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When researchers analyze multiwave longitudinal data (i.e., three or more mea-

sured waves) using the Multi-Level Modeling (MLM) framework (Bryk & Rau-

denbush, 1987; Laird & Ware, 1982; Raudenbush & Bryk, 2002), they typically

propose an average growth trend (e.g., linear, or quadratic). The correspond-

ing between-subject variation associated with the residuals from the intercepts

and the individual growth trends is also modeled. However, researchers typi-

cally assume the within-subject residuals to be independently and identically

distributed (i.i.d.) with mean zero and homogenous variance ¢2 for all par-

ticipants (i.e., e � N.0; ¢2I/). There are two issues when researchers only

focus on modeling the average growth trends and the corresponding between-

subject variation. First, important aspects of longitudinal change of some phe-

nomena may not be reflected in the average growth trends but rather in the form

of the variance-covariance structure of the within-subject residuals (Biesanz,

West, & Kwok, 2003; Cook & Weisberg, 1999; Hedeker & Mermelstein, 2007).

For example, Hedeker and Mermelstein (2007) showed that mood change in

smokers could be reflected by the changes in the within-subject covariance

structure (i.e., the variation of the mood change in smokers decreased over

time) rather than the average growth. Second, the simplification of the within-

subject covariance structure (i.e., identity structure D ¢2I, which assumes an

homogeneous within-subject residual variance) may bias the estimation of the

standard errors of the fixed effects, which, in turn, may lead to either Type

I or Type II error when testing the fixed effects, and affect the construction

of confidence intervals for the effects of interest (Davis, 2002; Diggle et al.,

2002; Singer & Willett, 2003; Weiss, 2005). The major focus of this paper is

to examine the effect of misspecifying the within-subject covariance structure

on the estimation and testing of the fixed effects and the variances and co-

variance of the random effects. Paralleling with the conditions considered in

Ferron, Dailey and Yi’s (2002) study, we also examined the plausible influ-

ence of other factors including sample size, number of waves, magnitude of

the fixed effects, and the magnitude of the elements of the covariance structure.

Some guidelines for analyzing longitudinal data under the MLM framework will

be provided.

Multi-Level Modeling (MLM)

MLM can be viewed as an extension of familiar linear models such as anal-

ysis of variance and multiple regression. For example, consider a longitudinal

study with N participants and T different measurement occasions on the same

instrument for each of the N participants. To simplify the illustration, we use a

simple linear growth model which can be written in reduced (mixed model) form

as follows:
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(1)

This equation can be rewritten in matrix form as:

y D X“ C Zu C e (2)

In equation (2), y is a [TN] column vector containing the T repeated measures for

all N participants. X is a [(TN) by 2] matrix containing the intercept (i.e., 1) and

the predictor variable TIME. “ is a [2] column vector containing the unknown

growth parameters “0 and “1. Z is a [(TN) by (2N)] design matrix, and u is a

[2N] column vector containing the random effects representing between subject

variation (individual differences). e is a [TN] column vector containing the

within subject random errors. Conceptually, the model shown in equation (2) can

be divided into two components: fixed effects (i.e., X“), and random effects (i.e.,

ZuC e). Fixed effect coefficients “0 and “1 represent the overall/average model

intercept and slope, respectively. Random effects u0i and u1i (i.e., elements

in u) represent the deviation of the ith subject’s intercept and slope, respectively,

from the average intercept and slope (between subject variation). Random effect

et i (i.e., elements in e) represents the deviation of the observation at the t-th



560 KWOK ET AL.

measurement occasion for the i -th participant from that participant’s individual

regression line (within subject random errors). The variance of the random effects

in equation (2) is equal to:

VAR.Zu C e/ D VAR.Zu/ C VAR.e/
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where the elements on the diagonals of the block diagonal matrices are defined

as following:
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T is a [2 by 2] variance-covariance matrix1 containing the variances and co-

variances of the random effects related to between subject differences. † is a

[T by T] variance-covariance matrix containing the variances and covariances

of random errors related to within subject random errors. Equation (3) assumes

that the covariance structures of u and e are independent and can be modeled

separately. Indeed, equation (3) can be rewritten as:
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which is a block diagonal structure with ZiTZT
i C † on the main diagonal and

zeros off the main diagonal given i D 1 : : : N . Another important assumption

underlying equation (7) is that all N participants are independent from each

other (no clustering of individuals). Given these assumptions, the covariance

structure of the random effects for each individual (i.e., ZiTZT
i C †/ can be

seen to be a combination of the covariance elements of the between individual

random effects (i.e., VAR.u/ D T) and within individual random errors (i.e.,

VAR.e/ D †).

Another way to analyze longitudinal data is to use traditional approaches

such as Univariate Analysis of Variance (UANOVA). Unlike equation (2) which

contains two random effect components (i.e., u and e), UANOVA contains only

one random effect component (i.e., e):

y D X“ C e (8)

1The size of both Z and T depends on the number of random effects related to the between

subject differences. For example, if quadratic growth is examined (see Study 2) and a (between-

subject) random effect is associated with the quadratic term, T will be a [3 by 3] matrix containing

the variance and covariance components of the three random effects associated with the three

growth parameters, namely, intercept, linear term, and quadratic term. Z will be a [T by 3] design

matrix containing the predictor values corresponding to the intercept, linear term and quadratic

term.
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where †, the within-subject covariance structure, is a [T by T] matrix with

a compound symmetry2 (CS) structure containing a constant covariance for all

possible pairs of the T repeated measures (Kirk, 1995; Maxwell & Delaney,

2004; Rogan, Keselman, & Mendoza, 1979). The CS structure can be presented

as follows:
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which contains constant diagonal and constant off-diagonal elements (i.e., ¢2
A &

¢2
B respectively).

Indeed, MLM is a more general model framework and UANOVA can be

viewed as a special case of MLM. The UANOVA model can be reproduced by

fitting a random intercept model in MLM (i.e., all elements in equation (5) are

constrained to zero except £00 and † in equation (6) has an ID structure .¢2I.T//).

The advantage of using UANOVA to analyzing longitudinal data is that it has

higher statistical power if the sphericity assumption is met (Algina & Keselman,

1997; Keselman, Algina, & Kowalchuk, 2001; Rogan, et al., 1979; Wolfinger,

1996). However, this assumption is likely to be violated in longitudinal studies

(Keselman et al., 2001; McCall & Appelbaum, 1973). Generally, correlations (or

covariances) between y measures collected closer together in time (e.g., 1st time

point and 2nd time point) should be higher than correlations (or covariances)

2Compound symmetry structure of † is a sufficient condition for fulfilling the sphericity as-

sumption. A covariance structure which can reflect the sphericity assumption is the Huynh-Feldt

(H-F) covariance structure. The H-F covariance structure is a more general form of the compound

symmetry structure (Wolfinger, 1996).
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between y measures collected further apart in time (e.g., 1st time point and 20th

time point). Violation of the sphericity assumption results in the inflation of

the nominal alpha level, which in turn, affects inferences based on the F-test

statistics (Keselman et al., 2001).

Advantages of Using MLM over the Traditional

ANOVA Approaches

A major difference between MLM and the traditional ANOVA approaches is

the covariance structure of the random errors. The covariance structure of the

random effects in the traditional ANOVA approaches is modeled as a single com-

ponent (i.e., e; see equations (8) and (9)), whereas the random effects in MLM

are divided into two components: u and e, which represent the between subject

variation and within subject random errors respectively. Several advantages ac-

crue from modeling the between-subject and within-subject random effects as

two separate components. First, MLM permits the examination of new effects

of interest such as cross-level interaction effects which represent the interac-

tion between one or more between subject (individual level) predictors and the

growth trend of the within subject repeated measures. For example, researchers

can examine how personal characteristics such as age and gender (i.e., individual

level predictors) influence the growth trajectories (i.e., within subject repeated

measures) of mathematical achievement in young children. Second, the covari-

ance matrices of both the between subject random effects and within subject

random errors can be flexibly and simultaneously modeled in MLM (Chi &

Reinsel, 1988; Diggle, 1988; Laird & Ware, 1982; Jones & Boadi-Boateng,

1991; Wolfinger, 1993). Heterogeneity (i.e., differences of the covariance ele-

ments of the random effects or errors in different populations under the same

fixed-effect and random-effect structure) can also be easily addressed under the

MLM framework (Littell, et al., 1996; Raudenbush, et al., 2000).

