©)
x € B",

where Q is a symmetric matrix. Using Theorem 2, Prob-
lem (6) is equivalent to

1
min [ExT(Q —2uD)x +(cT + ,ueT)x:|
s.t.  Ax > b, (7)

X =e,

x>0.

Applying Theorem 3 to Problem (7), we then obtain

min [%xT(Q —2ul)x + T+ ,ueT)xi| (8)
s.t. c+Ox+ule—2x)—y'A+t=u, ©))
b—Ax =v, (10)
e—x=w, (11)
x'u=0, (12)
ylv=0, (13)
Tw=0, (14)
xX,y,t,u,v,w > 0. (15)

Arrange the terms in (9), we then have Ox — 2ux =
—(c + pe) + yTA — t + u. Consequently, (8) becomes

min[1(cT + pe)x + 1(bTy — €'1). From (12), (13),
and (14), we have

xTu= 0,
0= yTv=yTh—yTax,
0= tTw=tTe—1t"x;

therefore, yTh = yTAx and tTe = tTx. Taken all to-
gether, Problem (6) is equivalent to the following prob-
lem.

T

min ¢ X
st.  Ar+n=b,
=0,
%, 0>0,
where
X-T = (xT7 yTatT)9
at= @' " wh),
—0+2ul AT -1
A= A 0o o0 |,
1 0 0
1
T = E(CT+,ueT+eT,bT,eT),
hT = (T, b7, ey,

Note that there are no restrictive assumptions made on
Q, this transformation is applicable to the convex case
as well as the nonconvex case.

Integer Programming Problems
and Quadratic Integer Programming Problems

Integer programming is used to model a variety of im-
portant practical problems in operations research, engi-
neering, and computer science. Consider the following
linear zero-one programming problem:

min ¢Tx

st. Ax <b, x;€{0,1}, (=1,...,n)

where A is a real (m x n)-matrix, ¢ € R” and b € R™.
LeteT =(1,..., 1) € R" denote the vector whose com-
ponents are all equal to 1. Then the zero-one integer lin-
ear programming problem is equivalent to the following
concave minimization problem:

min  f(x)=cTx +puxT(e — x)

st. Ax<bh,0<x<e

1
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4 Quadratic Integer Programming: Complexity and Equivalent Forms

where u is a sufficiently large positive integer. We know
that the function f(x) is concave because —xT
cave.

The equivalence of the two problems is based on the
facts that a concave function attains its minimum at
a vertex and that xT(x —e) = 0, 0 < x < e, im-
pliesx; =0or 1 fori =1,...,n. We note that a vertex
of the feasible domain is not necessarily a vertex of the
unit hypercube 0 < x < e, but the global minimum is
attained only when xT(e — x) = 0, provided that j is
a sufficiently large number.

These transformation techniques can be applied to re-
duce quadratic zero-one problems to equivalent con-
cave minimization problems. For instance, consider
a quadratic zero-one problem of the following form:

X 1S con-

min  f(x)=c'x+xTOx

st.  xe{0,1}

where Q is a real symmetric (n x n) matrix. Given any
real number p, let O = Q + ul where [ is the (n x n)
unit matrix, and ¢ = ¢ — pe. Because of f(x) = f(x),
the above quadratic zero-one problem is equivalent to
the problem:

min f(x) =& x+x'0x

s.t. x; €{0,1}, (@G=1,...,n)

In this case, if we choose i such that O = Q + ul
becomes a negative semidefinite matrix (e.g., £ = —A,
where A is the largest eigenvalue of Q), then the objec-
tive function f(x) becomes concave and the constraints
can be replaced by 0 < x < e. Thus, this problem is
equivalent to the minimization of a quadratic concave
function over the unit hypercube [4].

