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Abstract
In this paper, we study a dynamic operating room scheduling problem which consists
of three stages. The problem simultaneously tackles the capacity allocation of operat-
ing rooms to each specialty, assignment of operating rooms to surgeons, assignment
and sequence of patients. To lower the total costs of operating rooms from both sides
of patients and operating rooms, a mathematical model is proposed with objective of
minimizing the patient waiting costs and operating room overtime costs. Some struc-
tural properties of the studied problem are proposed, and two heuristic algorithms are
presented to solve the patient assignment problem based on these structural properties.
The studied operating room scheduling problem is proved to be NP-hard, and a hybrid
GWO-VNS algorithm combining Grey Wolf Optimizer (GWO) with Variable Neigh-
bourhood Search (VNS) is developed to obtain a good solution, where the heuristic
algorithms are incorporated. Finally, computational experiments are conducted to test
the efficiency, stability, and convergence speed of the proposed algorithm and com-
pared with other mainstream algorithms. The results show that our proposed algorithm
outperforms the compared algorithms.
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1 Introduction

In most hospitals, the department of operating rooms (ORs) is both a cost and revenue
center. For OR managers, one of the main questions is how to lower the total costs
of ORs from both sides of the patients and ORs. In term of patients, their satisfaction
can be increased by decreasing the expenses. Motivated by this consideration, we
try to solve a three-stage OR scheduling problem with the objective of minimizing
the overall costs which consist of OR overtime expenses and patient hospitalization
expenses. In this three-stage problem, we need to determine at the same time: (1) the
OR days (which OR on which day) allocated to different specialties, (2) the OR days
assigned to different surgeons and (3) the OR days allocated to different patients and
the patient sequence in each OR day.

In most previous studied problems for multi-functional ORs, the number of ORs
assigned to each surgical specialty weekly is assumed to be fixed. However, each
specialty has different workload in different periods, since the demands for ORs by
different specialties are changing due to many factors, such as the seasons, epidemic,
etc. Thus, it is necessary to consider the OR scheduling problem from more decision
levels to flexibly accommodate the dynamic demands. Motivated by this considera-
tion, we make decisions on not only patient and surgeon scheduling, but also on the
capacity allocation for each specialty simultaneously. It is helpful to respond toweekly
fluctuations in demand on the level of specialties, considering the requirements of the
whole waiting list. What is more, the decision-making of surgeon scheduling is related
to the results of specialty scheduling, and the decision-making of patient scheduling is
related to the results of surgeon scheduling, the correlation among these decisions in
different levels is very strong. Therefore, different from previous studies which split
the OR scheduling problem in three levels and solves each level separately, we jointly
consider these three levels simultaneously other than separately since all decision lev-
els strongly interact with each other. In our study, the capacity allocation problem
addresses decision-making on how overall OR time is divided among surgical spe-
cialties. Then the Master Surgical Schedule (MSS), a cyclic timetable, is established
to define the specific assignment of OR time to individual specialties and individual
surgeons. The problem in the last stage, which is called “surgical case assignment and
scheduling problem” is to assign a specific OR and a date to each patient over the
planning horizon, and then to determine the sequence of patients.

To the best of our knowledge, the vast majority of papers only consider one of the
stages inORschedulingproblem.Saadouli et al. (2015) choose patients to be scheduled
in the selected day.Astaraky andPatrick (2015) andHolte andMannino (2013) allocate
available OR to each surgical specialty. Min and Yih (2010) assign surgical blocks to
each patient. Hosseini and Taaffe (2015) use linear programming to solve the problem
of allocating OR block time to each surgical group taking into account both over-
utilized time and under-utilized time. Penn et al. (2017) assign blocks of time in
specific OR to each surgeon. They propose a multiple criteria mixed-integer linear
programmingmodel that helps head nurses in building newMSS, considering reducing
the maximum number of beds required, and surgeons’ availability. However, there
exist limited studies that address more than one stage in OR scheduling problem
simultaneously. Lee and Yih (2014) determine the sequence of surgeries in the first
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stage and the definite starting times for all surgical cases in the second stage. Pham
and Klinkert (2008) allocate hospital resources to individual patients and decide on
the time to perform the surgeries. Aringhieri et al. (2015) address a joint problem
including two stages, MSS and surgical case scheduling with the decisions of OR time
allocation given as input data. Vancroonenburg et al. (2015) use a two-phase approach
to address the OR scheduling problem also including two stages, MSS and surgical
case scheduling. They develop a flexible decision support model for multi-day OR
scheduling, considering human dependencies and material dependencies. The main
shortcoming of this method is that the decisions made in the first two stages cannot be
modified according to the feedback from the third stage. Thus, the interaction between
them is ignored, and no trade-off is investigated.

Only few papers study the OR scheduling problems in three stages, which are quite
rare in the literature. Testi et al. (2007) select the number of sessions to be scheduled for
each ward in the first stage, assign wards and ORs in the second stage, and determine
sequence of surgeries in the third stage. A discrete-event simulation model is used to
evaluate the schedule. Guido and Conforti (2017) study on the OR time assigned to
each surgical specialty, to each surgical team, and choose patients to be scheduled for
each surgical team. An integer linear programming model is proposed with the aim
of maximizing the number of scheduled patients. Our study covers decisions from
three decision stages—capacity allocation stage, Master Surgery Schedule stage and
operational stage. The comparisons between existing studies and our study are shown
in Table 1.

