

See discussions, stats, and author profiles for this publication at: <https://www.researchgate.net/publication/249599302>

Quadratic Integer Programming: Complexity and Equivalent Forms

Article · January 2008

DOI: 10.1007/978-0-387-74759-0_536

CITATIONS
30

READS
2,054

3 authors:

Wanpracha Chaovativongse

University of Washington

181 PUBLICATIONS 4,758 CITATIONS

[SEE PROFILE](#)

Ioannis Androulakis

Rutgers, The State University of New Jersey

295 PUBLICATIONS 7,496 CITATIONS

[SEE PROFILE](#)

Panos Pardalos

University of Florida

1,728 PUBLICATIONS 48,328 CITATIONS

[SEE PROFILE](#)

Quadratic Integer Programming: Complexity and Equivalent Forms

1 W. ART CHAOVALITWONGSE¹, IOANNIS
 2 P. ANDROULAKIS², PANOS M. PARDALOS³
 3 ¹ Department of Industrial and Systems Engineering,
 4 Rutgers University, Piscataway, USA
 5 ² Department of Biomedical Engineering, Rutgers
 6 University, Piscataway, USA
 7 ³ Department of Industrial and Systems Engineering,
 8 University of Florida, Gainesville, USA

9 MSC2000: **CE2**

Article Outline

11 Keywords and Phrases
 12 Introduction
 13 Complexity of Quadratic Programming
 14 Equivalence Between Discrete
 15 and Continuous Problems
 16 Integer Programming Problems
 17 and Complementarity Problems
 18 Integer Programming Problems
 19 and Quadratic Integer Programming Problems
 20 Various Equivalent Forms
 21 of Quadratic Zero-One Programming Problems
 22 Complexity of Quadratic Zero-One
 23 Programming Problems
 24 k -clique Problem
 25 Quadratic Zero-One Programming
 26 and Mixed Integer Programming
 27 Conventional Linearization Approach
 28 A New Linearization Approach
 29 References

Keywords and Phrases

31 Quadratic zero-one programming; Indefinite quadratic
 32 programming; Complexity; Optimality conditions

Introduction

34 In this paper we consider a quadratic programming
 35 (QP) problem of the following form:

$$\begin{aligned} \min \quad & f(x) = \frac{1}{2} x^T Q x + c^T x \\ \text{s.t.} \quad & x \in D \end{aligned} \quad (1)$$

Please note that pagination and layout are not final.

CE2 Please provide a list of MSC.

where D is a polyhedron in \mathbb{R}^n , $c \in \mathbb{R}^n$. Without any loss of generality, we can assume that Q is a real symmetric ($n \times n$)-matrix. If this is not the case, then the matrix Q can be converted to symmetric form by replacing Q by $(Q + Q^T)/2$, which does not change the value of the objective function $f(x)$. Note that if Q is positive semidefinite, then Problem (1) is considered to be a convex minimization problem. When Q is negative semidefinite, Problem (1) is considered to be a concave minimization problem. When Q has at least one positive and one negative eigenvalue (i. e., Q is indefinite), Problem (1) is considered to be an indefinite quadratic programming problem. We know that in the case of convex minimization problem, every Kuhn-Tucker point is a local minimum, which is also a global minimum. In this case, there are a number of classical optimization methods that can obtain the globally optimal solutions of quadratic convex programming problems. These methods can be found in many places in the literature. In the case of concave minimization over polytopes, it is well known that if the problem has an optimal solution, then an optimal solution is attained at a vertex of D . On the other hand, the global minimum is not necessarily attained at a vertex of D for infinite quadratic programming problems. In this case, from second order optimality conditions, the global minimum is attained at the boundary of the feasible domain. In this research, without loss of generality, we are interested in developing solution techniques to solve general (convex, concave and indefinite) quadratic programming problems.

