

A Secure and Privacy-Preserving Student Credential

Verification System Using Blockchain Technology

Jayana Kaneriya* and Hiren Patel

Abstract—Advancements in digital technologies have made

the storage, sharing, and verification of educational credentials

extremely important for entities such as students, universities,

institutions, and companies. Digital credentials play an

important role in students’ lives as a lifelong learning passport.

The educational field is experiencing numerous issues such as

academic record forgery, record misuse, credential data

tampering, time-consuming verification procedures, and issues

related to ownership and control. Modern-day technology,

Blockchain, is an appropriate alternative to resolve these issues

and increase trust among entities. In this research, we intend to

propose a Blockchain-based educational digital credential

issuance, and verification model that addresses these issues in

the education system using Ethereum Blockchain and smart

contracts. The method we propose offers a way to demonstrate

the correctness of specific credential attributes without

revealing other attributes, thereby leading to ownership,

minimal disclosure, and control. We offer an interface for

storing massively encrypted academic records in a decentralized

file system like Interplanetary File System (IPFS). Furthermore,

Ethereum provides tamper-resistant chains to maintain the

integrity of digital credentials. Finally, in comparison with the

time it requires to issue credentials, our model safely accelerates

the verification process by about 8%.

Index Terms—Blockchain, Ethereum, interplanetary file

system, smart contract, digital credential

I. INTRODUCTION

The potential growth in smart cities is due to advancements

in technologies such as Internet of Things, Machine Learning,

Cloud Computing, Data Science, Virtual Reality, Big Data

Analytics, Artificial Intelligence, Neural Networks, Deep

Learning, and others. These cutting- edge technologies have

influenced most daily activities because of their obvious

advantages like quick response, ease of use, and extensive

availability. However, online sharing and verification of

educational documents cannot always guarantee security,

privacy and integrity in secured networks.

Recent developments in Blockchain introduce a

decentralized way to achieve security, transparency and

integrity for numerous application domains. Some of the

latest domains where Blockchain has proven its importance

are real time supply chain for project deliveries [1], secured

data harvesting for agriculture [2], an electronic healthcare

Manuscript received April 13, 2023; revised May 4, 2023; accepted May

18, 2023.

Jayana Kaneriya is with Kadi Sarva Vishwavidyalaya, Sarva Vidyalaya

Kelavani Mandal, LDRP Institute of Technology & Research, Gandhinagar,

Gujarat, India.

Hiren Patel is with Kadi Sarva Vishwavidyalaya, Sarva Vidyalaya

Kelavani Mandal, Vidush Somani Institute of Technology and Research,

Kadi, Gujarat, India.

*Correspondence: jayana102006@gmail.com (J.K.)

record system [3], a transport monitoring system [4], smart

cities [5], a fog computing platform [6], a land registry system

[7], and Smart Grid Systems [8]. Moreover, education is the

backbone of society in which various stakeholders interact

with each other in trustless environment.
Existing educational systems do not offer complete control

and independence of credentials such as mark sheets, degree

certificates, letters of recommendation, training certificates,

and character certificate to the real identity owner, i.e.,

students. These credentials are building blocks for students’

career and selection criteria for recruiters. So, smooth and

secure sharing of such credentials with recruiters and other

institutions is required to showcase the ability of a student. A

similar level of complexity arises for a verifier to validate the

integrity and authenticity of a credential submitted by a

student [9].

Cryptographic techniques used in Blockchain enhance the

security and integrity of transactions recorded by a distributed

ledger. Blockchain solves the problem of lack of trust by

maintaining transaction records to each participating node.

Transactions are recorded in a block which is added by a

miner using a consensus algorithm. In addition, the Merkle

tree generates a cryptographic fingerprint of the entire set of

transactions for a block to ensure its integrity and inclusion.

The chain is created by storing the cryptographic fingerprint

of the previous block. Blockchain is immune to attacks

because the entire ledger is chained, and altering one

transaction requires, subsequent blocks to be altered, which is

nearly impossible [10]. Therefore, Blockchain can effectively

solve existing problems such as the issuance, maintenance,

integrity, privacy, and authenticity of credentials in the

education domain.

