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Abstract: Nitrogen liquefaction is an energy-intensive process 

which is used in several industries like polymer industry, 

aerospace engineering, air separation unit, sewage treatment 

plant, electronic industry, agricultural science, petroleum and 

reservoir engineering, mining engineering, bioscience 

engineering, nanotechnology, separation process technology, 

storage technology, civil and construction engineering, fuel cell, 

catalysis, power systems, pharmaceutical technology, ceramic 

technology, solar energy systems, molecular dynamic simulation 

etc. Also, nitrogen can be utilized for the manufacture of ammonia 

or start tipping on an ammonia plant, protection of materials from 

bacterial and fungal disorders. Therefore, liquefaction of nitrogen 

is an important process for various process industries. Generally, 

liquefaction of nitrogen involves various methods like reverse 

stirling cycle, LINDE-HAMPSON cycle, Joule Thompson effect 

and etc. This research is focused on the production of generation 

of liquid nitrogen from air using Air Separation Unit (ASU) 

followed by multistage subcooling system. Modeling of this 

process was carried out using Aspen Plus® and then optimized 

using Design Expert®. The final composition of liquid nitrogen 

varies from 78.558 tons/day to 234.7108 tons/day, which increases 

linearly, while the conversion of 78.558% to 78.224%, which 

decreases exponentially.  The effect of parameters used in the 

Design Expert ® were split fraction (f) and air flowrate (a). The 

values of (f) and (a) were fixed using User Defined Method, 

Central Composite Method and D-Optimal Method.  User Defined 

Method confirms that when the air flowrate was 299.99 tons/day 

with a split fraction of nitrogen from ASU unit is 0.59, the 

production of liquid nitrogen is 132.1815 tons/day. While for 

Central Composite Method and D-optimal Method, when the air 

flowrates were 300 and 299.99 with split fraction of 0.6 and 0.59 

respectively then the production of liquid nitrogen were 128.8224 

and 139.975 respectively. Out of these three response methodology 

methods D-Optimal Methods reveals the most appropriate method 

since it infers the maximum nitrogen production or generation. 

The range for the production or generation of liquid nitrogen 

validates with the results of Aspen Plus ®. So it can be confirmed 

that the results obtained from Aspen Plus ® are realistic in nature.  

Index Terms: Aspen Plus®, liquid nitrogen, multistage system, 

optimization, Air Separation Unit (ASU)  
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I.   INTRODUCTION 

Air mainly comprises of nitrogen, oxygen, water vapor and 

some traces of dusts and other particles and particulate 

matters and other gases, shown in the Appendix A.3. 

Amongst all nitrogen is the major component. Nitrogen is an 

inert compound and can be utilized by various industries as a 

cryogenic compound.[1,7,44,45] Cryogenic and 

non-cryogenic systems are used for air separation to recover 

nitrogen gas that are further liquefied to utilise in many 

industrial sectors like polymer[1,2,4, 17], aerospace 

engineering [3,4], air separation unit [5,6], sewage treatment 

plant [7], electronic industry [8,9,10], agricultural science 

[9], petroleum and reservoir engineering [11,12,14], mining 

engineering [12,13], bioscience engineering [15], 

nanotechnology [15], separation process technology [15], 

storage technology [16], civil and construction engineering 

[17], fuel cell [18], catalysis [18], power systems [18], 

pharmaceutical technology [19], ceramic technology [20], 

solar energy systems [20], molecular dynamic simulation 

[21]. Podbielniak [22] first proposed the use of refrigerant for 

cryogenic refrigeration in 1936. After that USA initiated a 

program for the development of a $1000 cryocooler [23]. 

Recently Praxair has patented several processes for 

liquefaction of gases and air separation using mixed 

refrigerant cycles [24-25]. These cycles engage 

non-flammable mixtures. Air Products has patented mixed 

refrigerant and turbine processes on liquefaction of nitrogen 

[26]. Their mixture dwells with nitrogen and hydrocarbon 

refrigerants. Although cryogenic methods provide high 

purity products, non-cryogenic methods such as pressure 

swing absorption (PSA) or membrane separation are much 

energy-efficient depending on the proper design of the plant 

and processes. We have focused on modelling of separation 

of nitrogen from air and liquefying nitrogen considering 

theoretical smoke and fog effects [7]. We have simulated this 

process using Aspen Plus® and optimized using Design 

Expert®. This work presents a process design for 

liquefaction of nitrogen with subcooling in a multistage 

refrigeration system, where main component nitrogen 

(refrigerant) is taken from the PSA unit [29]. Our aim is to 

calculate the maximum production rate of liquid nitrogen 

using Aspen Plus® [30-32] and Design Expert® [33]. 