Complexity of Quadratic Programming

In this section we discuss the complexity of quadratic programming problems. The complexity analysis can give an idea of the possibility of developing efficient algorithms for solving the problem. In [10], the QP was shown to be \mathcal{NP} -hard in the case of a negative definite matrix Q . The QP was also proven to be \mathcal{NP} -hard by reduction to the satisfiability problem [11], and reduction to the knapsack feasibility problem [5]. Moreover, it has also been shown that checking local optimality for the QP itself is an \mathcal{NP} -hard problem [11]. In addition, checking for strict convexity (checking local optimality as part of the second order necessary conditions) in the QP was proven to be \mathcal{NP} -hard [8]. In fact, finding a local minimum and proving local optimality of such a solution to the QP may take exponential time.

2 Quadratic Integer Programming: Complexity and Equivalent Forms

83 This is true even in the case of a small number of con-
 84 cave variables. For instance, although the matrix Q is of
 85 rank one with exactly one negative eigenvalue, the QP
 86 is still \mathcal{NP} -hard [9]. However, a large number of neg-
 87 ative eigenvalues does not necessarily make the prob-
 88 lem harder to solve. For example, consider the follow-
 89 ing problem:

$$\begin{aligned} \min \quad & \frac{1}{2} x^T Q x + c^T x \\ \text{s.t.} \quad & x \geq 0. \end{aligned}$$

90 If the matrix Q has $(n - 1)$ negative eigenvalues, then
 91 there must be at least $(n - 1)$ active constraints at the
 92 optimal solution [3]. Correspondingly, it is sufficient to
 93 solve $(n - 1)$ different problems, in each case setting
 94 $(n - 1)$ of the constraints to equalities, to find the optimal
 95 solution. In general, if the matrix Q has $(n - k)$ negative
 96 eigenvalues, then we are required to solve $\frac{n!}{k!(n-k)!}$ inde-
 97 pendent problems. In addition, the total computational
 98 time required to solve this problem is proportional to
 99 $\frac{k^3 c^k n!}{k!(n-k)!}$. Thus, if k is a constant and independent of
 100 n , then the computational time is bounded by a poly-
 101 nomial in n . On the other hand, if k grows with n , then the
 102 computational time can grow exponentially with n [3].

104 Equivalence Between Discrete 105 and Continuous Problems

106 Before we show the equivalence between discrete and
 107 continuous programs, it is important to discuss an
 108 equivalence property between two extremum prob-
 109 lems [2]. Therefore, we refer to the following theorem
 110 (see [2] for a proof).

111 **Theorem 1** Let \bar{Z} and \bar{X} be compact sets in \mathbb{R}^n , R
 112 be a closed set in \mathbb{R}^n , and let the following hypotheses
 113 hold.

114 **H₁**) $f: \mathbb{R}^n \rightarrow \mathbb{R}$ is a bounded function on \bar{X} , and
 115 there exists an open set $A \subset \bar{Z}$ and real number
 116 α , $L > 0$ such that, for any $x, y \in S$, f satisfies
 117 the following Hölder condition: $|f(x) - f(y)| \leq L\|x - y\|^\alpha$.

118 **H₂**) It is impossible to find $\varphi: \mathbb{R}^n \rightarrow \mathbb{R}$ such that
 119 (i) φ is continuous on \bar{X} ,
 120 (ii) $\varphi(x) = 0$, $x \in \bar{Z}$; $\varphi(x) > 0$, $x \in \bar{X} - \bar{Z}$,
 121 (iii) $\forall z \in \bar{Z}$, there exists a neighborhood $S(z)$
 122 and a real $\bar{\varepsilon} > 0$ such that, for any $x \in S(z) \cap (\bar{X} - \bar{Z})$, $\varphi(x) \geq \bar{\varepsilon}\|x - z\|^\alpha$.

Then a real μ_0 exists such that for any real $\mu \geq \mu_0$,
 $\min f(x)$, $x \in \bar{Z} \cap R$ is equivalent to $\min[f(x) + \mu\varphi(x)]$, $x \in \bar{X} \cap R$.

