
Imaging structural co-variance between human brain regions

Aaron Alexander-Bloch1,2,3, Jay N. Giedd1, and Ed Bullmore3,4,5

1Child Psychiatry Branch, National Institute of Mental Health, Bethesda, Maryland 20892, USA

2David Geffen School of Medicine at University of California, Los Angeles (UCLA), California
90095, USA

3Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridgeshire, CB2
0SZ, UK

4Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, CB21 5EF, UK

5GlaxoSmithKline, Clinical Unit in Cambridge, Cambridgeshire, CB2 0QQ, UK

Abstract

Brain structure varies between people in a markedly organized fashion. Communities of brain

regions co-vary in their morphological properties. For example, cortical thickness in one region

influences the thickness of structurally and functionally connected regions. Such networks of

structural co-variance partially recapitulate the functional networks of healthy individuals and the

foci of grey matter loss in neurodegenerative disease. This architecture is genetically heritable, is

associated with behavioural and cognitive abilities and is changed systematically across the

lifespan. The biological meaning of this structural co-variance remains controversial, but it

appears to reflect developmental coordination or synchronized maturation between areas of the

brain. This Review discusses the state of current research into brain structural co-variance, its

underlying mechanisms and its potential value in the understanding of various neurological and

psychiatric conditions.

There are marked inter-individual differences in the structure of cortical regions. For

example, the between-subject variability in the volume of a specific gyrus is typically much

greater than the between-subject variability in whole brain volume1. It has also been

increasingly recognized that inter-individual differences in the structure of a brain region

often covary with inter-individual differences in other brain regions — a phenomenon

known as structural covariance. For example, individuals with greater cortical thickness of

Broca’s area of the inferior frontal cortex typically also have greater thickness of Wernicke’s

area of the superior temporal cortex2. In theory, inter-individual differences in regional
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volume, thickness and surface area could be driven by factors that affect each person and

each region independently. However, the phenomenon of structural co-variance shows that

inter-individual differences in regional structure are in fact coordinated within communities

of brain regions that fluctuate together in size across the population. Post-mortem studies of

visual3 and motor systems4 were among the first to demonstrate these structural

correlations between anatomical regions of the human brain, but the advent of

computer-automated analysis of high-resolution structural MRI has enabled the in vivo study

of correlation patterns across the whole brain in thousands of individuals (BOX 1).

In this article, we review the literature regarding structurally co-varying brain systems. We

discuss details of the anatomical organization of these brain systems and show how this

organization changes in normal development and healthy ageing. We highlight the role of

genetic and environmental factors in structural co-variance, which have begun to be

elucidated by twin studies and by studies of training-induced alterations in brain anatomy,

and present evidence that various neurological and psychiatric conditions are associated with

abnormal structural co-variance networks. Last, we assess the relationship between

structural co-variance and other forms of brain connectivity, such as intrinsic activity and

white matter networks, and discuss its future role in basic and clinical neuroscience.

The anatomy of structural co-variance

Organizational principles

Research and methodological developments over the past decade and a half have started to

identify the organizational principles that govern the anatomy and topology of structural

covariance networks (BOX 2). Brain areas that are highly correlated in size are often part of

systems that are known to subserve particular behavioural or cognitive functions,

highlighting the importance of known functional relationships between anatomical regions.

For example, posterior and anterior language areas in the left hemisphere of the brain co-

vary strongly in their cortical thickness2. The grey matter volume of the hippocampus co-

varies mostly strongly with that of other regions known to be involved in the memory

system, including the amygdala and parahippocampal, perirhinal, entorhinal and

orbitofrontal cortices5. Motor, auditory, visual and other cognitive systems can also be

discriminated on the basis of their patterns of anatomical co-variance6.

Spatial proximity between brain regions is suggestive of the presence of white matter tracts

between these regions7–9, is indicative of coupling of their intrinsic activity9–11 and

generally implies higher-than-average structural co-variance between the regions. In general,

there is an inverse relationship between the strength of structural co-variance and the

physical distance between brain areas12. This parsimonious tendency to form stronger

correlations over shorter anatomical distances may be linked to brain segregation and

segregative network properties such as clustering and modularity13.

However, there are also long-distance correlations between brain regions. Such exceptions

may reveal the influence of brain integration and integrative topological properties on

the formation of structural co-variance networks11,14,15. Although particularly strong

correlations exist within cortical lobes and within subcortical structures, there are also strong
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inter-lobar, thalamo–cortical and striato–cortical relationships16–20. Furthermore, strong,

long-distance correlations exist between contralateral homologous regions21. The structural

properties of a select minority of brain regions known as network hubs (in the association

cortex) appear to disproportionately influence the structure of the rest of the brain, including

spatially distant regions12,22,23, whereas other areas (for example, the primary visual cortex)

show correlations limited to their anatomical neighbourhood12,21,22,24. Networks derived

from white matter tracts or synchronous neuronal activity between brain regions have a

similar group of network hubs, which contribute to global efficiency by establishing

paths of communication between all brain regions through a relatively small number of

connections25,26 (FIG. 1).

Does co-variance mean connectivity?

One of the key challenges in interpreting structural co-variance networks is the lack of

clarity about what these patterns in imaging data represent at a cellular level. Owing to the

scarcity of studies investigating the mechanisms of structural co-variance, questions remain

as to its biological interpretation. To be specific, can we assume that structural covariance is

influenced by synaptic connectivity between brain regions, and/or is structural co-variance

influenced by genetic and developmental relationships between cell types and lamina?

A common interpretation of brain structural co-variance is that it indeed results from brain

connectivity of some kind, such as the physical connectivity of white matter tracts or the

functional connectivity of synchronous neuronal activation (BOX 3). Plausible mechanisms

exist to support this notion. Synapses between neurons can have a mutually trophic and

protective effect on subsequent neuronal development, possibly via glutamatergic NMDA

pathways27, with large numbers of such connections possibly leading to co-variance at the

macroanatomic level28. Moreover, synchronous firing can induce synaptogenesis between

neurons29,30, suggesting the possibility of use-dependent coordinated growth. Studies that

have begun to explicitly test these relationships31,32 reveal that white matter connectivity

and functional connectivity can explain a substantial portion but not all of the inter-regional

structural covariance measured in human populations (FIG. 2).

