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A B S T R A C T   

The vast nationwide COVID-19 vaccination programs are implemented in many countries worldwide. Mass 
vaccination is causing a rapid increase in infectious and non-infectious vaccine wastes, potentially posing a 
severe threat if there is no well-organized management plan. This paper develops a mixed-integer mathematical 
programming model to design a COVID-19 vaccine waste reverse supply chain (CVWRSC) for the first time. The 
presented problem is based on minimizing the system’s total cost and carbon emission. The uncertainty in the 
tendency rate of vaccination is considered, and a robust optimization approach is used to deal with it, where an 
interactive fuzzy approach converts the model into a single objective problem. Additionally, a Lagrangian 
relaxation (LR) algorithm is utilized to deal with the computational difficulty of the large-scale CVWRSC 
network. The model’s practicality is investigated by solving a real-life case study. The results show the gain of the 
developed integrated network, where the presented framework performs better than the disintegrated vaccine 
and waste supply chain models. According to the results, vaccination operations and transportation of non- 
infectious wastes are responsible for a large portion of total cost and emission, respectively. Autoclaving tech
nology plays a vital role in treating infectious wastes. Moreover, the sensitivity analyses demonstrate that the 
vaccination tendency rate significantly impacts both objective functions. The case study results prove the model’s 
robustness under different realization scenarios, where the average objective function of the robust model is less 
than the deterministic model ones’ in all scenarios. Finally, some insights are given based on the obtained results.   

1. Introduction 

Coronavirus disease 2019, briefly known as COVID-19, is a contig
uous disease identified in December 2019 in Wuhan, China. The high 
mortality and prevalence rate of COVID-19 plunged the world into a 
global crisis, and the World Health Organization (WHO) recognized it as 
a pandemic (Tison, 2020; Lotfi et al., 2022). According to WHO data, 
nearly 513 million people have already contracted COVID-19 by April 
2022 (Worldometer, 2022). From the beginning of the pandemic, 
various policies, such as social distancing and travel bans, were imple
mented by governments to control the spread of the virus. On the other 
hand, medical experts sought efficient cures for COVID-19 in different 
ways. Convalescent plasma therapy and consumption of some medi
cines, such as RemeSivir and Favipiravir, were the first treatment 
methods utilized for severely infected patients (Goodarzian et al., 2021; 
Abolghasemi, 2020). Although these procedures provided some benefits 
in managing the pandemic, they were not as efficient as expected due to 

their limitations and the unique features of the virus. 
Consequently, various research groups widely focused on the COVID- 

19 vaccine, where >100 companies started studies to develop this 
product from the beginning of COVID-19 (Degeling, 2021). Vaccination 
is a defensive behavior that can play a critical role in controlling the 
prevalence of pandemics and epidemics. This powerful tool showed 
excellent performance and efficiency for previous infectious diseases 
like influenza and Ebola (Rastegar et al., 2021). The efforts were suc
cessful, and some of these vaccines got the emergency approval of the 
WHO for injection after three trial phases. Therefore, many countries 
planned mass vaccination programs for their target communities to 
reduce the transmission of the virus, and the most extensive vaccination 
program in history was started (Georgiadis and Georgiadis, 2021). The 
global scope of vaccination and some properties, such as cold chain 
requirements and the necessity of equitable access, caused the need to 
manage vaccine supply chains. The first COVID-19 vaccine supply chain 
network design problem is investigated by Tavana, et al. (Tavana et al., 
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2021). 
Alongside vaccine logistics, managing the COVID-19 vaccine waste 

supply chain network is another critical problem in vaccination pro
grams. In the current stage of COVID-19, there is a mass generation of 
vaccine waste, and the environment is confronting troubles due to this 
phenomenon (Hasija et al., 2021). However, this is not the end, and 
Crommelin, et al. (Crommelin et al., 2021) estimate that 5 × 109 to 9 ×

109 vaccine doses are required to end the pandemic and provide global 
immunization. COVID-19 vaccine waste management, as a waste supply 
chain network design problem, falls into the category of reverse supply 
chain networks (Kargar et al., 2020), and it is so important that WHO has 
issued a new special instruction for managing COVID-19 vaccination 
waste as “Waste management of used COVID-19 vaccine vials and 
ancillary supply” (World Health Organization, 2022). The COVID-19 
vaccine waste reverse supply chain (CVWRSC) network has some 
unique features which distinguish it from the other waste management 
networks; some of them are as follows:  

• The behavior of COVID-19 is still mysterious, and we do not have 
enough information about the future of this virus.  

• While patient referrals to hospitals are unmanageable in other 
medical waste networks, the allocation of vaccination applicants to 
vaccination sites can be managed to increase CVWRSC network ef
ficiency (Kargar et al., 2020; World Health Organization, 2022).  

• CVWRSC planning should be integrated with the vaccine supply 
chain network decisions based on WHO instructions (World Health 
Organization, 2022). 

Therefore, it is necessary to provide a different management 
framework and design a special reverse supply chain network to opti
mize the generated waste of COVID-19 vaccines (Hasija et al., 2021). 
This study aims to fill that gap by taking into account the real-world 
challenges of the vaccination systems that the WHO mandates. There
fore, the main contributions and components of this work can be sum
marized as follows:  

• Developing a new multi-objective mixed-integer mathematical 
model to design a CVWRSC network under uncertainty. This model 
can determine the optimal decision of the network considering the 
unique feature of the vaccination program during the COVID-19 
pandemic so that the system’s total cost and total carbon emission 
are minimized.  

• Providing a robust optimization method to cope with the uncertainty 
of the model. The presented robust optimization approach is able to 
efficiently handle the uncertainty in the vaccination tendency rate of 
candidate groups considering the lack of historical data.  

• Using an interactive fuzzy approach to handle the multiple objectives 
of the problem. This method is able to consider the decision-maker’s 
preferences during the solving process directly and enables the 
decision-maker to determine the satisfaction level of objectives.  

• Proposing a Lagrangian relaxation (LR) algorithm to find efficient 
solutions to the large-scale problem of the CVWRSC network opti
mization. This algorithm is able to deal with the problem’s 
complexity and provide the proper solutions for large-size networks 
in a reasonable time.  

• Analyzing the model’s performance for a real-world CVWRSC 
network from Tehran, the capital of Iran, as one of the largest met
ropolitans in middle-east with a 9,423,702 population, and 
providing managerial insights for the managers of the vaccination 
programs. 

To the best of our knowledge, no research addresses the CVWRSC 
network design problem considering the mentioned features. 

The remainder of the paper is organized as follows. In Section 2, the 
related research literature is reviewed, and the research gap is clarified. 

Section 3 defines the new problem for the CVWRSC, and a mixed-integer 
multi-objective mathematical model is developed. In addition, a three- 
phase methodology is presented for the problem. Section 4 provides 
random numerical examples and a real-life case study from Iran’s cap
ital, Tehran, to assess the model’s performance and applicability. In 
Section 5, managerial insights are presented. In Section 6, the paper is 
concluded, and some suggestions as the future research directions are 
discussed. 

2. Literature review 

This section presents a literature review of the related studies for 
CVWRSC planning, focusing on medical waste and vaccine supply chain 
management. 

2.1. Medical waste management 

Various researchers have recently addressed the supply chain plan
ning models for medical waste management in recent years. Shi, et al. 
(Shi et al., 2009)’s research is one of the earliest network design prob
lems for medical waste management. They applied a mixed-integer 
programming model to minimize the system’s overall cost and solved 
the model with an enhanced genetic algorithm. Mantzaras and Voudrias 
(Mantzaras and Voudrias, 2017) used a new methodology based on the 
geographical information system (GIS) to determine the candidate lo
cations for treatment facilities in a waste management problem by 
minimizing the total cost. Nikzamir and Baradaran (Nikzamir and Bar
adaran, 2020) presented a stochastic green location-routing problem in 
which the traveling time between nodes was considered a random var
iable. They considered the carbon emission of the vehicles depending on 
random travel time. Kargar, et al. (Kargar et al., 2020) used a possibil
istic optimization approach for a multi-objective model of a medical 
waste management system. This approach is applied to the model for 
covering the uncertainty in the supply side of the system. The recent 
outbreak of the COVID-19 pandemic causes some research questions for 
medical waste management worldwide, which results in a very new 
research line in the literature. Zambrano-Monserrate, et al. (Zambrano- 
Monserrate et al., 2020) pointed out that the outbreak of COVID-19 has 
indirect effects on the environment. They concluded that increasing 
medical waste is one of the significant results of these side effects. Yu, 
et al. (Yu et al., 2020) investigated a reverse supply chain network 
problem for medical waste management in Wuhan, the city which the 
prevalence of the pandemic began. Kargar, et al. (Kargar et al., 2020) 
extended a three-objective model that minimizes the total generated 
waste, total cost, and the transportation risk of infectious medical waste. 
The multi-objective model is handled using the goal programming 
technique. Valizadeh and Mozafari (Valizadeh and Mozafari, 2021) 
discussed a cooperation policy between the waste collectors of the sys
tem and concluded that the collaboration reduces the system’s total cost. 
They analyzed the problem with four-game theory methods. Valizadeh, 
et al. (Valizadeh et al., 2021) studied another extension of the problem 
where the aiding role of government in providing the necessary services 
is also considered by a stochastic model and solved by the benders 
decomposition approach. Govindan, et al. (Govindan et al., 2019) pre
sented a location-routing waste management problem by formulating 
the load-dependent fuel consumption, vehicle failure, and vehicle 
scheduling assumptions in the problem. Tirkolaee, et al. (Tirkolaee 
et al., 2021) also focused on the location-routing problem of medical 
waste during COVID-19 and developed a multi-trip extension of the 
problem. The goal of the model was to minimize the total travel time, 
time window violation, and the risk of disposal sites. Lotfi, et al. (Lotfi 
et al., 2021) discussed the role of flexible capacity as a resilience strategy 
for the medical waste supply chain during the COVID-19 pandemic. An 
energy-efficient model is developed for this problem which also con
siders the carbon emission of the system. Tirkolaee, et al. (Tirkolaee 
et al., 2022) presented a closed-loop supply chain network for COVID-19 
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face masks. The total cost, total emission, and the total human risk were 
the objectives of the problem, and they solved this sustainable model 
using MOGWO and NSGA-II metaheuristics. The novelty of our work 
against the previous research in medical waste-management literature is 
highlighted in Table 1. 