Now we can show an equivalence between discrete and
 continuous programs from the following theorem [2].

Theorem 2 Let $e^T = (1, 1, \dots, 1)$, $\bar{Z} = \mathbb{B}^n$, $\bar{X} = \{x \in \mathbb{R}^n; 0 \leq x \leq e\}$, $R = \{x \in \mathbb{R}^n; g(x) \geq 0\}$. Consider
 the problem

$$\begin{aligned} \min \quad & f(x) \\ \text{s.t.} \quad & g(x) \geq 0, \quad x \in B^n, \end{aligned} \tag{2}$$

and the problem

$$\begin{aligned} \min \quad & [f(x) + \mu x^T (e - x)] \\ \text{s.t.} \quad & g(x) \geq 0, \quad 0 \leq x \leq e. \end{aligned} \tag{3}$$

Then we suppose that f verifies assumption H_1 from
 Theorem 1 with $\alpha = 1$; that is, it is bounded on \bar{X} and
 Lipschitz continuous on an open set $A \supseteq \bar{Z}$. Subse-
 quently, there exists some $\mu_0 \in \mathbb{R}$ such that $\forall \mu < \mu_0$
 Problems (2) and (3) are equivalent.

141 Integer Programming Problems 142 and Complementarity Problems

The connections between integer programs and complementarity problems can be exhibited by applying KKT conditions. The results can be generalized in the quadratic programming case [4].

Theorem 3 Let us first assume

3a) $f: \mathbb{R}^n \rightarrow \mathbb{R}$, $g: \mathbb{R}^n \rightarrow \mathbb{R}$ are continuously
 differentiable functions.

3b) $g(x)$ satisfies a constraint qualification condition
 at x^0 to ensure that KKT conditions are validated.

Then the nonlinear programming problem

$$\begin{aligned} \min \quad & f(x) \\ \text{s.t.} \quad & g(x) \geq 0, \quad x \geq 0, \end{aligned} \tag{4}$$

has an optimal solution x^0 if there exist $u^0 \in \mathbb{R}^n$,
 $y^0, v^0 \in \mathbb{R}^v$ such that (x^0, y^0, u^0, v^0) is an optimal
 solution to the following problem:

$$\begin{aligned} \min \quad & f(x) \\ \text{s.t.} \quad & f'(x) - y^T g'(x) - u = 0, \\ & g(x) - v = 0, \\ & y^T v = 0 \\ & x^T u = 0 \\ & x, y, u, v \geq 0. \end{aligned} \tag{5}$$

158 *Proof 1* Necessity. If x^0 is an optimal solution to Prob-
159 lem (4), from KKT conditions we obtain (y^0, u^0) such
160 that

$$\begin{aligned} 161 \quad f'(x^0) - y^{0\top} g(x^0) - u^0 &= 0, \\ g(x^0) &\geq 0, \\ x^{0\top} u^0 &= 0, \\ x^0, y^0, u^0 &\geq 0. \end{aligned}$$

162 Let $v^0 = g(x^0)$, then (x^0, y^0, u^0, v^0) is an optimal solu-
163 tion to Problem (5).

164 Sufficiency. The proof is trivial. \square

165 We now generalize the results of Theorem 3 to the
166 quadratic programming case. Consider the following
167 problem

$$\begin{aligned} 168 \quad \min \quad & \frac{1}{2} x^T Q x + c^T x \\ \text{s.t.} \quad & Ax \geq b, \\ & x \in B^n, \end{aligned} \tag{6}$$

169 where Q is a symmetric matrix. Using Theorem 2, Prob-
170 lem (6) is equivalent to

$$\begin{aligned} 171 \quad \min \quad & \left[\frac{1}{2} x^T (Q - 2\mu I) x + (c^T + \mu e^T) x \right] \\ \text{s.t.} \quad & Ax \geq b, \\ & x \leq e, \\ & x \geq 0. \end{aligned} \tag{7}$$

