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ARTICLE INFO ABSTRACT
Keywords: Aquaculture involves cultivating various marine and freshwater aquatic creatures within regulated environ-
Smart fish farming ments. Monitoring the aquatic environmental conditions in real-time is crucial for successful fish farming.

IoT-based ponds’ water monitoring
Machine learning-based fish farming
Fish survival prediction

The Internet of Things (IoT) offers significant potential for real-time monitoring, and this paper introduces
an IoT framework designed for efficient monitoring and effective control of various water-related aquatic
environmental parameters. The proposed system is implemented as an embedded system utilizing sensors
and an Arduino microcontroller. In cultivating pond water, diverse sensors such as pH, temperature, and
turbidity sensors are deployed, with each sensor connected to an Arduino Uno-based microcontroller board.
These sensors collect data from the water, which is then stored as a CSV file in an IoT cloud platform called
ThingSpeak through the Arduino microcontroller. To gather data for analysis, we conducted measurements
across five ponds, varying in size and environmental conditions. After getting the real-time data, we compared
our experimental results with the standard reference values. As a result, we could take the decision of whether
a pond is suitable for cultivating fish or not. After that, we labeled the data with 11 fish categories: Katla,
sing, prawn, shrimp, rui, tilapia, pangas, karpio, magur, silver carp, and koi. The data was analyzed using 10
machine learning (ML) algorithms, including J48, Random Forest, K Nearest Neighbors (K-NN), K*, Logistic
Model Tree (LMT), Reduced Error Pruning Tree (REPTree), Jumping Rule Inference with Pruned Search
(JRIP), Partial Decision Trees (PART), Decision Table, and Logit boost. After experimental analyses, it was
discovered that only three of the five ponds were ideal for fish farming, and those three ponds only met
the required standards for pH, Temperature, Turbidity, and Conductivity. Among the state-of-art machine
learning algorithms, Random Forest achieved the highest score of performance metrics as accuracy 94.42%,
kappa statistics 93.5%, and Avg. TP Rate 94.4%. In addition, we calculated the Biochemical Oxygen Demand
(BOD), Chemical Oxygen Demand (COD), and Dissolved Oxygen (DO) for one scenario. This study includes
prototype hardware details of the proposed IoT system.

1. Introduction contains cultivating, nourishing, and harvesting fresh and saltwater
fish, mollusks, crustaceans, and seedlings. The practice began in China

Aquaculture means agriculture primarily for the food of aquatic approximately 4000 years ago, and international production remains
animals or plants or pearls. When it is for only fish farming, then it undermined by China and other Asian states. Aquaculture is used by
is called aqua fisheries. There are many types of aqua fisheries, such as some of the global poor populations and by major corporations to
extensive fish farming, intensive fish farming, ditch fish farming, cage harvest food. Aquaculture now provides more than half of all human
system, etc. Extensive fish farming occurs in a pond where intensive consumption of seafood, a proportion that continues to increase in
fish farming is farming in closed circulation water. In a ditch system, terms of the global population. Aquaculture produced 3 million tons
water retaining is the main requirement of this system, and it is also a of food in the seventies, steadily increasing to more than 80 million
crucial point to keep electrolytes for fish corrected. And cage is a system tons in 2017, per the Food and Agriculture Organization (FAO) [1].
where it confines the fish in a mesh enclosure. Overall, aquaculture We depend on fish for the various vitamins source. Some of them are
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protein, vitamin D and omega-3 fatty acids, which are helpful to fit
the body and brain as well as reducing the risk of heart disease and
supporting pregnant women'’s health.

Fish depends on water quality factors. So, maintaining the quality
of water plays a vital role in fish farming. There are some metrics of
water named PH, temperature, turbidity, BOD, COD, and DO. PH is an
important factor in water. It is a scale of 0-14. DO is another important
parameter for fish farming. We have to check the level of it for fish
survival. The standard recommended value is 5 mg/1 for optimum fish
health. Most DOs in ponds are generated by aquatic plants and algae
during photosynthesis. This is why DO increases before dawn, decreases
at night, and is lowest shortly before dawn. DO levels below 5 mg/L
can be hazardous to fish, whereas surface gulping air can be seen if DO
falls below 2 mg/L. An electronic oxygen meter or a chemical test kit
may be used to measure DO. When DO falls below 4 mg/L or ambient
circumstances promote an oxygen depletion event, emergency aeration
should be provided [2]. Another critical parameter is BOD for fish
farming [3]. It is the quantity of oxygen necessary for the biological
breakdown of organic matter in bodies of water. Generally, the BOD
is a pollution measure used to determine the quality of effluent or
wastewater.

If the cultivation system depends on the digital system, it will bene-
fit the people more because it is cost-effective and costs approximately
BDT 15000. IoT can contribute to this field by monitoring quality
factors digitally. We used an IoT framework to monitor these quality
factors in this paper. Every device is connected to the Internet [4].