2.2. Vaccine supply chain management 

In this research scope, Jacobson et al. (Nikzamir and Baradaran, 
2020) developed an inventory control model to manage the supply of 
pediatric vaccines in the United States. They considered disruption 
scenarios for vaccine production and suggested some effective inventory 
policies. Abrahams and Ragsdale (Abrahams and Ragsdale, 2012) 
worked on the vaccination scheduling problem and tried to optimize the 
total cost of the scheduling system by a mixed-integer binary model. 
Samii, et al. (Samii et al., 2012) considered the reservation and alloca
tion decisions in an inventory planning model for the influenza vaccine. 
Hovav and Tsadikovich (Hovav and Tsadikovich, 2015) presented a 
mathematical model for designing an influenza vaccine supply chain. 
The goal was to optimize the distribution and inventory decisions of the 
influenza vaccine supply chain. Saif and Elhedhli (Saif and Elhedhli, 
2016) investigated a green cold vaccine supply chain. This is one of the 
few studies on carbon emission alongside the total cost in the vaccine 
supply chain. They solved the model using a simulation–optimization 
method. Lim, et al. (Lim et al., 2019) addressed the redesign problem of 
the vaccine supply chain, which determines distribution centers’ loca
tion in an existing network. Due to problem complexity, a hybrid met
aheuristic is developed to find the solutions to the model. Lin, et al. (Lin 
et al., 2020) studied a distributor-retailer vaccine supply chain with two 
inspection policies for the received vaccine on the retailer side. They 
concluded that one of these policies is more effective in managing the 
flow of vaccines in the network. Gamchi, et al. (Gamchi et al., 2021) 
proposed a new vehicle routing problem (VRP) formulation to optimally 
determine transportation decisions in a vaccine supply chain. The bi- 
objective models aimed to simultaneously minimize transportation 
costs and the social cost of the network. This problem is solved by using 
augmented epsilon constraint and dynamic programming methods. 
Enayati and Özaltın (Enayati and Özaltın, 2020) researched the vaccine 
distribution problem in the epidemic situation. Their mathematical 
model aimed to control the prevalence of the disease by equitable dis
tribution of vaccines to the population. Rastegar, et al. (Rastegar et al., 
2021) addressed some emerging accessibility problems for the influenza 
vaccine supply chain during the COVID-19 pandemic, especially in 
developing countries. Considering these concerns, a mathematical 
model with a new objective function is developed. Chandra and Vipin 
(Chandra and Vipin, 2021) presented a subsidy contract for coordina
tion in the vaccine supply chain. They analyzed the performance of the 
model for a case in India. Finally, as mentioned before, the first network 
design problem for a multi-product supply chain of COVID-19 vaccine 
was introduced by Tavana, et al. (Tavana et al., 2021). They considered 
the assumptions in a developing country to model the problem where 
the objective was the equitable distribution of vaccines between the 
demand points. Other realistic assumptions are also considered, such as 
receive time and capacity limitation. Georgiadis and Georgiadis (Geor
giadis and Georgiadis, 2021) presented a new mathematical model for 
the COVID-19 vaccine supply chain where strategic and tactical de
cisions are included. A decomposition algorithm is discussed to solve the 
problem in large-scale networks. Li, et al. (Li et al., 2022) investigated 
the production and pricing decisions in a manufacturer-retailer vaccine 
supply chain under government subsidies and Late Rebate contract. 
Uncertainty in production, transportation, and demand was also 
formulated in this work. Chowdhury, et al. (Chowdhury et al., 2022) 
developed a sustainable vaccine supply chain network considering the 
features of a developing country. They addressed three pillars of sus
tainability by modelling the total cost, total emission, and total negative 
value of employment as the objective functions. In another work, Gilani 

and Sahebi (Gilani and Sahebi, 2022) studied a sustainable vaccine 
supply chain network with uncertainty in the unjust worldwide vaccine 
distribution. The uncertainty of the model was handled using a data- 
driven robust optimization approach. In the subject of the vaccination 
supply chain, literature review studies are also presented. Duijzer, et al. 
(Duijzer et al., 2018) categorized the works in vaccine supply chain 
planning based on criteria such as type of product, production, alloca
tion, and distribution. De Boeck, et al. (De Boeck et al., 2020) provided 
another literature review focusing on vaccine distribution networks in 
low and middle-income countries. To the best of our knowledge, there is 
no research in the literature on CVWRSC network design problem, ac
cording to WHO instruction or other national or international 
organizations. 

Although there are some studies for medical waste management 
during COVID-19 and vaccine supply chain planning, this paper is the 
first decision-making framework that focuses on the CVWRSC. The 
overall framework of the current research is schematically presented in 
Fig. 1. 

3. Problem statement 

3.1. Problem definition 

The goal of the problem is to determine the optimal location, allo
cation, distribution, inventory control, treatment, and disposal decision 
of the CVWRSC network. The problem is defined based on the standard 
operating procedure of WHO to manage COVID-19 vaccine waste 
(World Health Organization, 2022). This reverse supply chain network 
includes six main echelons, including (1) candidate groups for vacci
nation, (2) vaccine distribution centers, (3) vaccination sites (fixed and 
mobile), (4) vaccine waste storage centers, (5) waste treatment facilities 
(existing and temporary), and (6) landfills. At the first echelon, some 
peoples are eligible for vaccination. The people can be categorized based 
on different criteria such as municipal district, age, and job. 

All candidate people may not accept vaccination invitations and 
refuse to be vaccinated. Anxiety about the side effects, lack of awareness 
about the effectiveness, and distrust of imported vaccines are the pri
mary reasons for vaccination refusal (Yigit et al., 2021). The vaccination 
dose’s tendency rate remains fixed and changes in different periods 
(Robinson et al., 2021). Accordingly, an uncertain vaccination tendency 
rate is considered for each group to make the problem more realistic. 

The candidate groups should be allocated to vaccination sites to 
receive their vaccine dose. Two categories of vaccination sites are 
considered: fixed and mobile vaccination sites. The fixed vaccination 
sites are located at the beginning of the planning horizon. In contrast, 
the mobile vaccination sites may not remain fixed, and they can move 
between a set of candidate locations during the planning horizon. The 
vaccination sites need to place vaccine package orders from the vaccine 
distribution centers. A vaccine package is assumed to include all the 
necessary items for the vaccination of an individual, e.g., vaccine vials, 
syringes, alcohol, and the required equipment for vaccination staff. One 
of our strategic decisions in the CVWRSC problem is to determine the 
optimal location of distribution centers. 

After the vaccination, two types of vaccine waste are generated. The first 
type is infectious vaccine wastes, including vaccine vials, syringes, and 
needles. The hazardous infectious wastes need to be treated with special 
methods before disposal. The second type is the non-infectious vaccine 
wastes, including personal protective equipment (mask, face shield, gloves), 
wrap, and cotton (World Health Organization, 2022). In this way, the 
vaccine wastes are separated at the vaccination sites. The non-infectious 
vaccine wastes need no treatment and are directly transported to landfills 
for disposal. The infectious vaccine wastes need more processing and are 
sent to storage centers. The optimal locations of storage centers are another 
strategic decision of CVWRSC and should be determined. The held in
ventory of infectious vaccine wastes in the storage centers imposes a 
holding cost to the system at the end of each period. 
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Table 1 
A review of the published research on medical waste management.  

Article Year Main contributions Waste type Time period  Objective function  Treatment 
technology  

Uncertainty type  Solution 
method 

Case 
study 

Single Multi Single Multi  Single Multi Measures  Single Multi  Robust Stochastic Fuzzy  

Shi, et al. (Shi 
et al., 2009) 

2009 Medical waste network 
design 

⨯ ✓ ⨯ ✓  ✓ ⨯ (C)  ⨯ ⨯  ⨯ ⨯ ⨯  Metaheuristic ✓ 

Mantzaras and 
Voudrias ( 
Mantzaras and 
Voudrias, 
2017) 

2017 A general infectious 
medical waste network 
design 

✓ ⨯ ⨯ ✓  ✓ ⨯ (C)  ✓ ⨯  ⨯ ⨯ ⨯  Metaheuristic ✓ 

Nikzamir and 
Baradaran ( 
Nikzamir and 
Baradaran, 
2020) 

2020 Carbon emission in 
medical waste network 

⨯ ✓ ✓ ⨯  ⨯ ✓ (C,E)  ⨯ ✓  ⨯ ✓ ⨯  Metaheuristic ✓ 

Kargar, et al. ( 
Kargar et al., 
2020) 

2020 Multi objective medical 
waste network design 

⨯ ✓ ⨯ ✓  ⨯ ✓ (C,T,W)  ⨯ ✓  ✓ ⨯ ✓  Commercial 
solver 

✓ 

Yu, et al. (Yu 
et al., 2020) 

2020 Infectious waste network 
design during COVID-19 

✓ ⨯ ⨯ ✓  ⨯ ✓ (C,R)  ✓ ⨯  ⨯ ⨯ ⨯  Commercial 
solver 

✓ 

Kargar, et al. ( 
Kargar et al., 
2020) 

2020 Infectious waste network 
design during COVID-19 
considering all sources 
of waste generation 

✓ ⨯ ⨯ ✓  ⨯ ✓ (C,R,U)  ✓ ⨯  ⨯ ⨯ ⨯  Commercial 
solver 

✓ 

Valizadeh and 
Mozafari ( 
Valizadeh and 
Mozafari, 
2021) 

2020 Infectious waste 
collection planning 
during COVID-19 

✓ ⨯ ⨯ ✓  ✓ ⨯ (C)  ⨯ ⨯  ✓ ⨯ ⨯  Commercial 
solver, 
Metaheuristic 

✓ 

Valizadeh, et al. ( 
Valizadeh 
et al., 2021) 

2021 Bi-level waste network 
planning 

⨯ ✓ ✓ ⨯  ✓ ⨯ (C)  ⨯ ⨯  ✓ ⨯ ⨯  Commercial 
solver 

✓ 

Govindan, et al. ( 
Govindan 
et al., 2019) 

2021 Medical waste location- 
routing during COVID- 
19 

✓ ⨯ ⨯ ✓  ⨯ ✓ (C,R)  ⨯ ⨯  ⨯ ⨯ ✓  Commercial 
solver 

✓ 

Tirkolaee, et al. ( 
Tirkolaee et al., 
2021) 

2021 Multi-trip location- 
routing for medical 
waste during COVID-19 

✓ ⨯ ⨯ ✓  ⨯ ✓ (TT,TVW, 
R)  

⨯ ⨯  ⨯ ⨯ ✓  Commercial 
solver 

✓ 

Lotfi, et al. (Lotfi 
et al., 2021) 

2021 Viable medical waste 
network design 

⨯ ✓ ⨯ ✓  ✓ ⨯ (C)  ⨯ ⨯  ✓ ✓ ⨯  Commercial 
solver 

✓ 

Tirkolaee, et al. ( 
Tirkolaee et al., 
2022) 

2022 Face masks closed-loop 
supply chain 

⨯ ✓ ⨯ ✓  ⨯ ✓ (C,E,R)  ⨯ ⨯  ⨯ ⨯ ⨯  Metaheuristic ✓ 

Current research 2022 Sustainable COVID-19 
vaccine waste reverse 
network design 

⨯ ✓ ⨯ ✓  ⨯ ✓ (C,E)  ⨯ ✓  ✓ ⨯ ⨯  Commercial 
solver, LR 

✓ 

C: Cost, E: Emission, T: Technology score, W: waste inventory, R: Risk, U: Uncollected waste, TT: Travel time, TVW: Time window violation. 
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Next, the infectious vaccine wastes are transported to the treatment 
facilities. Some existing treatment facilities in the CVWRSC network are 
already used to treat other medical waste, such as hospitals and clinics 
west. Some candidate temporary treatment facilities are also considered 
and can be located to ensure the availability of enough treatment ca
pacity. The vaccine waste treatment technologies in the treatment fa
cilities are: 1) disinfection with the chlorine solution and 2) sterilization 
through the autoclaving process. The primary differences between these 
technologies are in their operational cost and capacity. While the 
autoclaving process is rapid and fast, disinfection with chlorine solution 
imposes less cost on the system. The treated wastes are transported to 
landfills for disposal and non-infectious vaccine wastes. 