However, when researchers adopt the MLM approach to analyzing longi-

tudinal data, they typically focus strongly on the examination of the covari-

ance structure of the between-subject random effects while retaining the simple

default covariance structure of the within-subject random errors (i.e., speci-

fying the † matrix (see equations (3) and (6)) as having the default iden-

tity structure (ID)—¢2I.T/; for examples, see Fredricks & Eccles, 2002; Ja-

cobs et al., 2002). This oversimplified † matrix implies that there is no cor-

relation/covariance between any pair of random errors after partialing out the

between-subject covariances, which is very unlikely to reflect reasonable as-

sumptions about the data (Goldstein, Healy, & Rasbash, 1994; Sivo, Fan &

Witta, 2005). The existence of (auto)correlated residuals in longitudinal data is

very common (Sivo, Fan & Witta, 2005) and has been shown in different studies

such as the change of the household income over time (Bollen & Curran, 2004)
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and the relation between depression and antisocial behavior in children (Cur-

ran & Bollen, 2001). One possible reason of the occurrence of the correlated

residuals may be due to the test-retest property in longitudinal data (Sivo, Fan

& Witta, 2005). Such misspecification of the covariance structure can result in

biased estimation of the standard errors, which in turn, will affect the tests of

significance and the construction of confidence intervals for the effects of inter-

est in MLM (Davis, 2002; Diggle et al., 2002; Singer & Willet, 2003; Weiss,

2005).

Types and Effects of Misspecification in the Covariance
Structure of Errors within a Single Population

There are three major types of misspecification in the covariance structure of er-

rors within a single population: under-specification, over-specification, and gen-

eral misspecification. Figure 1 presents an illustration of the different types of

misspecification using four different within-subject covariance (or †) matrices,3

namely, identity (ID), first-order autoregression (AR(1)), first-order autoregres-

sion and first-order moving average (ARMA(1,1)), and second-banded Toeplitz

(TOEP(2)). As shown in Figure 1, ID contains a single parameter (¢2) on the

main diagonal of an identity matrix, whereas TOEP(2) contains two parameters

with ¢2 on the main diagonal and ¢1 to represent constant correlated error terms

only for the first lag of the matrix. AR(1) contains two parameters (¢2 and the

autocorrelation coefficient ¡), and ARMA(1,1) contains not only the same two

parameters (i.e., ¢2 and ¡) as in AR(1) but also the moving average coefficient

(”). A nested relationship between different † matrices is defined by whether

one can obtain a specific † matrix by imposing constraint(s) on another †

matrix. For example, AR(1) can be reduced to ID if ¡ is set to zero. Hence,

ID is nested within AR(1). On the other hand, TOEP(2) cannot be reduced

to AR(1) (or vice versa) by imposing constraint(s). Figure 1(A) shows that

ID is nested within AR(1) and AR(1) is nested within ARMA(1,1), whereas

ID is nested within TOEP(2) but TOEP(2) is not nested within either AR(1)

or ARMA(1,1).

As shown in Figure 1(B), under-specification occurs within nested † ma-

trices when the true † matrix is more complex than the † matrix chosen for

3There are more choices for modeling the within-subject covariance structure in some common

statistical programs (e.g., there are more than 18 different covariance structures available in SAS

PROC MIXED). Here we only chose four commonly used structures among a large variety of

possible covariance structures that were sufficient to study the effects of the four different types of

misspecification.
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FIGURE 1 Different types of misspecifications of the within-subject covariance structure.

the analysis (e.g., the chosen † matrix is ID but the true † matrix is AR(1)).

Over-specification occurs within nested † matrices when the true † matrix

is more constrained than the chosen † matrix (e.g., the chosen † matrix is

ARMA(1,1) but the true † matrix is AR(1)). Once again, these two types

of misspecifications apply only to nested † matrices. General misspecification

occurs when the true † matrix and the chosen † matrix are not nested. For ex-

ample, general misspecification would occur if the chosen † matrix is TOEP(2)

but the true † matrix is AR(1)).

The effect of under-specification on estimation and test of significance has

been studied in the past (Ferron et al., 2002; Sivo, Fan & Witta, 2005; Sivo
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& Willson, 2000). For example, Ferron et al (2002) studied the effect of an

underspecified within-subject covariance structure in MLM framework. In their

Monte Carlo study, the true † was AR(1) but was underspecified as ID. The

estimates of the fixed effects were unbiased but the corresponding standard

errors were positively biased (i.e., larger than the true standard errors), which

in turn, affected the confidence intervals and reduced the statistical power of

the target fixed effects. Sivo and colleagues (Sivo et al., 2005) have studied the

same under-specification effect with broader conditions under the latent growth

modeling framework (using structural equation models) and a similar pattern

of results were found.4 However, unlike under-specification, the effects of over-

specification and general misspecification on the parameter estimation and the

test of significance of the fixed effects of interest have not yet been intensively

studied.

In another context, Kowalchuk and Keselman (2001) suggested using the

overspecified structure, UN-H, for the within-subject covariance structure5 with

Satterthwaite estimation of degrees of freedom in the context of conducting

pairwise multiple comparisons under the ANOVA framework. Nevertheless, in

the context of the full multilevel modeling framework, Singer and Willet (2003)

showed in an example analysis that the standard errors of the fixed effects

became smaller when a more optimal and parsimonious covariance structure

rather than UN was adopted. Wolfinger (1996) defined the meaning of optimal

and parsimonious covariance structure as follows: “to obtain the most efficient

inferences about the mean model (i.e., fixed effects or the average growth trend),

one selects the most parsimonious covariance structure possible that still rea-

sonably fits the data” (p. 208). We will use “optimal covariance structure” to

stand for the “optimal and parsimonious covariance structure”. In general, op-

timal covariance structure is believed to be able to maximize the statistical

power of detecting the target fixed effects given a nominal alpha level (Kesel-

man et al., 2001; Singer & Willet, 2003; Wolfinger, 1996). An overly specified

4Sivo et al (2005) not only found biases in the estimates of the variances and covariance of the

random effects but also in the estimates of the fixed effects. One possible cause for the different

findings between these two studies may be due to the use of the estimation method. Ferron et al

(2002) analyzed their data under the MLM framework in which Restricted Maximum Likelihood

(REML) was used. In constrast, Sivo et al (2005) analyzed their data under the latent growth model

framework in which Full Information Maximum Likelihood (FIML) was used. The major difference

between these two estimation methods is that both regression coefficients and variance components

are included in the likelihood function when using FIML but only variance components are included

when using REML.
5UN is the most general form of the covariance structure for a single population (Wolfinger,

1996). In the same vein, UN-H (i.e., Heterogeneous Unstructured) is the most general form of the

covariance structure for multiple populations.
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covariance structure can reduce the generalizability of the hypothesized model

(Myung & Pitt, 2004). Hence, Kowlachuk and Keselman’s suggestion of over-

specifying the within-subject covariance structure as UN may potentially only

be applicable to specific multiple comparison tests but not to more general

conditions.

Purposes of This Study

As described previously, the effects of misspecification have not yet been inten-

sively studied. Generally, researchers believe that misspecification of the covari-

ance structure affects the estimation of the standard errors of the fixed effects,

which in turn, affects the tests of significance, estimation of confidence intervals,

and calculation of the pseudo R2 for each fixed effect.

Only a small number of studies to date have examined the effect of misspec-

ification of the covariance structure under the MLM framework. No systematic

study has examined the effect of all three different types of misspecification of

the covariance structure (i.e., under-specification, over-specification, and gen-

eral misspecification) on the estimation of fixed effects and their corresponding

standard errors in MLM. The major goal of this paper is to investigate the

effect of different forms of misspecification of the covariance structure of the

within-subject residuals for longitudinal models under the MLM framework. We

examined the impact of misspecification in two Monte Carlo studies.

STUDY 1

In Study 1, we focused on a common two-level growth model with level-1

modeling the repeated measures within individuals and level-2 modeling the

differences of individual growth models between individuals. We limited our

focus to a simple linear growth model (see equation (1)) with correctly specified

fixed effects collected in a balanced design.