Many regions that are directly connected through white matter tracts have been

demonstrated to co-vary strongly in their morphology. For example, anterior and posterior

language areas2, contralateral homologues in many areas of the cortex21 and the striatal–

cortical–thalamic circuit33 all show convergent white matter connections and structural co-

variance. Structural co-variance networks and white matter networks also have similar

network properties: both consistently show non-random, clustered, efficient and modular

properties. However, similar network properties are found in diverse social, physical and

biological systems, so sharing these topological features does not prove the equivalence of

the underlying networks. The only whole-brain study comparing white matter (diffusion

imaging) connections with cortical thickness co-variance between regions on a pair-by-pair

basis suggests that there is a substantial but incomplete overlap, with 30–40% of inter-

regional co-variance occurring between regions that are connected by white matter tracts31

(FIG. 2b).
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The pattern of inter-regional structural co-variance may be more akin to the pattern of

functional connectivity than to that of physical white matter connections. This is not

implausible, because although regions that are connected via white matter tracts are usually

also functionally connected, strong functional connectivity can also arise in the absence of

direct white matter connectivity34,35. Correlations between brain regions in intrinsic brain

activity (which are measured using blood-oxygen-level-dependent (BOLD) functional MRI

(fMRI) in a task-free setting) show striking overlap with population-based measurements of

grey matter co-variance between those regions, at least for certain co-variance

networks23,36–38 (FIG. 2a). As the first studies have only just begun to quantify the

relationship between structural co-variance and functional connectivity across the entire

brain32, the extent of this similarity currently remains provisional.

There are methodological hurdles in conclusively assessing the relationship between

structural covariance and connectivity. Currently, the extraction of morphological features

of interest from MRI scans remains imperfect (BOX 1). In addition, diffusion imaging

methods have difficulty resolving crossing fibres, and many tracts are simply too small to be

imaged at current scanning resolutions39. There are also unresolved methodological issues in

measuring fMRI connectivity, as revealed by the recent concern over artefacts induced by

in-scanner subject motion40. Technological improvements will allow increasingly accurate

assessments of these relationships.

Coordinated neurodevelopment

The developmental significance of correlations between phenotypic traits, including the

morphometry of anatomical structures, has been discussed in biological research outside

neuroscience for many decades41–43: for example, regarding skeletal measurements of

extinct pelycosaurian reptiles44, floral dimensions in botanical species45, human craniofacial

anatomy46–48 and many other experimental contexts49. High phenotypic co-variance is

generally interpreted as evidence of developmental coordination or integration, which occurs

within modules with components that are subject to similar developmental processes; by

contrast, the developmental processes that influence distinct modules are relatively

autonomous, resulting in low correlations at the population level50–55.

Coordinated development may give rise to co-variance in various ways. Sharing a

developmental precursor may result in co-variance between distinct parts of a mature

organism56. Similarly, inductive signalling from one developing tissue to another or

simultaneous exposure to signals from a third party may result in synchronized maturation

and ultimately co-variation54,55,57. Shared genetic influences that are due to pleiotropy

could underlie such coordinated development, as could correlational selection that is due to

inter-related influences on adaptive fitness58–60. It has been demonstrated that anatomical

co-variance is often linked to functional relationships: for example, covariance between

bones that have the same muscular attachments61 or are involved in the mechanics of the

same behaviour62–64. Coordinated development may also reflect inherited ancestral

relationships between phenotypic traits, even if these traits no longer have a functional

relationship53,65. Finally, common environmental factors may influence coordinated

Alexander-Bloch et al. Page 4

Nat Rev Neurosci. Author manuscript; available in PMC 2014 June 03.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



development and thus co-variance, with the relationship between genetic and environmental

influences possibly varying on a case-by-case basis45,49.

These cross-disciplinary precedents suggest that structural co-variation between brain

regions may result from coordinated neurodevelopment, and this hypothesis is indeed

consistent with preliminary imaging studies. A longitudinal study has demonstrated overlap

between pairs of regions whose local cortical volumes were correlated and pairs of regions

whose rates of cortical change were correlated over a 5-year period66. In a set of studies that

tracked over 100 subjects across adolescence with three or more longitudinal scans, areas

that were structurally co-variant were also correlated in terms of the rate of change in

cortical thickness during development32,67 (FIG. 2c). Both synchronized rates of change and

cross-sectional structural co-variance appear to be maximal in the association cortex67.

Although structural co-variance and fMRI functional connectivity (which was measured in a

subset of the same subjects) showed a significant statistical relationship, brain-wide

structural co-variance networks were more similar to networks of synchronized anatomical

change32.

It is therefore probable that synchronized change during development underlies inter-

regional structural co-variance. These developmental relationships are in turn influenced by

direct white matter connections and functional co-activation and probably also by other

genetic and environmental factors (see below). The basic idea that structural co-variance

represents the outcome of a mutually trophic benefit to the co-varying regions over the

course of their development echoes work on the incentives for relationships between pairs of

people that lead to the formation of complex social networks68, suggesting that some of the

principles of structural covariance network formation may be very general.

Genetics, cognition and behaviour

Genetics

Most of the variation in total brain size across human beings can be attributed to

genetics69–71. Some striking examples are the single-gene disorders associated with specific

alterations in brain structure and size72,73, and many of these same genes have functions in

cell division and cellular development under normal circumstances74. In healthy individuals,

it is possible that brain anatomy and general intelligence are influenced by the same genetic

factors69,75. Exploiting the fact that fraternal twins have about one-half of the genetic

similarity of identical twins but have shared environmental influences, twin analysis of

single brain regions can quantify the extent to which genetic factors underlie inter-individual

anatomical differences. Such analyses have shown that the influence of genetic factors

varies across the brain, with some gyri demonstrating proportionally greater heritability than

others76.

Although the genetic contributions to brain morphology could theoretically be driven by

distinct genes operating on different brain areas, evidence suggests that genetic influences

are themselves correlated. For example, there is preliminary evidence that structural co-

variance between the amygdala and the anterior cingulate can vary depending on the

presence of a polymorphism in the gene for a serotonin transporter77. Twin studies have

Alexander-Bloch et al. Page 5

Nat Rev Neurosci. Author manuscript; available in PMC 2014 June 03.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



been used to identify correlation patterns between regions that are specifically due to shared

genetic influences: strongly positive, genetically driven correlations appear to exist across

much of the brain, with shared genetic influences accounting for a large portion of the co-

variance measured in human populations76,78,79.