172 Applying Theorem 3 to Problem (7), we then obtain

$$\min \left[\frac{1}{2} x^T (Q - 2\mu I) x + (c^T + \mu e^T) x \right] \tag{8}$$

$$\text{s.t. } c + Qx + \mu(e - 2x) - y^T A + t = u, \tag{9}$$

$$b - Ax = v, \tag{10}$$

$$e - x = w, \tag{11}$$

$$x^T u = 0, \tag{12}$$

$$y^T v = 0, \tag{13}$$

$$t^T w = 0, \tag{14}$$

$$x, y, t, u, v, w \geq 0. \tag{15}$$

188 Arrange the terms in (9), we then have $Qx - 2\mu x =$
189 $-(c + \mu e) + y^T A - t + u$. Consequently, (8) becomes

190 $\min \left[\frac{1}{2} (c^T + \mu e^T) x + \frac{1}{2} (b^T y - e^T t) \right]$. From (12), (13),
191 and (14), we have

$$\begin{aligned} x^T u &= 0, \\ 192 \quad 0 &= y^T v = y^T b - y^T A x, \\ 0 &= t^T w = t^T e - t^T x; \end{aligned}$$

193 therefore, $y^T b = y^T A x$ and $t^T e = t^T x$. Taken all to-
194 gether, Problem (6) is equivalent to the following prob-
195 lem.

$$\begin{aligned} \min \quad & \hat{c}^T \hat{x} \\ \text{s.t.} \quad & \hat{A} \hat{x} + \hat{u} = \hat{b}, \\ & \hat{x} \hat{u} = 0, \\ & \hat{x}, \hat{u} \geq 0, \end{aligned} \tag{196}$$

where

$$\begin{aligned} \hat{x}^T &= (x^T, y^T, t^T), \\ \hat{u}^T &= (u^T, v^T, w^T), \\ \hat{A} &= \begin{pmatrix} -Q + 2\mu I & A^T & -I \\ A & 0 & 0 \\ I & 0 & 0 \end{pmatrix}, \\ \hat{c}^T &= \frac{1}{2} (c^T + \mu e^T + e^T, b^T, e^T), \\ \hat{b}^T &= (c^T, b^T, e^T). \end{aligned} \tag{197}$$

199 Note that there are no restrictive assumptions made on
200 Q , this transformation is applicable to the convex case
201 as well as the nonconvex case.

Integer Programming Problems and Quadratic Integer Programming Problems

202 Integer programming is used to model a variety of im-
203 portant practical problems in operations research, engi-
204 neering, and computer science. Consider the following
205 linear zero-one programming problem:

$$\begin{aligned} \min \quad & c^T x \\ \text{s.t.} \quad & Ax \leq b, \quad x_i \in \{0, 1\}, \quad (i = 1, \dots, n) \end{aligned} \tag{208}$$

209 where A is a real $(m \times n)$ -matrix, $c \in \mathbb{R}^n$ and $b \in \mathbb{R}^m$.
210 Let $e^T = (1, \dots, 1) \in \mathbb{R}^n$ denote the vector whose com-
211 ponents are all equal to 1. Then the zero-one integer lin-
212 ear programming problem is equivalent to the following
213 concave minimization problem:

$$\begin{aligned} \min \quad & f(x) = c^T x + \mu x^T (e - x) \\ \text{s.t.} \quad & Ax \leq b, \quad 0 \leq x \leq e \end{aligned} \tag{214}$$

4 Quadratic Integer Programming: Complexity and Equivalent Forms

215 where μ is a sufficiently large positive integer. We know
 216 that the function $f(x)$ is concave because $-x^T x$ is con-
 217 cave.

218 The equivalence of the two problems is based on the
 219 facts that a concave function attains its minimum at
 220 a vertex and that $x^T(x - e) = 0$, $0 \leq x \leq e$, im-
 221 plies $x_i = 0$ or 1 for $i = 1, \dots, n$. We note that a vertex
 222 of the feasible domain is not necessarily a vertex of the
 223 unit hypercube $0 \leq x \leq e$, but the global minimum is
 224 attained only when $x^T(e - x) = 0$, provided that μ is
 225 a sufficiently large number.