Though the design calculation does not give the real-life 

production environment but it can provide relief from making 

wide range of experiments without making the small-scale 

reactor plant.     

Modeling And Optimization For Nitrogen 

Liquefaction With Subcooling And Air 

Separation Unit From Air  
Animesh Saini, Surajit Ghosh, Sayan Kar, Pranta Sutradhar, Sourav Poddar 

http://www.ijeat.org/
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Modeling And Optimization For Nitrogen Liquefaction With Subcooling And Air Separation Unit From 

Air  

1771 

Published By: 
Blue Eyes Intelligence Engineering  

& Sciences Publication (BEIESP)  

© Copyright: All rights reserved. 

Retrieval Number D6723048419/19©BEIESP 
Journal Website: www.ijeat.org 

I. METHODOLOGY 

The whole system was calculated using Aspen Plus ® 

[30-32], which is shown in the figure 1. and then the final 

flowrates of N2 was optimized using Design Expert ® [33]. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Process block diagram for production of liquid nitrogen from air. 

Figure 2: Variation in production of nitrogen production (tons/day) against air flowrates (tons/day) 
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Table 1: Variation in production of nitrogen (tons/day) against air flowrates (tons/day) 

 

Air Flowrate (tons/day) Nitrogen Production 

(tons/day) 

% production 

of liquid 

Nitrogen 

(Conversion) 

100 78.55877241 78.55877241 

150 117.5967958 78.39786387 

200 156.6348192 78.3174096 

250 195.6728426 78.26913703 

300 234.710866 78.23695533 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: ANOVA for response surface quadratic model for the production of liquid nitrogen as a function of air 

flowrate and split fraction ratio of nitrogen inlet in HX22 

 

Source 

Sum of 

Squares df 

Mean 

Square F Value 

p-value 

Prob > F  

Model 75373.36 5 15074.67 2.64E+06 < 0.0001 significant 

A-Nitrogen Production 75372.96 1 75372.96 1.32E+07 < 0.0001  

B-split fraction 0.29 1 0.29 50.54 < 0.0001  

AB 7.20E-06 1 7.20E-06 1.26E-03 0.972  

A2 0.095 1 0.095 16.65 0.0005  

B2 0.011 1 0.011 1.91 0.18  

Residual 0.13 23 5.71E-03    

R2=0.9998, Adj R2=0.9997, Pred R2=0.9995, Adeq Precision=339.616 

 

 

 

 

Figure 3: The production of nitrogen as a function of split fraction ratio of nitrogen inlet in HX22 and air flowrate (tons/day) [USER DEFINED 
METHOD] 
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Table 3: ANOVA for response surface quadratic model for the production of liquid nitrogen as a function of air flowrate and 

split fraction ratio of nitrogen inlet in HX22 

 

Source 

Sum of 

Squares df 

Mean 

Square F Value 

p-value 

Prob > F  

Model 26198.25 5 5239.65 2.71E+05 < 0.0001 significant 

A-Air Flowrate 26195.8 1 26195.8 1.35E+06 < 0.0001  

B-split fraction 0.94 1 0.94 48.69 0.0002  

AB 0.8 1 0.8 41.42 0.0004  

A2 8.79E-03 1 8.79E-03 0.45 0.5218  

B2 7.08E-03 1 7.08E-03 0.37 0.5643  

Residual 0.14 7 0.019    

 

R2=0.9988, Adj R2-0.9898, Pred R2= 0.9997, Adeq Precision= 348.171 

 

Figure 4: The production of nitrogen as a function of split fraction ratio of nitrogen inlet in HX22 and air flowrate (tons/day) [CENTRAL 
COMPOSITE METHOD] 
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Table 4: ANOVA for response surface quadratic model for the production of liquid nitrogen as a function of air flowrate and 

split fraction ratio of nitrogen inlet in HX22 

 