We derived the real-time values of water quality by using our
IoT framework. After that, we used machine learning to validate the
dataset. We can say that machine learning is a sub-field of artifi-
cial intelligence. It can learn from data without any explicitly pro-
grammed [5]. The work experiments on water’s temperature, pH, con-
ductivity, BOD, DO, COD, and turbidity parameters.

Monitoring work holds significant importance and serves as a mo-
tivating factor for conducting this work. The health and survival of
fish species in ponds rely heavily on the quality of their aquatic
environmental factor, including temperature, pH levels, dissolved oxy-
gen, and pollutant concentrations. By deploying IoT sensors, we can
continuously and accurately measure these water quality parameters in
real-time, enabling timely interventions to maintain optimal conditions
for fish survival. Integrating machine learning algorithms with the
collected sensor data allows us to analyze complex relationships and
patterns that may impact fish species survival. By training predictive
models using historical data on water quality and corresponding fish
species survival rates, we can develop a reliable tool to forecast poten-
tial risks to fish populations. This predictive capability offers crucial
insights to pond managers, enabling them to take proactive measures
to mitigate adverse conditions and enhance the overall well-being of
the aquatic ecosystem.

The contribution of this paper is summarized as follows.

+ We created an IoT framework to collect real-time values of five
ponds of water using the PH, Temperature, and Turbidity IoT sen-
sors and calculated the conductivity values from the temperature
values.

We studied the life cycle of 11 fish species and compared the real-
time values with the traditional values and compared which pond
is suitable for fish farming.

We also predicted the fish survival using ten machine learning
algorithms after labeling the data from the cloud. Among these
models, Random forest outperforms the performance metrics.
We briefly presented a background study on hardware and ma-
chine learning processes.

The rest of the article is structured as follows. Section 2 presents a
literature review. In Section 3, the methodology is presented, divided
into subsections like the IoT framework and machine learning parts. In
Section 4, the result and discussion are analyzed, and finally, Section 5
concludes the paper.
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2. Literature review

Currently, some researchers have applied IoT devices for monitor-
ing remotely in agriculture, aquaculture, smart city, smart medical,
smart home, and so on [6,7]. Here, we discussed the works of some
researchers in water quality monitoring for fish farming. The authors
implemented an IoT system using only 2 IoT sensors named PH and
temperature for fish farming. Authors also measured ammonia and
dissolved oxygen using kits [8]. In [9], researchers presented a web-
based IoT system for guppy fish farming using only two sensors called
PH and salinity. In paper no [10], using 4 sensors named DO, PH,
temperature and salinity, the authors implemented an IoT system for
only one fish mentioned, Pangasius, in Mekong Delta. Authors proposed
an intelligent fish farming system using IoT devices to monitor the 3
water quality factors: pH, temperature, water level, and oil layer [11].
In [12], the authors implemented an IoT system using carbon monox-
ide, pH, temperature, water level and turbidity sensors for fish farming
and utilized machine learning for the secondary water quality dataset.
The researchers made an IoT framework for fish farming using pH,
temperature, turbidity, conductivity, and depth sensors to check the
water quality [13]. This paper presented an IoT framework for moni-
toring the water quality of a northern part of Padma River and drinking
tube-well water using pH, temperature, and turbidity [14]. The authors
designed an IoT-based framework using pH, temperature, and dissolved
oxygen for Indian Aquaculture [15]. Juan Huan et al. [16] presented
a narrow-band IoT framework-based water quality monitoring using
temperature, pH, and dissolved oxygen for pond aquaculture. Chien
Lee and Yu-JenWang [17] proposed an IoT-based water monitoring
system using temperature, depth, dissolved oxygen, and pH value for
aquaponics. Chiu, Min-Chie, et al. [18] presented an IoT framework
using turbidity, temperature, underwater oxygen level, and pH sensors
for fish farming. They also analyzed their real-time dataset using deep
learning techniques. The researchers [19] developed an IoT-based wa-
ter quality monitoring system using temperature, conductivity, water
level, pH, turbidity and dissolved oxygen for fish farming. They also
analyzed the fish pond data using machine learning models. In [20],
the authors implemented a water quality monitoring system using IoT
devices containing temperature, pH, turbidity, and dissolved oxygen
for aquaculture. In [21], the authors proposed an IoT-based smart fish
farming system using oil layer, water level, and temperature sensors.
In [22], the researchers implemented a handheld meter for measur-
ing the turbidity values of water. In [23], the authors presented an
IoT-based system for monitoring water quality factors like PH, total
dissolved solids, turbidity, and temperature in various locations in St.
Petersburg, Russia. In [24], the authors proposed a Machine learning
approach to look into the effectiveness of water quality (WQ) on prawn
fish only in freshwater ponds in Australia. They also collected harvest
data as well as WQ data to check the variations of WQ on the harvest
outcomes of prawns. Table 1 shows the overall comparison of all the
related works.