In a recent work, we proposed a general framework for

privacy preserving self sovereign identity with selective

disclosure using Blockchain [11]. In this paper, we extend and

refine our initial work in multiple dimensions by adding the

following novelties:

 Introducing the usage of a general framework for the

education domain with inter-contract communication and

contract-service interaction.

 Facilitating the process of individual or group of

elements’ verification without disclosing other attributes.

 Due to the random placement of attributes in the tree, two

different entities having the same number of attributes will

have a completely different tree structure. This results in

unpredictability for an attacker, making the estimation

much more complex.

 Due to the inherent nature of Blockchain ttechnology,

transactions once committed or mined shall never be

altered which leads to the enhancement of security and

transparency among legitimate stakeholders.

International Journal of Information and Education Technology, Vol. 13, No. 8, August 2023

1251doi: 10.18178/ijiet.2023.13.8.1927

mailto:jayana102006@gmail.com

 Avoiding human or manual intervention in the process of

smart contract execution results in increased trust and a

reduction in possible malicious activities.

The rest of the paper is structured as follows. In Section II,

there is a description of the literature survey. Section III

describes the design and details about smart contracts and

core services. In Section IV, we present the work flow of the

scheme with its main procedures. Section V, contains the

details of the experimental results and the security analysis of

the proposed solution. Finally, in Section VI, we draw

conclusions and outline future work.

II. LITERATURE SURVEY

The digitization of the education domain drives economic

growth, innovation, and the development of society. This

section elaborates on various Blockchain-based educational

models to ensure decentralization, immutability, integrity,

privacy, and security.

Arenas and Fernandez [12] introduce CredenceLedger, a

permissioned Blockchain-based mobile application for digital

credentials of students. Arndt and Guercio [13] propose

transcript storage and verification using a graph -based

database, Neo4j, which utilizes the Cypher query language to

search transaction details from the Blockchain. In addition,

model uses BigChainDB to securely store and retrieve

transcript records. Bessa et al. [14] present a Hyperledger

Composer Blockchain-based repository architecture for

educational credentials. Han et al. [15] discuss an Ethereum

and smart contract-based framework to store academic

records for students. Furthermore, the work implies that

cost-concerned applications are the major area, as cost is

reduced in Blockchain-based applications compared to

cloud-based applications. Srivastava et al. [16] introduce a

token-based credit system for educational institutions to

transfer credit to students. The system utilizes Ark Blockchain

to maintain a chain for credentials generated by a multi

signature scheme.

Oganda et al. [17] present a business model with

components to integrate Blockchain technology and

educational institutions for online education. Lizcano et

al. [18] propose a Blockchain-based approach to create a trust

model between students and employers for reliable credential

verification. Guo et al. [19] discuss a hybrid model that uses a

private Blockchain to store multimedia educational resources

and a public Blockchain to store digital certificates. Third

party organizations use public Blockchain to verify the

authenticity of a digital certificate.

Turkanovic et al. [20] present and implement a prototype,

EduCTX, which is built upon the Ark Blockchain platform to

share educational credit of students with different institutions.

Ark provides a flexible way to select the Blockchain type as

permissionless or consortium. The prototype uses the

Delegated Proof-of-Stake consensus algorithm [21] so that

new nodes have to confirm their identity to join a network.

The authors describe basic scenarios such as (a) procedural

steps for a new node to join an existing network, (b) the

process for student enrolment by an institute, (c) issuance of

credit to enrolled students, and (d) credit record verification.

Students use a wallet to store credits in the form of ECTX [20]

tokens although communication is done over a private

channel which can be prone to attack.

EduRSS is proposed by Li and Han [22], which focuses on

secure storage and sharing of educational records using

Blockchain and an encryption scheme. The scheme provides

smart contract-based access control for records stored on the

storage server and Blockchain with security analysis. The

server keeps records in encrypted form, and the Blockchain

maintains a chain record hash. However, they do not discuss

retrieval methods for encrypted records and usage of

decentralized off-chain data storage.