However, these genetic correlations between brain regions are not all equal. Like brain

networks derived from white matter connectivity or functional connectivity between brain

regions, the network of genetically driven structural co-variance follows ‘small-world’

organizational principles76. Different genetic factors influence patterns of structural co-

variance most strongly within different brain networks79–82; that is, there seem to be

network-specific genetic influences. For example, regions that have strong genetic

relationships with the anterior temporal cortex appear to be genetically unrelated to the

primary visual cortex (and vice versa)81. Structural co-variance within the frontal–parietal

network is particularly strongly determined by genetic factors76,80,81; frontal and temporal

association areas, whose morphology is under relatively strong genetic control83, also show

among the highest genetically driven correlations with the rest of the cortex78. Correlations

between homologous contralateral regions appear to have stronger genetic underpinnings,

both in the subcortex16 and cortex78, than do ipsilateral correlations.

Cognition, behaviour and plasticity

There is an extensive literature relating the morphology of individual brain regions or

systems, including cortical thickness, grey matter density, volume and surface area, to

performance on neuropsychological tasks. For example, the size of the amygdala varies with

performance in memory tasks84, social phobia85 and also the size of one’s social network86.

Morphological properties of diverse prefrontal regions are associated with performance in

attentional and regulatory tasks87–89, parietal and primary sensory regions have been linked

to spatial and perceptual abilities90,91 and intelligence has been associated with widespread

variation in thickness across the cortical mantel75,92,93. Grey matter densities in the

hippocampus and the caudate are correlated with different strategies used by subjects in a

virtual navigation task, and these regions are negatively correlated with each other across the

population5. Much if not all of the ‘unexplained’ variance in morphological properties

across people is probably associated with behavioural and cognitive differences. Moreover,

brain regions that co-vary with the same behavioural or cognitive variables could, in their

accumulation, explain a substantial proportion of interregional co-variance patterns.

Indeed, behavioural and cognitive abilities are associated not only with regional

morphometric properties but also with co-variance between regions. For example, people

with a higher IQ have stronger correlations between the inferior frontal gyrus and thickness

of other frontal and parietal brain areas than people with a lower IQ2. Musicians represent a

particularly valuable ‘natural experiment’ of highly trained, skilled individuals who

demonstrate alterations in their patterns of structural co-variance. For instance, trained

pianists have reduced morphometric correlations between left and right sensorimotor areas

compared with non-musicians, which may be related to bimanual coordination94. Musicians

also have more localized (less diffuse) correlations between frontal and auditory cortical

regions, possibly indicating an increased specificity of anatomical relationships95, and
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musicians with absolute pitch have particularly strong short-distance correlations between

different cortical areas that are known to underlie language and auditory functions96.

The relationships between structural co-variance and behavioural or cognitive abilities could

in theory be purely genetically mediated, but learning and training have been shown to alter

brain morphology even in controlled experiments. A well-known series of studies showed

that expert taxi drivers have larger hippocampal volumes that are proportional to their job

experience97,98, even relative to bus drivers, who have more routinized spatial knowledge99.

Musical training alters brain anatomy in an array of motor, language and auditory

areas100–102 after as little as ~1 year of musical training in early childhood103. Individuals

who learn to read for the first time have alterations in grey matter density in language areas

compared with illiterate control subjects104,105, and learning to juggle over a period of

months or even days is associated with thickening of movement-associated visual and

posterior parietal cortex106,107. Clearly, experience and training can alter morphological

properties of individual brain regions and probably also patterns of co-variance between

regions, although the latter has not yet been directly shown.

Structural co-variance across the lifespan

Childhood and adolescence

Regional and global brain anatomy undergo profound alterations during childhood and

adolescence. Total brain volume more than doubles from birth to the age of 2 years, at

which point it is already 80–90% of adult size108. MRI data indicate decreases in total grey

matter and increases in white matter through to the twentieth year of life, which are

generally attributed to a combination of synaptic pruning and myelination (which, in the

prefrontal cortex, is not completed until after the third decade of life)109. There is

considerable regional heterogeneity in developmental change. From birth to young

adulthood (18–24 years of age), the expansion of the lateral temporal, parietal and frontal

cortices is almost double that of primary visual and medial temporal regions110. The

developmental trajectories of thickness and surface area also vary across the cortical mantel,

usually peaking before the age of 10 years and declining at varying rates during

adolescence111–114.

During this period of major regional changes in neuroanatomy, the adult pattern of inter-

regional correlations emerges. This maturation of brain structural co-variance involves a

mixture of linear and non-linear alterations with age. In a study that tracked the growth

trajectories of various seed-based networks in four age groups across childhood and

adolescence, the youngest children generally showed the sparsest structural co-variance

patterns, and these were limited to neighbouring areas and their contralateral homologues.

Two alternative trajectories subsequently emerged: some networks showed progressive

linear expansion across the age range, whereas others peaked in expansion in a middle age

group (11–15-year-olds) before contracting in later adolescence6.

Such differences in maturational trajectories may reflect functional distinctions between

brain systems. The co-variance networks that tended to expand linearly across childhood and

adolescence included anatomical areas of the brain that are known to subserve attention,
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cognition and language functions (which is consistent with previous evidence for tighter

correlations between anterior and posterior language areas in young adults relative to a

paediatric sample2); by contrast, primary sensory and motor areas tended to be included in

networks that followed the alternative trajectory of early expansion and contraction6 (FIG.

3a), suggesting that they develop earlier in terms of their structural co-variance with the rest

of the brain, as compared with more protracted development in association and limbic

areas6,115.

Global network properties become established early in life, and the tension between

segregation and integration is reflected in alterations across the lifespan. It is striking that

even in neonates, weeks after birth, structural co-variance demonstrates the small-world

hybrid of network efficiency and local clustering116, suggesting that these properties may in

fact develop in utero. Infants also already display modular patterns consisting of

communities of brain regions with relatively strong within-community structural co-

variance. Subsequently, modularity, local efficiency and global efficiency all increase during

the first 2 years of life, after which these network properties appear to exist at or near young

adult levels116. Maturation between the ages of 5 and 18 years appears to be largely non-

linear in nature, with a substantial but transient shift towards greater integration and less

local segregation in late childhood115.