Method for Study 1 Linear Growth Model

The simulation used a 2 (30 or 210 cases) � 2 (4 or 8 waves) � 3 (magnitude

of growth parameter “1: 0, .05 or .16) � 2 (T matrix: small or medium) � 4

(true † matrices for generating the data: ID, TOEP(2), AR(1), or ARMA(1,1))

factorial design to generate the data. A total of 500 replications were gener-

ated for each condition using the Mplus (V4.1) Monte Carlo procedure (Muthén

& Muthén, 2006), yielding 48,000 total datasets. All data were generated un-

der Mplus with a multivariate normal distribution (Muthén & Muthén, 2001).
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TABLE 1

Conditions for Examining the Effects of Over-Specifications, Under-Specifications,

and General-Misspecifications

True Covariance Structure

IDENTITY AR(1) TOEP(2) ARMA(1,1)

Hypothesized/Tested IDENTITY X Under Under Under

Covariance Structure AR(1) Over X General Under

TOEP(2) Over General X General

ARMA(1,1) Over Over General X

UN Over-Null T Over-Null T Over-Null T Over-Null T

Note. X: Correct-specification; Over: Over-specification; Under: Under-specification; General:

General misspecification; Over-Null T: Over-specification with null T matrix. There are two parts

of analyses based on the specification conditions: (a) analyses within the complete MLM framework

including under-specification, general misspecification, over-specification, and correct specification

of the † matrix in which the T matrix is specified as unstructured permitting estimation of variance

of the random intercept, the random slope, and their covariance (i.e., conditions above the double

lines); (b) analyses within the general mixed model framework using an unstructured † matrix

(i.e., UN) and null T matrix in which the intercept and the slope are fixed for all participants (i.e.,

conditions below the double lines).

Each dataset was then analyzed using five separate specifications of the † ma-

trix6 (ID, TOEP(2), AR(1), ARMA(1,1) and UN) using SAS PROC MIXED

(Littell et al., 1996) yielding a total of 240,000 records (i.e., 48,000*5). The

combination of the four † matrices for data generation and the five † matrices

for analysis yielded five specification categories (see Table 1). The details of

each design factor are described below together with a justification of the values

selected for study.

Number of participants. The number of the participants (or cases) is based

on the conditions used in past simulation studies (Keselman et al., 1998; Ferron

6When we generated the data based on any one of the four covariance structures (i.e., ID,

TOEP(2), AR(1), and ARMA(1,1)), we could obtain the overall covariance matrix as shown in

equation (7). Then, we could either analyze the data under the MLM framework and use these four

covariance structures with freely estimated elements in T as shown in equation (5), or we could

analyze the data under the traditional approach as shown in equations (8) and (9) (i.e., no u), without

imposing any specific structure for † (i.e., UN) and constraining all the elements in T to zeros

(i.e., null T). Equation (7) can be reduced to equation (9) by constraining all the elements in T

to zero. The number of parameters in the covariance matrix of the later approach (i.e., modeling

† as UN along with null T) is equal to: ŒT �.T C 1/�=2 with T equal to the number of repeated

measures, which also implies that the covariance matrix will always be over-specified under this

later approach.
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et al., 2002) and Khoo et al.’s (2006) review of the multiwave longitudinal studies

published in Developmental Psychology in 2002. Thirty (individuals) was the

smallest sample size considered in both Keselman et al (1998) and Ferron et al

(2002) studies. The mean number of individuals of the multiwave longitudinal

studies published in Developmental Psychology was 210 (SD D 180). Hence,

we chose 30 as a “small” number of individuals and 210 as a “medium” number

of individuals.7

Number of measurement waves. Among the multiwave longitudinal stud-

ies8 published in Developmental Psychology in 2002, more than half (52%)

of these studies collected data with three or four occasions. The mean num-

ber of waves of the other 48% of studies was 8. Hence we chose 4 waves

as the small number of repeated measures and 8 waves as the medium num-

ber of measures. We centered the time variable so it had a mean of 0 and 1

unit between adjacent observations (i.e., Time4waves0 D Œ�1:5 �:5 :5 1:5�, and

Time8waves0 D Œ�3:5 �2:5 �1:5 �:5 :5 1:5 2:5 3:5�).

Standardized effect size of the average growth trajectory. Two differ-

ent magnitudes of the standardized effect size of the growth trajectory (i.e., “1,

see Equation (1)) were examined in this study, small effect size (i.e., “1 D :05)

and medium effect size (i.e., “1 D :16). These values were obtained by the

following effect size equation (Raudenbush & Liu, 2001):

• D “1p
£11

(11)

where • is the standardized effect size, “1 is the average linear growth trend (see

Equation (1)), and £11 is the variance of the random effect associated with the

growth parameter (see Equation (5)), which indicates the differences between

individual growth trends and the average growth trend. Cohen (1988) provided

some standardized effect size guidelines in which small effect size (i.e., •) is

equal to .20 and medium effect size is equal to .50. Raudenbush and Liu (2001)

proposed similar guidelines for the size of £11, where .05 was for small £11

and .10 was for medium £11. Given the values of • and £11, the corresponding

“1 could be easily computed. “0 was fixed to a constant value in all conditions

(i.e., “0 D :10).

7We only considered small and medium numbers of participants (and repeated measures) because

longitudinal studies with a large number of both individuals and observations are rare in most areas

of psychology.
8One study (Lagattuta & Wellman, 2002) contained a very large number of repeated measures

(i.e., more than 50). This study was treated as an outlier and excluded from the proportion calculation.
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Overall effect size of T matrix. The parameters which have to be deter-

mined in the G matrix are the elements in the T matrices lying on the diagonal

of the G matrix. As shown in equation (5), the elements in T matrices are £00,

£11, and £01 (which is identical to £10), where £00 captures the variance of

the intercepts of individual growth models and £11 captures the variance of the

linear growth trends of individual growth models. £10 captures the covariance

between the individual intercepts and linear growth trends. According to the

criteria provided by Raudenbush and Liu (2001), a medium T and a small T

could be specified as:

TMedium D
�

:200 :050

:050 :100

�

and TSmall D
�

:100 :025

:025 :050

�

In TMedium, £11 was set to .10, whereas £00 was set to .20 (i.e. double of £11)

because the variation of the intercepts was generally larger than the variation

of the growth trends in longitudinal studies. The size of the covariance, £01

(or £10), was half of the size of £11 because the covariance between intercepts

and growth trends was generally small in longitudinal studies. The parameters

in TSmall were set by halving the corresponding parameter values in TMedium

(Raudenbush & Liu, 2001).

Specification of † matrices. The final parameters we had to determine

were the elements in the † matrices, which were lying on the main diagonal of

the R matrix (see equation (3)). Four covariance structures, namely, ID, AR(1),

TOEP(2), and ARMA(1,1) were adopted. One key feature of these four error

covariance structures was that the numbers of parameters of these four error

covariance structures are invariant across different numbers of repeated observa-

tions9 (here, 4 versus 8). Moreover, as shown in Figure 1, these four structures

have both nested and non-nested relations, which can be used for studying the ef-

fects of under-specification, over-specification, and general misspecification (see

Table 1). All of these structures are available in SAS PROC MIXED Version 8

and higher.

The four error covariance structures are commonly used when analyzing

longitudinal data. As noted previously, researchers who use the MLM approach

nearly always use the default ID covariance structure. AR(1) and ARMA(1,1)

are commonly considered in time series analysis (Velicer & Fava, 2003; West &

Hepworth, 1991). TOEP(2) is closely related to the moving average (1) structure

which is also commonly used in time series.

9The number of parameters in some covariance structures varies as the number of repeated

measures changes. For example, the number of parameters for an UN(1) (first-banded or main

diagonal unstructured) with 4-wave measures is 4 whereas the number of parameters for an UN(1)

with 8-wave measures is 8.
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As shown in Figure 1, four parameters are necessary to specify the four cho-

sen error covariance structures. These parameters are: ¢2 (variance of the within

subject random errors), ¢1 (i.e., the parameter in TOEP(2)), ” (i.e., moving aver-

age coefficient), and ¡ (i.e., autoregressive correlation coefficient). To reduce the

number of unknown parameters, the within subject random errors were assumed

to be normally distributed with variance equal to one (i.e., ¢2 D 1), which is the

general practice when conducting power analyses under the MLM framework

(Snijders & Bosker, 1993; Bosker, Snijders, & Guldemond, 2003). ¢1 was as-

sumed to be the same as ”. Hence, we only needed to specify two parameters,

¡ and ”, for the four within subject covariance structures. ¡ was fixed to .80

and ” was fixed to .50, which are within the reasonable range of values used in

past simulation studies (Hamaker, Dolan, & Molenaar, 2002; Sivo & Willson,

2000).