In this paper, we implemented an IoT framework using the pH,
temperature, turbidity, and conductivity sensors for fish farming. In
addition, we tested BOD, DO, and COD using the kits at Dhaka Univer-
sity of Engineering and Technology. We also applied machine learning
models to analyze the real-time dataset.

3. Methods

Fig. 1 exhibits the proposed methodology. First of all, we introduce
all the aquatic sensors such as pH sensor, temperature sensor, turbidity
sensor, etc. Each sensor is linked to an Arduino Uno through an
Ethernet shield using a different jumper on the breadboard. A cloud
server is linked to this system via the Rest-API.

Then, we use 10 machine learning models including J48, K-NN,
random forest, K*, LMT, PART, JRIP, decision table, logit boost, and
REP-Tree for the fish classification. There are mainly two segments
in our task. They are the hardware portion for implementing the IoT
architecture and the machine learning portion to predict the survival
of fish species.
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Table 1
Comparison of our works with existing works.
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Source Parameters Limitations

[8] PH and temperature, ammonia, DO Only four parameters. No ML techniques are used.
[91 PH and salinity Only two parameters. No ML techniques are used.
[10] DO, PH, temperature, and salinity Only four parameters and only for Pangasius fish. No ML techniques is used.
[11] pH, temperature, water level Only three parameters. No ML techniques is used.
[12] CO, pH, temperature, water level and turbidity They used secondary dataset for machine learning.
[13] pH, Temperature, turbidity, conductivity, depth No primary dataset and no ML techniques is used.
[14] pH, temperature, turbidity No primary dataset and no ML techniques is used.
[15] PH, temperature, and dissolved oxygen No primary dataset and no ML techniques is used.
[13] Temperature, pH, dissolved oxygen No primary dataset and no ML techniques is used.
[14] Temperature, depth, dissolved oxygen, and pH No primary dataset and no ML techniques is used.
[15] Turbidity, temperature, underwater oxygen level, and pH No primary dataset and no ML techniques is used.
[24] No sensors are used Secondary dataset and ML is used

Hardware devices

Defined aquatic ‘ ! é,’ Cloud server
Sensors (IoT setup) . )
—y -
‘ Evaluation of Machine learning models }ﬂ ~ »} Real-time dataset |
| | \
& | A A 4 ¥ —
| 4 | ‘ K-NN ‘ PART | ’ LMT ‘ ’ RIP | ’ K+ |
¥ L4 v
‘ REPTree ‘ Decision Logit Random
L | table boost forest

Fig. 1. A detailed block diagram of the methods.

3.1. IoT system implementation

In the IoT system, 4 sensors including a ph sensor, temperature
sensor, turbidity sensor, and ultrasonic sensor are used for collecting
real-time values of each pond water. Besides, we experimented with
the BOD, COD, and DO tests at the Dhaka University of Engineering
and Technology (DUET). The visualization of our IoT framework with
the proposed procedure is shown in 2. All hardware devices are shown
in Fig. 3.

3.1.1. Arduino Uno

In contrast to the ATmega328P, the Arduino Uno refers to a micro-
controller board that has 14 modernized data/yield pins, a sixteen mega
Hartz quartz crystal, a universal serial board link, a jack power, in-
circuit serial programming, and a reset pin. It comes with all where
the microcontroller needs to start up by connecting to a PC through
USB or an AC-to-DC adapter. It is used in this work for reading data
signals from various sensors shown in 3(a).

3.1.2. Ethernet shield

The ethernet shield is shown in Fig. 3(b) allows easily connecting
Arduino Uno to the Internet. This shield enables the Arduino to send
data to a cloud server and to receive data from sensors with an
Internet connection. The Wiznet W5100 ethernet chip is used in this
shield. This chip contains the PHY, MAC, IP, and TCP layers. Hardware
implementation on the chip is the merits of using the shield through
the ENC28J60. Transfer control protocol or internet protocol must be
executed on the microcontroller where it is connected to the ENC28J60
chip. It is used in this paper for allowing the Arduino board to interface
with the internet.

3.1.3. PH sensor
The potential of hydrogen (pH) meter is a systematic tool that
deals with the hydrogen-ion movement in aquatic-based solutions to

determine their tartness or alkalinity, which is said as pH. A pH meter is
made up of two basic components: a pointer that moves against a scale
and a digital meter that takes value from the resources and displays
it numerically via a circuit board. In our work, we have a pH sensor
which is a digital meter that we use to test the acidity of the water. We
built a circuit board and connect it to an Arduino shown in Fig. 3(c).
There is some code in Arduino that works with a pH meter. The meter
has a 14 scale from 0 to 14, and it calculates the acidic or alkalinity of
a solution. The ideal range of pH for fish farming in a pond is between
6.5 and 8.5. If the pH value is below 4 and above 11, then it is the
death point for fish due to the acidity and alkalinity. When the range
of pH is 4-5, no reproduction of fish occurs, and when it is in the range
of 4-6.5, and 8.5-10, slow growth will be for fish. So it is the major
survival element of water.