The first objective of the model is to minimize the overall cost of the 
CVWRSC network. On the other hand, academicians and practitioners 
have paid more attention to green operations management and envi
ronmentally responsible supply chains in recent years (Martins and Pato, 
2019; Lotfi et al., 2022; Lotfi et al., 2022; Asadkhani et al., 2022; Fallahi 
et al., 2021). The role of environmental pollution in waste management 
networks is significant. Previous research addressed carbon emission as 
one of the objectives of the problems for various waste management 

systems, e.g., medical waste and municipal waste (Govindan et al., 
2019; Darmian et al., 2020; Harijani et al., 2017; Mohsenizadeh et al., 
2020). Not only the air pollution problem and carbon emission concerns 
are not reduced during the COVID-19 pandemic, but they also intensi
fied due to the role of the breathing system in the severity of the disease. 
Air pollution can result in more harm to COVID-19 patients (Goodarzian 
et al., 2021). Therefore, it is reasonable to consider the carbon emission 
of activities while planning CVWRSC (Hasija et al., 2021). Here, we aim 
to address the environmental concerns and use the second objective 
function of the problem as minimizing the total carbon emission of 
CVWRSC. Fig. 2 shows a schematic view of the proposed CVWRSC 
network. 

3.1.1. Assumptions 
The main assumptions of the problem are as follows:  

• The problem is a multi-objective, multi-echelon, multi-product, 
multi-period CVWRSC network.  

• There are some eligible candidate groups of people for vaccination. 

Fig. 1. The overall framework of the current research.  
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• There is an uncertain vaccination tendency rate for each group at 
each period.  

• There are fixed vaccination sites and mobile vaccination sites for 
vaccination.  

• There are vaccine distribution centers.  
• The vaccination sites generate two types of waste: infectious and 

non-infectious vaccine wastes. 
• The non-infectious vaccine wastes are directly transported to land

fills after vaccination for disposal.  
• The infectious vaccine wastes should be transformed into storage 

centers after vaccination.  
• Inventory of infectious vaccine wastes imposes a holding cost on the 

system at the end of each period. 
• There are two treatment technologies in treatment facilities: disin

fection with chlorine solution and sterilization through the auto
claving process.  

• The treated infectious vaccine wastes are transported to landfills 
after vaccination for disposal.  

• There are two objective functions: minimizing the total cost and total 
carbon emission.  

• Transportation activities are the source of carbon emissions in the 
network. 

3.2. Mathematical modeling 

In this section, a mixed-integer linear programming (MILP) model is 
developed for the research problem. 

3.2.1. Notation list 
The following notations, including sets, parameters, and decision 

variables, are used for the formulation of the model:  
Sets 
S Set of candidate groups for vaccination;s ∈ {1,⋯, S}

D Set of potential locations for vaccine distribution centers;d ∈ {1,⋯,D}

(continued on next column)  

(continued ) 

Sets 
S Set of candidate groups for vaccination;s ∈ {1,⋯, S}

V Set of potential locations for fixed vaccination sites;v ∈ {1,⋯,V}
W Set of potential locations for mobile vaccination sites;w ∈ { ∈ 1,⋯,W}

P Set of vaccine waste types;p ∈ { ∈ 1,⋯,P}
C Set of potential locations for storage centers;c ∈ {1,⋯,C}
J Set of potential locations for existing treatment facilities;j ∈ {1,⋯,J}
K Set of potential locations for temporary treatment facilities;k ∈ {1,⋯,K}
G Set of treatment technology types;g ∈ {1,⋯,G}
L Set of landfills;l ∈ {1,⋯,L}
T Set of periods;t ∈ {1,⋯,T}

Parameters 
POPst The population of candidate groups s in period t 

θst The vaccination tendency rate of candidate group s in period t 
ECDd Establishment cost of vaccine distribution center d 
ECVv Establishment cost of fixed vaccination site v 
MCVw′ w′′ t Moving cost of a mobile vaccination site from location w′ to w′′ in period 

t 
CDVdvt Unit transportation cost of a vaccine package from vaccine distribution 

center d to fixed vaccination site v in period t 
CDWdwt Unit transportation cost of a vaccine package from vaccine distribution 

center d to mobile vaccination site w in period t 
CAVvt Maximum vaccination capacity of fixed vaccination site v in period t 
CAWwt Maximum vaccination capacity of mobile vaccination site w in period t 
VCFvt Unit vaccination cost at fixed vaccination site v in period t 
VCTwt Unit vaccination cost at mobile vaccination site w in period t 
INSc Establishment cost of storage center c 
NTVvlt Unit transportation cost of a non-infectious vaccine waste from fixed 

vaccination site v to landfill l in period t 
NTWwlt Unit transportation cost of a non-infectious vaccine waste from mobile 

vaccination site w to landfill l in period t 
ITVvct Unit transportation cost of an infectious vaccine waste from fixed 

vaccination site v to storage center c in period t 
ITWwct Unit transportation cost of an infectious vaccine waste from mobile 

vaccination site w to storage center c in period t 
CASc Maximum inventory capacity of storage center c 

(continued on next page) 

Fig. 2. An overview of the CVWRSC network.  
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(continued ) 

Parameters 
POPst The population of candidate groups s in period t 

VSCct Vaccine waste unit holding cost in storage center c 
INTk Establishment cost of temporary treatment facility k 
CSFcjt Unit transportation cost of a vaccine waste from storage center c to 

existing treatment facility j in period t 
CSTckt Unit transportation cost of a vaccine waste from storage center c to 

temporary treatment facility k in period t 
CAFjg Maximum capacity of treatment technology g at existing treatment 

facility j 
CATkg Maximum capacity of treatment technology g at temporary treatment 

facility k 
CTFjgt Unit treatment cost by technology g at existing treatment facility j in 

period t 
CTTkgt Unit treatment cost by technology g in temporary treatment facility k in 

period t 
CFLjlt Unit transportation cost of a treated vaccine waste from existing 

treatment facility j to landfill l in period t 
CTLklt Unit transportation cost of a treated vaccine waste from temporary 

treatment facility k to landfill l in period t 
CALlt Maximum disposals capacity of landfill l in period t 
LBClt Unit disposal cost of a vaccine waste at landfill l in period t 
αp The weight of generated type p waste from a vaccination package 
ECWw′ w′′ Unit released carbon to move a mobile vaccination site from w′ to w′′

EDVdv Unit released carbon to transport a vaccine package from vaccine 
distribution center d to fixed vaccination site v 

EDWdw Unit released carbon to transport a vaccine package from vaccine 
distribution center d to mobile vaccination site w 

EVSvc Unit released carbon to transport an infectious vaccine waste from fixed 
vaccination site v to storage center c 

EWSwc Unit released carbon to transport an infectious vaccine waste from 
mobile vaccination site w to storage center c 

EVLvl Unit released carbon to transport a non-infectious vaccine waste from 
fixed vaccination site v to landfill l 

EWLwl Unit released carbon to transport a non-infectious vaccine waste from 
mobile vaccination site w to landfill l 

ESFcj Unit released carbon to transport an infectious vaccine waste from 
storage center c to existing treatment facility j 

ESTck Unit released carbon to transport an infectious vaccine waste from 
storage center c to temporary treatment facility k 

EFLjl Unit released carbon to transport a treated vaccine waste from existing 
treatment facility j to landfill l 

ETLkl Unit released carbon to transport a treated vaccine waste from 
temporary treatment facility k to landfill l 

M A big number   

Decision variables 
yd 1 if vaccine distribution center d is established, 0 otherwise 

qv 1 if fixed vaccination site v is established, 0 otherwise 
uw′ w′′ t 1 if temporary vaccination site is moved from potential location w′ in period 

t − 1 to potential location w′′ in period t, 0 otherwise 
zc 1 if storage center c is established, 0 otherwise 
xk 1 if temporary treatment facility k is installed, 0 otherwise 
tdvdvt Quantity of transported vaccine packages from vaccine distribution center 

d to fixed vaccination site v in period t 
tdwdwt Quantity of transported vaccine packages from vaccine distribution center 

d to mobile vaccination site w in period t 
nafsvt Number of vaccinated people of candidate group s at fixed vaccination site v 

in period t 
namswt Number of vaccinated people of candidate group s at mobile vaccination 

site w in period t 
tvwvt Quantity of used vaccine packages at fixed vaccination site v in period t 
twwwt Quantity of used vaccine packages at mobile vaccination site w in period t 
tvsvct Quantity of transported infectious vaccine wastes from fixed vaccination 

site v to storage center c in period t 
tnvvlt Quantity of transported non-infectious vaccine wastes from fixed 

vaccination site v to landfill l in period t 
twswct Quantity of transported infectious vaccine wastes from mobile vaccination 

site w to storage center c in period t 
tnwwlt Quantity of transported non-infectious vaccine wastes from mobile 

vaccination site w to landfill l in period t 
inwct Inventory level of infectious vaccine wastes at storage center c in period t 
tsfcjt Quantity of transported infectious vaccine wastes from storage center c to 

existing treatment facility j in period t 

(continued on next column)  

(continued ) 

Decision variables 
yd 1 if vaccine distribution center d is established, 0 otherwise 

tstckt Quantity of transported infectious vaccine wastes from storage center c to 
temporary treatment facility k in period t 

twfjgt Quantity of treated wastes by technology g at existing treatment facility j in 
period t 

twtkgt Quantity of treated wastes by technology g at temporary treatment facility j 
in period t 

tfljlt Quantity of transported treated vaccine wastes from existing treatment 
facility j to landfill l in period t 

ttlklt Quantity of transported treated vaccine wastes from temporary treatment 
facility k to landfill l in period t 

qtllt Quantity of wastes disposal at landfill l in period t  

3.2.2. The model 
The first objective function aims to minimize the total cost of the 

CVWRSC network, including:  

• The location cost of vaccine distribution centers: 

LDC =
∑

d
yd × ECDd (1)    

• The location cost of fixed vaccination sites: 

LFC =
∑

v
qv × ECVv (2)    

• Movement cost of mobile vaccination sites 

MMC =
∑

t

∑

w′

∑

w′′

uw′ w′′ t × MCVw′ w′′ t (3)    

• Transportation cost of vaccine packages from vaccine distribution 
centers to fixed vaccination sites: 

TFC =
∑

d

∑

v

∑

t
tdvdvt × CDVdvt (4)    

• Transportation cost of vaccine packages from vaccine distribution 
centers to mobile vaccination sites: 

TMC =
∑

d

∑

w

∑

t
tdwdwt × CDWdwt (5)    

• Vaccination operational cost at fixed vaccination sites: 

FOC =
∑

s

∑

v

∑

t
nafsvt × VCFvt (6)    