Source 

Sum of 

Squares df 

Mean 

Square F Value 

p-value 

Prob > F  

Model 61657.17 5 12331.43 7.58E+06 < 0.0001 significant 

A-Air flowrate 54332.46 1 54332.46 3.34E+07 < 0.0001  

B-split fraction 0.032 1 0.032 19.47 0.0013  

AB 2.89E-05 1 2.89E-05 0.018 0.8966  

A2 0.11 1 0.11 64.87 < 0.0001  

B2 9.73E-03 1 9.73E-03 5.98 0.0345  

Residual 0.016 10 1.63E-03    

 

R2= 0.9999, Adj R2 = 0.9997, Pred R2 = 0.8625, Adeq Precision = 228.904 

2.1. Aspen Plus ® Modelling 

Aspen Plus® was used for the liquefaction of Nitrogen from 

atmospheric air [44]. It provides accurate results compared to 

the real life [26] and comprehensive thermodynamics basis 

for accurate determination of physical properties [29], 

transport properties and phase behavior [27]. The present 

simulation was conducted using ideal and Peng-Robinson 

models [32,42, 43] which fits best to equilibrium since 

components are gaseous and non-polar. The components 

used were N2 (non-polar) and O2 (non-polar) and others 

[44,45].  Figure 1. shows the production of nitrogen from air 

using ASU followed by liquefaction with subcooling. The 

whole process simulation was carried out using the following 

assumptions: 

• Process is substantial state and isothermal.  

• Air comprises of nitrogen, oxygen, water vapor (H2O) and 

other components [7].  

• All the components are gases and were used from the 

Aspen Plus® library itself. 

•   All the streams lines that were used based on SI units.  

• Peng-Robinson models and Ideal models fits the equation 

of state [EOS]. 

• All the unit processes were based on SI units. 

2.2. Process Description: 

For simulation purpose, it was assumed air composed of 

nitrogen, oxygen, small traces of water vapor and others 

[44,45]. The detailed composition of air is shown in the table 

A.3. The detailed procedure of the systems as follows: 

 

 

 

Figure 5: The production of nitrogen as a function of split fraction ratio of nitrogen inlet in HX22 and air flowrate (tons/day) 
[D-OPTIMAL METHOD] 
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• Initially the simulation was investigated for 100 

tons/day with temperature and pressure was set at 

298K (25 OC) and 7x107 bar. Later the flowrates 

were varied to 300 tons/day.  

• The gas stream (air) enters into Air Separation Unit 

(ASU) [30], with nitrogen as main stream excluding 

all other components of air.  

• The final outflow from the ASU [30] was splited into 

two parts. One part enters Heat Exchanger (HX22) 

and the other at Heat Exchanger (HX13). According 

to the previous researchers, Lee et. al [29], it 

comprises of five stages, but for simplification we 

have divided into halves apart from five stages.  

• The split fraction was initially set at 0.4, later on it 

was also varied from 0.4 to 0.60. to obtain the 

maximum liquid nitrogen production. 

• The whole sub-cooling process is divided into two 

halves. The upper half comprises of four Heat 

Exchangers (HX13, HX12, HX11 and H10) Mixers 

(M1, M2, M3 and M4), compressors (C1, C2, C3 

and C4), three J-T (Joule Thomson) valves (V12, 

V11 and V10), four separators (S12, S11, S10 and 

SP2) and one cooler (CW) and one normal valve. 

The lower half comprises of three Heat Exchangers 

(HX22, HX21 and HX20), J-T (Joule Thomson) 

valves (V21, V22 and V20) and two separators (S21 

and S20). The detailed calculation of the Air 

Separation Unit and sub-cooling process is shown in 

the Appendix as A1. and A2. respectively.   

o The upper half produces the gaseous nitrogen, whereas 

lower half produces liquid nitrogen. The gaseous nitrogen is 

recycled and fed to the MIXER (M1) in to order to 

maximize the production or generation of liquid nitrogen. 

The nitrogen produced or generated from the Air Separation 

Unit (ASU) was having a pressure of 6.87 kPa, which was 

then compressed to 250, 420 and 750 kPa and finally to 

1730 kPa. The compressed gas was then liquefied and 

subcooled through the cooler (CW) and the liquid pure 

nitrogen was isentropically expanded through the 

Joule−Thompson (J−T) valve. Like compression, expansion 

was also designed in the multiple stages. The pure nitrogen 

cooled and the mixed gas passages over the stages. In each 

stage, the vaporized pure refrigerant sent to the compressor 

and the liquid fraction was expanded to the next stage.  

Thereafter, the pure nitrogen was sent to the compressor 

again, and these series of steps were repeated to obtain the 

maximum production. 