3.1.4. Temperature sensor

The single wire protocol digital temperature sensor, such as the
DS18B20 model can calculate the temperature on the scale of —55 °C
to +125 °C with +5 percent precision. The data established from the
1-wire is in the 9-bit to 12-bit range. This sensor may be controlled
by a single pin on a microcontroller since it follows the single-wire
protocol. The sensor can be programmed with a 64-bit serial code
for the progressive level protocol, allowing multiple sensors to be
controlled from a single microcontroller pin. There is 3 colored pin
named black color, red color, and yellow color. A black pin is used
to connect to the GND. The red pin is known as VCC which varies from
3.3 Vor 5 V. Yellow pin supplies the output shown in Fig. 3(d).

3.1.5. Turbidity sensor

The amount of suspended particles in a stream is measured by its
turbidity. Our water may contain soil, or our milkshake may have
chocolate chips. Despite our desire for chocolate in our beverages,
earth particles are not at all acceptable. Water is utilized in a broad
variety of industrial and residential contexts in addition to potable
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Fig. 2. Visualization of IoT framework with methodology.

(a) Arduino (b) Ethernet Shield

(d) Temperature sensor (e) Turbidity sensor (f) Ultrasonic sensor

Fig. 3. Hardware devices. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Spectrophotometer
machine

COD Values

Fig. 4. Step wise COD experiments.

purposes. For instance, water is used to clean a car’s windshield, to
cool a power plant’s reactors, and to the extent that washing machines
and dishwashers depend on it, as do fish. It is used in this work to find
out the suspended particles in water. This sensor is shown in Fig. 3(e).

3.1.6. Ultrasonic sensor

Ultrasonic sensors are excellent instruments for measuring distance
without making physical contact, and they are used in a variety of
applications such as water level measurement, distance measurement,
and so on. This is a quick and accurate way to calculate small distances.
We used this sensor to assess the distance of a hindrance from the
sensor in the thesis. The ECHO principle is the foundation of ultrasonic
distance measurement. When sound waves are transmitted in the area,
they return to their source as ECHO after colliding with an obstacle.
So, after striking the barrier, we just need to measure the travel time
of both sounds, i.e., the outgoing time and the return time to the origin.
Since we know the speed of sound, we can measure the distance with
a little math. This type of HC-SR04 is a sensor shown in Fig. 3(f) that
is primarily handled to assess the distance between the goal object and
the sensor. It uses non-contact technology, which means there is no
direct contact between the sensor and the object being measured.

3.1.7. DO, COD and BOD

In addition, we find out the biochemical oxygen demand, chemical
oxygen demand, and dissolved oxygen of water in Pond 1. Dissolved
Oxygen (DO) is oxygen that is dissolved in water. After the experiment
with the DO, we get 6.79 mg/L.

Chemical Oxygen Demand (COD) is the amount of oxygen necessary
to oxidize all soluble and insoluble organic compounds existing in a
volume of water. Its value is usually stated in milligrams per liter of
water (mg/L). For calculating the value of COD, in the vial of COD, the

sample (S) and distilled (D) are dissolved in 2 ml of the COD vial and
kept in the COD reactor at 150 degrees centigrade for 2 h. The vial is
kept in a wooden box for 5-6 h to cool. To get the COD value, we make
D to 0 in the spectrophotometer machine and take the S as a reading.
Thus we get the COD values. we get the 12 milligrams per liter of water
(mg/L) as the COD value. The step-wise COD experiment is shown in
Fig. 4.

For microbial breakdown (oxidation), Biochemical Oxygen Demand
(BOD) quantifies the quantity of oxygen required or consumed in water.
For measuring the BOD values, we take the sample according to the
COD values. Because BOD depends on COD values. In the OxiTop
bottle, we keep the sample of BOD and there is a black dropper in the
cap of the bottle. Then, two granules of sodium hydroxide are placed
in it. After then, we do the zero level of the bottle scale. After labeling
zero the OxiTop, it is kept in the reactor of BOD at the constant 20
degrees centigrade for 5 days. This is the BOD5 test. Thus, we get the
BOD values. After experimenting with the BOD, we get 7 mg/L. The
BOD experiment is shown in Fig. 5.