Evaluation criteria. There were several evaluation criteria used to study

the effects of misspecifications of the within subject covariance structures along

with other design factors (i.e., number of cases, number of waves, magnitude of

growth parameter, and magnitude of T matrix). The criteria were: 1) convergence

of the analyses, 2) relative bias10 of the estimates of the fixed effects (i.e., “0

and “1) and their corresponding standard errors (i.e., SE“0 and SE“1), and the

variances (i.e., £00 and £11) and covariance (i.e., £01) of the random effects, and

3) Type I error rate and statistical power, as appropriate, of the tests of the fixed

effects.

Results for Study 1 Linear Growth Model

Conceptually, the analyses can be partitioned into two broad parts based on

the specification conditions. (a) The first part corresponds to analyses within

the complete multi-level model (MLM) framework. Conditions corresponding

to under-specification, general misspecification, over-specification, and correct

specification of the † matrix were created (see Table 1). In all cases the T matrix

was specified as unstructured permitting estimation of variance of the random

intercept, the random slope, and their covariance. (b) The second part corre-

sponds to analyses within the general mixed model framework by specifying an

unstructured (UN) † matrix with null T matrix. This analysis assumes that the

intercept and the slope are fixed for all participants. The results pertaining to the

10Relative bias is calculated by: RB D O™�™
™

, where ™ is the true parameter value, and O™ is the

corresponding sample estimate. RB equal to zero indicates an unbiased estimate of the parameter.

A negative RB indicates an underestimation of the parameter (i.e., the estimated value is smaller

than the true parameter value), whereas a positive RB indicates an overestimation of the parameter

(i.e., the estimated value is larger than the true parameter value).
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four specification categories under the MLM framework are presented at the be-

ginning of each section. These results are then followed by a comparison of the

performance of the correctly specified condition with those of the unstructured

(UN) condition with null T matrix. The corresponding SAS computer script for

the data analyses are presented in Appendix A.

The results are presented in the following sequence: 1) convergence of the

analyses when specifying different † matrices regardless of the true † matrices,

2) the impact of different design factors on the relative bias (RB) of the target

parameters (i.e., “0, “1, SE“0, SE“1, £00, £01, & £11), and 3) the impact of

different design factors on the type I error rate and the statistical power for

testing the average growth parameters (i.e., “0 and “1). Of particular interest are

the effects of the specification of the † matrix under both MLM and general

mixed model frameworks.

The impact of the specification category and other design factors on the rela-

tive bias of a specific parameter was examined under the UANOVA framework11

with ˜2 (i.e., ˜2 D SSEffect

SSTotal
) as the effect size indicator. The reason for using ˜2

instead of the significance test (or p-value) was due to the very large number

of records (i.e., 48,000 datasets � 5 different types of † matrix for analyses D
240,000 records), which substantially reduced the size of the sum of squared

errors (SSE) and resulted in detecting a large number of effects (at p < :05)

with tiny effect sizes. Hence, ˜2 � :005 was adopted as the effect size indicator

for filtering out the effects that are trivial in magnitude and evaluating the impact

of the six design factors on the RB of different parameters.

Convergence. There were 48,000 datasets generated and each dataset was

analyzed using one of the five different † matrices including ID, TOEP(2),

AR(1), ARMA(1,1), and UN. All analyses converged when † was specified as

either ID or AR(1), and 99.7% of the analyses converged when † was specified

as TOEP(2). The convergence percentage decreased to 95.6% (i.e., 2109 out of

48,000 replications did not converge) when † was specified as ARMA(1,1).

All analyses also converged when † was specified as UN. Only the converged

results were adopted for further analyses.

11The structure of this dataset was a mixed structure with † specification as within-subject

factor, and all other four design factors as between-subject factors. Analyzing the current dataset

using a UANOVA model treating all five design factors as between-subject factors has the advantage

of reducing the estimation difficulty, considering the impact of all five design factors on the target

parameters simultaneously, providing a clear picture of the findings by reducing the number of

trivial effects, and increasing the interpretability of the results because they are in a single metric.

The major shortcoming is that the significance tests of the within-subject effects and the mixed

interaction effects are too conservative. However, statistical significance is not the primary concern

given the large sample size.
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Relative bias of ˇ0 and ˇ1. Under the MLM framework, no ˜2 of the five

design factors and their interaction effects in the UANOVA model was larger

than .005 when the relative bias (RB) of “0 and “1 were the dependent variables.

The mean RB and simple bias12 (SB) of both “0 and “1 were close to zero (i.e.,

SB“0D0 D :000, RB“0>0 D :004, SB“1D0 D :000, and RB“1>0 D :000). Similar

results (i.e., no ˜2 equal or larger than .005) were found when comparing UN

with correct specification condition. The mean relative bias (RB) and simple

bias (SB) of both “0 and “1 were close to zero under the UN specification (i.e.,

SB“0D0 D :000, RB“0>0 D :004, SB“1D0 D �:001, and RB“1>0 D �:004).

Relative bias of SEˇ0 and SEˇ1. For SE“0, the specification category un-

der the MLM framework had an impact on the estimation of SE“0 (˜2
†Specification

D :005). As shown in Table 2, a larger overestimation of SE“0 occurred when the

† matrix was either under-specified or generally misspecified, whereas there was

no significant difference on the relative bias of SE“0 between over-specification

and correct-specification of the † matrix. A similar pattern of results was also

found for SE“1 under the MLM framework .˜2
†Specification

D :006). That is,

under-specification and general-misspecification led to larger estimated standard

errors of “1.

When comparing UN specification with correct specification under the mixed

model framework, a three way interaction between number of cases, number of

waves, and specification categories was found for SE“0 .˜2
Ncases�Nwaves�†Specification

D :007; see Table 3). SE“0 was generally underestimated (i.e., the estimate is

smaller than the true parameter value) when † matrix was specified as UN. The

range of the relative bias of SE“0 was between �.006 and �.119 when † was

specified as UN.

A similar three-way interaction effect for SE“1 (˜2
Ncases�Nwaves�†Specification D

:006; see Table 3) was also found. In general, SE“1 was also underestimated

(i.e., smaller than the true parameter value) from .6% to 11.6% when † matrix

was specified as UN.

Relative bias of �01, �00, and �11. The relative bias of £01, £00, and £11

were only examined under the MLM framework because no element of the T

matrix was estimated under the general mixed model framework (i.e., with null

T matrix). No ˜2 of the five design factors and the interaction terms in the

UANOVA model was larger than .005 under the MLM framework when the RB

of £01 was the dependent variable. The mean relative bias of £01 was close to

zero (RB£01 D .002). On the other hand, a substantial interaction effect between

the magnitude of T matrix and the specification of † matrix was found for the

12Instead of relative bias, simple bias (i.e., SB D E.O™/ � ™) was used as the dependent variable

when the true value of both “0 and “1 was equal to .00.
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TABLE 2

Impact of Different † Specifications on Relative Bias (RB) and Test of Significance

for the Linear Growth Model under MLM framework

Parameter

Effects with �2

(in Parenthesis) Equal

or Larger Than .005

Under-

Specification

General-

Misspecification

Over-

Specification

Correct-

Specification

RB of SE“0 Specification (.005) .007 .013 �.003 �.003

RB of SE“1 Specification (.006) .014 .005 �.004 �.004

RB of £00 Teffect�Specification

(.033)

Small T

4.020 2.183 .393 .719

Medium T

2.006 .956 .071 .254a

RB of £11 a) Nwaves�Specification

(.047)

Small T

1.114 .498 .070 .138

Medium T

.303 .111 .011 .027

b) Teffect�Specification

(.015)

Small T

.949 .426 .079 .120

Medium T

.469 .182 .002 .045

Statistical power

for detecting

“0

Specification .˜2 D
:490, p < :001/

.280 .295 .382 .322b

aThis is the mean relative bias value for correct-specification with medium T (averaging across

different sample size conditions). Under the correct specification condition with N D 210, 8 waves

and medium T matrix, the Relative Bias of £00 and £11 were .002 and .004, respectively.
bWe set the intercept .“0/ to .10 and the effect of the linear growth parameter .“1/ to .05

(small effect) and .16 (medium effect). This value (.322) is the average statistical power across all

conditions under the correct specification. For condition with N D 210, 8 waves and medium T

matrix, the empirical power for detecting “1 regardless the magnitude of “1 is 1.000 for all four †

specifications.