• Vaccination operational cost at mobile vaccination sites: 

MOC =
∑

s

∑

w

∑

t
namswt × VCTwt (7)    

• Transportation cost of non-infectious vaccine wastes from fixed 
vaccination sites to landfills: 

FIC =
∑

v

∑

l

∑

t
tnvvlt × NTVvlt (8)    

• Transportation cost of non-infectious vaccine wastes from mobile 
vaccination sites to landfills: 

MIC =
∑

w

∑

l

∑

t
tnwwlt × NTWwlt (9)   

E. Amani Bani et al.                                                                                                                                                                                                                            



Computers & Industrial Engineering 174 (2022) 108808

8

• The location cost of storage centers: 

LSC =
∑

c
zc × INSc (10)   

• Transportation cost of infectious vaccine wastes from fixed vacci
nation sites to storage centers: 

FSC =
∑

v

∑

c

∑

t
tvsvct × ITVvct (11)   

• Transportation cost of infectious vaccine wastes from mobile vacci
nation sites to storage centers: 

MSC =
∑

w

∑

c

∑

t
twswct × ITWwct (12)    

• Inventory holding cost at storage centers: 

IHC =
∑

c

∑

t
inwct × VSCct (13)    

• Location cost of temporary treatment facilities: 

LTC =
∑

k
xk × INTk (14)    

• Transportation cost of infectious vaccine wastes from storage centers 
to existing treatment facilities: 

SEC =
∑

c

∑

j

∑

t
tsfcjt × CSFcjt (15)    

• Transportation cost of infectious vaccine wastes from storage centers 
to temporary treatment facilities: 

STC =
∑

c

∑

k

∑

t
tstckt × CSTckt (16)    

• Wastes treatment cost at existing treatment facilities: 

TEC =
∑

j

∑

g

∑

t
twfjgt × CTFjgt (17)    

• Wastes treatment cost at temporary treatment facilities: 

TTC =
∑

k

∑

g

∑

t
twtkgt × CTTkgt (18)   

• Transportation cost of treated wastes from existing treatment facil
ities to landfills: 

ELC =
∑

k

∑

g

∑

t
twtkgt × CTTkgt (19)   

• Transportation cost of treated wastes from temporary treatment fa
cilities to landfills: 

TLC =
∑

j

∑

l

∑

t
tfljlt × CFLjlt (20)    

• Wastes disposal operational cost at landfills: 

DOC =
∑

k

∑

l

∑

t
ttlklt × CTLklt +

∑

l

∑

t
qtllt × LBClt (21) 

Considering the above terms, the total cost objective function can be 
calculated as follows: 

MinZ1 = LDC +LFC+MMC+TFC+ TMC+FOC+MOC+FIC+MIC
+LSC +FSC+MSC+ IHC+LTC + SEC + STC +TEC
+TTC+ELC+TLC +DOC

(22) 

The focus of the second objective function is to minimize the total 
carbon emission of the CVWRSC network, including:  

• Carbon emission from the movement of mobile vaccination sites: 

MME =
∑

w′

∑

w′′

∑

t
uw′ w′′ t × ECWw′ w′′ (23)    

• Carbon emission from the transportation of vaccine packages from 
the vaccine distribution centers to fixed vaccination sites: 

DFE =
∑

d

∑

v

∑

t
tdvdvt × EDVdv (24)    

• Carbon emission from the transportation of vaccine packages from 
the vaccine distribution centers to mobile vaccination sites: 

DME =
∑

d

∑

w

∑

t
tdwdwt × EDWdw (25)    

• Carbon emission from the transportation of infectious vaccine wastes 
from the fixed vaccination sites to storage centers: 

FSE =
∑

v

∑

c

∑

t
tvsvct × EVSvc (26)    

• Carbon emission from the transportation of infectious vaccine wastes 
from the mobile vaccination sites to storage centers: 

MSE =
∑

w

∑

c

∑

t
twswct × EWSwc (27)    

• Carbon emission from the transportation of non-infectious vaccine 
wastes from fixed vaccination sites to landfills: 

FLE =
∑

v

∑

l

∑

t
tnvvlt × EVLvl (28)    

• Carbon emission from the transportation of non-infectious vaccine 
wastes from mobile vaccination sites to landfills: 

MLE =
∑

w

∑

l

∑

t
tnwwlt × EWLwl (29)    

• Carbon emission from the transportation of infectious vaccine wastes 
from storage centers to the existing treatment facilities: 

SEE =
∑

c

∑

j

∑

t
tsfcjt × ESTcj (30)    

• Carbon emission from the transportation of infectious vaccine wastes 
from storage centers to the temporary treatment facilities: 

STE =
∑

c

∑

k

∑

t
tstckt × ESTck (31)    

• Carbon emission from the transportation of treated wastes from the 
temporary treatment facilities to the landfills: 

TLE =
∑

k

∑

l

∑

t
ttlklt × ETLkl (32) 
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• Carbon emission from the transportation of treated wastes from the 
existing treatment facilities to the landfills: 

ELE =
∑

j

∑

l

∑

t
tfljlt × ETLjl (33) 

Finally, the total carbon emission objective function can be 
expressed as follows: 

MinZ2 = MME +DFE +DME +FSE+MSE +FLE+MLE + SEE + STE
+TLE +ELE

(34) 

The constraints of the problem are as follows: 
∑

v

∑

t
tdvdvt ≤ M × yd; ∀d (35)  

∑

w

∑

t
tdwdwt ≤ M × yd;∀d (36)  

∑

d

∑

t
tdvdvt ≤ M × qv;∀v (37)  

∑

v

∑

t
tvsvct ≤ M × zc; ∀c (38)  

∑

w

∑

t
twswct ≤ M × zc; ∀c (39)  

∑

c

∑

t
tstckt ≤ M × xk; ∀k (40)  

∑

l

∑

t
ttlklt ≤ M × xk;∀k (41)  

∑

w′

uw′ w′′ t ≤ 1; ∀w′′, t (42)  

∑

w′′

uw′ w′′ t ≤
∑

w
uww′ t− 1; ∀w

′

, t ≥ 2 (43)  

∑

s

∑

t
nafsvt ≤ M × qv;∀v (44)  

∑

s
namswt ≤ M ×

∑

w′

uw′ wt; ∀w, t (45)  

∑

s
nafsvt ≤ CAVvt; ∀v, t (46)  

∑

s
namswt ≤ CAWwt;∀w, t (47)  

POPst × θst =
∑

v
nafsvt +

∑

w
namswt;∀s, t (48)  

∑

d
tdvdvt =

∑

s
nafsvt;∀v, t (49)  

∑

d
tdwdwt =

∑

s
namswt;∀w, t (50)  

∑

d
tdvdvt = tvwvt;∀v, t (51)  

∑

d
tdwdwt = twwwt;∀w, t (52)  

αp × tvwvt =
∑

l
tnvvlt;∀p = 1, v, t (53)  

αp × twwwt =
∑

l
tnwwlt;∀p = 1,w, t (54)  

αp × tvwvt =
∑

c
tvsvct;∀p = 2, v, t (55)  

αp × twwwt =
∑

c
twswct; ∀p = 2,w, t (56)  

inwct = inwct− 1 +
∑

v
tvsvct +

∑

w
twswct −

∑

j
tsfcjt −

∑

k
tstckt; ∀c, t (57)  

inwct ≤ CASc; ∀c, t (58)  

∑

c
tsfcjt =

∑

g
twfjgt;∀j, t (59)  

∑

c
tstckt =

∑

g
twtkgt;∀k, t (60)  

∑

g
twfjgt =

∑

l
tfljlt;∀j, t (61)  

∑

g
twtkgt =

∑

l
ttlklt; ∀k, t (62)  

twfjgt ≤ CAFjg;∀j, g, t (63)  

twtkgt ≤ CATkg; ∀k, g, t (64)  

∑

v
tnvvlt +

∑

w
tnwwlt +

∑

j
tfljlt +

∑

k
ttlklt ≤ qtllt; ∀l, t (65)  

yd, qv, uw′ w′′ t, zc, xk ∈ {0, 1}∀d, v,w′

,w′′, t, c, k (66)  

tdvdvt, tdwdwt, nafsvt, namswt ≥ 0and integer∀d, v, t,w, s (67)  

tvwvt, twwwt, tnvvlt, twswct, tnwwlt, inwct, tsf cjt, tstckt, twf jgt, twtkgt, tfljlt, ttlklt, qtllt

≥ 0  

∀v, t,w, l, c, j, k, g (68) 

Constraint sets (35) to (37) ensure that the flow of vaccine packages 
between the vaccine distribution centers and vaccination sites (mobile 
and local) are possible only for the established ones. Constraint sets (38) 
and (39) limit the flow of infectious vaccine wastes to the established 
storage centers. Constraint sets (40) and (41) relate to the possibility of 
flow in the established temporary treatment facilities. Constraint set 
(42) ensures that only one mobile vaccination site is located in a 
candidate node in each period. In each period, the movement of mobile 
vaccination sites from a node is possible only for the located sites, which 
is indicated via constraint set (43). 

Constraint sets (44) and (45) guarantee that the candidate groups are 
allocated only to the established fixed and mobile vaccination sites. 
Constraint sets (46) and (47) express the vaccination capacity limitation 
in fixed vaccination sites and mobile vaccination sites, respectively. 
Constraint set (48) compels the vaccination of all referral people to fixed 
and mobile vaccination sites. The population of referral people is 
calculated by multiplying the group’s overall population and vaccina
tion tendency rate. The flow equation of vaccines from vaccine distri
bution centers to fixed and mobile vaccination sites in each period is 
shown in constraint sets (49) and (50). 

The number of used vaccine packages in fixed and mobile vaccina
tion sites is calculated by constraint sets (51) and (52). Constraint sets 
(53) and (54) show the generated non-infectious vaccine wastes flow 
from the fixed and mobile vaccination sites to the landfills. The flow of 
the generated infectious vaccine wastes from the vaccination sites (fixed 
and mobile) is specified by constraint sets (55) and (56). 
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The inventory balancing equation of storage centers is formulated 
via constraint set (57). Constraint set (58) shows the limited inventory 
capacity of the storage centers. Constraint sets (59) and (60) balance the 
inflow of the vaccine wastes at the existing and temporary treatment 
facilities. The flow balancing of vaccine wastes from the treatment fa
cilities (existing and temporary) to landfills is shown in constraint sets 
(61) and (62). Constraint sets (63) and (64) consider the limited capacity 
of each treatment technology in the existing and temporary treatment 
facilities. The inflow equation of vaccine wastes from the vaccination 
sites and treatment facilities to landfills is provided in constraint set 
(65). Constraint sets (66) to (68) show the types of decision variables. 