3.2. Cloud server

The real-time data which we got from the experimental setup is
stored in a cloud server named ThingSpeak IoT server using rest-API
ThingSpeak is an (IoT) stage that allows us to dissect and imagine the
information in MATLAB except by purchasing a permit from Math-
works. It permits us to gather and store sensor information in the
cloud and create IoT applications. It communicates sensor data to
ThingSpeak via Arduino, ESP8266 Wifi Module, Particle Photon and
Electron, BeagleBone Black, mobile and web applications, Raspberry
Pi, Twilio, Twitter, and Matlab. The ThingSpeak is generally centered
around sensor logging, area following, triggers and cautions, and exam-
ination. The authors used a cloud server protocol to store the real-time
values [25].
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Fig. 5. Step wise BOD experiment.
Table 2 Table 4
Real-time data stored in the cloud. Sample water quality dataset for fish survival.
Parameters name Data types ph Temperature Depth-feet Turbidity-ntu Fish
Field 1 data: Turbidity JSON XML CSV 6 27 6.5 7 katla
Field 1 data: Temperature JSON XML CSV 7.5 29 3.5 6 prawn
Field 1 data: PH JSON XML CSV 6.1 31 5 4.9 rui
Field 1 data: Depth JSON XML CSV 7.1 23 4.3 5.5 koi
7.5 32 7 7.3 katla
7.7 22 5.1 6 rui
Table 3 7.9 29 4.9 5.5 rui
Ideal range of pond water quality parameter. 5.5 18 4.5 5 koi
Parameter Ideal range 6.2 19 5.2 6.1 koi
8.2 27 4 8.5 prawn
pH value 6.5-8.5
Temperature value 16-24 °C
Turbidity value Below 10 ntu
Conductivity 970-1825 pS/cm
3.4.1. Dataset

3.3. Real-time dataset

The real-time data is stored in the ThingSpeak channel. It is stored
in CSV, XML, and JSON format, as depicted in Table 2.

3.4. Machine learning part

Fig. 6 describes the detailed block diagram of machine learning
classifiers for predicting the fish species. Authors prepare the real data
with fish categories according to the standard values of water shown
in Table 3. After that, we make preprocessing and test-train splitting.
Then, we apply 10 machine learning algorithms to classify fish. Aquatic
parameters are the independent variable and fish categories are the
dependent variable.

After getting the real-time dataset from the cloud, we do labeling as
per the standard values of fish species. We take 11 kinds of fish species.
Table 4 shows some records of our dataset.

3.4.2. Test-train splitting

Test-train splitting is the process of keeping some portion of the
dataset for training for the machine and some other portion for testing
the machine. In Weka, we used 10-fold cross-validation for test train
splitting.

3.4.3. Machine learning models

We prepared our dataset after collecting real-time values using
sensors from the cloud server of our system. In addition, we labeled the
dataset according to the fish categories including katla, sing, prawn,
rui, koi, pangas, tilapia, silvercarp, carpio, magur, etc. The optimum
temperature of growing fish is (20-26) °C, (15-25) °C, (18-30) °C,
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Fig. 6. A block diagram of the proposed methodology.

and (20-25) °C respectively for rui fish, koi fish, silvercarp fish, karpio
fish [13]. During the analysis, the authors used fish as a target variable
and water parameters as feature values. We applied 10 classification
ML models because of available in the WEKA application tool as well
as for the collected real-time data for the classification problem.

J48 classification algorithm The algorithm starts by building a
decision tree out of the available training data’s attribute values. It
recognizes the attribute that specifically distinguishes the different
instances when it happenstances a collection of items-training set.
This function provides information about data instances so that we
can identify them appropriately. It is claimed to provide the most
information benefit. If there is a number for this function for which
no uncertainty is available, i.e. all data instances in the category have
the same value for the target variable, this value is ended and the target
value acquired is assigned to it [26].

K-Nearest Neighbors (K-NN) K-NN is a non-parametric distance-
based algorithm. The algorithm computes the K number of distances
between neighboring data points and discovers the best K for the
dataset. It is used for regression as well as classification, but it is
mostly used for classification issues. KNN is regarded as an uninterested
learner calculation because it does not gain from the preparation set
immediately, but rather supplies the dataset and performs an activity
on it at the time of order [27].

K* algorithm K* is a classifier based on an instance, expressed
as the resemblance of the class of training instances [28].

Logistic Model Tree (LMT) algorithm LMT is the classification tree
that includes logistic regression functions on the leaves, the classifier is
used. The method supports target variables in binary and multi-classes,
number, name, and absent value [29].

Reduced-Error Pruning Tree (REPTree) REPTree is yet another
Weka-specific algorithm. It is a quick decision tree learner which has
been optimized for simplicity and speed. Reduced-error pruning with
back fitting is used in the algorithms to find the smallest representation
of the most accurate subtree for the pruning set [30].

JRIP JRip (RIPPER) is a basic and widely used algorithm.
Classes are examined as to their size increases, and An initial set of class
rules is constructed using incremental error reduction. JRip (RIPPER)
begins by giving all examples of a specific decision in the training data
as a class and determining protocols that covers all members’ class. It
then moves on to the next class and repeats the process until all classes
have been enclosed [31].