Healthy ageing

Ageing has long been associated with regional reductions in cortical grey matter,

particularly in medial temporal and prefrontal areas of the brain. These anatomical changes

have been linked to neurocognitive alterations, as shown by performance in memory and

attention tasks117–120. Disruptions of white matter integrity measured with diffusion MRI

suggest that the relationships between widespread brain regions may also be affected by

ageing121,122, plausibly affecting structural co-variance patterns measured across the

population.

Indeed, grey matter reductions in healthy ageing occur in brain areas with high inter-

regional correlations in morphology, including in memory, cognition and language

networks. Experimental methods based on principal component analysis (BOX 2), which

reduce information about inter-subject co-variance into specific age-related patterns, have

found correlated patterns of atrophy within frontal–temporal networks and within

subcortical networks123–126. Initial analyses revealed particular patterns of correlated

atrophy (‘components’) that were subsequently also found in other samples123,126— an

example of successful experimental replication of brain imaging findings. The functional

significance of age-related changes in structural co-variance networks is supported by their

links with neuropsychological performance, as the strength of these brain-wide co-variance

patterns is correlated with individuals’ scores on memory, attention and cognitive

tests123,127 (even in healthy young subjects127).

The alterations in structural co-variance networks in the second half of life reverse-mirror

some of the trends of childhood and adolescence (FIG. 3). Reduced structural co-variance

has been found in ageing (60–84 years of age) relative to younger (18–35 years of age)

adults in those cognitive and language networks128 within which co-variance tends to
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strengthen with age during childhood and adolescence6. By contrast, co-variance in

sensorimotor networks peaks early in childhood6 but does not appear to differ between

young and old adults128. In terms of global organization, the integrative properties of

structural co-variance networks, as quantified by the global efficiency, strengthen from

young to middle-aged adults, with parallel weakening of segregative properties129. In adults

over the age of 60 years, however, these changes are partially reversed, so that the balance

shifts to a more localized organization129,130. The modular covariance structure that is

established early in life may also be altered in subjects over the age of 60 years129,131, for

example, with fewer network edges involving prefrontal regions that comprise an ‘executive

function’ module in young adults131.

Structural co-variance in brain disorders

Neurodegenerative disorders

The neuronal loss that is characteristic of neurodegenerative diseases is detectable by

structural MRI in the form of decreased grey matter density and thinning of the cortical

surface in affected brain regions: for example, the medial temporal lobes in Alzheimer’s

disease. These regional morphological changes show potential as early predictors of disease-

onset and prognosis, but theories of degenerative disease increasingly focus on brain

networks as opposed to individual regions. For example, atrophy in Alzheimer’s disease

may target regions of the default-mode network — a group of anatomical areas that are

characterized by their relatively strong intrinsic activity when the brain is in a ‘default’

state132 — because these regions may be vulnerable owing to their high metabolic load133.

Alternatively, pathogenic molecules may spread (and induce atrophy) via synaptic

connections analogously to prion disease134,135. In contrast to anatomical studies of specific

brain areas, imaging the correlation structure between regions has the potential to reveal the

pathology of Alzheimer’s disease at the network level.

In fact, studies assessing such correlations have argued that neurodegenerative diseases

target regions that, in healthy individuals, are particularly highly structurally correlated36,

and inter-regional correlation patterns in patient populations are also altered compared with

interregional correlation patterns in healthy populations136. For example, patterns of grey

matter loss in five types of dementia, including Alzheimer’s disease, overlap with distinct

networks of brain regions whose grey matter volumes strongly co-vary in the healthy

population — networks that closely match patterns of intrinsic functional connectivity and

are involved in the behavioural and cognitive functions affected by these diseases36 (FIG.

4a). Even in the healthy ageing population, regional brain atrophy is linked to the deposition

of the Alzheimer’s disease-related protein amyloid-β, and the focus of this amyloid-related

atrophy is part of a structural co-variance network that is associated with cognitive

functioning137. Similar patterns of grey matter loss within networks of brain regions with

high structural correlations can also be distinguished in cognitively normal young adults

who are genetically at risk of developing Alzheimer’s disease138. The fact that atrophy

occurs within structural co-variance networks both highlights their functional significance in

healthy individuals and supports network interpretations of neurodegenerative disease.
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In addition to neurodegeneration in Alzheimer’s disease coinciding with structural co-

variance networks, patterns of structural co-variance themselves are altered by Alzheimer’s

disease in various ways. The Alzheimer’s disease population shows decreased structural co-

variance between certain regions compared with the healthy population — especially in

long-distance and interhemispheric correlations — and increased correlations between some

brain areas targeted by the disease136,139,140 (FIG. 4b). It is probable that there is more than

one cause for these alterations, and disease-related changes in structural co-variance can be

difficult to interpret. Attenuated correlations between brain regions may be suggestive of

disconnectivity or of localized degeneration, if this degeneration affects just one region of a

co-variance network. By contrast, strengthened correlations may indicate overconnectivity

or correlated grey matter loss in regions targeted by the same neurodegenerative process.

Although neither increased nor decreased pairwise correlations would necessarily influence

the global organizational properties of structural co-variance, these properties also appear to

be altered in Alzheimer’s disease in the form of heightened local clustering and inefficient

paths between brain regions136,139. This suggests that, in patients with Alzheimer’s disease,

the whole-brain network is more segregated and less integrated compared with that in

healthy individuals.

Schizophrenia

Neurobiological research on schizophrenia used to focus on single brain regions, such as

parts of the dorsolateral prefrontal cortex, that were thought to somehow ‘contain’ the

cognitive and emotional functions disrupted by the disease. The focus has since shifted to

the interactions between specific brain areas and, more recently, to the possibility of a global

pathology affecting connections across the brain. Indeed, schizophrenia has come to be

regarded more and more as a disease of disconnectivity. Discoveries about patterns of

structural co-variance in schizophrenia17,22,141–160 complement studies that show disrupted

white matter tracts161,162 and functional connectivity163–165 between brain regions in the

disease.

Patients with schizophrenia show abnormalities in frontal–temporal and frontal–parietal

correlations as well as in many other inter-regional correlations, as discussed below.