RB of £00 (˜2
magnitude of T matrix�† Specification

D :033; see Table 2). Under-specified

and general-misspecified † matrices resulted in relatively larger overestimation

of £00, and this overestimation became greater when the data contained a small

T matrix, whereas over-specified † matrices always resulted in the smallest £00

compared with other specification conditions regardless the magnitude of the

T matrix.

Similarly, an interaction effect between the magnitude of T matrix and the †

specification was also found for the RB of £11 (˜2
magnitude of T matrix�† Specification

D
:015; see Table 2). Compared with other specification categories, the overesti-

mation of £11 was the largest when the † matrix was under-specified, and this

overestimation increased under the small T matrix condition. A similar pattern

of results was also found between number of waves and specification cate-

gories (˜2
Nwaves�†Specification D :047; see Table 2). Under-specified and general-

misspecified † matrices resulted in relatively larger overestimation of £11, and

this overestimation became greater when the data contained a small number
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TABLE 3

Impact of Unstructured † Specifications on Relative Bias (RB) and Test of Significance

for the Linear Growth Model under the Mixed (Null T) Model Framework

Parameter

Effects with �2

(in Parenthesis) Equal

or Larger Than .005

Null-T with UN

† Matrix

Correct-

Specification

RB of SE“0 Ncases�Nwaves�Specification N D 30, 4 waves N D 30, 4 waves

(.007) �.043 �.006a

N D 30, 8 waves N D 30, 8 waves

�.119 �.005

N D 210, 4 waves N D 210, 4 waves

�.006 �.001

N D 210, 8 waves N D 210, 8 waves

�.015 �.000

RB of SE“1 Ncases�Nwaves�Specification N D 30, 4 waves N D 30, 4 waves

(.006) �.045 �.008

N D 30, 8 waves N D 30, 8 waves

�.116 �.006

N D 210, 4 waves N D 210, 4 waves

�.006 �.001

N D 210, 8 waves N D 210, 8 waves

�.016 �.001

Type I error rate

for detecting “0

Specification .˜2 D :423,

p < :05/

.075 .051b

Type I error rate

for detecting “1

Specification .˜2 D :357,

p < :05/

.074 .049

aThis is the average relative bias of SE“0 under correct-specification with 30 observations and

4 waves per observation.
bThis is the average empirical Type I error rate for detecting “0 under correct-specification.

of waves. On the other hand, over-specified † matrices always resulted in the

smallest £11 compared with other specification conditions regardless the magni-

tude of the T matrix and the number of waves.

Type I error rate of detecting ˇ0 and ˇ1. The type I error rate was

examined for those conditions in which the true parameter value of both “0 and

“1 was equal to zero. The full design under MLM framework included a total of

32 different conditions (2 number of cases � 2 number of waves � 2 magnitude

of T matrices � 4 † specification categories) under which the empirical type I

error rates could be evaluated.13 The impact of the † matrix misspecification

on the type I error inflation for detecting both “0 and “1 was evaluated using

13The empirical type I error rate was the proportion of the significant effects within each

condition.
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UANOVA,14 controlling for the other three design factors including number of

cases, number of waves, and magnitude of the T matrix. The results showed

that none of these factors had an appreciable impact on the type I error rate

of testing either “0 or “1. The range of the mean type I error rate for testing

“0 over the four † specifications was between .048 and .051. The range of the

mean type I error rate for testing “1 over the same four † specifications was

between .049 and .052.

The type I error rates between UN and correct specification were also com-

pared using UANOVA, controlling for the other design factors. Significant dif-

ferences between UN and correct specification on the type I error rates of both

“0 and “1 were found (p < :05). For “0, the mean type I error rate under

the UN specification (mean ’ D :075) was significantly larger than the correct

specification condition (mean ’ D :051). A similar result was also found for “1.

That is, the mean type I error rate of the UN specification (mean ’ D :074) was

significantly larger than the type I error rate when † was correctly specified

(mean ’ D :049).

Statistical power of detecting ˇ0 and ˇ1. Statistical power was only ex-

amined for those conditions in which the true parameter value of both “0 and

“1 were each larger than zero.15 The statistical power was represented by the

proportion of the significant effects within each condition. The impact of dif-

ferent † specifications and other design factors on the statistical power for

detecting “0 and “1 under the MLM framework16 was examined by using a

UANOVA model.17 For the statistical power of testing “0, different † specifi-

cations (p < :001) had appreciable impact over and above other design factors.

On average, the over-specified † matrix (power D .38) resulted in higher sta-

tistical power for testing “0 than the correctly specified † matrix (power D
.32), whereas both under-specified † (power D .28) and general-misspecified

† (power D .29) resulted in lower statistical power.

On the other hand, † specification categories had no significant impact on

the statistical power for testing “1 after adjusting for the effects of other design

factors. The range of the mean statistical power of different † specifications

14Because of the small sample size (N D 32 conditions), only the main effects of the design

factors were included in the model.
15The magnitude of “0 was set to be constant (.10) for all conditions regardless the magnitude

of “1.
16We only examined the impact of the design factors on the statistical power of detecting “0

and of “1 under the MLM framework because there was no obvious type I error inflation under the

MLM framework but substantial inflation under the mixed model framework (i.e., the UN-Null T

condition).
17Only main effects of the design factors were included in the UANOVA model.
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was between .546 and .556 with mean statistical power equal to .551. Because

of the substantial inflated type I error rate, the empirical power for detecting “0

and “1 in the UN specification was not examined.

STUDY 2

In Study 1, we considered a linear growth model with homogeneous within-

residual variances over time. In Study 2, we conducted additional simulations

considering quadratic growth (Study 2A) and unequal within-residual variances

over time (i.e., † D UN(1) structure; Study 2B). The details of these two

additional simulation conditions are presented below.

Method for Study 2A: Quadratic Growth Model

Two of the five simulation conditions, including sample size (i.e., 30 vs. 210)

and the † matrices (i.e., same 4 structures for generating data: ID, TOEP(2),

AR(1) and ARMA(1,1) with same parameter values), were exactly the same as

in Study 1. Because of the additional quadratic term (associated with a random

effect) in the new model, there were more fixed parameters for the average

growth trajectory (i.e., “0: the coefficient of the intercept term; “1: the coefficient

associated with the linear growth term; “2: the coefficient associated with the

quadratic term) and more variance and covariance parameters of the random

effects for the corresponding T matrix:

T D

2

4

£00 £01 £02

£10 £11 £12

£20 £21 £22

3

5

where £00 is the variance of the random effect associated with the intercept

term, £11 is the variance of the random effect associated with the linear growth

term and £22 is the variance of the random effect associated with the quadratic

growth term. £01 (equal to £10) is the covariance between the intercept and the

linear growth terms; £02 (equal to £20) is the covariance between the linear and

the quadratic growth terms; £03 (equal to £30) is the covariance between the

intercept and quadratic growth terms. Following Study 1, we set the intercept

coefficient (“0) equal to .10. For both linear (“1) and quadratic (“2) coefficients,

we used .05 for small effect and .16 for medium effect. Similarly, the elements

in T matrix were set to be:

TMedium D

2

4

:200 :050 :050

:050 :100 :035

:050 :035 :100

3

5 and TSmall D

2

4

:100 :025 :025

:025 :050 :018

:025 :018 :050

3

5
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where all the correlations (i.e., ” D £xyp
£xx£yy

; x ¤ y) were equal to .35. Because

of the increased number of parameters in the quadratic model,18 we only con-

sidered the 8-wave condition in which we could obtain more stable estimates.