PART PART is a law learner who divides and conquers. It
produces “decision lists”, which are defined rules. The new data is
compared to each rule in the list in turn and a class of the first matching
rule is applied to the object. In each iteration, PART constructs a partial
C4.5 decision tree and converts the “best” leaf into a rule [32].

Decision table Each class should have its own set of decision
rules. A decision table is commonly used to describe the rules. Rough
sets can be used to pick attribute subsets as well. Weka classifiers are
used to find the algorithm decision table in Rules. The best way to
describe machine learning output is to view it in the same format as
the input [33].

Logitboost algorithm This class is intended for the regression of
additives. This class is classified by regression as a basic learner and
can tackle difficulties in several classes [34].

Random forest Random forest is a kind of democratic algorithm.
In this algorithm, the decision is made by voting. Such an algorithm
is called ensemble learning. Random forests are made up of many
trees or trees. Just as there are many trees in the forest, there are
many decision trees in the random forest. The decision that most trees
make is considered the final decision [35]. Table 5 shows the result
of the Random Forest model according to the fish classes. It shows the
following statistics: average TP rate of 0.944, FP rate of 0.006, precision
of 0.949, recall of 0.944, F-measure of 0.945.

4. Result analysis and discussion
We used the WEKA tool to analyze the data set in this section.

The Waikato Environment for Knowledge Analysis (Weka) is an ML
algorithms software suite established by New Zealand’s University of
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Table 5

Class wise result performance of random forest model.
TP rate FP rate Precision Recall F-Measure Class
0.966 0.006 0.949 0.966  0.957 katla
0.918 0.015 0.849 0.918 0.882 sing
0.929 0.012 0.650 0.929 0.765 prawn
0.980 0.002 0.990 0.980  0.985 rui
0.733 0.002 0.917 0.733  0.815 koi
0.923 0.008 0.947 0.923  0.935 pangas
0.953 0.006 0.976 0.953  0.965 tilapia
0.945 0.002 0.981 0.945 0.963 silverCup
0.909 0.009 0.857 0.909 0.882 karpio
0.909 0.000 1.000 0.909  0.952 magur
0.980 0.000 1.000 0.980  0.990 shrimp

Weighted Avg. 0.944 0.006 0.949 0.944 0.945

Waikato. It is engraved in the Java programming language. As a per-
formance metric to analyze the water quality, we have used accuracy,
kappa statistics and average TP rate. From the Confusion Matrix, we
get the accuracy, TP rate, and Kappa statistic. A confusion matrix is
characterized by four terms named true positive (TP), false negative
(FN), false positive (FP) and true negative (TN).

Accuracy, on the other hand, can be defined as the ratio of cor-
rected predictions to the total input samples.

Accuracy = (No. of correct predictions)/(Total no. of predictions) (1)

TP rate, also called Recall is the number of correctly identified cases
from all the positive representations.

Recall, R=TP/(TP+ FN) (2)

Cohen’s Kappa Statistic (CK) is applied to assess the degree of
agreement between two raters who categorize objects into mutually
exclusive groups which are shown mathematically in Eq. (3).

_ (P, —pe)
1-p.)
Here, p, is the relative agreement of raters’ observation. p, denotes

the theoretical probability of random agreement. We can calculate p,
and p, between the raters by using the Eqgs. (4)-(7).

TP+TN

3

B 4
Pe Total number of predictions (€))
p. = probability of Positive + probability of Negative (5)
Here,

Probability of Positive = TP+ FP
TP+TN+FP+FN
TP+ FN ©
TP+TN+FP+FN
and
FP+TN
Probabilit Negative =
robability of Negative Toral ramber o prediciion
FN+TN
)]

Total number of predictions

Cohen’s Kappa coefficient ranges from 0 to 1, where a value of
0 indicates no agreement and a value of 1 represents the complete
agreement between the two raters. In the case of all models, Co-
hen’s Kappa coefficient indicates nearly perfect agreement between the
actual observations and the predicted outcomes.

4.1. Pond suggestion

5 ponds are chosen for experimenting with the water quality. The
ponds are located in Jamalpur district under Mymensingh division,
Bangladesh. After collecting water from the ponds, we experimented
to get real-time values. Fig. 7 shows the IoT framework for the experi-
ments.
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Fig. 7. Experimenting water of all ponds using sensors.

There are approximately 5 h for operating the experiments in all
ponds water. We suggest a 9600 baud rate for the serial starting
function in the Arduino suite.