Considering the complexity of operating room scheduling problems, heuristics
and meta-heuristic algorithms are typically developed. Recently, Lin and Chou (2019)
present a hybrid genetic algorithm that solves the problemof assigning a set of surgeries
to severalmultifunctionalORswith the goal ofminimizing the overtime-operating cost
and thewasting cost for the under time. Qu et al. (2013) study the problem of designing
a weekly scheduling template for clinics. The objective is to minimize patient waiting
time, provider idle time, and provider overtime.AMonteCarlo sampling based genetic
algorithm is developed and applied to real data from a real women’s clinic. Marques
et al. (2015) use a constructive and improvement heuristic approach to solve an elective
surgery scheduling problem.

For our problem,wedevelop a novel hybridGWO-VNSalgorithmby combining the
procedure and features of these two meta-heuristic algorithms. Grey Wolf Optimizer
(GWO) is a population-based meta-heuristic optimization algorithm, first proposed
by Van Houdenhoven et al. (2007). It is based on the hunting behavior and social
hierarchyof greywolves. Thefirst three levels of leadership are respectively considered
as the first, second and third best solutions to achieve the objective function. Their
positions are closer to the prey, and other wolves are forced to update their positions.
Compared with other swarm intelligence algorithms, its significant characteristics
make is possible for it to be widely used in various optimization problems: it has
very few parameters and does not need derivative information in the initial search.
Cardoen et al. (2006) solve a two-stage assembly flow shop scheduling problem by
GWO and showed the better performance of GWO over other well-known meta-
heuristic algorithms. Mirjalili et al. (2014) propose the application of a hybrid GWO-
GA algorithm for optimizing a dynamic welding scheduling problem. To the best
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Table 1 Comparisons among key-related work and this study

Paper Stage Objective Algorithm Analysis Resource Complexity

Riise et al.
(2016)

3 Minimize
makespan

Heuristic A Surgeons,
ORs,
recovery
units

NP-hard

Vijayakumar
et al. (2013)

3 Minimize
costs
associated
with
resources

Heuristic A ORs, surgeons NP-hard

Denton et al.
(2010)

3 Minimize the
amount by
which bin
capacity is
exceeded

Heuristic A ORs, surgeons,
nurses

NP-hard

Aringhieri
et al. (2015)

2, 3 A cost
function

Heuristic A ORs NP-hard

Vancroonenburg
et al. (2015)

2, 3 Minimize the
total surgical
duration

Heuristic A ORs, surgeons –

Choi and
Wilhelm
(2014)

2, 3 Maximize
excess
revenue

Dynamic pro-
gramming

E ORs, surgeons –

Guinet and
Chaabane
(2003)

2, 3 A cost
function

Heuristic A ORs, surgeons,
equipment

NP-hard

Guido and
Conforti
(2017)

1, 2, 3 Maximizes the
number of
scheduled
patients

Heuristic A ORs, surgeons –

Tànfani and
Testi(2010)

1, 2, 3 Minimize sum
of weighted
times of all
patients

Heuristic A ORs, ICU beds NP-hard

Testi et al.
(2007)

1, 2, 3 Maximize the
sum of the
benefit of
each session

Simulation
model

E ORs, surgeons NP-hard

Our study 1, 2, 3 A cost
function

Heuristics and
GWO-VNS

A ORs, surgeons NP-hard

Stage: 1—assign specificOR time to each specialty, 2—assignOR time to each surgeon, 3—assign a surgery
date and an OR to each patient. Analysis: A—approximate, E—exact

of the authors’ knowledge, GWO has not been extended to the surgical scheduling
problem so far. Variable neighborhood search (VNS) is a local search meta-heuristic,
first proposed by Hansen and Mladenović (2001). Improved VNS has been proved
to be effective when applied to OR planning problem. Jebali et al. (2006) address
the problem of scheduling a set of elective surgery patients into multiple ORs. They
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Fig. 1 The methods for our integrated problem in three stages

propose a general solution framework taking advantage of the flexibility of VNS. Lei
and Guo (2016) formulate a model for the scheduling problem for the treatments of
resident patients in hospital for a given day and proposed Reduced VNS to solve it.

In this paper, we focus on a realistic integrated OR scheduling problem, which
includes the OR days assigned to each surgical specialty in the first stage, the OR days
assigned to each surgeon in the second stage, and the subsets of elective patients to
be operated in each OR day in the third stage. Some key structural properties are first
identified, and two heuristic algorithms are proposed. We use a hybrid GWO-VNS
algorithm combining Grey Wolf Optimizer (GWO) with Variable Neighbourhood
Search (VNS) to solve the studied problem, where the heuristic algorithms are incor-
porated to determine the assignment of patients. Figure 1 demonstrates the methods
for our integrated problem in three stages.

Distinct from previous studies, the contributions are as follows: (1) We simultane-
ously consider the three decision stages mentioned above instead of taking account
of them separately in three consecutive phases, featured by patients’ surgical risk
coefficients. Since the decision-making of the latter stage is based on the decision-
making results of the former stages, the correlation among these stages is very strong.
And thus, we jointly consider these three stages other than separately. It is helpful
to respond to weekly fluctuations in demand for ORs by different specialties, con-
sidering the whole waiting list. (2) After the NP-hardness of our problem is proved,
some key structural properties are first identified, and two heuristic algorithms are pro-
posed for patient scheduling problem. (3) Based on the derived structural properties
and the heuristic algorithms for the patient scheduling problem, an effective hybrid
GWO-VNS algorithm is proposed to solve the operating room problem.