3.3. The solution approaches 

The presented problem is a multi-objective mixed-integer mathe
matical programming model under uncertainty. In this section, we 
provide a three-phase methodology to address these features of the 
problem as follows: 

Phase 1: Robust optimization 
In this phase, the problem is reformulated under a robust optimiza

tion approach to consider the uncertainty in the vaccination tendency 
rate parameter (θst). Due to the unavailability of reliable historical data, 
the probability distribution of this parameter cannot be estimated. 
Robust optimization is the commonly used approach to deal with un
certainty when there is no historical data. We adopt the Bertsimas and 
Sim (Bertsimas and Sim, 2004) approach to formulate the interval un
certainty in vaccination tendency rate and develop the robust counter
part of the model. To explain the details, consider the following 
problem: 

Mincx (69) 

Subject to: 
∑

j
ãijxj ≤ bi;∀i (70)  

x∊F(x) (71) 

There is uncertainty in coefficient ãij and the parameter is assumed to 
be in the interval [aij − âij ,aij + âij ], where aij is the nominal value of aij 

and âij is the deviation from normal value. Note that the equality con
straints can be converted to inequality forms to keep the problem 
feasible (Gorissen et al., 2015). These inequalities are tight at optimality 
regarding the structure of the problem. Bertsimas and Sim (Bertsimas 
and Sim, 2004) formulated the robust counterpart of the model using the 
duality theorem as follows: 

Mincx (72) 

Subject to: 
∑

j
aijxj + ZiΓi +

∑

j∈Ji

Pij ≤ bi;∀i (73)  

Zi +Pij ≥ âij xj;∀i, j ∈ Ji (74)  

Zi ≥ 0; ∀i (75)  

Pij ≥ 0; ∀i, j (76)  

x∊F(x) (77) 

In this model, Ji is the number of the uncertain parameters in con
straints i. In addition, Γi ∈ [0, |Ji| ] is the budget of uncertainty and Zi and 
Pij are the auxiliary variables. 

For the presented model, assume that the vaccination tendency rate 
group s in period t with the nominal value θst and deviation θ̂st is in the 
symmetric interval [θst − θ̂st , θst + θ̂st ]. Considering Pst and Zst as the 

axillary variables, the robust formulation of CVWRSC under uncertainty 
includes constraint sets (35) to (47) and (49) to (68) plus the following 
constraint sets: 

POPst × (θst + Pst + ZstΓ) ≤
∑

v
nafsvt +

∑

w
namswt;∀s, t (78)  

POPst × (θst +Pst +ZstΓ) ≥
∑

v
nafsvt +

∑

w
namswt; ∀s, t (79)  

Pst +Zst ≥ θ̂st ;∀s, t (80) 

Phase 2: An interactive fuzzy multi-objective method 
In this phase, an interactive fuzzy multi-objective approach is pre

sented to deal with the objectives of the problem. Generally, there are 
three categories of methods to deal with multi-objective problems as (1) 
prior, (2) posterior, and (3) interactive (Ehrgott, 2005). The interactive 
methods consider the decision-maker’s preferences during the solving 
procedure. Torabi and Hassini (Torabi and Hassini, 2008) introduced 
the TH method as an efficient and powerful interactive fuzzy approach 
in the literature. TH method enables the decision-maker to determine 
the satisfaction level of objectives directly. The implementation of the 
TH method for a bi-objective problem involves the following steps: 

Step 1: In this step, each objective function calculates the positive 
ideal solutions (PISs) and negative ideal solutions (NISs). (ZPIS

1 , xPIS
1 ) and 

(ZPIS
2 , xPIS

2 ) are PISs obtained by solving the crisp counterpart of the 
mathematical model for each objective function separately. In addition, 
the NISs can be calculated as: 

ZNIS
1 = Z1

(
xPIS

2

)
(81)  

ZNIS
2 = Z2

(
xPIS

1

)
(82) 

Step 2: In this step, a linear fuzzy membership function for the 
objective functions is determined as follows: 

μj(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1if Zj ≤ ZPIS
j

ZNIS
j − Zj

ZNIS
i − ZPIS

j
if ZPIS

j ≤ Zj ≤ ZNIS
j

0if Zj ≥ ZNIS
j

∀j = 1, 2 (83)  

where μj(x) is the satisfaction degree of jth objective function. 
Step 3: In this step, the TH aggregation function is used to convert the 

equivalent crisp model and establish a single objective model as follows: 

Minλ(x) = γλ0 +(1 − γ)
∑

j
θjμj(x) (84) 

Subject to: 

λ0 ≤ μj(x)∀j = 1, 2 (85)  

x ∈ F(x) (86)  

λ0, λ ∈ [0, 1] (87)  

where λ0 is the minimum degree of satisfaction for the objective func
tions and F(x) is the feasible region of the problem. Moreover, the 
compensation coefficient and importance weight of objective functions 
are denoted by γ and θj, respectively. The decision-maker determined 
the value of these parameters based on his (or her) preference. 

Step 4: The initial values are set for the objective function’s weights 
θj and compensation coefficient γ. The model is solved, and if the solu
tion is satisfiable, the algorithm stope; otherwise, the parameters are 
changed to obtain another Pareto solution. 

Phase 3: Lagrangian relaxation algorithm 
The supply chain network design is in the class of NP-hard problems 

(Gourdin et al., 2000). Therefore, the complexity of the presented 
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mixed-integer programming model is also raised exponentially when the 
size of the problem increases, and the computational time may not be 
reasonable. In this phase, a LR algorithm is provided to find efficient 
lower-bound solutions in large-size problems. LR is a powerful algorithm 
that can find lower-bound solutions by relaxing some of the problem’s 
hard constraints. LR was introduced by Held and Karp (Held and Karp, 
1970), and it is utilized successfully to solve various supply chain 
planning problems (Diabat et al., 2019; Fahimnia et al., 2017; Lotfi 
et al., 2021; Lotfi et al., 2021; Fallahi et al., 2022). This solution method 
tries to find the complex constraints of the problem, relax, and move 
them to the objective function as a penalty. The goal is to enhance the 
computational speed and find a(n) lower (upper) bound for a minimi

zation (maximization) problem. 
Regarding these details, the first step to implementing the LR is to 

identify the complex constraints of the problem. For this purpose, each 
set of problem’s constraints is relaxed separately, and the model is run to 
determine the CPU time. After, the constraints with considerable effect 
on the CPU time are kept, and the problem is solved again with pair 
relaxation of these constraints. Table 2 shows a part of the constraints 
relaxation results of the proposed CVWRSC problem. 

Based on the results, constraint sets (65) and (80) can be identified as 
complex constraints of the problem. These constraints are relaxed by 
removing them from the constraint sets and moving them into the 
objective function with penalty multipliers. Therefore, the LR form of 
the CVWRSC problem can be formulated as:where βst and δlt are the 
Lagrangian multipliers A fixed value is set for Lagrangian multipliers, 
which are iteratively updated during the solving procedure of the al
gorithm. Here, we use the well-known sub-gradient method presented 
by Fisher (Fisher, 2004). In the sub-gradient algorithm, the Lagrangian 
multipliers and the lower bound of the problem are set to 0 and -inf, 
respectively. A fixed upper bound is also set for the problem. After, the 
relaxed problem’s solution is considered a new lower bound. Therefore, 
the algorithm calculates the step size of the next iteration as follows: 

Stpit+1 =
UB − LBit

Gr2
it

(89)  

where UB is the upper bound, LBit is the obtained lower bound of the 
current iteration, and Gr2

it is the Euclidean norm of the relaxed con
straints in the current iteration. The Euclidean norm for constraint Ax ≤

b equals to (b − Ax)2. The algorithm updates the value of the Lagrangian 
multipliers as follows: 

λit+1 = λit + StpitGrit (90) 

Finally, the maximum number of iterations is considered as the 
stopping criterion for the sub-gradient algorithm. Fig. 3 shows the 
flowchart of the Lagrangian relaxation algorithm. 

4. Computat  

ional results 

In this section, some random numerical examples are provided to 
investigate the performance of the proposed LR algorithm. After, the 
model is applied to a real case study, and the results are analyzed. The 
LR algorithm and the presented case study are coded in GAMS 24.1.2 
software on a supercomputer with 64 GB ram and Intel Xeon E312 CPU. 
The results are obtained using the CPLEX commercial solver. 

4.1. Numerical analysis 

Different test problems are generated in three classes to evaluate the 
proposed LR algorithm. The details of the test problems are presented in 
Tables 3 and 4. 

The details of the parameters randomly generated from a uniform 
distribution in the corresponding intervals, are shown in Table 4. To 
solve test problems, we set the importance weight of objective functions, 
compensation coefficient, and the budget of uncertainty θ1 = 0.7, θ2 =

0.3, γ = 0.3, and Γ = 0.5, respectively. 
Each test problem is solved four times by CPLEX solver and LR al

gorithm. The details of comparing CPLEX solver and LR algorithm re
sults in the context of total quality and CPU time are provided in Tables 5 
and 6. The gap of obtained solutions by the Lagrangian relaxation al
gorithm is calculated using the following formula: 

GapCPLEX =
BestsolLR − BestsolCPLEX

BestsolCPLEX
(91)  

where BestsolLR and BestsolCPLEX are the best-obtained solution by the 
lagrangian relaxation algorithm and CPLEX solver, respectively. More
over, the gap between the obtained solutions by CPLEX solver is calcu
lated as follows: 

GapLR =
|BP − BF|

|BP|
(92)  

where BF and BP are the objective functions of the current best integer 
solution and the best possible integer solution, respectively. It is evident 
that the LR algorithm can find reasonable lower bounds in small- and 
medium-size classes, which have no significant gap to the optimal so
lution. However, the computational time of LR is higher than CPELX due 
to the iterative procedure of the algorithm. 

The main advantage of LR is for the large class example, where 

Table 2 
The impact of constraints relaxation on the computational time problem.  

Relaxation type Relaxed constraints CPU time (Second) 

Separate relaxation 35  12.750 
37  14.007 
47  12.458 
65  13.078 
80  12.852  

Pair relaxation 35–37  14.333 
35–47  46.980 
35–65  14.714 
35–80  13.121 
37–47  10.513 
37–65  11.847 
37–80  11.141 
47–65  12.902 
47–80  9.182 
65–80  8.888  

Minλ(x) = γλ0 + (1 − γ)
∑

j
θjμj(x) +

∑

s

∑

t
βst(θ̂st − Pst − Zst) +

∑

l

∑

t
δlt

(
∑

v
tnvvlt +

∑

w
tnwwlt +

∑

j
tfljlt +

∑

k
ttlklt − qtllt

)

Subject to :

Eqs. (35–47), (49–64), (66–68), (78–79).

(88)   
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Fig. 3. The flowchart of Lagrangian relaxation algorithm.  
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CPLEX cannot find the optimal solution after about 7200 s, but LR 
provides a lower bound in about 2700 s averagely. 

Moreover, as shown in Fig. 4, as the size of test problems increases, 
the average CPU time of the CPLEX solver increases exponentially. It is 
evident that due to the iterative nature LR algorithm, the computational 

time of CPLEX is less than LR in the small-size and some medium classes. 
However, the results confirm that the LR algorithm can reduce the CPU 
time to find a solution, notably for large-size classes. However, the 
findings show that the LR algorithm may significantly reduce the CPU’s 
time to discover a solution, especially for complex issues. As CPLEX 

Table 3 
Generated numerical test problems.  