• The simulation was based on a plant using 100 [30], 

150, 200, 250 and 300 tons/day (TPD) respectively 

of air using the Air Separation Unit (ASU) [30] and 

multistage subcooling process [29], in order to 

obtain the optimized flowrate of nitrogen.  

• To rigorously simulate the pure refrigerant process, 

Aspen plus® modelling was used where the 

equation of state [EOS] was selected as 

Peng−Robinson [32,] because it is recommended for 

pharmaceutical and biotechnology industries 

[reactor cooling, lyophilization, VOC treatment and 

recovery], metal production [heat treatment, 

Inerting], chemical industries [Nitrogen stripping 

and recovery, Inerting], aerospace and aircraft 

[autoclave inerting and heat treatment] [35]. 

• The minimum temperature differences of each heat 

exchanger (HX22, HX21, HX20) were 298, 368, 

and 353 K, in the refrigeration system, in order to 

attain the temperature of the liquid nitrogen. 

Therefore, the outlet temperature of the hot stream 

was set to be 279.15 K. The flow rates of the 

gaseous nitrogen were determined under the 

assumption that all gaseous nitrogen was vaporized 

but not superheated while passing through the final 

heat exchanger. The convergence method used for 

the simulation was Newtonian with complex 

optimization method. The Tear stream convergence 

parameters were tolerance limit as “0.0001”, trace 

option as “Cutoff” and state as “Pressure and 

Enthalpy”. The sequence parameters were design 

specification nesting as “with tear”, User nesting as 

“outside”, Variable weight and loop weight as “1” 

for both the cases. The Solver used for the 

simulation was “LSSQP (Large Scale Successive 

Quadratic Programming)”.   The detailed Aspen 

Plus ® coding is shown in the Appendix as A1 and 

A2 respectively, where A1 represents the unit wise 

specification of process parameters and reactions of 

ASU UNIT and A2 represents the unit wise 

specification for Nitrogen liquefaction with 

subcooling. 

2.3. Parametric Sensitivity and Optimization 

The effects of parameters namely: split fraction (f) and air 

flowrate (a) of air that are two major response variables 

namely, A and B were correlated mathematically in this 

work. The model equations were developed with the aid of 

response surface methodology [36,40,41] varying the values 

of f and a simultaneously. The values of (f) and (a) were fixed 

using user defined method, central composite method and 

D-OPTIMAL method [37,38]. The reason of selecting three 

methods is to find the best suited method.The mathematical 

relationships between the responses (Yi) and factors, air 

flowrates (X1) and split fraction (X2) are given by, 

),( 21 XXfY ii =  where 2,1=i                                      (1) 

It was assumed that the independent factors A and B were 

continuous and controllable by experiments with negligible 

errors. The generalized second order polynomial, correlating 

the responses with the independent factors, is in the following 

form: 
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The significance of the coefficients and the adequacy of the 

fit were determined using Student-t test and Fischer F-test 

[39, 40] respectively. The values of flowrates of Nitrogen 

were maximized respectively. The development of model 

equation and optimization has been done using Design 

-Expert Software 7.0 ® [33,40,41]. 
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3. Results and discussion  

After performing the simulation, it was observed that the 

production or generation of liquid nitrogen was maximum at 

300 tons/day. The final flowrates variation against nitrogen 

production or generation obtained from Aspen Plus ® are 

shown in the figure 2. It is clearly evident from figure 2 and 

table 1 that the flowrates of nitrogen continuously increase as 

the flowrates of air increases, whereas the conversion 

decreases as the flowrate of air increases. Therefore, we can 

confirm that final composition of nitrogen varies from 78.558 

tons/day to 234.7108 tons/day, which increases linearly, 

while the conversion from 78.558% to 78.224%, which 

decreases exponentially. This clearly indicates that the 

production of nitrogen increases with the increase in the air 

flowrate (tons/day) but the conversion decreases with the 

increase in air flowrate. The ideal condition for the 

production and conversion of nitrogen would be 130 tons/day 

and 78.35% when the air flowrate was 160 tons/day.  
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The variation in flowrates of nitrogen obtained by varying the 

flowrates of air and split fraction of nitrogen from the 

separation unit (SP2) in order to the optimum condition. The 

optimum condition was determined using response surface 

methodology. Design Expert® software was used for this 

purpose. The quadratic equations, predicted by the statistical 

modelling can be considered as equation no.3. 