The remainder of the paper is organized as follows. Section 2 provides a detailed
list of the objective and constraints that constitute the combinatorial optimization
problem. In Sect. 3, some structural properties and scheduling rules of the proposed
problem are derived, and two heuristic algorithms are developed to determine the OR
days of surgical cases and their sequence. In Sect. 4, a hybrid GWO-VNS algorithm
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incorporating the proposed heuristic algorithms is developed to solve the integrated
problem. The effectiveness and stability of our algorithm are reported and discussed in
Sect. 5 through computer comparative experiments. Section 6 concludes the important
findings and puts forward some future research directions.

2 Problem description andmodel

2.1 Problem description

This paper focuses on a realistic OR scheduling problem under a block scheduling
strategy, proved to be NP-hard. More specifically, we solve the Capacity Allocation
Problem (CAP) in the first stage to assignOR capacity to each specialty in the planning
horizon. In the second stage, we solve the Master Surgical Schedule Problem (MSSP)
to allocate OR days to each surgeon. In the third stage, we solve the Surgical Case
Assignment Problem (SCAP) in which OR days are assigned to patients and Surgical
Case Scheduling Problem (SCSP) in which the sequence is determined for the patients
in each OR day. The resource constraints considered include the availability, and the
number and type of ORs and surgeons. Figure 2 is the diagram of the problems to be
solved in different stages.

In the first stage, the problem is to determine the number of ORs allocated to each
specialty in each day during the one-week planning horizon. The resource composition
of r room on d day is denoted as (r, d), and we call it an OR day (r, d). In the second
stage, the problem is to determine the OR days allocated to each surgeon by specialty
given the results of CAP. After CAP and MSS, each surgeon has several OR days to
schedule his/her list of patients, and then in the third stage the problem is to allocate
OR days to all patients in the waiting list and determine the surgery sequence in each
(r, d). Each patient’s surgery i (here we assume that each surgery is operated only once)
has an estimated duration and a surgical risk coefficient, evaluated by the attending
surgeon for scheduling. Larger coefficient indicates higher urgency of the surgery. In
this context, OR resource is regarded as bottleneck resources and it inevitably leads
to overtime in most cases.

For the three-stage problem, we make the following assumptions: (1) All patients
in the waiting list have been in hospital before the decision day, and they should all be
operated within the planning horizon. (2) The planning horizon is a week. (3) Each
patient has been allocated to the corresponding surgeon. (4) Each surgeon has three
OR days in a week, which is a realistic case.

2.2 Model

The notations used in this section are given in Table 2.
Fewer waiting days result in lower hospitalization costs and lead to higher satisfac-

tion of patients. While scheduling most patients in early days leads to OR overtime
costs. The trade-off between the patient waiting costs and the OR overtime costs must
be resolved when determining the optimal OR schedule. Therefore, we consider an
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Fig. 2 The diagram of the problems to be solved in different stages
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Table 2 Notations

Sets

S Set of surgeons

I Set of patients

R Set of ORs

C Set of specialties

D Set of weekdays

Indices

c Index of specialties, c ∈ C

d Index of days, d ∈ D

i Index of patients, i ∈ I

r Index of ORs, r ∈ R

s Index of surgeons, s ∈ S

Parameters

pi Surgery duration of i patient
wi Surgical risk coefficient evaluated by the attending surgeon for i patient

τc,s � 1 If surgeon s can do surgeries of c specialty, 0 otherwise

θi,s � 1 If the attending surgeon of i patient is s, 0 otherwise

U Regular opening hours of each OR
Omax The max overtime of each OR
Chos Hospitalization cost per day for each patient

Cover Overtime cost per hour for each OR

E The maximum number of surgeons in each OR

di The number of waiting days of i patient

Decision variables
xc,r ,d � 1 If surgeries of c specialty are assigned to (r, d), 0 otherwise

ys,r ,d � 1 If s surgeon is assigned to (r, d), 0 otherwise

zi,d � 1 If i patient is assigned on d day, 0 otherwise

γi, j � 1 If i patient precedes j patient in the same (r, d), 0 otherwise

objective function with two parts: the first part is the total hospitalization costs of all
patients, and the second part is the total overtime costs of all ORs.

Objective :

min

⎧
⎨

⎩

∑

i∈I ,s∈S,d∈D

zi,dθi,sdiwi Chos +
∑

d∈D,r∈R

⎡

⎣max

⎛

⎝0,
∑

i∈I ,s∈S

ys,r ,d zi,dθi,s pi − U

⎞

⎠

⎤

⎦Cover

⎫
⎬

⎭

(1)

Subject to:
∑

c∈C,s∈S,d∈D

zi,dτc,sθi,s � 1 ∀i ∈ I (2)
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ys,r ,d zi,dτc,sθi,s ≤ xc,r ,d ∀i, d, r , c, s (3)

∑

c∈C

xc,r ,d � 1 ∀r , d (4)

∑

r∈R

ys,r ,d ≤ 1 ∀d, s (5)

∑

i∈I ,s∈S

ys,r ,d zi,dθi,s pi ≤ U + Omax ∀d, r (6)

∑

s∈S

ys,r ,d ≤ E ∀rd (7)

γi, j + γ j,i ≤ 1 ∀i, j ∈ I (8)

γi,h ≥ γi, j + γ j,h − 1 ∀i, j, h ∈ I (9)

xc,r ,d ∈ {0, 1} ∀c, r , d (10)

ys,r ,d ∈ {0, 1} ∀s, r , d (11)

zi,d ∈ {0, 1} ∀i, d (12)