The same evaluation criteria was used as in Study 1, including convergence,

relative bias of the parameter estimates, type I error rate and statistical power,

were also examined.

Results for Study 2A: Quadratic Growth Model

Convergence. Similar to the findings from Study 1, all analyses converged

when † was specified as ID, TOEP(2), AR(1) or UN. The convergence rate

dropped slightly (96.4%) when † was specified as ARMA(1,1).

Relative bias. Following the analysis procedures presented in Study 1,

we also found a very similar pattern of results from the simulations based on

the quadratic growth model. There was no ˜2 of the five design factors and

their interaction effects larger than .005 when examining the relative bias of

the fixed parameter estimates (i.e., “0, “1, and “2) under either the MLM or

mixed model frameworks. On the other hand, under the MLM framework, †

specifications had substantial impact on the estimation of the standard errors

of the fixed parameters (i.e., SE“0, SE“1, and SE“2; see Table 4). On average,

under-specified and general-misspecified † resulted in overestimated (or larger)

standard errors (except for SE“0 at the underspecified † condition), whereas

over-specified † always resulted in similar estimates to those of the correctly-

specified †. Under the mixed model framework with the UN † specification, the

standard errors of the fixed effects were generally underestimated (i.e., smaller

than the true parameter value; see Table 5), and the underestimation became

larger when the size of the sample was small (N D 30).

For the relative bias of the random effect variances (i.e., £00, £11, and £22),

a similar pattern of results as presented in Study 1 was also found in Study 2

(˜2
†Specification�T Matrix

> :005). That is, compared with the over-specified and

correct-specified † conditions, under-specified and general-misspecified † re-

sulted in substantially overestimated variances, especially in the condition with

a small T matrix. Additionally, † specifications had significant impact on the

relative bias of the covariance between the intercept and the quadratic growth

(i.e., £02). This covariance was substantially underestimated in both under-

specified and general-misspecified † conditions, and this underestimation be-

came larger under the small T condition.

18In the ARMA(1,1) condition, there are 9 parameters associated with the random effects (i.e.,

£00 , £11 , £22 , £01, £02, £12 , ¢2, ¡, and ”), whereas there are only 10 moments (or pieces of

information) under the 4-wave condition.
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TABLE 4

Impact of Different † Specifications on Relative Bias (RB) and Test of Significance

for the Quadratic Growth Model under MLM Framework

Parameter

Effects with �2

(in Parenthesis) Equal

or Larger Than .005

Under-

Specification

General-

Misspecification

Over-

Specification

Correct-

Specification

RB of SE“0 Specification (.008) .001 .020 �.001 .003a

RB of SE“1 Specification (.010) .019 .010 �.003 �.004

RB of SE“2 Specification (.004) .013 .004 �.002 �.004

RB of £00 Teffect�Specification Small T

(.039) 5.026 2.724 .547 .942

Medium T

2.498 1.204 .170 .345

RB of £11 Teffect�Specification Small T

(.038) 1.744 .739 .135 .241

Medium T

.877 .316 .051 .103

RB of £21 Teffect�Specification Small T

(.029) �3.222 �1.549 �.240 �.431

Medium T

�1.575 �.600 �.060 �.147

RB of £22 Teffect�Specification Small T

(.018) .747 .312 .050 .072

Medium T

.366 .119 .019 .025

Type I error rate

for detecting “1

Specification .˜2 D
:676, p < :010/

.058 .058 .052 .057b

Statistical Power

for detecting “0

Specification .˜2 D
:642, p < :001/

.231 .228 .330 .266c

aThis is the mean relative bias of SE“0 under correct-specification (averaging across different

sample size conditions).
bThis is the mean empirical type I error rate for detecting “1 under correct-specification (aver-

aging across different sample size conditions).
cThis is the mean empirical power for detecting “0 under correct-specification (averaging across

different sample size conditions).

Type I error of detecting the three fixed effects. Under the MLM frame-

work, † specification and other design factors had no significant effect on the

type I error rate for tests of “0 (grand mean ’ D :047) or “2 (grand mean

’ D :056); whereas, the type I error rate for testing “1 (range between .052

and .058) was found to differ between the different † specifications in which

over-specified † had the smallest ’ (.052). Under the mixed model framework,

the UN † specification resulted in a substantial inflation of the type I error rates

for testing the three fixed effects (range of mean ’ between .083 and .085).

Statistical power. Similar to the findings from the linear growth model

presented in Study 1, † specification under the MLM framework had significant

impact on the statistical power for detecting “0 (˜2 D :642, p < :001) but not

the other two fixed effects (i.e., “1 and “2). Over-specified † resulted in higher
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TABLE 5

Impact of Unstructured † Specifications on Relative Bias (RB) and Test of Significance

for the Quadratic Growth Model under the Mixed (Null T) Model Framework

Parameter

Effects with �2

(in Parenthesis) Equal

or Larger Than .005

Null-T with UN

† Matrix

Correct-

Specification

RB of SE“0 Ncases�Specification (.045) N D 30 N D 30

�.098 �.001a

N D 210 N D 210

�0.13 .000

RB of SE“1 Ncases�Specification (.041) N D 30 N D 30

�.099 �.007

N D 210 N D 210

�0.13 �.001

RB of SE“2 Ncases�Specification (.040) N D 30 N D 30

�.099 �.006

N D 210 N D 210

�0.13 �.001

Type I error rate for

detecting “0

Specification .˜2 D :645,

p < :10/

.083 .048b

Type I error rate for

detecting “1

Specification .˜2 D :579,

p < :10/

.085 .057

Type I error rate for

detecting “2

Specification .˜2 D :591,

p < :10/

.083 .056

aThis is the average relative bias of SE“0 under correct-specification with 30 observations.
bThis is the average empirical Type I error rate for detecting “0 under correct-specification

(averaging across different sample size conditions).

statistical power (.330) than both under-specified † (.231) and general-mis-

specified † (.228). The average statistical power for detecting “1 and “2 was

.502 and .544, respectively.

Method for Study 2B: Model with Unequal Within-Residual

Variances over Time

In this study we generated data using the linear growth model as shown in

equations (1) and (2) with unequal within-residual variances and zeros off di-

agonal for the † matrix (i.e., unstructured(1) or UN(1) structure). Then, we

analyzed the data using different † matrices as discussed before. Hence, we

could only examine the impact of under-specification (i.e., specified † matrix

as ID) and general-misspecification (specified † matrix as TOEP(2), or AR(1),

or ARMA(1,1)) but not over-specification on the estimation of the target param-

eters (i.e., “0, “1, SE“0, SE“1, £00, £01, and £11), and the tests of significance



MISSPECIFYING WITHIN SUBJECT COVARIANCE MATRIX 581

(i.e., type I error rate and statistical power) of the fixed effect parameters (i.e.,

“0 and “1). Except for the number of waves and the parameter values of the

elements in the † matrix for data generation, all other conditions (i.e., num-

ber of participants, magnitude of the growth parameters, and magnitude of the

elements in the T matrix) were exactly the same as in Study 1. To reduce the

number of parameters19 for the † matrix specification, we only considered a

4-wave condition with the true † matrix equal to:

UN.1/ D

2

6

6

4

¢2
1 0 0 0

0 ¢2
2 0 0

0 0 ¢2
3 0

0 0 0 ¢2
4

3

7

7

5

D

2

6

6

4

1:00 0 0 0

0 :800 0 0

0 0 :640 0

0 0 0 :512

3

7

7

5

where the residual variance of the first time point (¢2
1 ) was set to 1.00 and the

size of each of the following residual variances was 80% of the previous residual

variance. The same evaluation criteria as presented in Study 1 were also used

here.

Results for Study 2B: Model with Unequal Within-Residual

Variances over Time

Convergence. Similar to the findings presented in previous sections, all

analyses converged when † was specified as ID, TOEP(2), AR(1) or UN. The

convergence rate dropped to 88% when † was specified as ARMA(1,1).

Relative bias. We found a pattern of results for the condition with het-

erogeneous within-residual variances that was similar to the results presented in

previous sections. There was no ˜2 of the design factors and their interaction

effects larger than .005 when examining the relative bias of the fixed parame-

ter estimates (i.e., “0 and “1) under either MLM or mixed model framework.