A heterogeneous Blockchain-based framework is

discussed for lower latency and higher throughput using

private and consortium Blockchain [23]. Private Blockchain

is deployed on each educational campus to store students’

private data, and consortium Blockchain stores the hash of

that data, thus it is used by recruiters and other institutions to

verify students’ data. They analyze the operating cost for

centralized, decentralized and heterogeneous systems and

compare storage space for consortium Blockchain and

heterogeneous Blockchain. However, they do not mention

smart contract structures and security analysis.

A Blockchain-based crowd sourcing platform for

underprivileged students is proposed with interactions

between the preliminary stakeholders of the system

i.e., students, fundraisers, and sponsors [24]. Students submit

an application form for scholarships, loans, or donations

along with academic and personal information through a web

interface. Fundraisers and sponsors are able to view the list of

students. The platform provides flexibility to sponsors for full

or partial sponsorship and the role of the fundraiser is to

commit a transaction. The authors propose architectural

details, the workflow of the system, and prototype

implementation using Java. Although, they do not discuss

smart contract latency and deployment cost.

A transparent and reliable academic credit issuance and

verification platform is proposed for the Brazilian educational

system to increase security and decrease bureaucracy [25]. An

educational certificate verification model is presented to

ensure privacy, authorization, and ownership using the

Hyperledger Fabric Framework [26].

To address issues in higher educational systems in

low-income countries, a novel blockchain-based solution is

introduced with security, immutability, and transparency [27].

The authors discuss a comparative study of a non-smart

contract-based solution with a smart contract-based solution.

Additionally, they mention implementation challenges and

cost feasibility to run the prototype model.

Ali et al. [28] discuss three models for student information

systems to maintain transactions on the blockchain with

higher data availability. The different models use stateful and

stateless data to match the requirements of small-scale

organizations to large-scale organizations. The student

information system is able to provide security, reliability, and

trust among active stakeholders. The authors do not provide

smart contract implementation details.

Mishra et al. [29] propose a tamper-proof, non-repudiable,

International Journal of Information and Education Technology, Vol. 13, No. 8, August 2023

1252

and privacy-protected smart solution for secure sharing of

educational credentials. They design nine smart contracts to

automate data handling in a decentralized application. The

solution is tested and validated using the public blockchain,

Ethereum, with security and cost analysis.

III. PROPOSED WORK

The overview of the proposed framework was shown in our

earlier paper [11], and this work is an extension of that by

applying a general framework to a specific use case

i.e., education. In this section we describe the smart contracts,

communication between smart contracts, and communication

between smart contracts with core services of our proposed

framework.

A. Smart Contract Introduction

Enrolment Contract (EMC): The contract is used to

enroll various entities, such as (a) Issuer (university), (b)

Owner (students), and (c) Verifier (company). The process of

enrolment requires (i) entity address, (ii) entity’s public key,

(iii) class (issuer / owner / verifier), (iv) link to the private key,

and (v) time stamp for the enrolment.

Algorithm 1 outlines the process to enroll the issuer, owner,

and verifier to the system. The steps include: (i) checking if

the caller of this function has the authority to call the function,

(ii) adding related data of an entity to an Entity structure, (iii)

adding entity address to entityChain array, (iv) appends a list

based on class (issuer, owner, verifier) of an entity, and (v)

finally, enrolling of an entity will trigger the event

LogEntityEnrol () to notify the system about the completion

status.