Frontal–temporal correlations are of particular interest in schizophrenia because of the

possibility that auditory hallucinations, which is one of the most common symptoms of the

disease, could result from a disturbance in the relationship between auditory areas in the

temporal cortex and higher cognitive areas in the dorsolateral prefrontal cortex. Indeed,

there is evidence for a link between the strength of frontal–temporal co-variance and

auditory hallucinations142, and early case–control studies found positive frontal–temporal

correlations in the regional morphology of patients with schizophrenia that were absent from

controls143–146. Subsequent larger studies have generally confirmed alterations in frontal–

temporal correlations in schizophrenia147–151. The increased correlations in patients may

indicate coordinated grey matter loss during neurodevelopment; indeed, frontal and temporal

brain areas also show cortical thinning in schizophrenia113, possibly due to overpruning of

synapses during adolescence166,167.
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If altered frontal–temporal correlations are related to auditory hallucinations, then impaired

cognitive ability — one of the most devastating symptoms of schizophrenia — may have its

roots in other abnormal anatomical associations. The strength of cortico–thalamic141 and

frontal–parietal correlations152 is associated with performance by patients on recall and

working memory tasks, respectively, suggesting a link to cognitive symptoms. In case–

control studies, correlations between the volumes of inferior parietal lobe and prefrontal

cortical regions were increased in people with schizophrenia152–154 and in genetically at-risk

non-psychotic individuals155 compared with healthy controls. Thalamo–cortical correlations

are also altered in patients with schizophrenia17,141,156,157, predominantly in the form of

attenuated correlations17,141,157. There are some inconsistencies between brain imaging

studies of schizophrenia, which are perhaps due to heterogeneity in the patient population

and the potential anatomical effects of different treatment regimens. Almost every region of

the brain has been reported to be involved in altered patterns of structural co-variance in one

or more case–control study of schizophrenia.

It is possible that specific alterations in inter-regional correlations reflect specific aspects of

the constellation of symptoms of schizophrenia, but the widespread nature of these

alterations may also indicate a kind of systemic alteration in the pattern of structural co-

variance (FIG. 4c). Graph theoretical studies suggest that brain organizational principles

may be disrupted in people with schizophrenia22,157,158 and in genetically at-risk

neonates159. Specifically, structural co-variance networks show increased clustering and

longer paths between brain regions157–159 in terms of both the physical distance between

strongly correlated regions22,158,159 and the topological network efficiency157–159. The

increased physical distance between strongly correlated brain regions is also supported by

relatively increased inter-lobar and weakened intra-lobar correlations in patients150,151. In

addition, it is mirrored by recent findings about functional connectivity networks in

schizophrenia, which showed a focused weakening of functional connectivity over short

distances and a relatively greater prominence of long-distant connections11. The identity of

the nodes that are central to the network also appears to be altered in schizophrenia, with a

shift away from the frontal and/or multimodal cortex towards the primary sensory and/or

paralimbic cortex in the patient population22,157,158.

Other conditions

Although Alzheimer’s disease and schizophrenia have been the focus of a large portion of

the research on structural co-variance, other neurological and psychiatric diseases are no less

amenable to these methodological approaches. Studies in a wider range of patient

populations are necessary to determine whether any changes in structural correlations

between brain areas are disease-specific, or whether disruptions to the normative structure of

correlations tend to have similar consequences across diseases. This research is at a

preliminary stage, but pathological structural co-variance has been demonstrated in epilepsy,

autism and various other conditions.

The hypersynchronized electrical activity that underlies epileptic seizures could alter

structural co-variance patterns or reflect connectivity-related vulnerabilities that are

observable at the level of population-wide correlations between regions. Patterns of atrophy
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in temporal lobe epilepsy, the most common drug-resistant epilepsy in adults, recapitulate

patterns of structural co-variance and known white matter connections in healthy

individuals168, a convergence similar to that observed in age-related neurodegenerative

disease. It has been reported that the strength of positive inter-regional correlations is

increased on average in temporal lobe epilepsy169. In addition, graph theoretical analysis of

structural co-variance networks reveals decreased efficiency, increased clustering and an

altered distribution of network hubs169. Longitudinal analysis suggests that network

alterations become more apparent over time in the same group of patients169, indicating that

inter-regional neuronal synchronization may progressively alter structural covariance

networks.

Because the onset of autism occurs before the age of 3 years during a critical period of brain

development that includes the maturation of structural co-variance, it is unsurprising that

inter-regional correlations found in healthy individuals may be disrupted in autism. Parts of

the brain related to social cognition and behaviours that are abnormal in people with autism

and other autism spectrum disorders may be particularly targeted. For example, one study

showed that the structural covariance between the fusiform gyrus and the amygdala is

decreased in autism spectrum disorders170, which could relate to deficits in face processing,

especially in social contexts. There appears to be a widespread disruption of positive inter-

regional volume correlations in children with autism, particularly in brain regions that

subserve social function171. This disruption could reflect an early developmental insult that

prevents coordinated brain maturation of social cognition networks.

Various other disorders show altered patterns of structural co-variance, including but not

limited to multiple sclerosis, chronic pain syndromes and mood disorders. Cortical thickness

networks in multiple sclerosis are altered in proportion to the extent of white matter

lesions172. Patients with chronic pain syndromes show altered spatial properties of structural

co-variance, with a disruption of the inverse relationship between correlation strength and

anatomical distance between brain regions that exists in healthy individuals173. Carriers of a

5-HTTLPR polymorphism that has been associated with increased risk of depression have

decreased correlations between the amygdala and anterior cingulate cortex77. In addition,

there is preliminary evidence for structural co-variance alterations in bipolar disorder174,

Turner syndrome (usually associated with chromosome X monosomy)175, cancer survivors

with chemotherapy-related cognitive impairment176, adolescents who had severely pre-term

births177 and grapheme–colour synaesthesia178.