On the other hand, under the MLM framework, † specifications had appre-

ciable impact (i.e., ˜2 > :005) on the estimation of the standard errors of “1

(i.e., SE“1, see Table 6). Under-specified or general-misspecified † resulted in

larger standard errors than the correctly specified † condition. Under the mixed

model framework with UN † specification, the standard errors of the fixed ef-

fects were generally underestimated (i.e., relative bias of: SE“0 D �:025 and

SE“1 D �:025).

19The number of parameters in the † matrix with an UN(1) structure varies as the number of

waves (or repeated measures) varies. For example, the number of parameters in the † matrix with

an UN(1) structure is 4 for a balanced 4-wave study, whereas the number of parameters for the

same † structure will become 8 for a balanced 8-wave study.
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TABLE 6

Impact of Different † Specifications on Relative Bias (RB) and Test of Significance

for the Linear Growth Model under MLM framework

Parameter

Effects with �2

(in Parenthesis) Equal

or Larger Than .005

Under-

Specification

General-

Misspecification

Correct-

Specification

RB of SE“1 Specification (.007) .011 .005 �:013a

RB of £01 Teffect�Specification £ �1.632 �1.625 �.026

(.018) T �.827 �.820 �.025

RB of £11 Specification (.003) .089 .141 .044

aThis is the average relative bias of SE“0 under correct-specification (averaging across different

sample size conditions).

For the relative bias of the random effect variances and covariance (i.e., £00,

£01, and £11), we found that the † specification had substantial impact on the es-

timation of both £01 (˜2
†Specification�T Matrix

D :018) and £11 (˜2
†Specification

D :003)

but not £00 (see Table 6). That is, compared with correctly specified †, under-

specified and general-misspecified † resulted in substantial overestimation in

£11 and underestimation in £01, and the underestimation of £01 became larger

under small T matrix condition.

Type I error of detecting the two fixed effects. Under the MLM frame-

work, † specification and other design factors had no significant effect on the

type I error rate for testing “0 (grand mean ’ D :050) and “1 (grand mean

’ D :065). Similarly, † specification and other design factors had no significant

effect on the type I error rate for testing “0 (grand mean ’ D :055) and “1

(grand mean ’ D :062) under the mixed model framework.

Statistical power. † specification and other design factors had no signif-

icant effect on the statistical power of detecting “0 and “1 under either MLM

framework (grand mean power for detecting: “0 D :433 and “1 D :477) or mixed

model framework (grand mean power for detecting: “0 D :440 and “1 D :485).

DISCUSSION

The main purpose of this study was to examine the impact of misspecifying

the within-subject covariance matrix (i.e., † matrix) on the estimation of the

target parameters including fixed effects, their corresponding standard errors,

the variances and covariances of the random effects, and the type I error rate

and statistical power of testing the fixed effects. All models examined in the
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present study were population mean centered in time to minimize random error

in the estimates of “0. The simulation results implied a general pattern of the

effects of misspecifying the † matrix on the estimation of the random effect

variances and the standard errors of the growth parameters. Under-specification

and general misspecification of the † matrices were more likely to result in

overestimation in both random effect variances and the standard errors20 of

the growth parameters, which in turn, resulted in lower statistical power rel-

ative to correct-specification. On the other hand, compared with the correct-

specification condition, over-specification of the † matrix was more likely to

result in smaller estimates of the random effect variances, which in turn, re-

sulted in similar or slightly smaller standard errors of the growth parameters.

These results led to a possible gain in statistical power relative to other specifi-

cation categories. The UN specification generally resulted in underestimation of

the standard errors of the growth parameters, leading to a greater likelihood of

type I error inflation when testing the growth parameters. Figure 2 summarizes

these findings.

Bias in Estimation of the Random Effect Variances

The structure of the multilevel model provides a possible explanation of the bias

in estimation of the random effect variances (e.g., £00 and £11). As shown in

Equation (2), repeated below, the general form of a two-level linear model can

be written as following:

y D X“ C Zu C e

Based on Equation (2), the expected value of y is:

E.y/ D X“ (12)

The variance of y is:

V.y/ D ZGZT C R (13)

20The specification of † also had significant impact on the covariance between the intercept

and the quadratic growth terms (Study 2A) and the covariance between intercept and the linear

growth terms (Study 2B). The under-specified and general-misspecified † generally resulted in

substantially underestimed covariances which could potentially cancel out the impact of these two

† specifications on the (over)estimation of the variances of the random effects and standard errors

(SE) of the corresponding growth parameters (e.g., ˜2 of † specifications on SE of the quadratic

growth term was .004 in Study 2A and ˜2 of † specifications on SE of the intercept term was .001

in Study 2B)



FIGURE 2 Summary of the impact of misspecifying the † matrix.
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E.y/ and V.y/ are independent of each other given standard assumptions. In

Equation (12), “ contains the growth parameters, which are generally unbiased

regardless of the effect of misspecifying the † matrix.21 On the other hand,

Equation (13) shows that the total variance of a two-level model (i.e., V.y/) is

constructed from two separate sources of variance: variance from the between-

subject random effects (i.e., the ZGZT part shown in Equation 13), and variance

from the within-subject random errors (i.e., the R matrix shown in Equation 13).

After controlling for the fixed effect part (i.e., X“), the total variance becomes a

fixed quantity for a given dataset regardless of the structure of the sources of the

variance. This result implies that the between-subject variance and the within-

subject variance have a compensatory relationship.22 For example, when one of

these two sources of variance is smaller than the true value, the other source

will be overestimated to compensate. This compensatory relationship tends to

keep the total variance constant.

As shown in Equation (3), the core element of the G matrix is the T matrix,

which contains the variances (i.e., £00 and £11) and covariance (i.e., £01) of the

random effects in the linear growth model. On the other hand, the core element

of R matrix is the † matrix, which contains the variance of the residuals at each

time point and the covariance of the residuals between each pair of time points.

Generally, no specific structure is imposed on the T matrix when analyzing

longitudinal data using the MLM approach. In contrast, the default structure of

the common statistical packages is that the † matrix is assumed to be identity

(ID) under the MLM framework. However, ID is a very restrictive assumption

for longitudinal data, because it assumes no relation between the residuals of any

pair of time points once the random effects have been modeled. The presumption

of the † matrix as ID is unlikely to capture the true relation between the residuals

of different time points (Goldstein, Healy, & Rasbash, 1994). This result means

that the † matrix will typically be underspecified in longitudinal analyses. To

compensate for the reduction in the contribution of the within-subject variance

(i.e., the under-specified † matrix), the elements in the T matrix will tend to

become larger to capture this missing variance as part of the between-subject

variance. This result, in turn, can lead to the overestimation of the random effect

variance terms (e.g., £00 and £11). On the other hand, over-specification results

in similar or slightly smaller estimates of the random effect variances relative

to the correct-specification.

21Similar results (i.e., unbiased fixed effect estimates) were also found in other studies on the

misspecification of the variance structure (i.e., V.y/) including: under-specifying the † matrix

(Ferron et al., 2002), ignoring a nested level (Moerbeek, 2004) or a crossed level (Meyers &

Beretvas, 2006) in multilevel models.
22This compensatory relationship has also been shown in other MLM related simulation studies

(Moerbeek, 2004; Meyers & Beretvas, 2006).
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Bias in Estimation of the Standard Errors of the

Growth Parameters

Following the simple linear growth model presented in Equations (1) and (2),

the variances and covariance of the growth parameters are equal to:23

V.“/ D .XT V �1X/� (14)

where

“ D
�

“0

“1

�

(15)

and

V D ZGZT C R (16)

and X is the design matrix containing the intercept and the time predictor. The

main diagonal elements of the square root of V.“/ are the standard errors of the

two growth parameters. Hence, the standard errors of the growth parameters are

a direct function of the T (i.e., core elements of G) and † (i.e., core elements

of R) matrices. Recall that under-specification and general-misspecification of

the † matrix generally led to overestimates of the elements of the T matrix

(especially £00 and £11), which in turn, likely led to overestimation of the stan-

dard errors of the growth parameters. On the other hand, the estimated standard

errors of the growth parameters given over-specification were not appreciably

different from the standard error estimates under correct-specification. This find-

ing may be due to the slightly underestimated variances and covariance of the

random effects in the over-specification relative to the correct-specification con-

ditions. UN, can be viewed as the extreme case of the over-specification of

the † matrix with all random effect variances in G matrix specified as zeros.