Class Problem Candidate 
groups for 
vaccination 

Vaccine 
distribution 
centers 

Fixed 
vaccination 
sites 

Mobile 
vaccination 
sites 

Vaccine 
waste 
types 

Storage 
centers 

Existing 
treatment 
facilities 

Temporary 
treatment 
facilities 

Treatment 
technology 
types 

Landfills Periods 

Small I1 7 7 7 7 2 7 7 7 7 4 3 
I2 9 9 9 9 2 9 9 9 9 4 4 
I3 12 12 12 12 2 12 12 12 12 6 5 
I4 13 13 13 13 2 13 13 13 13 6 6 

Medium I5 14 14 14 14 2 14 14 14 14 7 4 
I6 14 14 14 14 2 14 14 14 14 7 5 
I7 15 15 15 15 2 15 15 15 15 7 5 

Large I8 16 16 16 16 16 16 16 16 16 8 5 
I9 17 17 17 17 17 17 17 17 17 8 5 
I10 20 20 20 20 2 20 20 20 20 10 6  

Table 4 
The input parameters numerical examples.  

Parameter Value Parameter Value 

POPlPOPm Uniform (50000, 75000) 
Uniform (25000, 50000) 

ITWPOPs Uniform(0.001, 0.016) Uniform(10000,25000)

θ Uniform(0.7,0.8) VSC Uniform(0.03, 0.036)

θ̂ Uniform(0,0.2) CSF Uniform(0.0003,0.014)
MCV Uniform(0,1) CST Uniform(0.0025,0.0125)
CDV Uniform(0.0002,0.0008) CAF Uniform(1500, 2000)
CDW Uniform(0.0001,0.0011) CAT Uniform(800,1300)
CAV Uniform(60000, 80000) CTF Uniform(0.001, 0.0025)
CAW Uniform(30000, 40000) CTT Uniform(0.001, 0.0025)
VCF Uniform(0.0018,0.0025) CFL Uniform(0.0005,0.001)
VCT Uniform(0.0018,0.0025) CTL Uniform(0.0005,0.0011)
NTV Uniform(0.0004,0.0011) CAL Uniform(1000000,1500000)
NTW Uniform(0.0005,0.0009) LBC Uniform(0.00018, 0.00022)
ITV Uniform(0.001, 0.014) ECW Uniform(0.4,8)
EDV Uniform(0.0001,0.0005) EDW Uniform(0.0001,0.0008)
EVS Uniform(0.0003,0.0033) EWS Uniform(0.0004,0.0051)
EVL Uniform(0.04,0.11) EWL Uniform(0.07, 0.15)
ESF Uniform(0.0005,0.0185) EST Uniform(0.003, 0.0172)
EFL Uniform(0.022, 0.031) ETL Uniform(0.016, 0.037)
ECD Uniform(70, 80) ECV Uniform(50, 55)
INS Uniform(30, 40) CAS Uniform(1000, 1250)
INT Uniform(18, 22)

Table 5 
Comparing the total cost quality of CPLEX solver and LR algorithm.  

Class Problem CPLEX LR   

Total cost Gap Total cost Gap   

Worst Average Best Min Average Max Worst Average Best Min Average Max 

Small I1 3003.415 3162.865 3315.073 0.0000 0.0001 0.0000  3087.34  3101.852  3133.756 0.0547 0.0643 0.0687 
I2 4004.928 4329.546 4540.373 0.0001 0.0001 0.0001  3961.336  4068.084  4164.877 0.0827 0.1040 0.1275 
I3 4754.431 5418.304 5854.508 0.0000 0.0001 0.0000  4698.965  5336.686  5781.004 0.0126 0.0884 0.1974 
I4 5744.548 6186.207 6622.154 0.0001 0.0002 0.0001  5422.386  5866.476  6582.298 0.0060 0.1141 0.1812 

Medium I5 8050.733 8208.766 8290.501 0.0001 0.0010 0.0001  7422.144  7711.442  8009.814 0.0339 0.0698 0.1047 
I6 10088.89 10333.61 10470.17 0.0002 0.0004 0.0002  9364.809  9564.12  9668.513 0.0766 0.0865 0.1056 
I7 10347.31 10863.7 11511.22 0.0010 0.0018 0.0010  9833.691  10052.24  10316.326 0.1038 0.1267 0.1457 

Large I8 15330.39 15710.81 16261.42 0.0010 0.0020 0.0028  13713.22  15012.25  16062.394 0.0122 0.0768 0.1567 
I9 12657.86 12956.25 13624.17 0.0020 0.0026 0.0040  11875.42  12026.13  12187.873 0.1054 0.1173 0.1284 
I10 NS* NS NS NS NS NS  14285.87  15470.19  16127.772 NA** NA NA 

*NS: No solution 
**NA: Not available 
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cannot find a solution in the large-size classes, the efficiency of LR can be 
concluded. 

4.2. Case study 

4.2.1. Case description 
Here, a real-world network is investigated to demonstrate the 

model’s applicability. The required data for the problem is collected 
from a CVWRSC from the capital of Iran, Tehran. Tehran is selected as 
the case study because it is the most populous city in Iran and one of the 
most populated cities in the Middle East, with a 9423702 population 
(Municipality, 2022). Iran’s Ministry of Health and Medical Education 
and Tehran municipality manage the vaccination programs in Tehran. 
The main sources of the current case study are: (1) the documents of the 

Table 6 
Comparing the solution time (Second) of CPLEX solver and LR algorithm.  

Class Problem CPLEX LR   

Min Average Max Min Average Max 

Small I1 4.1 4.49 4.845  17.713  19.516  23.982 
I2 15.528 19.723 23.365  23.74  31.598  35.319 
I3 61.886 74.839 101.598  68.047  96.512  111.276 
I4 259.444 314.511 353.657  149.962  201.238  241.947 

Medium I5 538.394 609.937 751.499  174.093  256.249  317.129 
I6 1044.324 1194.152 1290.891  164.521  274.909  375.071 
I7 750.030 921.054 1225.068  166.924  217.398  295.243 

Large I8 1747.837 2245.941 2630.468  310.126  365.296  429.245 
I9 5056.496 5186.213 5220.865  490.781  537.223  629.539 
I10 > 10,000 > 10,000 > 10,000  665.643  779.143  856.823  

Fig. 4. Comparing the CPU time of CPLEX and LR.  

Table 7 
The properties of Tehran’s municipal districts.  

District Population Latitude Longitude 

1 531,274  35.8025  51.45972 
2 749,022  35.7575  51.36222 
3 369,502  35.75444  51.44806 
4 990,146  35.74164  51.49194 
5 928,738  35.74889  51.30028 
6 278,947  35.73722  51.30028 
7 336,550  35.72194  51.40583 
8 479,005  35.72444  51.44611 
9 207,624  35.68361  51.49833 
10 342,223  35.68361  51.31722 
11 333,127  35.67944  51.36667 
12 256,601  35.6865  51.39583 
13 265,796  35.70778  51.42639 
14 538,073  35.67444  51.51417 
15 706,844  35.63083  51.47028 
16 289,077  35.63944  51.47361 
17 309,230  35.65389  51.40917 
18 445,429  35.65167  51.36306 
19 282,598  35.62056  51.29278 
20 395,088  35.59028  51.36694 
21 196,874  35.69056  51.25778 
22 191,934  35.74722  51.20417  

Table 8 
The properties of distribution centers.  

Number Facility Latitude Longitude 

1 Iranian red crescent 1  35.65935  51.42911 
2 Iranian red crescent 2  35.73318  51.54429 
3 Iranian red crescent 3  35.79284  51.40218 
4 Iranian red crescent 4  35.66618  51.26401  
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Ministry of Health and Medical Education and Tehran municipality, (2) 
WHO instructions for vaccine waste management (World Health Orga
nization, 2022), and (3) the relevant published papers in the literature 
(Kargar et al., 2020; Kargar et al., 2020). 

The planning horizon is three months which consists of three one- 

month periods. Tehran encompasses 22 municipal districts whose pop
ulation and geographical coordinates are shown in Table 7. Each 
municipal district is considered a candidate group for vaccination. Five 
candidate nodes are considered potential locations for fixed and mobile 
vaccination sites. In addition, three Iranian red cross centers are the 
candidate points for the distribution centers. Currently, there are six 
existing treatment facilities in Tehran used to treat medical wastes. 
Based on the opinion of experts, four candidate locations are considered 
for temporary treatment facilities in the network. Finally, two landfills 
are used for vaccine waste disposal in Tehran. The network cost is 
measured by 10 million Rials (Iran currency). 

Moreover, the kilogram is the unit for carbon emission and vaccine 
waste in the system. The detailed properties of the CVWRSC are pro
vided in Tables 8–12. The locations of all concerned facilities in the 
network are shown in Fig. 5 schematically. 

4.2.2. Results 
As mentioned before, one of the main features of CVWRSC that 

distinguishes this supply chain is the necessity of the integration be
tween the vaccination and waste networks regarding the WHO in
structions. First of all, we are going to show the gain of the integration 
for the presented case study against the separate solving models. To 
evaluate the performance of the model, we define two models separately 
as follows:  

1- Model I: The vaccine supply chain network, including candidate 
groups for vaccination, vaccine distribution centers, fixed vaccina
tion sites, and mobile vaccination sites. 

2- Model II: The waste supply chain network, including fixed vaccina
tion sites, mobile vaccination sites, storage centers, existing treat
ment facilities, temporary treatment facilities, and landfills. 

We run the model for two extreme points (θ1 = 1, θ2 = 0) and (θ1 =

0, θ2 = 1), and the results are presented in Table 13. 
As can be seen, the CVWRSC model outperforms the disintegrated 

models. Considering the results, the total cost and total carbon emission 
of studied points are reduced by about 0.47 and 9.08 percent, 
respectively. 

Next, the model is solved with different values of θ1 and θ2 to provide 
a set of Pareto solutions for the decision-makers. Increasing the impor
tance weight of an objective function results in better solutions for that 
function. The Pareto solutions are presented in Table 14. 

As can be seen, the Pareto solutions are computed in a reasonable 
time with no significant gap. Hence, there is no need to apply the LR 
algorithm in this case study. 

The components of the objective functions for each solution are re
ported in Table 15 to provide better insights into the Pareto front. As can 
be seen in Table 15, some components, such as vaccination cost, waste 
treatment cost, moving cost of mobile vaccination sites, and the carbon 
emission from the moving mobile vaccination sites, are equal for all 
Pareto solutions. This similarity is because all candidate groups should 
satisfy the vaccination demand. However, depending on the weight of 
each objective function, the model tries to determine the location of the 
facilities and the allocation and inventory policies to make a different 
trade-off between the total cost and total carbon emission objectives. 
Fig. 6 clearly shows the conflicts of objective functions. It is obvious that 
when we try to optimize the model for one objective, the model will 
have its greatest performance in terms of that objective, and the opti
mum solution will be produced for the measure. However, when we 
attempt to optimize the model by considering both objectives, the per
formance will be reduced in each of the objectives to get a reasonable 
trade-off. According to Fig. 6, the best possible solution for the total cost 
objective function is 1013.163, which is obtained in (θ1 = 1,θ2 = 0). In 
addition, the best possible solution for the total carbon emission func
tion is 224.152, which is obtained in (θ1 = 0,θ2 = 1). In the same way, 
the worst solution in terms of total cost and total emission objective 

Table 9 
The properties of vaccination sites.  