The variety of these conditions underscores the sensitivity of normative structural co-

variance patterns to a range of developmental, genetic and environmental factors. However,

it is difficult to interpret disease-related changes in structural co-variance, as we currently

lack a clear understanding of the cellular and molecular mechanisms that normally drive the

emergence of large-scale structural co-variance networks and their development during the

life course.
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Conclusions and future directions

Ongoing brain imaging research in animals should help to clarify the mechanisms

underlying structural covariance and thereby contribute towards increasing the clinical

utility of structural MRI for patients with neurological and psychiatric diseases and the

capacity to test network hypotheses about disease mechanisms. When combined with the

kind of controlled genetics and invasive experiments that are not possible in human subjects,

animal brain imaging studies have the potential to yield a molecular and cellular

understanding of inter-regional correlations in morphology179–183. Although few animal

imaging studies to date have looked explicitly at covariance structure180–182, the feasibility

of such research has been demonstrated in non-human primates and in rodents. For example,

a study of ageing rhesus macaques found inter-regionally correlated changes in grey matter

volume with age that predicted working memory performance182, which is consistent with

studies of ageing in humans124,125. In addition, mice trained in different spatial navigation

tasks showed task-specific alterations in grey matter density183 that echo differences in

human populations5. These alterations in grey matter density correlated with

immunohistochemical markers of neuronal remodelling but not with variation in the size or

number of neurons or astrocytes183, suggesting the hypothesis that over time, synaptic

changes can generate inter-regional structural correlations. In the future, animal models can

be used to directly test such hypotheses.

Perhaps the holy grail of brain imaging is to increase its clinical utility for complex brain

disorders such as schizophrenia and Alzheimer’s disease. Classification studies have

attempted to find MRI signatures that are associated with particular diseases or outcomes

and that could be useful in diagnosis or treatment planning. Here, the inter-dependence of

the anatomy of brain regions is both a hurdle (because many classification techniques are

optimized for datasets of independent features) and an opportunity (because deviations from

expected co-variance patterns provide additional information), and successful preliminary

studies have explicitly or implicitly incorporated brain co-variance structure into their

predictive models184–186. The complex mixture of developmental, genetic and

environmental factors that influence anatomical structure and inter-regional dependence

even in healthy individuals may be one reason why the clinical utility of MRI in psychiatry

has yet to meet expectations. As the mechanisms of structural co-variance become better

understood, and methods for measuring deviations from expectations in single scans become

more securely validated, MRI data on structural co-variance in an individual patient could

yield more useful information for clinicians.

The phenomenon of structural co-variance allows the exploration of network hypotheses

about disease mechanisms. For example, patterns of atrophy in neurodegenerative disease

appear to be consistent with the transneuronal spread of pathology through white matter

tracts135 and functional connectivity networks134 that were previously shown to closely

match structural co-variance networks in the same patient populations36. The importance of

more research into functional connectivity and diffusion imaging is widely acknowledged.

However, studies that explicitly target brain connectomics can be prohibitively expensive,

whereas structural MRI scans that are acquired for clinical purposes as part of many large

studies often remain unanalysed. The application of network analysis to inter-regional co-
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variance patterns in existing datasets is a relatively untapped resource and could provide a

window into the developmental relationships between different parts of the human brain.
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Abbreviations

Correlation When two sets of data are statistically inter-dependent or mutually

predictive.

Topology The pattern of connections or relations between nodes within a network.

Segregation The existence, in the brain, of relatively distinct anatomical, physiological

or functional units.

Modularity The concept that a network has a community structure and can be

decomposed into a set of modules, with each module comprising nodes

(brain regions) that are densely connected to each other and sparsely

connected to nodes in other modules.

Integration The capacity of the brain to act as single, unified entity.

Hubs Topologically important or central nodes.

Efficiency A measure that is inversely proportional to the lengths of the shortest paths

between nodes. In brain networks, the global efficiency is often used as a

measure of the overall capacity for parallel information transfer and

integrated processing.

Pleiotropy When a single gene influences many phenotypic traits.
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Box 1 | Measuring structural co-variance in human brain MRI data

An MRI scan images the hydrogen in water molecules throughout the brain as pulses of

energy alter their alignment with the scanner’s static magnetic field. The timing of these

alterations depends on the specific kind of brain tissue and on magnetic gradients that are

superimposed on the static magnetic field, enabling a three-dimensional picture of the

brain. Analogous to a pixel in a two-dimensional digital photograph, the approximately

cubic ‘voxel’ is the basic element of these images187. Further analysis of these brain

images yields morphological information about regions of the brain, such as their

volume, thickness and surface area.

Manual tracing of brain images by expert anatomists has given way to largely computer-

automated analyses. In approaches such as voxel-based morphometry, voxels are

segmented on the basis of their image intensity into one of three tissue classes:

cerebrospinal fluid, white matter or grey matter. After registering all of the scans in a

study into a common anatomical space, using an average brain as a template, the grey

matter density (or ‘volume’) at each voxel can be compared across the brain and between

subjects188–190. In contrast to these intensity-based approaches, surface-based analyses

explicitly model the boundaries that separate the grey matter of the cerebral cortex from

the deeper white matter and the surrounding cerebrospinal fluid191–194. This step enables

the distinction between surface area and thickness contributions to cortical volume,

which may have different genetic195 and developmental196 underpinnings. In addition,

surface-based approaches can explicitly study cortical folding and curvature197.

The simplest case of determining structural co-variance is to consider the relationship

between the morphology of one brain region and that of another brain region, each

measured in a large sample of human subjects (see the figure). Commonly, the linear

dependence between these two datasets is indicated by the product–moment correlation

coefficient, Pearson’s r. The terms co-variance and correlation are often used

synonymously, but only the correlation coefficient is normalized by the variance of the

individual datasets, which makes it possible to compare correlations between datasets of

different scales. Alternative statistics offer increased robustness to statistical outliers198

and/or sensitivity to non-linear relationships199. Confounding variables that could affect

correlation patterns within a sample, such as age and gender, can be corrected for by

using partial correlation methods. Allometric relationships in the form of different brain

regions scaling differently with total brain size200,201 can also be incorporated into

statistical models.

Outstanding methodological problems exist in structural MRI analysis in general, and in

structural co-variance analysis in particular. Issues with in-scanner subject motion, spatial

normalization and MRI tissue contrast make the reliable and accurate extraction of

morphological properties in paediatric samples a particular challenge202. The cellular

interpretation of MRI-based morphological properties is also non-trivial and difficult to

compare across experimental contexts. For example, ‘cortical thinning’ during

adolescence could reflect synaptic pruning or increased myelination109, whereas it is

associated with neuronal loss in neurodegenerative disease203.