Figure 3, 4 and 5 shows the flowrates of nitrogen as a 

function of split fraction ratio of nitrogen production from 

ASU unit and air flowrate (tons/day). From the ANOVA 

table, provided in Table.2,3 and 4 the probability values were 

less than 0.0001, which makes the model fit for the maximum 

production of liquid nitrogen. The model equations obtained 

during modelling of the process is a surface quadratic type, 

since the significant terms of the equation ends at square 

terms.  The model equation for optimum nitrogen flowrates is 

shown below as equation no.4, 5 and 6. Hence, from the 

model equation (4), table 2 and Figure 3, it can be confirmed 

that when the air flowrate is 299.99 tons/day with a split 

fraction ratio of nitrogen from ASU unit was 0.59, then the 

production of nitrogen was 128.8224 tons/day, when USER 

DEFINED MODEL was used. The model equation (5), table 

3 and figure 4 suggests that when the air flowrate is 300 

tons/day with a split fraction ratio of nitrogen from ASU unit 

was 0.6, the production of nitrogen was 132.1815 tons/day, 

when Central Composite METHOD was used.  The model 

equation (6), table 4 and figure 5 recommends that when the 

air flowrate was 299.99 tons/day with a split fraction of 

nitrogen from ASU unit was 0.59, the production of nitrogen 

was 139.975 tons/day, when D-Optimal Method was used.  

From the Anova Table, D-Optimal Method suggests that the 

Adeq Precision was less compared to the other two Methods, 

i.e. the ratio of the range of variation in the predicted 

response to an estimate of the standard error of the 

predictions was less compared to others. The The Predicted 

R2 of 0.8625 was in reasonable agreement with the Adjusted 

R2 of 0.9997. The range for the production or  generation of 

nitrogen using Design Expert® software varied from 128.22 

to 139.975 tons/day. This results validates the results the 

obtained from Aspen Plus ®. So it can be confirmed that the 

results obtained from Aspen Plus® were realistic with respect 

to Design Expert® results. 

4. Recommendation for future scope (Conclusion) 

Demand of liquid nitrogen is increasing from time to time, so 

in order to meet this demand many industries, especially 

pharmaceutical, food, air conditioning, nuclear, 

transportation, shipping and etc. Liquefaction of nitrogen 

from common source like ambient air with minimal 

expenditure is alarming. Simple reverse Stirling cycle 

process is the most common and other basic process of 

liquefaction of nitrogen from ambient air, but apart that this 

method will be beneficial to utilize for better performance 

and efficiency wise, since it shows that the production or 

generation of liquid nitrogen increases with the variation in 

air-flowrate and split fraction ratio with a minimal 

decremental in the efficiency.  
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Aspen Plus ® was used to design the whole process including 

the process conditions. The final outcome of the Aspen Plus 

® Simulator has been represented in the article, where it 

depicts that the generation or production rate of liquid 

nitrogen increases with the increase in the flowrate of air but 

the percentage conversion decreased with the increase in the 

flowrate of air. The ideal condition for the production and 

conversion of nitrogen would be 130 tons/day and 78.35% 

when the air flowrate was 160 tons/day. Then the results of 

Aspen Plus ® were fitted in to the Design Expert ® optimizer 

to observe the optimum conditions.  The optimum nitrogen 

production or generation is 128.8224 tons/day, 132.1815 

tons/day and 139.975 tons/day when USER DEFINED, 

CENTRAL COMPOSITE and D-Optimal Methods were 

used respectively with the air-flowrate was almost 300 

tons/day with a split fraction ratio of nitrogen from ASU unit 

was 0.6 almost. Out of these three methods D-Optimal 

Methods reveals the most prominent method, since the 

production of nitrogen is maximum in the case of D-Optimal 

method. The F- value for D-Optimal Method is 5972.76, 

which implies that the model is significant and there is only a 

0.0001% chance of error than that of other F-values. The 

results of Design Expert® validates with the results of Aspen 

Plus®. Thus proofing the results of Aspen Plus® to be a 

realistic one in nature.   A huge scope lies in the improvement 

and simulation of this process, as this calculation lacks 

energy exchange with surroundings. So the advancement in 

this direction is inevitable. Further advancement lies in the 

LCA development, technical development and 

techno-economic feasibility of the process. 
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A1. Unit wise specification of process parameters and reactions of PSA UNIT 