Algorithm 1: Algorithm to add entity to the system

Inputs: _address, _publicKey, _class, _privateKeyLink

Outputs: LogEntityEnrol ()

1 if msg.sender! = owner then

2 exit

3 else

4 Entity [_address].entityAddress  _address;

5 Entity [_address].proposerAddress 

msg.sender;
6 Entity [_address].publicKey  _ publicKey;

7 Entity [_address].timeStamp  now;

8 Entity [_address].class  _class;

9 Entity [_address].privateKeyLink

_privateKeyLink;
10 entityChain.push(_address);

11 entityListByClass[_class].push(_address);

12 Emit the event LogEntityEnrol

(msg.sender,_address,_publicKey,_class)
13 end

Credential Issuance Contract (CIC): The contract is

used to maintain a credential chain for students. The issuance

process requires (i) owner address, (ii) issuer address, (iii)

credential ID, (iv) link to the credential, (v) credential

attributes, (vi) credential hash, and (vii) status. The issuance

process uses the method proposed in our earlier paper [11].

The Algorithm 2 outlines the process to issue a credential to

the owner.

The steps for issuing a credential are as follows: (i) The

CIC interacts with the EMC to validate the caller of the

function (who must be an issuer); (ii) The function assigns the

related values to a Credential structure; (iii) To provide

randomization in tree construction, the function calculates the

mole value of each attribute using the ASCII value of each

character. Although, different equations have been used to

calculate the mole value of each attribute to ensure

randomization of attributes, as described in our earlier

paper [11]; (iv) The mole values are rearranged using a

sorting algorithm. Quick sort has been used to arrange the

mole values in ascending order. However, we offer to choose

any sorting algorithm like bubble sort, insertion sort, heap sort,

selection sort; (v) The function rearranges the attribute values

by changing the position of the attributes; (vi) The function

creates a hash tree based on the updated attribute values; (vii)

The function appends the owner and issuer lists by address as

a key and value as a credentialID; (viii) Finally the issuance

of a credential triggers the event LogCredentialIssuance () to

notify the system about the completion status.

Algorithm 2: Algorithm to add credential details

Inputs: _ownerAddress, _credentialID, _credentialLink,

_credential [], _credentialHash, _status

Outputs: LogCredentialIssuance ()

1 if entityEnrolment.getEntityClass(msg.sender) != issuer

2 Exit

3 else

4 Credential [_credentialID].ownerAddress 

_owneraddress;

5 Credential [_credentialID].issuerAddress  msg.sender;

6 Credential [_credentialID].credentialID  _credentialID;

7 Credential [_credentialID].credentialLink 

_credentialLink;

8 Credential [_credentialID].credentialHash 

_credentialHash;

9 Credential [_credentialID]. status _status;

10 _mole  calculatemole(_credential)

11 _sortedMole  sort (_mole);

12 updatedCredentialList  Transpose (_sortedMole,

_mole, _credential);

13 Credential[_credentialID].hashTree 

MerkleTree(updatedCredentialList);

14 credentialListByOwner

[_owneraddress].push(_credentialID);

15 credentialListByIssuer [msg.sender].push(_credentialID);

16 Emit the event LogCredentialIssuance(_ownerAddress,

msg.sender, _credentialID, _credentialHash, _status)

17 end

Consent Contract (COC): This contract is responsible for

maintaining a chain for students who want to provide consent

for their credential to a legitimate verifier. This process

requires (i) consent ID, (ii) owner address, (iii) verifier

address, (iv) credential ID, (v) attribute index, (vi) validity,

and (vii) random token.

Algorithm 3 outlines the process to add a transaction

related to providing consent to the verifier to verify a

particular attribute value from a credential. The steps include:

(i) The COC interacts with the EMC to validate the verifier

and the COC interacts with the CIC to verify the caller of this

function (which must be an the owner of a credential); (ii) The

function adds the related data of a consent to a Consent

International Journal of Information and Education Technology, Vol. 13, No. 8, August 2023

1253

structure; (iii) The function generates a proof using the CIC

for a particular attribute value to a verifier students may only

want to share their result (pass/fail) with a company, as

explained in Algorithm 4; (iv) The function appends the

owner list and verifier list by address as a key and value as a

consentlID; (v) At the end, LogConsent () event notifies the

system regarding the completion status.