Alexander-Bloch et al. Page 25

Nat Rev Neurosci. Author manuscript; available in PMC 2014 June 03.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Although measures of grey matter volume and cortical thickness have been the subject of

most studies to date and are therefore the focus of this Review, studies have begun to

look at the co-variance of other structural phenotypes, including surface area204, white

matter volume150,205 and diffusion imaging measures of tissue integrity206. Co-variance

patterns need not be the same across structural phenotypes, and differences have already

been demonstrated between cortical thickness and surface area co-variance204. Co-

variance methods are theoretically applicable to any structural or anatomical phenotype,

and including a larger array of brain imaging measures is a major target for future

research. The figure is modified, with permission, from REF. 32 © (2013) Society for

Neuroscience.
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Box 2 | Structural co-variance networks

Studies that reveal structural co-variance networks generally use one out of three

experimental approaches: seed analysis, principal component analysis or graph analysis.

These methods are not unique to structural co-variance analysis, and they have analogues

in the analysis of other brain connectivity and correlational data. For example, in

functional MRI (fMRI) functional connectivity analysis, if correlations in brain activity

are calculated between regions over time, then similar network methods can be applied.

Brain structures measured in multiple subjects have the same statistical role for structural

co-variance analysis as brain activations measured at multiple time points do for

functional connectivity analysis.

Possibly the most straightforward of these methods is seed analysis. Here, the

morphology in one seed region is compared with the morphology in the rest of the brain

to generate a whole-brain map of structural co-variance (see panel a of the figure, which

shows maps resulting from two different seed regions on the left and the right,

respectively, with non-cortical areas blacked out). Maps created from different seed

regions or from samples taken from different patient populations can then be compared.

Principal component analysis reduces the inter-regional co-variance across people to a

small number of factors that are easier to visualize and interpret (see panel b of the

figure, which shows brain maps of three components, with non-cortical areas blacked

out). The principal components are like anatomical patterns composed of highly

correlated brain regions: the different patterns are more strongly expressed in some

people and less strongly in others, but together they explain a large portion of the

variation across people. In principal component analysis, these different patterns are

orthogonal to each other (perpendicular in multidimensional space); in addition, the first

component explains as much of the total variance as possible, the second component

explains as much of the remaining variance as possible and so on. Stressing other

properties of the components, such as their statistical independence, yields different

techniques, such as independent component analysis.

The graph theoretical approach tries to summarize complex global and regional co-

variance patterns into biologically meaningful properties. A graph is a model that

describes some basic elements (nodes) and the relationships between them (edges). In

this case, nodes are brain regions, and edges represent significant morphological

correlations between them. Graphs whose edges tend to form triangles have high

clustering; graphs with dispersed edges such that short paths exist between most nodes

have high efficiency; and graphs composed of communities with many within-

community edges and fewer between-community edges have high modularity (FIG. 1).

When applied to assess structural co-variance (see panel c of the figure), graph analysis

performs pairwise correlations between every brain region. Thresholds are then applied,

resulting in a small number of important correlations in a graph model, whose topological

properties (such as clustering, modularity and efficiency) are measured. The properties of

brain structural co-variance networks diverge sharply from simulated networks in which

edges are drawn at random between nodes15,207. There are important and unresolved

questions about graph construction and analysis208–210.
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One important point of difference between structural co-variance, fMRI and diffusion

MRI networks is that fMRI and diffusion MRI networks can routinely be constructed

from measures of inter-regional association or connectivity estimated for an individual

image. By contrast, structural co-variance networks are constructed from inter-regional

correlations estimated on the basis of a group of individual images. Methods for the

construction of a network from an individual structural MR image have been reported211

but not yet widely applied. This limits the opportunity to link structural co-variance

metrics to inter-individual differences, for example, in cognitive function. Panel c is

modified, with permission, from REF. 32 © (2013) Society for Neuroscience.
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Box 3 | Anatomical and functional connectivities

Neuroimaging experiments explore the connectivity between anatomic parcels of brain

matter using various methodological approaches. Diffusion MRI targets water molecules

that diffuse preferentially along white matter tracts, which are groups of axons that are

encased in layers of insulation and carry electrical signals across the brain. Unlike post-

mortem dissection, microscopy and chemical tracing, which remain the gold standard for

the determination of axonal connections, diffusion MRI can gather information about

white matter tracts across the entire brain of a living person in a matter of minutes.

However, crucial methodological issues remain unresolved212–214.

By contrast, coordinated brain activity between regions is often labelled ‘functional’

connectivity. The magnetic properties of oxygenated blood, which fluctuate with regional

brain activity215, allow correlations between regions to be determined over time using

functional MRI (fMRI). Electroencepholography (EEG) and magnetoencepholography

(MEG) measure electrical signals directly as opposed to the (much slower) vascular

response, but the spatial resolution of these methods is much lower than that of fMRI. A

causal relationship between brain regions (as opposed to merely synchronized activity) is

sometimes termed ‘effective connectivity’216. Both functional and effective connectivity

can be changed by cognitive, behavioural and emotional tasks, but ‘intrinsic’ inter-

regional relationships may also exist132.

As has been said of consciousness217, brain connectivity is a mongrel concept: there are

many different kinds of ‘connectivities’. Even the arguably simplest kind of brain

connectivity — the synapse between two neurons — has vastly different electrical,

chemical, morphological and functional subtypes. It is therefore important not to simply

conflate morphological co-variance across subjects — which itself is often described as

structural or anatomical connectivity — with other kinds of brain connectivity. Studies

comparing white matter and functional connectivity provide a template for such

comparisons. These studies have demonstrated that if two regions are linked by a white

matter tract, they tend to have high functional connectivity; however, functional

connectivity also exists in the absence of direct white matter links, owing to indirect or

emergent properties of white matter networks34,35,218,219. The relationships between

brain connectivities must be explicitly tested.
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Figure 1. Schematics of network properties
a | A simulated network is used to illustrate common terms in network analysis. Nodes are

represented as circles, and edges are represented as lines. Networks with short paths between

most nodes have high global efficiency. Networks with many triangular motifs tend to have

high nodal clustering and local efficiency. A disproportionate number of paths between

nodes pass through network hubs. Nodes within the same module are connected by many

edges, whereas nodes in different modules are connected by relatively fewer edges. b | An

example of a network with high clustering but low global efficiency is shown on the left, an

example of a network with low clustering but high global efficiency is shown in the middle,

and an example of an intermediate (small-world) network with both relatively high

clustering and relatively high global efficiency is shown on the right220.
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Figure 2. Co-variance may reflect connectivity
a | Clustering of the left and right insula into subregions reveals similar regional boundaries

when the clustering is based on resting-state functional MRI functional connectivity data