UN resulted in substantial underestimation of the standard errors of the growth

parameters.

Type I Error Rate and Statistical Power for Detecting
the Growth Parameters

The Wald Z-value of a growth parameter is equal to:

Z D “

SE“

(17)

23.XTV�1X/� is a generalized inverse. Suppose A� is a generalized inverse, then AA�A D A.
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This Z-value is directly related to the type I error rate and statistical power. As

shown in equation (17), when the standard error of a growth parameter decreases,

the corresponding Z-value will increase. Given a specified alpha level, the over-

estimated standard errors of the growth parameters in the under-specification

and general-misspecification conditions are more likely to result in lower sta-

tistical power relative to the correct-specification condition. On the other hand,

over-specifying the † matrix to a structure within which the true † matrix is

nested may result in higher statistical power relative to the correct-specification

without increasing the type I error rate beyond the nominal level. As indicated

previously, the variances of the random effects were generally overestimated for

all conditions in which a T matrix was estimated. Compared with other con-

ditions, over-specification of the † matrix resulted in better estimates of the

random effect variances, which in turn, reduced the standard errors toward the

theoretically correct values. In contrast, leaving the † matrix as unstructured

and the T matrix as a null matrix will result in underestimation of the standard

errors, which in turn, likely leads to the type I error inflation when testing the

growth parameters.

The simulation results showed that the four specification categories of the

MLM framework only had an impact on the statistical power of testing “0 but not

other growth parameters (e.g., “1 in linear growth model). A possible explanation

of this result is the magnitude of the random effect variances specified in the

simulation. In longitudinal data, the variation between intercepts is typically

larger than the variation between slopes, so we set £00 (i.e., variance of the

intercept term) to be twice of the variance of other random effect (e.g., £11,

variance of the linear growth term) for the simulation. In this simulation, the

overall estimation bias was generally larger in £00 than in £11. The same pattern

was also found for SE“0 and SE“1. The estimation bias of SE“0 was generally

larger than the estimation bias of SE“1, which in turn, had direct impact on the

statistical power of detecting the growth parameters.

Recommendation

Misspecification of the † matrix has a substantial impact on the estimation

of the random effect variances, which in turn, affects the estimation of the

standard errors and the test of significance of the growth parameters. Leav-

ing the † matrix as unstructured is very likely to underestimate the standard

errors of the growth parameters and produce type I error inflation when test-

ing the growth parameters. Moreover, using an unstructured † matrix results

in the loss of information concerning the magnitude of the variation of the

random intercepts and slopes, which can be used for calculating the pseudo

R2 (Singer & Willett, 2003). We recommend that researchers who believe that

there may be random effects associated with growth parameters should attempt
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to find an optimal within-subject covariance matrix when analyzing longitudinal

data.24

Ideally, researchers should be able to draw on substantive or statistical theory

in specifying the within-subject covariance structure. Occasionally, substantive

theory will specify that the variance is expected to change over time as in the

Hedeker and Mermelstein (in press) study cited earlier. However, psychological

theory almost never provides a clear basis for expecting a specified structure

of within subject error covariances over time. Generalizing from the time se-

ries literature (e.g., Velicer & Fava, 2003; West & Hepworth, 1991), the error

structure appears to be a function of the lag between adjacent measurements,

whether there are periods in which measurements are not collected (e.g., peri-

ods of sleep), and the nature of the phenomenon under investigation. Particular

problems arise in the study of phenomena in which there are within day (e.g.,

activity level), weekly (e.g., alcohol consumption), or monthly cycles (e.g., con-

sumer behavior) in the data. Such cycles should ideally be included as part of the

level 1 model of the data (see Armeli et al., 2000). Given that cycles have been

properly modeled, researchers should consider carefully the nature of the phe-

nomenon under study and the lag between adjacent measurements and choose a

within subject error structure that appears to match their investigation. If they are

uncertain, we encourage researchers to err in the direction of adopting a slightly

over-specified † matrix25 (e.g., TOEP(2) or AR(1) which are commonly used

in longitudinal data analysis under SEM framework; Bollen & Curran 2006) if

they have a balanced design.

Some Limitations of the Present Studies

As with any simulation study, one of the major potential limitations of this study

is the generalizability of the findings. Further examination of the applicability

of the current findings to the misspecification of the † matrix across a broader

range of models (e.g., three or higher-level model with multiple predictors from

different levels, and unbalanced data) and conditions is needed. A preliminary

examination of the impact of different † specifications on a linear growth model

with unbalanced data showed a pattern of results that was similar to the balanced

condition under the mixed model framework (i.e., UN † specification with

24Several studies have examined the accuracy of the traditional search indices such as AIC and

BIC in searching for the optimal covariance structure. The results have shown that these traditional

indices provided only marginally to moderately acceptable accuracy (Ferron, et al., 2002; Keselman

et al., 1998; Wolfinger, 1993). The development of more accurate search indices is needed.
25AR(1) is one of the commonly used covariance structures when analyzing longitudinal data

(J. Hilbe & J. Hardin, personal communication, August 18, 2006), which has also been applied

for the latent growth models under the SEM framework (Bollen & Curran, 2004; 2006; Curran &

Bollen, 2001).
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null T matrix). Under the MLM framework, the pattern of results was also

similar between the balanced and unbalanced conditions with one exception:

the standard errors of the growth parameters were less affected with unbalanced

data. To date, little simulation work has addressed the effects of non-normality

of the within-subject error structure on the performance of multilevel models

and further study on this issue is needed.

The impact of the bias estimation of the random effect variances on the cal-

culation of the explained variance (or pseudo R2) has not yet been examined.

There are two issues related to the biased estimation of the random effect vari-

ances: 1) the rationale for adding the level-2 predictors; 2) the calculation of

explained variance. Typically, researchers add level-2 predictor when appreciable

random effect variance exists in the data (Snijders & Bosker, 1999). The bias in

estimation of the random effect variances, especially in the under-specification

conditions, implies that the occurrence of the random effect variance may be

due to the misspecification of the † matrix rather than the true existence of

the variation between intercepts and between slopes within the data. Indeed, the

impact of the added level-2 predictors is evaluated by the change of the random

effect variances after including the level-2 predictors in the model. Hence, the

calculation of the explained variance may not be valid because of the bias in

the estimation of the random effect variance.
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APPENDIX A

SAS script for Analyzing the Linear Growth Model in Study 1 with Different

† Specifications
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a) Linear growth model with † specified as ID structure

proc mixed dataDall;

class Subj_id;

model yDtime /solution;

random intercept time / typeDun subjectDSubj_id;

repeated / typeDID subjectDSubj_id;

b) Linear growth model with † specified as TOEP(2) structure

proc mixed dataDall;

class Subj_id;

model yDtime /solution;

random intercept time / typeDun subjectDSubj_id;

repeated / typeDTOEP(2) subjectDSubj_id;

c) Linear growth model with † specified as AR(1) structure

proc mixed dataDall;

class Subj_id;

model yDtime /solution;

random intercept time / typeDun subjectDSubj_id;

repeated / typeDAR(1) subjectDSubj_id;

d) Linear growth model with † specified as ARMA(1,1) structure

proc mixed dataDall;

class Subj_id;

model yDtime /solution;

random intercept time / typeDun subjectDSubj_id;

repeated / typeDARMA(1,1) subjectDSubj_id;

e) Linear growth model with † specified as UN structure (and null T matrix)

proc mixed dataDall;

class Subj_id;

model yDtime /solution;

repeated / typeDUN subjectDSubj_id;

�Note. class: specifies categorical variable; Subj_id: Subject ID (i.e., level-2

cluster ID); model: specify the average growth (or fixed-effect) model; solution:

request for growth parameter estimates (i.e., “0 & “1) and their corresponding

standard errors (i.e., SE“0 & SE“1); random: specify the random effects (or

request for estimating the T matrix); typeDUN (next to the “random” command):

specify the structure of the T matrix as unstructured (UN) structure; subject:

specify the level-2 cluster ID; repeated: request for estimating the † matrix;

typeDID (next to the “repeated” command): specify the structure of the †

matrix as ID structure.