Number Type Facility Latitude Longitude 

1 Fixed vaccination 
site 

Kordestan complex hall  35.72721  51.39471 

2 Fixed vaccination 
site 

Saei complex hall  35.70796  51.44298 

3 Fixed vaccination 
site 

Mofatteh complex hall  35.72674  51.42815 

4 Fixed vaccination 
site 

Salem complex hall  35.58646  51.42593 

5 Fixed vaccination 
site 

Arash Miresmaeili 
complex hall  

35.66165  51.32382 

6 Mobile 
vaccination site 

Shohadaye Ghavvas 
complex hall  

35.68869  51.23573 

7 Mobile 
vaccination site 

Shahid Homayoun 
complex hall  

35.65191  51.31529 

8 Mobile 
vaccination site 

Imam Khomeini 
complex hall  

35.67895  51.23713 

9 Mobile 
vaccination site 

Shahid Kaafi complex 
hall  

35.63471  51.36315 

10 Mobile 
vaccination site 

Sharbanoo complex 
hall  

35.72366  51.45074  

Table 10 
The properties of storage centers.  

Number Landfill Latitude Longitude 

1 West Tehran health center  35.72817  51.41557 
2 North Tehran health center  35.73996  51.44565 
3 South Tehran health center  35.70421  51.39877 
4 Shahid Kazemian health center  35.70493  51.34355  

Table 11 
The properties of treatment facilities.  

Number Type Facility Latitude Longitude 

1 Existing treatment 
facility 

Imam Hossein 
hospital  

35.70658  51.45105 

2 Existing treatment 
facility 

Imam Khomeini 
hospital  

35.70922  51.38054 

3 Existing treatment 
facility 

Shariati hospital  35.72236  51.38648 

4 Existing treatment 
facility 

Milad hospital  35.74582  51.38142 

5 Existing treatment 
facility 

Feyzbakhsh hospital  35.67587  51.26591 

6 Existing treatment 
facility 

Resalat hospital  35.74353  51.44884 

7 Temporary 
treatment facility 

Masih Daneshvari 
hospital  

35.81704  51.49636 

8 Temporary 
treatment facility 

Payambaran 
hospital  

35.73501  51.32788 

9 Temporary 
treatment facility 

Baqiyatallah 
hospital  

35.75696  51.39529 

10 Temporary 
treatment facility 

Sina hospital  35.68669  51.41239  

Table 12 
The properties of landfills.  

Number Landfill Latitude Longitude 

1 Aradkooh waste processing plant 1  35.50241  51.35674 
2 Aradkooh waste processing plant 2  35.46411  51.32344  
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Fig. 5. Location of concerning facilities in Tehran’s CVWRSC.  

Table 13 
Comparing the performance of CVWRSC and the disintegrated models.  

θ1 θ2 Objective function Model I Model II Model I + Model II CVWRSC model Reduction percentage 

1 0 Total cost  864.598  153.879  1018.477  1013.608  0.47 
0 1 Total carbon emission  13.268  225.952  239.22  217.482  9.08  

Table 14 
The Pareto solutions of the case study.  

θ1 θ2 Z1 Z2 μ1(x) μ2(x) λ0 Gap CPU time (S) 

0.0  1.0  1140.219  224.152  0.604  0.944  0.842  0.0002  64.273 
0.1  0.9  1140.208  224.158  0.604  0.944  0.818  0.0002  65.742 
0.3  0.7  1062.174  244.751  0.791  0.791  0.791  0.0002  63.276 
0.7  0.3  1052.179  247.739  0.815  0.769  0.791  0.0002  86.778 
0.9  0.1  1019.967  259.419  0.892  0.682  0.814  0.0002  80.884 
1  0.0  1013.163  262.425  0.908  0.659  0.833  0.0002  220.386  

Table 15 
The components of objective functions in the Pareto front solutions.  

θ1 θ2 Total cost component Total carbon emission component 

Establishment Transportation Infectious 
waste 
holding 

Treatment Vaccination Moving 
mobile 
sites 

Vaccine 
transportation 

Infectious 
waste 
transportation 

Non-infectious 
waste 
transportation 

Moving 
mobile 
sites  

0.0  1.0 581  82.747  13.255  9.423  494.73  0.000  26.155  60.485  131.534  0.000  
0.1  0.9 527  96.237  13.005  9.235  494.73  0.000  20.088  63.616  140.446  0.000  
0.3  0.7 453  96.056  13.005  9.235  494.73  0.000  18.032  80.152  146.567  0.000  
0.7  0.3 453  87.454  13.005  9.235  494.73  0.000  15.831  70.866  159.601  0.000  
0.9  0.1 378  125.016  13.005  9.235  494.73  0.000  30.594  70.725  158.089  0.000  
1.0  0.0 378  118.194  13.005  9.235  494.73  0.000  27.996  73.243  161.187  0.000  
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functions are 1140.219 and 262.425, which are obtained in (θ1 = 0, θ2 =

1) and (θ1 = 1,θ2 = 0), respectively. 
The Pareto solution with θ1 = 0.7 and θ2 = 0.3 is selected for further 

analysis of the results. The optimum location decisions of this solution 
are presented in Tables 16–20. In these tables, the value 1 shows that the 
facility is established in that location. 

As shown in Table 16, all mobile vaccination sites are deployed in the 

first period and remain fixed during the planning horizon. Therefore, 
mobile vaccination sites have no movement cost or transportation 
emissions. In addition, there is no need to use a temporary treatment 
facility in this network, and the infectious vaccine wastes is only treated 
in the existing treatment facilities. 

To provide better insight, we divide the total cost of Tehran’s 
CVWRSC into its sub-components. As shown in Fig. 7, a high portion of 
the network cost is related to establishing the facilities and vaccination 
of candidate groups. As mentioned before, there is no movement of 

mobile vaccination sites, so in this respect, no cost is imposed on the 
network. 

The components of the total emission function are also analyzed. The 
results in Fig. 8 show that most pollution is generated through the 
transportation of non-infectious vaccine wastes. As the mobile vacci
nation sites are not relocated, there is no carbon emission from the 
movement of these facilities. 

The comparison of the usage percentages of treatment technologies 
is shown in Fig. 9. The autoclaving process generates approximately 90 
% of the infectious vaccine wastes. It can be concluded that the treat
ment capacity of this technology is the main reason for this. 

4.2.3. Robustness evaluation 
In this section, the performance of the proposed robust model against 

the deterministic model is investigated by using a realization model. 10 
random realizations of the vaccination tendency rate are randomly 
generated [θst − θ̂st , θst +θ̂st ] interval. The robust and deterministic 
models are solved separately, and their solutions are substituted in the 
realization model with the following compact form: 

Subject to: 

Brealx* − S+
b + S−

b = 0  

Ax* ≤ C  

Tx* = 0  

Dx* ≤ Ey* 

Fig. 6. The Pareto frontier of the case study.  

Table 16 
The location of established fixed vaccination sites.   

Kordestan complex hall Saei complex hall Mofatteh complex hall Salem complex hall Arash Miresmaeili complex hall 

Establishment state 0 1 1 0 1  

Table 17 
The location of established mobile vaccination sites.   

Shohadaye 
Ghavvas 
complex hall 

Shahid 
Homayoun 
complex hall 

Imam 
Khomeini 
complex 
hall 

Shahid 
Kaafi 
complex 
hall 

Sharbanoo 
complex 
hall 

t =

1 
1 1 1 1 1 

t =

2 
1 1 1 1 1 

t =

3 
1 1 1 1 1  

Maxλ = γλ0 +(1 − γ)
(

θ1
ZNIS*

1 − (qreal.x* + greal.y*)

ZNIS*
1 − ZPIS*

1
+ θ2

ZNIS*

2 − (hreal.x* + freal.y*)

ZNIS*
2 − ZPIS*

2

)

− p
(
S+

b + S−
b

)
(93)   
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Fy* ≤ 1  

S+
b , S

−
b ≥ 0  

where x* and y* the optimal obtained solutions for the deterministic and 
robust models. Here, there are two decision variables in the problem, S+

b 
and S−

b , which is the constraint violation value in the cases of infeasi
bility. The constraint violation is penalized in the objective function 
using p as the penalty multiplier. We investigate the realization in the 
different levels of price of robustness. The models are compared in the 
context of the average and standard deviation of the objective function. 
The results of realization are summarized in Tables 21 and 22. 

As evident, the robust model has better average objective functions 
than the deterministic model in all cases. Also, the robust model has a 
more reasonable standard deviation for both objective functions in most 
cases. The proposed robust approach is efficient for this problem in an 
uncertain situation regarding the mentioned description. A visual 
assessment of the results is also provided in Figs. 10 and 11. 

4.2.4. Sensitivity analysis 
The decision-makers may have different opinions, and the parame

ters of the robust model and the TH method may change based on their 
preference. Therefore, we investigate the model’s sensitivity to some of 
the main parameters of the presented approaches. We also analyze the 
variation in the value of total cost when robustness’s price varies. As 
shown in Fig. 12, as the budget of uncertainty increases, the total cost 
function increases due to the imposed conservatism. A similar trend 
exists for the total emissions of the system, in which the second objective 
function rises when the uncertainty budget is increased. To respond to 
the vaccination demand, it is predictable that risk-averse decision- 
makers favor a price of robustness with higher levels of uncertainty. On 
the other side, risk-taking decision-maker favors lowering the cost of 
CVWRSC, which raises the probability of people not being vaccinated. 

The model results under different values for the compensation co
efficient of the TH method are shown in Fig. 13. The TH model’s first 
term (γλ0) seeks to balance and enhance the membership function values 
of the objective functions as much as possible, while the second term 
((1 − γ)

∑
jθjμj(x)) prioritizes the weights of the objective functions. In 

this case, the first term of the TH model should be given more weight 
(the value is increased) if the decision-maker prefers to find efficient 
solutions with the balance of the membership function values. On the 
other hand, if the preference of the decision maker is to concentrate on 
the weights of objective functions and obtain solutions where the weight 
of the functions inside it is more important, the value of γλ0 should be 
reduced so that the second term of the objective function will be more 
significant. As can be seen, the objective functions do not have similar 
behavior. Increasing the compensation coefficient results in an 
increasing trend in the total cost and a decreasing trend in the total 
carbon emissions. Fig. 13 shows that the model encourages the mem
bership functions to become closer to each other as the compensation 
coefficient increases. On the other side, the lower levels of compensation 
coefficient improve the total cost objective function, which has a higher 
weight. 

In reality, uncertainty is involved in decision-making, which results 
in less desirable outcomes. Finally, the vaccination tendency rate is the 
uncertain parameter of this model, which may vary in real-world situ
ations and different countries. The success of vaccination programs can 
significantly impact people’s trust in being vaccinated. Here, to examine 
the impact of the vaccination tendency rate, the parameter value is 
changed from 0.40 to 0.95, and the results are schematically provided in 
Figs. 14 and 15. As expected, increasing the vaccination tendency rate of 
candidate groups leads to a general increasing trend for both objective 
functions. In fact, the vaccination demand is increased, and if more 
people refer to the vaccination sites, the flow of CVWRSC will increase. 
In this situation, more facilities are required for vaccine distribution, 

Fig. 7. The components of the total cost function.  