γi, j ∈ {0, 1} ∀i, j (13)

Constraint (2) guarantees that all patients must be operated within the planning
horizon. At the same time, it specifies that each patient should be assigned one time.
Constraint (3) ensures that patients are assigned to rooms by specialty. Constraint (4)
prevents assigning more than one specialty to each OR day. Constraint (5) ensures that
surgeons do not overlap between rooms in the same day. Constraint (6) guarantees that
the total operating time assigned to each OR day cannot exceed its general opening
time plus overtime. Constraint (7) ensures that the number of surgeons in each OR day
cannot be larger than the maximum number of surgeries. E represents the maximum
number of surgeries that could be completed in the maximum opening OR time each
day. E � (U + Omax)/pcmin

, where pcmin
denotes theminimumof the average duration

of the surgeries among all specialties. Constraint (8) ensures that only one of γi, j or
γ j,i can be 1. Constraint (9) is required to maintain consistency of schedule between
any three continuous surgeries in the same OR, such that if i precedes j and j precedes
h, then i should precede h. Constraints (10–13) limit variable domains.

2.3 Complexity analysis

When the objective of the SCAP is to minimize resource-related costs, it becomes
similar to the classical bin-packing problem with additional side constraints (Van
Houdenhoven et al. 2007), known as NP-hard (Vijayakumar et al. 2013; Cardoen et al.
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Table 3 The bin-packing problem and case scheduling problem

Classical bin-packing problem SCAP

Given Items Surgical cases

Variable Bins OR days

Objective Minimum costs related to bins to allocate
items

Minimum costs related to resources
consumed by surgical cases

2006). We list a more detailed comparison of the variants to illustrate that SCAP can
be reduced to the bin-packing problem in Table 3.

Here we propose a clear complexity analysis to prove that our SCAP is NP-hard in
the case of the block scheduling model through a reduction to 0–1 Multiple Knapsack
problem (MKP). We consider a particular case with the following characteristics: C �
{1}, R � {1}, S � {1}, and the mathematical formulation (2)–(13) can be simplified
as follows: constraints (3) (4) can be removed due to C � {1}; constraint (5) can
be omitted due to R � {1}; constraint (7) can be omitted due to S � {1}; constraint
(10–11) are unnecessary. Constraint (8–9) (13) are related to the sequence of patients
in each (r, d). Here, we only consider the assignment of patients, and thus constraint
(8–9) (13) can be removed. In addition, index r can be omitted due to R � {1}.
Consequently, the model can be rewritten as:

minF �
⎧
⎨

⎩

∑

i∈I ,d∈D

zi,ddiwi Chos +
∑

d∈D

⎡

⎣

⎡

⎣max

⎛

⎝0,
∑

i∈I ,s∈S

zi,d pi − U

⎞

⎠

⎤

⎦Cover

⎤

⎦

⎫
⎬

⎭

s.t .
∑

d∈D
zi,d � 1 ∀i

∑

i∈I
zi,d pi ≤ U + Omax ∀d

zi,d ∈ {0, 1} ∀i, d

Let F W � ∑
i∈I 5wi Chos +

(∑
i∈I ,d�5 zi,d pi − U

)
Cover denote the value of the

worst case, where the solution is that all patients are scheduled in the last day of the
planning horizon. It is known that F W is a constant. F � F W −F ′,where F ′ represents
the contribution to the overall costs by the surgical risk coefficient wi multiplies the
number of days in the waiting list that can be removed due to the decision of assigning
the patients on day t. Thus, we can rewrite the model as:

max F ′ � ∑

i∈I ,d∈D
5zi,dwi Chos

s.t .
∑

d∈D
zi,d � 1 ∀i

∑

i∈I
zi,d pi ≤ U + Omax ∀d

zi,d ∈ {0, 1} ∀i, d

The above model can be regarded as a 0–1 MKP, which is NP-hard. Therefore, the
NP-hardness of our problem is proved.
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Fig. 3 Different schedules in Lemma 1

3 The structural properties and the heuristic algorithms

In this paper, we propose a hybrid GWO-VNS algorithm (we leave it in Sect. 4) to
solve the studied problem, where Heuristic Algorithms 1&2 are incorporated to obtain
the patient assignment results, which is described in this section. There are two rounds
of assignment to solve the patient assignment problem in the third stage. Specifically,
in the first round of assignment, some patients in the waiting list are selected to be
scheduled within the regular opening time of ORs. Some structural properties are
derived and Lemma 1 is proposed, based on which Heuristic Algorithm 1 for the first
round of assignment is obtained. In the second round of assignment, the remaining
patients in the waiting list are scheduled to overtime, and Lemma 2 is derived. Based
on Lemma 2, Heuristic Algorithm 2 for the second round of assignment is derived. It
should be noted that if all patients can be scheduled within regular opening time of
OR, the second round is not necessary.

3.1 First round of assignment

Lemma 1 When all surgeons’ operating time does not occupy the overtime, the patient
of each surgeon should be scheduled by his/her surgical risk coefficient, i.e., the higher
the surgical risk coefficient is, the earlier the patient to be scheduled.

Proof Suppose Ps
a and Ps

b are two patients of surgeon s. Here we assume that π1 is
an optimal schedule in which Ps

a is scheduled on day t, and Ps
b is scheduled on day

(t + SD) (SD >0),
(
ws

a < ws
b

)
. Swap the position of Ps

a and Ps
b in the π1 and the new

scheduled is denoted as π∗
1 schedule (see Fig. 3).