Algorithm 3: Algorithm to add consent
Inputs: _verifierAddress, _consentID, _credentialID, _ index,

_token, _validity

Outputs: LogConsent()

1 If entityEnrolment.getEntityClass (_verifierAddress) !=

verifier && msg.sender!=credentialIssuance.

getOwnerAddress (_credentialID) then

2 exit

3 else

4 Consent [_consentID].ownerAddress  msg.sender;

5 Consent [_consentID].verifierAddress 

_verifierAddress;

6 Consent [_consentID].consentID  _consentID;

7 Consent [_consentID].credentialID  _credentialID

8 Consent [_consentID].token  _token;

9 Consent [_consentID].validity  now + (_validity * 1

days);

10 _proof  proofGeneration(_credentialID,_index);

11 Consent [_consentID].credentialproof  _proof;

12 consentLlistByOwner[msg.sender].push(_consentID);

13 consentLlistByVerifier[_verifierAddress].push(_conse

ntID);

14 Emit the event LogConsent(_verifierAddress,

msg.sender, _consentID, _credentialID, _proof)

15 end

Algorithm 4: Algorithm to generate proof

Inputs: _credentialID, _index

Outputs: _proof

1

2 _hashTree  credentialIssuance.getHashTree (_credentialID);

3 for i0 to _proofsize do

4 if i==0 then

5 if __index % 2 == 0 then

6 _proof [i]  _hashTree [_index + 1];

7 else

8 _proof [i]  _hashTree [_index - 1];

9 end

10 else

11 for j  _startIndex to _endIndex do

12 if _index == j || _index == j+1 then

13 if _group % 2 == 0 then

14 _updatedIndex

_layerNodes+

_visitedNodes + _group +

1;

15 else

16 _updatedIndex

_layerNodes

+_visitedNodes + _group -

1;

17 end

18 else

19 j j+1;

20 _group  _group+1;

21 end

22 end

23 _proof [i]  _hashTree [_updatedIndex];

24 _visitedNodes  _visitedNodes + _layerNodes;

25 _layerNodes  _layerNodes/ 2;

26 _startIndex  _endIndex;

27 _endIndex  _startIndex + _group;

28 _index  _updatedIndex;

29 _group  0;

30 end

31 End

32 return _proof

The Algorithm 4 outlines the process to generate proof for

a specific attribute of a credential. The steps include: (i) The

COC interacts with the CIC to get the hash tree of a credential,

(ii) The function calculates the proof size as log (n), where n is

the total number of leaf nodes in the tree, (iii) The hashes

stored in the intermediate nodes are added in proof which are

enough to reach up to the root, (iv) At the end, the algorithm

returns proof.

Verification Contract (VC): This contract is responsible

for maintaining a verification chain using (i) consent ID, and

(ii) status of credential verification. This contract interacts

with the COC and the CIC for consent and credential

verification.

Algorithm 5 outlines the process to verify attribute value of

a credential. The steps include: (i) The VC interacts with the

COC to validate the caller of this function (who must be a

verifier); (ii) The function adds related data to a Verification

structure; (iii) The function calls a function to verify consent

token value and validity of a token; (iv) gets root hash from

the CIC contract using function getHashRoot (); (v) finds the

hash value of an attribute value; (vi) calculates root hash using

proof values; (vii) at the end, LogConsent () event notifies the

system regarding the completion status.

Algorithm 5: Algorithm to verify proof

Inputs: _consentID, _token, _proof,

attributeValue, _Index

Outputs: LogVerification (), _result

1 if consent.getVerifierAddress(_consentID

) != msg.sender then

2 exit

3 else

4 credentialID = consent.getCredentialID

(_consentID);

5 Verification [_consentID].consentID

_consentID;

6 if !(verifyTokenValidity(_consentI

D,_token)) then

7 Verification [_consentID].status

 false;

8 return false;

9 else

10 _root 

credentialissuance.getHashTreeR

oot (credentialID);

11 _hash  Hash (attributeValue);

12 for i 0 to _proof.length do

13 _proofElement  _proof[i];

14 if _index % 2 == 0 then

15 _hash  Hash (_hash,

_proofElement));