226 These transformation techniques can be applied to re-
 227 duce quadratic zero-one problems to equivalent con-
 228 cave minimization problems. For instance, consider
 229 a quadratic zero-one problem of the following form:

$$\begin{aligned} \min \quad & f(x) = c^T x + x^T Q x \\ \text{s.t.} \quad & x \in \{0, 1\}^n \end{aligned}$$

231 where Q is a real symmetric $(n \times n)$ matrix. Given any
 232 real number μ , let $\bar{Q} = Q + \mu I$ where I is the $(n \times n)$
 233 unit matrix, and $\bar{c} = c - \mu e$. Because of $\bar{f}(x) = f(x)$,
 234 the above quadratic zero-one problem is equivalent to
 235 the problem:

$$\begin{aligned} \min f(x) &= \bar{c}^T x + x^T \bar{Q} x \\ \text{s.t.} \quad & x_i \in \{0, 1\}, \quad (i = 1, \dots, n) \end{aligned}$$

237 In this case, if we choose μ such that $\bar{Q} = Q + \mu I$
 238 becomes a negative semidefinite matrix (e.g., $\mu = -\lambda$,
 239 where λ is the largest eigenvalue of Q), then the objec-
 240 tive function $\bar{f}(x)$ becomes concave and the constraints
 241 can be replaced by $0 \leq x \leq e$. Thus, this problem is
 242 equivalent to the minimization of a quadratic concave
 243 function over the unit hypercube [4].

244 **Various Equivalent Forms 245 of Quadratic Zero-One Programming Problems**

246 The problem considered here is a quadratic zero-one
 247 program, which has the form

$$\begin{aligned} \min f(x) &= x^T Q x, \\ \text{s.t.} \quad & x_i \in \{0, 1\}, \quad i = 1, \dots, n, \end{aligned} \tag{16}$$

249 where Q is an $n \times n$ matrix [6,7]. Throughout this sec-
 250 tion the following notation will be used.

- 251 • $\{0, 1\}^n$: set of n dimensional 0–1 vectors.
- 252 • $R^{n \times n}$: set of $n \times n$ dimensional real matrices.
- 253 • R^n : set of n dimensional real vectors.

In order to formalize the notion of equivalence we need
 254 some definitions.

Definition 1 The problem P is “polynomially reducible”
 255 to problem P_0 if given an instance $I(P)$ of
 256 problem P , an instance $I(P_0)$ of problem P_0 can be ob-
 257 tained in polynomial time such that solving $I(P)$ will
 258 solve $I(P_0)$.

Definition 2 Two problems P_1 and P_2 are called
 261 “equivalent” if P_1 is “polynomially reducible” to P_2 and
 262 P_2 is “polynomially reducible” to P_1 .

263 Consider the following three problems:

$$\begin{aligned} P: \min f(x) &= x^T Q x, \quad x \in \{0, 1\}^n, \\ & Q \in R^{n \times n}, \\ P_1: \min f(x) &= x^T Q x + c^T x, \quad x \in \{0, 1\}^n, \\ & Q \in R^{n \times n}, c \in R^n. \\ P_2: \min f(x) &= x^T Q x, \quad x \in \{0, 1\}^n, \\ & Q \in R^{n \times n}, \\ & \sum_{i=1}^n x_i = k \text{ for some } k \\ \text{s.t.} \quad & 0 \leq k \leq n, \\ & \text{where } x = (x_1, x_2, \dots, x_n). \end{aligned} \tag{265}$$

266 Next we show that problems P , P_1 , and P_2 are all
 267 “equivalent”. Then, formulation P_2 will be used in the
 268 rest of the sections.

Lemma 1 P is “polynomially reducible” to P_1 .