The objective function of π1 is F(π1) � ∑
i∈I\pa ,pb[∑

s∈S,d∈D θi,s zi,ddiwi Chos
]

+ tws
aChos + (t + SD)ws

bChos +
∑

d∈D,r∈R[
Max

(
0,

∑
s∈S,i∈I ys,r ,d zi,dθi,s pi − U

)]
Cover . The objective function of π∗

1
schedule is F

(
π∗
1

) � ∑
i∈I\pa ,pb

[∑
s∈S,d∈D θi,s zi,ddiwi Chos

]
+ (t + SD)ws

aChos +
tws

bChos +
∑

d∈D,r∈R

[
Max

(
0,

∑
s∈S,i∈I ys,r ,d zi,dθi,s pi − U

)]
Cover . Thus, it can be

inferred that when
∑

d∈D,r∈R

[
Max

(
0,

∑
s∈S,i∈I ys,r ,d zi,dθi,s pi − U

)]
Cover � 0

(all surgeons’ operating time does not occupy the overtime), F
(
π∗
1

) − F(π1) � SD ·(
ws

a − ws
b

) · Chos . Since we assume that ws
a < ws

b, it can be derived that
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F(π∗
1 ) < F(π1), which conflicts with our assumption. And thus, it can be inferred

that π∗
1 schedule is better than π1 schedule.

Basedon theLemma1, the followingHeuristicAlgorithm1 is designed todetermine
the First Round of Assignment of patients to OR days within the general opening time.

The time complexity of step 1 is O(n logn). The complexity of the remaining steps
is no more than O(n). Consequently, the complexity of Heuristic Algorithm 1 is O(n
logn).

3.2 Second round of assignment

Lemma 2 If there are remaining unscheduled patients after regular opening time has
been allocated, then the unscheduled patients should be assigned to the overtime. The
unscheduled patient ps

k with surgical risk ws
k can either be assigned to (O Rx , t) or

(O Ry, t + SD), and there exists an optimized solution with different conditions shown
in Table 4, given that First Round of Assignment has been completed.

Proof Given that surgeon s has been assigned to (O Rx , t) and (O Ry, t+SD) (SD>0),
there exist two schedules for the patient Ps

k (withuration pk). We assume that π1 is an
optimized schedule where Ps

k is assigned to (O Ry, t + SD), while in π∗
1 schedule, Psk

is assigned to (O Rx , t). The constructed schedules are shown in Fig. 4.
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(a) (b)

(c) (d)

(e) Notations
Fig. 4 Different cases in Lemma 2

The first part of the objective function of π∗
1 and π1 schedules are respec-

tively f1
(
π∗
1

) � ∑
i∈I\pk ,s∈S,d∈D zi,dθi,sdiwi Chos + tws

kChos and f1(π1) �∑
i∈I\pk ,s∈S,d∈D zi,dθi,sdiwi Chos + (t + SD) · ws

kChos . Thus, it can be inferred that
F(π∗

1 ) − (π1) � −SD · ws
kChos + f2(π∗

1 ) − f2(π1).
Let εORx,t be the time gap between the completion time of the last

surgery in (O Rx , t) and the general OR closing time, i.e., εO Rx,t � U −∑
s∈S,i∈I ys,O Rx,t zi,tθi,s pi . If εO Rx,t > 0. It means the total time of surgeries in

(O Rx , t) is shorter than the general OR opening time. The value of τ equals to the
overtime cost per hour for operating center divided by hospitalization cost per day
for patient, i.e., τ � Cover

Chos
. Let A be the total costs of overtime of all OR days

which has already happened before patient Ps
k is assigned, i.e., A � ∑

d∈D,r∈R[
max

(
0,

∑
s∈S,i∈I\pk

ys,r ,d zi,dθi,s pi − U
)]

Cover .

(1) Case 1: 0 < εO Rx,t < pk, 0 < εO Ry,t+SD < pk
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The second part of the objective function of π∗
1 and π1 schedules are respectively

f2(π∗
1 ) � A+ (pk − εO Rx,t ) +Cover +0 and f2(π1) � A+0+ (pk − εO Ry,t+SD)Cover .

Thus, it can be inferred that F(π∗
1 )−F(π1) � −SD·ws

kChos+A+(pk−εO Rx,t )Cover −
A − (pk − εO Ry,t+SD)Cover � −SD · ws

kChos + (εO Ry,t+SD − εO Rx,t )Cover . Let
F(π∗

1 ) − F(π1) < 0, then −SD · ws
kChos + (εO Ry,t+SD − εO Rx,t )Cover < 0, that is,

when εO Rx,t � εO Ry,t+SD, F(π∗
1 ) − F(π1) � 0; when εO Rx,t < εO Ry,t+SD, ws

k >
τ(εO Ry,t+SD−εO Rx,t)

SD , F(π∗
1 )−F(π1) < 0;when εO Rx,t > εO Ry,t+SD, F(π∗

1 )−F(π1) <

0.

(2) Case 2: εO Rx,t < 0 ≤ εO Ry,t+SD < pk .