Various Equivalent Forms
of Quadratic Zero-One Programming Problems

The problem considered here is a quadratic zero-one
program, which has the form

min f(x) =xTQux,

. (16)
s.t. x; €4{0,1}, i=1,...,n,

where Q is an n x n matrix [6,7]. Throughout this sec-
tion the following notation will be used.

e {0, 1}": set of n dimensional 0-1 vectors.

e R™":get of n x n dimensional real matrices.

e R™:set of n dimensional real vectors.

In order to formalize the notion of equivalence we need
some definitions.

Definition 1 The problem P is “polynomially re-
ducible” to problem Py if given an instance I(P) of
problem P, an instance I(P) of problem P, can be ob-
tained in polynomial time such that solving I(P) will
solve I(Py).

Definition 2 Two problems P; and P, are called
“equivalent” if P} is “polynomially reducible” to P, and
P is “polynomially reducible” to P;.

Consider the following three problems:

P: min f(x)= x'Qx, xe{0,1}",
Q c Ran

Pi: min f(x)= xTOx+cTx, xe{0,1}",
Qe R ceR".

P>: min f(x)= xTQx, xe€{0,1}",
Q c Ran
n
in = k for some k
i=1

s.t. 0<k=n,

where x = (x1, X2,...,Xn).

Next we show that problems P, P;, and P, are all
“equivalent”. Then, formulation P, will be used in the
rest of the sections.

Lemma 1 P is “polynomially reducible” to P;.

Proof 2 Tt is very easy to see that P is a special case of
P. O

Lemma 2 P; is “polynomially reducible” to P.

Proof 3 Problem Py is defined as follows: min f(x) =
xTOx+cTx,x €{0,1}",Q0 € R™" c € R".If Q =
(¢ij) then let B = (b;;) where

qij ifi #j
bij = o
qij +Ci ifi = J-
Since xl.2 = x; (because x; € {0, 1}), we have g(x) =

xTBx = xTQx + ¢"x. So the following problem is
equivalent to problem P; : ming(x) = x'Bx,x €
{0,1}", B € R™*". O

Using Lemma 1 and Lemma 2, it is evident that P and
P are “equivalent”.
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Lemma 3 P, is “polynomially reducible” to P.

Proof 4 Problem P, is as follows: min f(x) =
xTOx, x € {0,1}", Q € R™™ 7" xi =k
for some k s.t. 0 < k < n.If O = (gi;) then let
M =237 >i, 19ij 1+ 1. Now, define the following
problem P: ming(x) =xTQx+ M " xi —k)?s.t.
x €{0,1}", 0 € RV . Letxy, = (x{’, .. .,x,l,’) and xo =
(x¥,...,x9) such that >, xib #kand ) ! x) =k,
then g(xg) < % as Y i x) =k, g(xp) > #
+ M or g(xp) > M a5 | Y7 xP — k| > 1. There-
fore, g(xo) < g(xp)if Y i, x? # kand 37 x? = k.
Hence, if min g(x) = g(xo) where xo = (x?, ... ,x,(,))
then Y 7, x? = k. So min f(x) = min g(x). From the
above discussion, it can be easily seen that P; is “poly-
nomially reducible” to P. O

The proof of Lemma 3 also illustrates how equality
(knapsack) constraints in a quadratic zero-one program
can be eliminated.

Lemma 4 P is “polynomially reducible” to P».

Proof 5 Let problem P be defined as follows:
min f(x) = xT0x, x € {0,1}*, Q e R™",
Define a series of (n + 1) problems: P,(0), P(1),
P>(2),---, Py(n), where P,(j) is the following prob-
lem min f(x) = xTQx, x € {0,1}*, Q € R™",
Z?:  Xi = j. Let the minimum of the problem P(j) be
vj» then the minimum of problem P is easily seen to be
the min {yo, y1,..., Yn}. |

Lemma 3 and Lemma 4 imply that P and P, are “equiv-
alent”. Since “equivalent” is a transitive relative, P, Py,
P, are all “equivalent”.