Proof 2 It is very easy to see that P is a special case of
 270 P_1 . \square

Lemma 2 P_1 is “polynomially reducible” to P .

Proof 3 Problem P_1 is defined as follows: $\min f(x) =$
 $x^T Q x + c^T x$, $x \in \{0, 1\}^n$, $Q \in R^{n \times n}$, $c \in R^n$. If $Q =$
 (q_{ij}) then let $B = (b_{ij})$ where

$$b_{ij} = \begin{cases} q_{ij} & \text{if } i \neq j \\ q_{ij} + c_i & \text{if } i = j. \end{cases} \tag{276}$$

277 Since $x_i^2 = x_i$ (because $x_i \in \{0, 1\}$), we have $g(x) =$
 $x^T B x = x^T Q x + c^T x$. So the following problem is
 278 equivalent to problem P_1 : $\min g(x) = x^T B x$, $x \in$
 $\{0, 1\}^n$, $B \in R^{n \times n}$. \square

281 Using Lemma 1 and Lemma 2, it is evident that P and
 282 P_1 are “equivalent”.

283 **Lemma 3** P_2 is “polynomially reducible” to P .

284 *Proof 4* Problem P_2 is as follows: $\min f(x) =$
 285 $x^T Q x$, $x \in \{0, 1\}^n$, $Q \in R^{n \times n}$, $\sum_{i=1}^n x_i = k$
 286 for some k s.t. $0 \leq k \leq n$. If $Q = (q_{ij})$ then let
 287 $M = 2[\sum_{j=1}^n \sum_{i=1}^n |q_{ij}|] + 1$. Now, define the following
 288 problem P : $\min g(x) = x^T Q x + M(\sum_{i=1}^n x_i - k)^2$ s.t.
 289 $x \in \{0, 1\}^n$, $Q \in R^{n \times n}$. Let $x_b = (x_1^b, \dots, x_n^b)$ and $x_0 =$
 290 (x_1^0, \dots, x_n^0) such that $\sum_{i=1}^n x_i^b \neq k$ and $\sum_{i=1}^n x_i^0 = k$,
 291 then $g(x_0) \leq \frac{M-1}{2}$ as $\sum_{i=1}^n x_i^0 = k$, $g(x_b) \geq \frac{-(M-1)}{2}$
 292 + M or $g(x_b) \geq \frac{M+1}{2}$ as $|\sum_{i=1}^n x_i^b - k| \geq 1$. There-
 293 fore, $g(x_0) < g(x_b)$ if $\sum_{i=1}^n x_i^b \neq k$ and $\sum_{i=1}^n x_i^0 = k$.
 294 Hence, if $\min g(x) = g(x_0)$ where $x_0 = (x_1^0, \dots, x_n^0)$
 295 then $\sum_{i=1}^n x_i^0 = k$. So $\min f(x) = \min g(x)$. From the
 296 above discussion, it can be easily seen that P_2 is “poly-
 297 nomially reducible” to P . \square

298 The proof of Lemma 3 also illustrates how equality
 299 (knapsack) constraints in a quadratic zero-one program
 300 can be eliminated.

301 **Lemma 4** P is “polynomially reducible” to P_2 .

302 *Proof 5* Let problem P be defined as follows:
 303 $\min f(x) = x^T Q x$, $x \in \{0, 1\}^n$, $Q \in R^{n \times n}$.
 304 Define a series of $(n + 1)$ problems: $P_2(0)$, $P_2(1)$,
 305 $P_2(2), \dots, P_2(n)$, where $P_2(j)$ is the following prob-
 306 lem $\min f(x) = x^T Q x$, $x \in \{0, 1\}^n$, $Q \in R^{n \times n}$,
 307 $\sum_{i=1}^n x_i = j$. Let the minimum of the problem $P_2(j)$ be
 308 y_j , then the minimum of problem P is easily seen to be
 309 the $\min \{y_0, y_1, \dots, y_n\}$. \square

310 Lemma 3 and Lemma 4 imply that P and P_2 are “equi-
 311 valent”. Since “equivalent” is a transitive relative, P , P_1 ,
 312 P_2 are all “equivalent”.