The second part of the objective function of π∗
1 and π1 schedules are respectively

f2(π∗
1 ) � A+(pk−εO Rx,t )Cover+0 and f2(π1) � A+0+(pk−εO Ry,t+SD)Cover .Thus,

it can be inferred that F(π∗
1 ) − F(π1) � −SD · ws

kChos + A + (pk − εO Rx,t )Cover −
A − (pk − εO Ry,t+SD)Cover � −SD · ws

kChos + (εO Ry,t+SD − εO Rx,t+SD)Cover .

Let s F(π∗
1 ) − F(π1) < 0, then −SD · ws

kChos + εO Ry,t+SDCover < 0, that is,
ws

k >
τεO Ry,t+SD

SD .

(3) Case 3: εO Ry,t+SD < 0 ≤ εO Rx,t < pk

The second part of the objective function of π∗
1 and π1 schedules are respectively

f2(π∗
1 ) � A + (pk − εO Rx,t )Cover + (−εO Ry,t+SD)Cover and f2(π1) � A + 0 + (pk −

εO Rx,t )Cover . Thus, it can be inferred that
F(π∗

1 )− F(π1) � −SD ·ws
kChos + A+(pk −εO Rx,t )Cover +(−εO Ry,t+SD)Cover −

A−(pk −εO Ry,t+SD)Cover � −SD ·ws
kChos −εO Rx,t Cover .Let F(π∗

1 )− F(π1) < 0,
then −SD · ws

kChos − εO Rx,t Cover < 0, that is, ws
k > − εO Rx,t τ

SD .

(4) Case 4:εO Rx,t < 0, εO Ry,t+SD < 0.

The second part of the objective function of π∗
1 and π1 schedules are respec-

tively f2(π∗
1 ) � A + (pk − εO Rx,t )Cover + (−εO Ry,t+SD)Cover and f2(π1) �

A + (−εO Rx,t )Cover + (pk − εO Ry,t+SD)Cover . Thus, it can be inferred that s
F(π∗

1 )− F(π1) � −SD · ws
kChos + A + (pk − εO Rx,t )Cover + (−εO Ry,t+SD)Cover −

A − (εO Rx,t )Cover − (pk − εO Ry,t+SD)Cover � −SD · ws
kChos . It is easily verified

that F(π∗
1 ) < F(π1), which conflicts with our assumption. Thus, we can obtain the

rule that when εO Rx,t < 0, εO Ry,t+SD < 0, π∗
1 is an optimized schedule.

Based on the Lemma 2, we propose a Heuristic Algorithm 2 to solve the Second
Round of Assignment of patients to OR days in the overtime as follows:
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The complexity of step 2 is O(n2). The complexity of the remaining steps is no
more than O(n). Consequently, the complexity of Heuristic Algorithm 2 is O(n2).

4 Metaheuristic-based hybrid approach

In this section, the hybrid GWO-VNS algorithm incorporating Heuristic Algorithm
1&2 is proposed for solving the problem. The key procedures of the proposed GWO-
VNS are as follows:

4.1 Coding scheme

In order to code solution vector, we should consider the problem with the following
three stages: (i) assign OR days to specialties (ii) assign OR days to surgeons (iii)
assign OR days to patients.

Therefore,wefinda solution for problems in these three stages.That is to generate an
array of which the length is equal to the total number of all surgeons’ OR days assigned
in aweek.We combineOR and day in the coding scheme to simplify the search process
and make it more effective (see Fig. 5). For example, value 8 stands for OR day (2,3).
The solution can be denoted as X � {x11 , x12 , x13 , x21 , x22 , x23 , . . . , x S

1 , x S
2 , x S

3 } and the
three position values x S

1 , x S
2 , x S

3 represent the three OR days assigned to surgeon.

4.2 Encoding correction strategy

In the iterative processes, infeasible solutionsmay be generated for six reasons: (1) OR
days should be encoded with integers while search operators may generate decimals.
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2

Mon Tue ThurWed Fri

OR1

OR2

OR3 11 12 13 14 15

31 4 5

6 7 8 9 10

(1,2)

Mon Tue ThurWed Fri

OR1

OR2

OR3 (3,1) (3,2) (3,3) (3,4) (3,5)

(1,3)(1,1) (1,4) (1,5)

(2,1) (2,2) (2,3) (2,4) (2,5)

Fig. 5 Position value for each (r, d)

We adopt the coding correction strategy which takes integer approximate values. (2)
All position values should be in the range of [1, 5R]. The numbers in X that are less
than “1” are set to “1”, and those are greater than “5R” are set to “5R”. (3) There should
not be any duplicate values at the positions for the same surgeon. If this occurs, leave
one of the duplicate values as it is, and regenerate others. (4) Surgeons of different
specialties should not be assigned in the same OR day. If this occurs, randomly select
one surgeon s from OR day m and set his/her specialty as the specialty of the OR
day m. Then shift surgeons of other specialties to other OR days by specialty. (5) Each
surgeon should not be assigned to different ORs in a day. In the subset {xs

1, xs
2, xs

3xs
1

} for surgeon s, if there exist any two position values whose difference is an integer
multiple of five, leave one of the values as it is, and regenerate the other. (6) The
number of surgeons in each OR day should not be larger than E (defined in Sect. 2.2).
If this occurs, regenerate the values at the positions for the surgeon.

4.3 VNS-based local search

In the following, we present several neighborhood structures Ns(s � 1, 2, 3, 4) (see
Fig. 6) used within VNS and we propose a VNS-based local search procedure for
improving the effectiveness of the traditional GWO.