4.1.1. Result analysis of real-time values of PH

Fig. 8 displays the pH values for each pond for 25 different occur-
rences taken from the actual environment. For ponds 1, 2, 3, 4, and 5,
the pH ranges are 6.02 to 8.39, 8.5 to 8.87, 6.01 to 8.30, and 3.84 to
3.95, respectively. Considering the optimal standard pH range for fish
production, pond 1’s pH range is suitable (6.5-8.5). The pH value that
was obtained from pond 2 (8.57-8.87) is higher than the desired value.
As a result, fish farming is not a good fit for this pond. The pH range
for Pond 3 was between 6.00 and 7.83. 6.5-8.5 is almost the perfect
range. Additionally, Pond-4 offers adequate pH readings. For pond-5,
the pH range is not ideal for fish cultivation. Fish species are killed as
a result of this.

4.1.2. Result analysis of real-time values of temperature

A graph of the temperature readings in real-time from all of the
trials is shown in Fig. 9. For ponds 1, 2, 3, 4, and 5, respectively,
the temperature ranges are 17.50-17.75 °C, 17.75-18.00 °C, 20.87—
21.06 °C, 21.06-21.44 °C, and 21.06-21.25 °C. Different fish species
require different temperatures. The (16-24) °C temperature range is
considered to be the acceptable range for ponds. The real-time sensor
that was received from all experiments is ideal for fish farming.

4.1.3. Result analysis of real-time values of conductivity

A graph of the conductivity values in real-time from all of the trials
is shown in Fig. 10. The range of conductivity values for ponds 1, 2, 3,
4, and 5 is 989 to 1003, 1003 to 1017, 1179 to 1190, 1193 to 1215,
and 1190 to 1201 accordingly. The real-time sensor that was received
from all trials is ideal for fish farming.

4.1.4. Result analysis of real-time values of turbidity

Fig. 11 shows a graph of the turbidity readings in real-time from
each experiment. The range of turbidity readings for ponds 1, 2, 3, 4,
and 5 is 3.55-3.57 NTU, 3.41-3.50 NTU, 3.31-3.49 NTU, 3.60-3.62
NTU, and 3.56-3.58 NTU, respectively. The optimal value states that
the turbidity range for fish farming is less than 10 NTU.

Here, we have shown all the real-time values of aquatic environ-
mental quality parameters from all ponds in Table 6. Table 6 illustrates
the summary of all received real-time values for each pond. The ideal
range of all parameters including pH: 6.5-8.5, turbidity: below 10 ntu,
temperature: (16-24) °C and conductivity: 970-1825 uS/cm.

This record shows that ponds 1, 3, and 4 are suitable for fish
farming. The second pond is not ideal for growing fish. 8.57-8.87 is
higher than the optimal levels due to the pH value. It is the reason why
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Fig. 8. pH values for each pond for 25 different occurrences.

Temperature Value
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Fig. 9. Temperature values for each pond for 25 different occurrences.
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Fig. 10. Conductivity values for each pond for 25 different occurrences.
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Fig. 11. Turbidity values for each pond for 25 different occurrences.
Table 6
Pond suggestion using the real-time dataset.
Pond number pH Temperature (°C) Turbidity (ntu) Conductivity (uS/cm) Remarks
1 6.02-8.39 17.50-17.75 3.55-3.57 989-1003 Recommended
2 8.57-8.87 17.75-18.00 3.41-3.50 1003-1017 Not recommended
3 6.00-7.83 20.87-21.06 3.31-3.49 1179-1190 Recommended
4 6.51-8.30 21.06-21.44 3.60-3.62 1193-1215 Recommended
5 3.84-3.95 21.06-21.25 3.56-3.58 1190-1201 Not recommended
Table 7 statistic of 88.92 percent, and a TP rate of 90.4%. J48 ranks fifth
Comparison of performance metrics among machine learning models. with an average TP rate of 90.2%, accuracy of 90.19%, and kappa
SL.mo. ML model ‘(‘};;”racy g;() A‘ig' (I/P) Position statistics of 88.7%. K* reports accuracy 89.85%, kappa statistic 88.37%,
> > rate & and average True Positive (TP) rate 89.8% for the sixth score of each
1 J48 90.19 88.7 90.2 5th rank parameter. The JRIP model, with accuracy ratings of 87.14%, kappa
2 Random forest 94.42 93.5 94.4 1st rank .. £ 85.17% d TP £ 87.1% ived th
3 K-NN 93.4 99.4 03.4 ond rank statistics f) 5.17%, and an a\./e-rage rate of 87.1%, received the
4 K* Algorithm 89.85 88.37 89.8 6th rank seventh-highest score. By obtaining an accuracy of 84.60%, a kappa
5 LMT 92.22 91.08 92.2 3rd rank statistic of 82.37%, and a TP rate of 84.6%, Logit Boost moves up to
g JR:Il;Tree 2§~?i g;; gjc{’ 3“; ranl; the eighth highest rank. With an accuracy score of 83.93%, a kappa
. . . th ran P . .
0, 0,
s PART 00.35 8,92 004 4th rank statlsn? of 81.5%, and a TP rate of 83.9%, REPTree ranks ninth in terms
9 Decision table 80.54 77.5 80.5 10th rank of scoring performance parameters.
10 Logit boost 84.60 82.37 84.6 8th rank Random forest gives the highest score for all performance metrics.

fish grow slowly. The lower pH range of 3.84 to 3.95 is not suitable for
pond-5. Fish perish because of this. Because of this, we were unable to
provide fish farmers’ advice for ponds 1 and 2.