313 Complexity of Quadratic Zero-One Programming 314 Problems

315 Quadratic zero-one programming is a difficult problem.
 316 We next will show that the quadratic knapsack zero-one
 317 problem in (P_2) is a NP hard problem by proving that
 318 it is equivalent to the k -clique problem. A k -clique is
 319 a complete graph with k vertices.

320 k -clique Problem

321 Given a graph $G = (V, E)$ (V is the set of vertices and E
 322 is the set of edges), does the graph G have a k -clique as
 323 one of its subgraphs?
 324 k -clique problem is known to be NP-complete. We will
 325 show that the k -clique problem is “polynomially re-

ducible” to problem P_2 defined in the previous subsec-
 326 tion. \square

327 **Theorem 4** The k -clique problem is “polynomially re-
 328ducible” to P_2 . \square

329 *Proof 6* Problem P_2 was defined as $\min f(x) = x^T Q x$,
 330 s.t. $x_i \in \{0, 1\}$, $i = 1, \dots, n$, $\sum_{i=1}^n x_i = m$ for some $0 \leq$
 331 $m \leq n$. Given the graph $G = (V, E)$, define $Q = (q_{ij})$
 332 such that
 333

$$q_{ij} = \begin{cases} 0 & \text{if } (v_i, v_j) \in E \\ -1 & \text{if } (v_i, v_j) \notin E \end{cases}, \quad 334$$

335 where $n = |V|$, $m = k$ (we are trying to find a k -clique).
 336 The meaning attached to the vector $x \in \{0, 1\}^n$ in prob-
 337 lem P_2 is as follows

$$x_i = \begin{cases} 1 & \text{means that } v_i \text{ is in the clique,} \\ 0 & \text{means that } v_i \text{ is not in the clique.} \end{cases} \quad 338$$

339 We can easily prove that the graph G has a k -clique if
 340 and only if $\min f(x) = -k(k - 1)$. So the k -clique
 341 problem is “polynomially reducible” to P_2 . \square

342 Problem P_2 is “equivalent” to P , so problem P is also
 343 NP-hard. Therefore, as the dimension of the problem
 344 increases, the necessary CPU time to solve the problem
 345 increases exponentially.

Quadratic Zero-One Programming and Mixed Integer Programming

346 In this section, we consider a quadratic zero-one pro-
 347 gramming problem in the following form:
 348

$$\begin{aligned} \min f(x) &= x^T Q x, \\ \text{s.t. } & \sum_{i=1}^n x_i = k, \quad x \in \{0, 1\}^n. \end{aligned} \quad (17) \quad 350$$

351 Let Q be $n \times n$ matrix, whose each element $q_{i,j} \geq 0$.
 352 Define $x = (x_1, \dots, x_n)$, where each x_i represents bi-
 353 nary decision variables. We will show that the problem
 354 in (17) can be linearized as the following mixed inte-
 355 ger programming problems. The first linearization tech-
 356 nique is trivial and can be found elsewhere. Recently,
 357 more efficient linearization technique was introduced
 358 in [1]. In addition, the linearization technique for more
 359 general case (where $q_{i,j} \in \text{real}$) and multi-quadratic
 360 programming was also proposed in [1].