Table 18 
The location of established distribution centers.   

Iranian red 
crescent 1 

Iranian red 
crescent 2 

Iranian red 
crescent 3 

Iranian red 
crescent 4 

Establishment 
state 

1 0 0 1  

Table 19 
The location of established storage centers.   

West 
Tehran 
health 
center 

North 
Tehran 
health 
center 

South 
Tehran 
health 
center 

Shahid 
Kazemian 
health center 

Establishment 
state 

1 1 1 1  

Table 20 
The location of established temporary treatment facilities.   

Masih 
Daneshvari 
hospital 

Payambaran 
hospital 

Baqiyatallah 
hospital 

Sina 
hospital 

Establishment 
state 

0 0 0 0  
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vaccination, storage, and treatment of the generated wastes. Conse
quently, higher costs and carbon emissions are imposed on the system. 
According to the results, the total carbon emission variation range is 
higher than the total cost. 

4.2.5. Discussion 
In this paper, we study a sustainable CVWRSC network under un

certainty that aims to minimize the total cost and total carbon emission. 
The capital of Iran, Tehran, is the case study for evaluating the model. 
Through the literature investigation, we cannot observe a similar study 
that specifically addresses the vaccine waste management problems 
during the COVID-19 pandemic. The paper by Kargar, et al. (Kargar 
et al., 2020) is a medical waste management network that is somewhat 
close to our paper. However, significant deficiencies make this model 
not work well for managing the waste of the COVID-19 vaccine. 

Kargar, et al. (Kargar et al., 2020) investigate a simple three-echelon 
medical waste reverse supply chain. They only consider waste genera
tion centers, treatment facilities, and landfills. Consequently, their 
model locates the treatment facilities and location decisions for the 
treatment facilities, and the location decisions of the other facilities in 
CVWRSC, such as fixed vaccination sites, mobile vaccination sites, 
vaccine distribution centers, and storage centers, are not considered. In 
addition, they do not consider the allocation decisions for the candidate 
groups for vaccination, which is one of the most important decisions in 
COVID-19 vaccine waste management. It is simply assumed that a 
certain amount of waste is generated in each period. They also do not 
assume the presence of multiple types of treatment technologies in 
treatment centers. Moreover, Kargar, et al. (Kargar et al., 2020) do not 
consider the growing concerns of carbon emission, which may 

significantly affect the severity of COVID-19 disease. Our work enables 
the managers and decision-makers to make a trade-off between the 
economic and environmental objectives of the network. Kargar, et al. 
(Kargar et al., 2020) ignore the uncertainty of the real-world environ
ment. It is undeniable that various uncertainty sources may impact the 
performance of medical waste networks, and in the particular case of 
CVWRSC, the vaccination tendency rate is an influential parameter that 
is inherently stochastic. We consider the uncertainty and handle it via 
robust optimization, which is one of the most efficient methods when 
historical data are unavailable. From the solution approach viewpoint, 
the Kargar, et al. (Kargar et al., 2020) model is solved via the LINGO 
software package. Nevertheless, as mentioned before, the supply chain 
network design falls into the category of Np-hard problems, and com
mercial solvers are ineffective for problem-solving in large-size net
works. Some other researchers also simply used commercial solvers to 
solve the medical waste management problems during COVID-19 
(Govindan et al., 2019; Tirkolaee et al., 2021). The current work pre
sents the Lagrangian relaxation algorithm as a powerful solution 
approach for large-size networks that can be utilized for other problems. 
It is also noteworthy to mention that the TH approach addresses the 
membership of the objective functions and the weight of each objective 
simultaneously, which is this method’s main distinctive feature. Finally, 
the model’s performance is evaluated by applying it to a case study from 
Tehran, the capital of Iran. This city is selected because Tehran is one of 
the largest metropolitans in the middle east, with a 9,423,702 popula
tion. However, Kargar, et al. (Kargar et al., 2020) and many other papers 
in the literature addressed the case studies with much smaller 
populations. 

Fig. 8. The components of the total carbon emission function.  

Fig. 9. Comparison of the usage percentage of treatment technologies.  
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5. Managerial insights and practical implications 

Based on the results of this study, some insight can be presented to 
the managers of vaccination programs for efficient planning of the 
CVWRSC network and to provide a decision support framework for 
managing COVID-19 vaccine waste. In this way, the goal is to determine 
the optimal decisions of the reverse supply chain network by the pre
sented model so that the system’s total cost and total carbon emission 
are minimized. Some of the extracted insights from the results of the case 
study, which is one of the greatest metropolitans in the middle east, are 

as bellow:  

1) The vaccination operations impose a huge cost on the network 
regarding the components of the total cost of the network. Conse
quently, the proper infrastructure and human resources enable the 
managers to reduce the network’s cost significantly.  

2) The location cost of the facilities is the second high-cost component 
of the network. One main feature that distinguishes the current 
network from the other medical waste network is the need to 
establish particular vaccination facilities during the pandemic. This 
shows how much is necessary to use a structured framework to find 
the optimum location from a set of candidate points. Our model 
supports the managers in determining the location of facilities in the 
best possible way.  

3) Most of the carbon emission is from the transportation of non- 
infectious vaccine wastes. Therefore, one of the best ways of con
trolling carbon emission is to invest in carbon emission reduction and 
use more environmentally friendly vehicles to transport this type of 
waste.  

4) Although it seems at first glance that autoclaving is a highly cost 
treatment technology, the result of the case study shows that the 
autoclaving process performs about 90 percent of non-infectious 
waste treatment. Therefore, it seems logical that managers should 
focus on providing this technology for treatment facilities.  

5) Both total cost and total emission objectives are highly impacted by 
the vaccination tendency rate, which is not also a deterministic 
parameter in the real-world environment. The presented model can 
cope with the parameter’s uncertainty efficiently. However, the 
managers should do their best to predict the vaccination tendency 
rate as best as possible using a proper prediction mechanism. 

6. Conclusion and outlook 

The vast COVID-19 vaccination programs have caused a new prob
lem in the west management research area. Based on the WHO reports, 
the reverse supply chain network of COVID-19 vaccine waste needs 
special attention due to its unique features. This paper addresses this 
problem for the first time by developing a new multi-objective mixed- 
integer mathematical programming model. The total cost and total 
carbon emissions are the two objective functions considered to be 
optimized. A robust optimization approach is utilized to deal with the 
inevitable uncertainty in the tendency rate of vaccination and a lack of 
data. The single objective counterpart of the model is established using 
the TH method as an efficient interactive fuzzy approach. Due to the 
complexity of the model, commercial solvers cannot solve large 

Table 21 
The total cost of models under the realization scenarios.  

Γ Mean Standard deviation 

Robust Deterministic Robust Deterministic 

0  1934.01  1967.96  172.20  127.55 
0.1  1883.94  1999.50  150.20  212.35 
0.2  1910.87  1974.35  166.70  166.12 
0.3  1948.68  2051.36  183.81  134.31 
0.4  1871.20  1939.27  98.65  201.83 
0.5  1864.96  1920.06  117.31  136.62 
0.6  1901.64  1965.46  123.65  129.66 
0.7  1889.55  1988.28  192.82  131.69 
0.8  1973.43  2006.58  83.50  164.00 
0.9  1886.40  1952.34  114.23  174.95 
1  1922.73  1997.62  126.47  132.45 
Average  1907.95  1978.43  139.05  155.59  

Table 22 
The total carbon emission of models under the realization scenarios.  

Γ Mean Standard deviation 

Robust Deterministic Robust Deterministic 

0  603.20  616.78  68.88  51.02 
0.1  594.43  640.65  60.08  84.94 
0.2  593.82  605.34  66.68  61.56 
0.3  608.94  650.02  73.52  53.73 
0.4  578.07  605.30  39.46  80.73 
0.5  577.98  608.87  46.93  54.65 
0.6  590.25  615.78  49.46  51.86 
0.7  585.35  624.84  77.13  52.67 
0.8  618.96  632.22  33.40  65.60 
0.9  584.15  610.53  45.69  69.98 
1  599.50  629.45  50.59  52.98 
Average  594.06  621.80  55.62  61.79  

Fig. 10. The total cost comparison under realization scenarios.  
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Fig. 11. The total carbon emission comparison under realization scenarios.  

Fig. 12. The impact of the prices of robustness on the objective functions of the system.  

Fig. 13. The impact of the compensation coefficient on the objective functions of the system.  
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instances. Therefore, a LR algorithm is presented to find the lower bound 
solutions. The algorithm’s efficiency is shown by solving different 
random test problems and comparing the results with the CPLEX com
mercial solver. We also verify the applicability of the mathematical 
model by applying it to a real-world network. The main findings are as 
follows: 

• The results demonstrate that increasing the tendency rate of vacci
nation imposes more cost and carbon emissions on the system. By 
increasing the tendency rate from 0.40 to 0.95, the total cost is 
increased from 6090 to 14,200 million Rials. Additionally, the total 
carbon emission is also increased from 140 to 335 kg.  

• The autoclaving process has a significant role in treating infectious 
vaccine wastes, and this technology treats about 91 percent of in
fectious vaccine wastes.  

• A large part of the cost of the network is related to the vaccination 
cost, and the vaccination process is responsible for about 46 percent 
of the overall cost of the system. 

• A large part of the emission of the network is related to the trans
portation of non-infectious wastes, and the transportation of this 
type of waste is responsible for about 76 percent of the overall cost of 
the system.  

• All mobile vaccination sites are located at the beginning of the first 
period, and there is no movement of these facilities in the subsequent 
period. As a result, the carbon emission and the movement cost of 
mobile vaccination sites are equal to zero.  

• The random generation of realization scenarios and the performed 
robustness analysis demonstrate that the robust optimization 
approach can successfully deal with the uncertainty of the network. 
According to the results, the robust model’s average total cost and 
total carbon emission are less than the deterministic one’s in all 
cases. 

Fig. 14. The impact of the vaccination tendency rate on the total cost of the system.  

Fig. 15. The impact of the vaccination tendency rate on total carbon emission of the system.  
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For the future research, considering other objectives such as the 
potential risk (Kargar et al., 2020), using some other heuristics and 
metaheuristic algorithms to solve the problem, and comparing the re
sults with the presented LR algorithm are some interesting suggestions 
to extend this work. In this way, various algorithms, such as fix-and- 
optimize (Lotfi et al., 2021; Zare Mehrjerdi and Lotfi, 2019; Lotfi 
et al., 2022), differential evolution (Fallahi et al., 2022; Niknamfar and 
Niaki, 2016), and particle swarm optimization (Moslehi and Mahnam, 
2011; Mokhtari and Noroozi, 2018) can be utilized as the solution 
approach. Moreover, the mathematical model can address the routing 
decisions (Govindan et al., 2019). 
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