(1) Operator 1: Transfer surgeon

In the operator, one surgeon selected from (O Rx , d) is shifted to (O Ry, d + SD).
We should note that before the shift, the selected surgeon from (O Rx , d) should not
have been assigned to (d + SD) day. Also, (O Rx , d) and (O Ry, d + SD) should be for
the same specialty, or when (O Ry, d + SD) is not occupied, the transfer can be done.

(2) Operator 2: Swap surgeons in the same day

In this operator, two surgeons selected respectively from (O Rx , d), (O Ry, d), are
swappedwith each other.We should note that before the swap, (O Rx , d) and (O Ry, d)
should be of the same specialty.

(3) Operator 3: Swap two surgeons in different days

In this operator, two surgeons selected respectively from (O Ry, d), (O Ry, d + SD)
are swappedwith each other.We should note that before the swap, the selected surgeon
in (O Rx , d) should not have been assigned to (d + SD) day, and the selected surgeon in
(O Ry, d + SD) should not have been assigned to d day. Also, (O Rx , d) and (O Ry, d +
SD) should be for the same specialty.
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d d+SD

ORx

ORy

S1,S2

S4,S5,S3

d d+SD

ORx

ORy

S1,S2,S3

S4,S5

d

ORx

ORy

d

ORx

ORy

S1,S2,S3 S1,S2,S5

S4,S5 S4,S3

(a)

(c) (d)

Operator 1 (b) Operator 2

d d+SD

ORx

ORy

S1,S2,S5

S4,S3

d d+SD

ORx

ORy

S1,S2,S3

S4,S5

d d+SD

ORx

ORy

S4,S5

S1,S2,S3

d d+SD

ORx

ORy

S1,S2,S3

S4,S5

Operator 3 Operator 4

Fig. 6 Local search operators

(4) Operator 4: Swap surgeons in different OR days

In the swap, all the surgeons in (O Rx , d) and (O Ry, d + SD) are swapped. We
should note that before the swap, the surgeons in (O Rx , d) should not have been
assigned to (d + SD) day, and the surgeons in (O Ry, d + SD) should not have been
assigned to d day.

The VNS-based local search procedures for improving the effectiveness of the
traditional GWO is described as follows:
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The details of the operation of “local search” in the VNS-based local search are as
follows:

4.4 Framework of GWO-VNS

The main steps and framework of GWO-VNS are described as shown in Table 5 and
Fig. 7.

5 Computational experiments and comparison

In this section, we test our approach using realistic data from the first affiliated hospital
of University of Science and Technology of China. The data instances are based on
the available database of surgical procedures collected from 2017. Statistics in this
year show that the hospital received up to 3,680,000 patients and performed 63,000
surgeries. The number of elective patients is 600 each week. The specialty of each
patient is given and the surgery duration of each specialty follows a normal distribution.
The surgical risk coefficientwi are set to be (0.2, 0.4, 0.6, 0.8, 1.0). The hospitalization
day cost has been set to 366.41 euros (Guinet and Chaabane 2003). The overtime cost
of an OR is set to 7.06 euros per minute (Jebali et al. 2006).The parameter settings are
shown in Table 6:

We group all the surgery departments into three main specialties. The benefit of
grouping is that when faced with emergencies, the head nurse can adjust operating
time between surgery departments within a group without fear of the deviation from
the optimized solution. Therefore, minor adjustments could be carried out without
making completely new plans. The first specialty includes gynecology, ophthalmol-
ogy and urology. The second specialty consists of general, oral, otolaryngology, and
vascular surgery. The third specialty consists of neurosurgery, organ transplantation,
orthopedics, surgical tumor and thoracic surgeries. The duration of each specialty of
surgeries is random, following a known normal distribution with a mean µ and a
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Table 5 Procedure of GWO-VNS algorithm
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Table 6 Parameters setting

Notation Definition Value

I The number of patients within the planning horizon 400,500,600

S The number of surgeons 80,100

R The number of ORs 30,35,40

C The number of specialties 3

E The max number of surgeons in each OR day 8
Cover Overtime cost per hour of each OR 423.6 euros
Chos Hospitalization cost per day 366.41 euros

τ Cover /Chos 1.16

variance σ 2. For specialty 1, μ1 � 1 and σ 2
1 � 0.52. For specialty 2, μ2 � 2 and

σ 2
2 � 0.82. For specialty 3, μ3 � 4 and σ 2

3 � 12.
In order to test the performance of our proposed algorithm GWO-VNS, a serial

of computational experiments are conducted, compared with three classic algorithms:
GWO (Mirjalili et al. 2014), VNS (Lei and Guo 2016), and PSO (Taherkhani and
Safabakhsh 2016). According to the number of patients, surgeons and ORs, 18
instances are generated in our computational experiments. The average objective value
(Ave) and the minimum objective value (Min) are measured over 18 instances in
Table 7. We also analyze and compare the performance of these four methods by
Relative Percent Deviation (RPD) (Vallada and Ruiz 2011), defined as follows:

R P D(M) � Ave(M) − Best F

Best F
× 100

where Ave(M) is the average value acquired by algorithm M. BestF denotes the best-
known fitness, obtained by all four algorithms for solving the same case. Our goal is to
acquire the minimum value, and thus the larger the RPD, the worse the performance.
To ensure that the algorithms can converge to a good solution, we set the population
size as 20, and the maximum number of iterations as 200. Each case is run for 20 times
to ensure the reliability of experiments. The initial solution is the same for the four
algorithms to ensure that they start at the same level to search for optimized solutions.
We use a Lenovo computer running Windows 10 with an Intel(R) Core(TM)2 Duo
CPU @2.93 GHz and 8 GB RAM to implement these four algorithms in Python. In
Table 7, the last two rows show the best and average RPD (ARPD) values (the latter
between brackets) of instances 1–9 and instances 10–18 for all methods. We can find
that GWO-VNS has the best performance in obtaining average cost, minimum cost,
best RPD and average RPD compared with other three algorithms.