(‘functional’) as when it is based on grey matter co-variance (‘structural’). The similarity of

these ‘clusters’ (indicated by different colours in the figure) is consistent with the idea that

functional connectivity influences patterns of structural co-variance. b | Pairs of regions that

have both high cortical thickness co-variance (that is, structural co-variance) and white

matter tract connectivity (based on diffusion MRI) in the same group of subjects are shown

on a transparent rendering of the brain. Circles represent network nodes and lines indicate

reliable convergence between diffusion MRI and structural co-variance. This convergence is

stronger between regions that are close in anatomical space and weaker between regions

separated by long distances, illustrating both similarities and differences between white

matter connectivity and structural co-variance. c | Structural co-variance, which here is

derived from inter-regional correlations in cross-sectional measurements of cortical

thickness, may reflect ‘maturational coupling.’ Maturational coupling was defined via a two-

step process: first, the linear rate of change in cortical thickness from the age of 9 to 22 years

was estimated for a group of subjects with multiple longitudinal MRI scans; and second,

inter-individual differences in these rates of change were correlated between regions across

the cortex. The correlation between structural co-variance and maturational coupling (r =

0.37) — measured across all pairs of brain regions in the same group of subjects — indicates

the inter-dependence of these measures (top panel). The brain maps (bottom panel) illustrate

these correlations in a region-specific fashion, showing that the level of convergence (shown

by the colour, a warmer colour indicating a stronger convergence) between maturational

coupling and structural co-variance is anatomically heterogeneous (non-cortical areas are

blacked out). Part a is modified, with permission, from REF. 38 © (2012) Elsevier. Part b is
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modified, with permission, from REF. 31 © (2012) Elsevier. Part c is modified, with

permission, from REF. 32 © (2013) Society for Neuroscience.
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Figure 3. Structural co-variance networks change across the human lifespan
a | In 5–18-year-olds, certain seed-based grey matter co-variance networks, such as the

primary auditory network (top, coloured areas) seeded from right Heschl’s gyrus, peak

during adolescence (in 12–14-year-olds) in terms of the total number of voxels, ipsilateral

voxels and contralateral voxels that are correlated with the seed voxels. Other co-variance

networks, such as the semantic language network (bottom) seeded from the left temporal

pole, grow across the age range in terms of the number of other voxels correlated with the

seed voxels. These different maturational trajectories may have functional significance, as

primary sensory networks tend to peak in the number of voxels correlated with the seed

voxels during adolescence, whereas many cognitive and language networks grow in the

number of voxels correlated with the seed voxels through the eighteenth year of life. b |

Correlations within the semantic language network and several other networks that tend to
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grow in strength from 5 to 18 years of age show a reversal in later years. For example,

structural co-variance between the left lingual gyrus and the seed voxel of the semantic

language network in the left temporal pole is positive in younger adults (18–24-year-olds)

but not in older adults (60–84-year-olds). Part a is modified, with permission, from REF. 6

© (2010) National Academy of Sciences. Part b is modified, with permission, from REF.

128 © (2012) Elsevier.
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Figure 4. Structural co-variance networks are altered in disease
a | Seed-based structural co-variance networks (green) and intrinsic functional connectivity

networks (yellow) in healthy individuals, using, as seed regions, the foci of grey matter loss

in different samples of patients with five neurodegenerative diseases (blue). These include

the right angular gyrus (R ANG) in Alzheimer’s disease (AD); right frontal insula (R FI) in

behavioural variant frontotemporal dementia (bvFTD); left temporal pole (L TPO) in

semantic dementia (SD); left inferior frontal gyrus (L IFG) in progressive non-fluent aphasia

(PNFA); and the right premotor cortex (R PMC) in corticobasal syndrome (CBS). The

pattern of grey matter loss in patients recapitulates the patterns of structural co-variance and

functional MRI functional connectivity in healthy individuals. This suggests that these

diseases may target structural co-variance networks and that these structural co-variance

networks are also functionally significant in the healthy brain. b | Structural co-variance

alterations in AD. The brain map (left) shows specific regions whose structural correlations

are higher (red lines) or lower (blue lines) in patients with AD compared with control

subjects. These regions include the paracentral lobule (PCL), superior parietal gyrus (SPG),

posterior cingulate gyrus (PCG), anterior cingulate gyrus (ACG), olfactory cortex (OLF),
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inferior orbital cortex (ORBinf), superior medial orbital cortex (ORBsupmed), fusiform

gyrus (FFG), parahippocampal gyrus (PHG), superior temporal pole (TPOsup) and middle

temporal pole (TPOmid). At the network level (right), the AD network shows abnormally

high clustering, indicating greater local agglomeration of connected nodes. c | Structural co-

variance alterations in schizophrenia. The brain map (left) illustrates specific regions in

which structural correlations are higher (red lines) or lower (blue lines) in patients with

schizophrenia compared with control subjects. These regions include the postcentral cortex

(PoC); supramarginal cortex (SM); inferior frontal cortex, orbital part (IFor); inferior frontal

cortex, opercular part (IFop); caudal anterior cingulate (CAC); pallidum (Pal); and thalamus

(Tha). At the network level (right), the average distance between connected nodes is longer

in schizophrenia, suggesting that pairs of regions with the strongest structural co-variance

are less close to each other in the patient group. Results are shown across a range of network

‘density’, which indicates the proportion of the strongest pairwise correlations included as

edges in the graph models. Part a is modified, with permission, from REF. 36 © (2009) Cell

Press. Part b (left) is modified from REF. 139. Part b (right) is modified, with permission,

from REF. 136 © (2008) Society for Neuroscience. Part c (left) is modified, with

permission, from REF. 157 © (2012) Elsevier. Part c (right) is modified, with permission,

from REF. 22 © (2008) Society for Neuroscience.
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