6 Quadratic Integer Programming: Complexity and Equivalent Forms

361 **Conventional Linearization Approach**

362 For each product $x_i x_j$ in the objective function of the
 363 problem (17) we introduce a new continuous variable,
 364 $x_{ij} = x_i x_j (i \neq j)$. Note that $x_{ii} = x_i^2 = x_i$ for
 365 $x_i \in \{0, 1\}$. The equivalent mixed integer programming
 366 problem (MIP) is given by:

$$\begin{aligned} \min \quad & \sum_i \sum_j q_{ij} x_{ij} \\ \text{s.t.} \quad & \sum_{i=1}^n x_i = k, \\ & x_{ij} \leq x_i, \quad \text{for } i, j = 1, \dots, n (i \neq j) \\ & x_{ij} \leq x_j, \quad \text{for } i, j = 1, \dots, n (i \neq j) \\ & x_i + x_j - 1 \leq x_{ij}, \quad \text{for } i, j = 1, \dots, n (i \neq j) \\ & 0 \leq x_{ij} \leq 1, \quad \text{for } i, j = 1, \dots, n (i \neq j) \end{aligned} \quad (18)$$

367 where $x_i \in \{0, 1\}$, $i, j = 1, \dots, n$.

368 The main disadvantage of this approach is that the
 369 number of additional variables we need to introduce is
 370 $O(n^2)$, and the number of new constraints is also $O(n^2)$.
 371 The number of 0–1 variables remains the same.

373 **A New Linearization Approach**

374 Consider the following mixed integer programming
 375 problem:

$$\begin{aligned} \min_{x, y, s} \quad & g(s) = \sum_{i=1}^n s_i = e^T s \\ \text{s.t.} \quad & \sum_{i=1}^n x_i = k, \\ & Qx - y - s = 0, \\ & y \leq \mu(e - x), \\ & x_i \in \{0, 1\}, \quad \text{for } i = 1, \dots, n \\ & y_i, s_i \geq 0, \quad \text{for } i = 1, \dots, n. \end{aligned} \quad (19)$$

376 where Q is an $n \times n$ matrix, whose each element
 377 $q_{i,j} \geq 0$.
 378 In [1], the mixed integer 0–1 programming problem
 379 in (19) was proved equivalent to the quadratic zero–
 380 one programming in (17). The main advantage of this
 381 approach is that we only need to introduce $O(n)$ ad-
 382 ditional variables and $O(n)$ new constraints, where the
 383 number of 0–1 variables remains the same. This lin-
 384 earization technique proved more robust and more effi-
 385 ciency solving quadratic zero-one and multi-quadratic
 386 zero-one programming problems [1].

388 **References**

1. Chaovalitwongse WA, Pardalos PM, Prokopyev OA (2004) Reduction of multi-quadratic 0–1 programming problems to linear mixed 0–1 programming problems. Oper Res Lett 32(6):517–522
2. Giannessi F, Niccolucci F (1976) Connections between nonlinear and integer programming problems. Istituto Nazionale di Alta Matematica, Symposia Mathematica 19:161–176
3. Hager WW, Pardalos PM, Roussos IM, Sahinoglou HD (1991) Active constraints, indefinite quadratic programming, and test problems. J Optim Theor Appl 68(3):499–511
4. Horst R, Pardalos PM, Thoai NV (1995) Introduction to global optimization. Kluwer Academic Publishers **CE3**
5. Pardalos PM (1991) Global optimization algorithms for linearly constrained indefinite quadratic problems. Comput Math Appl 21:87–97
6. Pardalos PM, Rodgers G (1989) Parallel branch and bound algorithms for unconstrained quadratic zero-one programming. In: Sharda R et al. (eds) Impact of recent computer advances on operations research. North-Holland **CE4**
7. Pardalos PM, Rodgers G (1990) Computational aspects of a branch and bound algorithm for quadratic zero-one programming. Comput 45:131–144
8. Pardalos PM, Schnitger G (1988) Checking local optimality in constrained quadratic programming is \mathcal{NP} -hard. Oper Res Lett 7(1):33–35
9. Pardalos PM, Vavasis S (1991) Quadratic programming with one negative eigenvalue is \mathcal{NP} -hard. J Glob Optim 1:15–23
10. Sahni S (1974) Computationally related problems. SIAM J Comput 3:262–279
11. Vavasis S (1991) Nonlinear optimization: complexity issues. Oxford University Press **CE3**

CE3 Please provide publishing location.

CE4 Please provide publishing location and page range.