Complexity of Quadratic Zero-One Programming
Problems

Quadratic zero-one programming is a difficult problem.
We next will show that the quadratic knapsack zero-one
problem in (P») is a NP hard problem by proving that
it is equivalent to the k-clique problem. A k-clique is
a complete graph with k vertices.

k-clique Problem

Given a graph G=(V,E) (V is the set of vertices and E
is the set of edges), does the graph G have a k-clique as
one of its subgraphs?

k-clique problem is known to be NP-complete. We will
show that the k-clique problem is “polynomially re-

ducible” to problem P, defined in the previous subsec-
tion.

Theorem 4 The k-clique problem is “polynomially re-
ducible” to P;.

Proof6 Problem P, was defined as min f(x) = xTQx,
st.x; €{0,1},i=1,---,n,Y " x;i =mforsome0 <
m < n. Given the graph G = (V, E), define O = (gi;)
such that

s 0
qij = _1

where n = |V|,m = k (we are trying to find a k-clique).
The meaning attached to the vector x € {0, 1}" in prob-
lem P, is as follows

if(vi,v_/) eE
if (vi,vj) € E,

means that v; is in the clique,

1
Xi = . . .
0 means that v; is not in the clique .

We can easily prove that the graph G has a k-clique if
and only if min f(x) = —k(k — 1). So the k-clique
problem is “polynomially reducible” to P;. O

Problem P, is “equivalent” to P, so problem P is also
NP-hard. Therefore, as the dimension of the problem
increases, the necessary CPU time to solve the problem
increases exponentially.

Quadratic Zero-One Programming
and Mixed Integer Programming

In this section, we consider a quadratic zero-one pro-
gramming problem in the following form:

min f(x) =x'0x,
s.t. in =k, xe{0,1}". 17
i=1

Let Q be n x n matrix, whose each element g; ; > 0.
Define x = (xy,...,x,), where each x; represents bi-
nary decision variables. We will show that the problem
in (17) can be linearized as the following mixed inte-
ger programming problems. The first linearization tech-
nique is trivial and can be found elsewhere. Recently,
more efficient linearization technique was introduced
in [1]. In addition, the linearization technique for more
general case (where ¢; ; € real) and multi-quadratic
programming was also proposed in [1].
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6 Quadratic Integer Programming: Complexity and Equivalent Forms

Conventional Linearization Approach

For each product x;x; in the objective function of the
problem (17) we introduce a new continuous variable,
xij = xixj(i # Jj). Note that x;; = x} = x; for
x; € {0, 1}. The equivalent mixed integer programming
problem (MIP) is given by:

min E E qijXij
J

i

s.t. Xn:xi =k,
i=1

Xij < Xi, fori,j=1,...,n( # j)
Xij < Xj, fori,j=1,....,n(0 # j)
xXi+x;j—1=<ux;, fori,j=1,....n( #j)
0=<xy =1, fori,j=1,...,n( # j)

(18)

where x; € {0,1},i,j =1,...,n.

The main disadvantage of this approach is that the
number of additional variables we need to introduce is
O(n?), and the number of new constraints is also O(n?).
The number of 0—1 variables remains the same.

A New Linearization Approach

Consider the following mixed integer programming
problem:

min g(s)

n
= E s;i=els
X,9.8
i=1
n
s.t. E xi =k,
i=1

(19)
Ox—y—s5=0,
Y = ple —x),
x; €{0,1}, fori=1,...,n
yi, $i >0, fori=1,...,n.

where Q is an n X n matrix, whose each element
qi,j = 0.

In [1], the mixed integer 0—1 programming problem
in (19) was proved equivalent to the quadratic zero-
one programming in (17). The main advantage of this
approach is that we only need to introduce O(n) ad-
ditional variables and O(n) new constraints, where the
number of 0-1 variables remains the same. This lin-
earization technique proved more robust and more effi-

ciently solving quadratic zero-one and multi-quadratic
zero-one programming problems [1].
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