Figures 8 and 9 provide us an intuitive means of data analysis. In Fig. 8, the cost
increases significantly when the number of patients increases. Figure 9 shows that
the RPD values of GWO-VNS and GWO are maximal when the number of surgeons,
patients and ORs is 100, 600, 300. The RPD values of VNS and PSO are maximal
when the number of surgeons, patients and ORs is 80, 500, 300. Figure 9 shows that
the GWO-VNS has more stable RPD values than other three algorithms. The RPD
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Fig. 7 The flowchart of the hybrid GWO-VNS
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Fig. 8 Cost in different numerical cases

Fig. 9 RPD results with different numbers of surgeons, patients and ORs
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Fig. 9 continued

Fig. 10 The box-plot of RPD
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Fig. 11 Convergence curves for 18 instances
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Fig. 11 continued
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Fig. 11 continued
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values of GWO are smaller than those of VNS and PSO. The RPD values of VNS and
PSO are similar. Particularly, the RPD values of GWO-VNS are very small when S �
80, I � 400. VNS and PSO are especially unstable and GWO cannot converge to get
a best value. From Figs. 8 and 9 we can obtain the deduction that GWO-VNS is more
stable and efficient compared with other three algorithms.

We can exactly see the differences of RPD values among the four algorithms from
the box plot graphic in Fig. 10, where the minimum, the upper and lower quartiles,
median, maximum and mean value for 18 cases are shown. We can find that the
confidence intervals of VNS and PSO are overlapped. It demonstrates that they are not
statistically different, and the performance of these two algorithms is at the same level.
GWO obtains smaller minimum, upper and lower quartiles, median, maximum and
mean value than those of VNS and PSO. Additionally, the upper and lower quartiles,
median, mean value, and the difference between the upper and lower quartiles of
GWO-VNS are much smaller than other three selected algorithms. This is a clear
demonstration of the better performance of GWO and GWO-VNS than VNS and
PSO, and the best performance of GWO-VNS among the all four algorithms. At the
same time, this conclusion is consistent with the results in Table 7 and Fig. 8.

The convergence curve graphs of GWO-VNS, GWO, VNS, PSO for the eighteen
instances are shown in Fig. 11. The average of best solution values in each iteration
is listed in each figure. From Fig. 11, we can see that the differences of the best
solutions among GWO-VNS, GWO, VNS, and PSO become smaller with the number
of surgeons increasing or with the number of patients decreasing. GWO gets better
solutions than VNS and PSO except for the instance (80,400,40). Compared with
GWO, VNS, and PSO, GWO-VNS can always get better solutions in approaching
solutions to these instances and its convergence speed is faster as well. Moreover, the
convergence curves demonstrate the greater searching ability of our GWO-VNS with
the number of patients increasing. Additionally, GWO, VNS, and PSO all converge
to a local optimum after one hundred and fifty iterations. However, only GWO-VNS
can overstep the local extremum and continue to search for better solutions. Based on
above description and discussion, we come to the conclusion that our GWO-VNS is
stable and effective in the respect of solution quality as well as convergence speed. The
results show that the GWO-VNS algorithm not only outperforms other algorithms in
solving quality and convergence speed, but also maintains robustness in all cases.

6 Conclusion

In this paper, we solve the multi-functional OR scheduling problem integrating three
decision stages. The first stage is to assign different OR days to specialties, the second
stage is to address the surgeon assignment problem, and the third stage is to deal
with the patient assignment and sequence problem. The objective is to minimize the
total sum of patient waiting costs and operating room overtime costs. We use a hybrid
VNS-GWO algorithm which is combined of GWO and VNS to solve the studied
problem, where two heuristic algorithms are incorporated to determine the assignment
of patients.A set of experiments are conducted to test the performance of our algorithm,
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compared with GWO, VNS, and PSO. The experimental results show that our hybrid
algorithm has better performance in terms of solution quality and convergence speed.

Our proposed method offers decision makers the option of weighing multiple con-
flicting goals from different perspectives and determining the most suitable schemes.
The results provide promising insights into patient waiting list management and lim-
ited medical resource optimization, showing that hospitals could handle surgeries at
lower cost by scheduling specialties, ORs, surgeons effectively and provide satisfac-
tory service for the patients. To be specific, our approach can find the best number of
ORs for each specialty and the best assignment for each surgeon in the experiment,
and thus, can provide useful information for reducing operating costs from both sides
of hospitals and patients.

In the future research, we could consider other multi-objective problems such as
the minimum number of ORs and required beds, the maximummakespan, or the max-
imum number of surgical cases scheduled. Furthermore, we could focus more on the
structural properties of the optimized patient allocation problem from the application
perspective. Additionally, we could extend our model and methods under more realis-
tic assumptions, for example, the number of OR days assigned to each surgeon is not
fixed, the surgery durations are random, or the arrival times of patients are uncertain.
Finally, we could test the algorithm on open-source test instances (e.g., VRP prob-
lem or job scheduling problem). By further research, we will develop more effective
algorithms to solve the practical problems and offer more managerial insights for the
healthcare practitioners.
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