 
Unit Aspen Process 

Code 

Parameters  Value 

Air Stream Temperature  

Pressure 

Total flow 

Composition 

Mass fraction 
N2 

O2 

Ar 

CO2 

Ne 

He 

H2O 
 

 250C 

0.07 N/m2 

50 kg/h 

 

 
78.084 

20.046 

0.9340 

0.04 

0.001818 

0.000524 

0.893658 
 

Spliter (SP1) FSplit Stream1 

Stream2 

0.4, 0.45, 0.5, 0.55 

J-T valve Valve 

 

Pressure  

Temperature estimation 

 1 Bar 

25 K 

Compressor Compressor Compressor model 

 Outlet discharge pressure 

 Polytropic using GPSA method 

5 Bar 

Cooler  Cooler Temperature  

 

Pressure  

 250C 

0.07 kg/cm2 

Splitter Splitter Stream 5 

Stream 6 

Flash Option 

Pressure  

Valid phase 

  

 

 

0.07 kg/cm2 

Vapor-Liquid 

Absorber 1 Column 

RadFrac 

Number of stages 

Condenser 

Reboiler  

Valid phases 

Convergence  

Distillate  

Reflux Ratio 

 33 

Total  

Kettle  

Vapor –Liquid  

Standard  

0.0009488 kmol/sec 

0.85 mole 
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Absorber 2 Column 

RadFrac 

Number of stages 

Condenser 

Reboiler  

Valid phases 

Convergence  

Distillate  

Reflux Ratio 

 33 

Total  

Kettle  

Vapor –Liquid  

Standard  

0.0009488 kmol/sec 

0.85 mole 

Mixer 1 Mixer   Pressure  

Valid phases  

 0.07 kg/cm2 

Vapor-Liquid 

Mixer 2 Mixer  Pressure  

Valid phases 

 0.07 kg/cm2 

Vapor-Liquid 

 

A2. Unit wise specification for Nitrogen liquefaction with subcooling 

 
Unit Aspen Process Code Parameters Value 

Heater (HX13) Heater Temperature  9 0C 

Pressure  21.78 atm 

Valid Phases vapor-liquid-free-water 

Separator (SP2) SEP Outlet stream 16 7 

sub stream MIXED MIXED 

Component ID N2 = 0.5 (OUTLET STREAM = 16) 

Splitter  FSplit Stream 19 0.5 

Stream 15 0.5 

Valve (V22) VALVE Calculation Type  

  Adiabatic flash for specified 

outlet pressure (pressure 

change) 

 

  Pressure specification 

Outlet pressure 

 

1.05 N/sqm 

  Flash options 

Valid phase 

Maximum iteration 

Error tolerance 

 

Vapor – liquid 

30 

0.0001 

Heater (HX22)  MHeatX Inlet stream 

Exchanger side 

Outlet stream  

Valid Phase 

Specification 

Value  

Unit 

Pressure 

Unit 

Duty Estimate  

Unit 

Max iterations 

Tolerance 

3 

COLD 

13 

VAPOR ONLY 

Temperature 

5 

C 

29 

atm 

 

watt  

90 

0.0001 

14 

HOT 

12 

VAPOR-LIQUID 

 

 

 

 

 

 

watt 

30 

0.0001 

Mixer (M4) Mixer Pressure 

Valid phases 

 

vapor-liquid-free-water 

Temperature estimate 100C 

Convergence parameters 

Maximum iteration 

Error tolerance 

 

90 

0.0001 

Compressor (C4) Compr Isentropic  

Discharge pressure 4.145 atm 

Efficiencies 

Isentropic  

 

0.75 

Cooler (CW) Heater Temperature  2000C 

Pressure  1 atm 

Valid phases  Vapor-liquid 

Valve (V12) VALVE Calculation Type  

Adiabatic flash for specified 

outlet pressure (pressure 

change) 

 

Pressure specification 

Outlet pressure 

 

1atm 

Flash options 

Valid phase 

Maximum iteration 

Error tolerance 

 

Vapor – liquid 

30 

0.0001 
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Valve (V21) VALVE Calculation Type  

Adiabatic flash for specified 

outlet pressure (pressure 

change) 

 

Pressure specification 

Outlet pressure 

 

1atm 

Flash options 

Valid phase 

Maximum iteration 

Error tolerance 

 