4.2. Comparison of performance metrics among machine learning models

The received real-time values are analyzed using 10 machine learn-
ing algorithms. Table 7 shows the comparison of performance met-
rics including accuracy, kappa statistics and avg. TP rate among the
classifiers.

Table 7 demonstrates that Random Forest provides the maximum
score possible for each parameter, with an accuracy score of 94.42%,
a kappa statistic of 93.11%, and an average True Positive (TP) rate of
94.4%. The KNN model, which reports accuracy as 93.4%, kappa statis-
tic as 92.4%, and TP rate as 93.4%, received the second-highest score.
LMT achieves an accuracy of 92.22%, a kappa statistic of 91.08%, and a
TP rate of 92.2% to take third place. In terms of performance measures,
PART came in fourth with an accuracy score of 90.35 percent, a kappa

10

Because we know that it is a kind of democratic algorithm. In this
algorithm, the decision is made by voting. Such an algorithm is called
ensemble learning. There are many decision trees in the random forest,
the decision that most trees make is considered the final decision.

The graphical representation of the table is shown in Fig. 12.
Accuracy is indicated by a blue-colored line, kappa statistics are marked
by a dark red-colored line. And the average true positive (TP) rate is
demonstrated by the olive-colored line.

If we expanded this work to include more than five ponds with more
fish species and enhanced the measures for water quality, it would
be more effective. Deep learning or machine learning can be used to
analyze real-time values more effectively in Python than in application
technologies like WEKA. The records should be kept for a month rather
than just a few days in order to get better results.

4.3. Discussion and comparison

There has been significant research on using IoT devices for fish
farming to check water quality. In this section, we discuss and compare
our proposed work with existing similar work. Table 8 shows the
comparison between some existing works with the proposed work.
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Fig. 12. Graphical presentation of the comparison. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 8

Comparison among some existing works with the proposed work.
SL. No. Source Water quality factors Water type Fish Machine learning
01 [8] pH, temperature, DO, and ammonia Aquaculture - -
02 [9] PH and salinity Aquaculture Guppy -
03 [10] DO, PH, temperature and salinity Aquaculture Pangasius -
04 [11] pH, temperature, water level and oil layer Aquaculture - -
05 [12] CO, pH, temperature, water level and turbidity Aquaculture - Yes
06 [13] pH, temperature, turbidity, conductivity, and depth Aquaculture - -
07 [14] pH, temperature and turbidity Aquaculture and drinking water - -
08 [15] pH, temperature and DO Aquaculture - -
09 [16] pH, temperature and DO Aquaculture - -
10 [17] Temperature, depth, DO, and pH Aquaculture - -
11 [18] Turbidity, temperature, oxygen level, and pH Aquaculture - Yes
12 [19] temperature, conductivity, water level, pH, turbidity and DO Aquaculture - Yes
13 [20] Temperature, pH, turbidity, and DO Aquaculture - -
14 [21] Oil layer, water level, temperature Aquaculture - -
15 Proposed pH, temperature, turbidity, conductivity, DO, COD, BOD Aquaculture 11 types of fishes Yes

5. Conclusion

In this paper, we implemented an IoT framework for fish survival
in pond water. Several water quality metrics are measured and the
real-time values are stored in a cloud named ThingSpeak. For our
experiments, we used five different pond settings to measure pH,
temperature, conductivity, and turbidity in real-time. After examining
the real-time results, we discovered that ponds 1, 3, and 4 are ideal
for fish farming since they have the ideal values of pH, temperature,
turbidity, and conductivity levels. Additionally, ponds 2 and 5 are not
ideal for fish farming. Because of this, the end user is able to grow
fish in ponds 1, 3, and 4. A farmer can take any action for ponds 2
and 5 to subsequently use them for fish farming. Integrating machine
learning algorithms with the collected sensor data, we applied 10 ML
algorithms. Among the executed ML algorithms, Random Forest took
first place with accuracy 94.42%, kappa statistics 93.5%, and Avg.
TP rate 94.4%. We also investigated the BOD, COD, and DO for one
scenario. In the future, we can expand it using more than 5 ponds
along with more water quality metrics and record the real-time data
for a month. For analyzing complex relationships and patterns among
the data, we can apply machine learning, and deep learning in Python
language.
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