Vapor – liquid 

30 

0.0001 

HEATER (HX12) MHeatX Temperature  8 OC 

Pressure  42.28 atm 

Valid phases Vapor-liquid-free-water 

HEATER (HX21) MHeatX Inlet stream 

Exchanger side 

Outlet stream  

Valid Phase 

Specification 

Value  

Unit 

Pressure 

Unit 

Duty Estimate  

Unit 

Max iterations 

Tolerance 

43 

Cold  

37 

Liquid only 

Temperature  

-100 

C 

 

N/sqm 

 

Watt 

30 

0.0001 

13 

Hot  

36 

Vapor only 

 

 

 

 

N/sqm 

 

Watt 

30 

0.0001 

Separator (S11) SEP Outlet stream 23 44 

sub stream MIXED MIXED 

Component ID N2 = 0.5 (OUTLET STREAM = 23) 

Valve (V11) VALVE Calculation Type  

Adiabatic flash for specified 

outlet pressure (pressure 

change) 

 

Pressure specification 

Outlet pressure 

 

2.5 atm 

Flash options 

Valid phase 

Maximum iteration 

Error tolerance 

 

Vapor – liquid 

30 

0.0001 

HEATER (HX11) MHeatX Temperature  7 OC 

Pressure  62.78 atm 

Valid phases Vapor-liquid-free-water 

Separator (S20) SEP Outlet stream 39 38 

sub stream MIXED MIXED 

Component ID N2 = 0.6, O2=0.5,  (OUTLET STREAM = 39) 

Mixer (M3) Mixer Pressure 

Valid phases 

6 atm 

vapor-liquid 

Temperature estimate 100C 

Convergence parameters 

Maximum iteration 

Error tolerance 

 

30 

0.0001 

Mixer (M2) Mixer Pressure 

Valid phases 

 

vapor-liquid 

Temperature estimate -300C 

Convergence parameters 

Maximum iteration 

Error tolerance 

 

30 

0.0001 

Compressor (C3) Compr Isentropic  

Discharge pressure 2.467 atm 

Efficiencies 

Isentropic  

 

0.75 

Compressor (C2) Compr Isentropic  

Discharge pressure 7.402 atm 

Efficiencies 

Isentropic  

 

0.75 
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Compressor (C1) Compr Isentropic  

Discharge pressure 17.07 atm 

Efficiencies 

Isentropic  

 

0.75 

Mixer (M1) Mixer Pressure 

Valid phases 

 

vapor-liquid 

Temperature estimate -700C 

Convergence parameters 

Maximum iteration 

Error tolerance 

 

30 

0.0001 

Separator (S10) SEP Outlet stream 26 25 

sub stream MIXED MIXED 

Component ID N2 = 0.6 (OUTLET STREAM = 25) 

Valve (V10) VALVE Calculation Type  

Adiabatic flash for specified 

outlet pressure (pressure 

change) 

 

Pressure specification 

Outlet pressure 

 

2 atm 

Flash options 

Valid phase 

Maximum iteration 

Error tolerance 

 

Vapor – liquid 

30 

0.0001 

Valve (V20) VALVE Calculation Type  

Adiabatic flash for specified 

outlet pressure (pressure 

change) 

 

Pressure specification 

Outlet pressure 

 

1 atm 

Flash options 

Valid phase 

Maximum iteration 

Error tolerance 

 

Vapor – liquid 

30 

0.0001 

HEATER (HX10) MHeatX Temperature  6 OC 

Pressure  83.28 atm 

Valid phases Vapor-liquid-free-water 

HEATER (HX20) MHeatX Inlet stream 

Exchanger side 

Outlet stream  

Valid Phase 

Specification 

Value  

Unit 

Pressure 

Unit 

Duty Estimate  

Unit 

Max iterations 

Tolerance 

45 

Cold  

40 

Liquid only 

Temperature  

-180 

C 

85 

N/sqm 

 

Watt 

30 

0.0001 

36 

Hot  

41 

Liquid only 

 

 

 

 

N/sqm 

 

Watt 

30 

0.0001 

 

 

A3. Major constituents of dry air, by volume 

 
Gas Formula  % (volume percentage) 

Nitrogen N2 78.084 

Oxygen O2 20.046 

Argon Ar 0.9340 

Carbon Dioxide CO2 0.04 

Neon Ne 0.001818 

Helium He 0.000524 

Water vapor H2O 0.893658 
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