16 else

17 _hash  Hash

(_proofElement, _hash));

18 end

19 _index  _index / 2;

20 end

21 if _hash== _root then

International Journal of Information and Education Technology, Vol. 13, No. 8, August 2023

1254

22 Verification [_consentID].status 

true;

23 return true

24 else

25 Verification [_consentID].status 

false;

26 return false;

27 end

28 end

29 Emit the event LogVerification (msg.sender,

_consentID, result)

Algorithm 6 outlines the process to verify token value and

the validity of consent. The steps include: (i) The VC interacts

with the COC to obtain the token value and the time period

during which a verifier can only verify the credential value, (ii)

compares the retrieved values from the COC contract to the

values submitted by the verifier, (iii) returns a comparison

result, at the end of the algorithm.

Algorithm 6: Algorithm to verify token and validity

Inputs: _consentID,_token

Outputs: _result

1 _flag  true;

2 (token,validity) = consent.getConsent (_consentID);

3 if !(token==_token && now <= validity) then

4 _flag  false;

5 End

6 return _flag;

B. Inter Contract Communication

Our framework comprises four basic contracts such as

Enrolment Contract, Credential Issuance Contract, Consent

Contract, and Verification Contract. Smart contracts are

responsible for maintaining the chain of transactions,

including the entity enrolment chain, credential chain, consent

chain, and verification chain. This section demonstrates the

interaction between these chains. Fig. 1 shows the basic

interaction between the smart contracts.

Fig. 1. Inter-contract communication.

 CIC as a caller contract and EMC as a target contract:

When a university wants to issue a credential to a student

using the CredentialIssuance () function of the CIC, it can

verify the identity of the student and the university through

the getEntityClass () function of the EMC.

 COC as a caller contract and EMC as a target contract:

When a student wants to share their consent for the

verification of some credential using the addConsent ()

function of the COC, verification of identities of the

student and the verifier can be done through the

getEntityClass () function of the EMC.

 COC as a caller contract and CIC as a target contract:

Verification of an issued credential ID can be done using

the getCredentialID () function of the CIC.

 VC as a caller contract and COC as a target contract: The

verifier only can verify the credential of a student, when it

receives the consent for that credential using the

Verification () function of the VC. It communicates with

the getConsent () function of the COC for the consent

verification.

 VC as a caller contract and CIC as a target contract: The

VC communicates with the getCredential () function of

the CIC to verify credential details.

C. Contract-Service Interaction

Our framework uses four services such as Off-Chain Data

Service (OCS), Cryptographic Service (CS), Tokenization

Service (TOS), and Smart Contract Service (SCS). Fig. 2

shows interaction between smart contract and service with

required files.

Off-Chain Data Service (OCS): This service is capable of

storing encrypted content to off-chain data storage like IPFS,

Filecoin, Storj, Cloud storage (e.g. AWS), DBMS (e.g.

Oracle) etc. In our work, we stored the encrypted private key

to the decentralized data storage, IPFS. OCS returns an

encrypted private key link (content identifier) which is used

by EMC. This service also returns encrypted JSON object

credential values link for the CIC.

Fig. 2. Contract-service communications.

Cryptographic Service (CS): The cryptographic service

performs various cryptographic functions for smart contracts.

Communications between all entities are encrypted using

cryptographic keys for security reasons. This service is

responsible for generating keys and encrypting the private key

International Journal of Information and Education Technology, Vol. 13, No. 8, August 2023

1255

for the EMC. CS is also used to generate a digital signature for

credentials and to encrypt credential values for the CIC.

Furthermore, it can be used to encrypt consent details for the

COC. This service helps the VC to verify digital signature and

decrypt the required credential values.

Tokenization Service (TOS): This service generates

random consent token to secure our framework from replay

attack for the COC.

Smart Contract Service (SCS): This service provides a

web3 instance to connect with the Ethereum node using host

address and port number. Functionalities of all the deployed

contracts can be called using this service.

IV. SCHEME OVERVIEW WITH MAIN PROCEDURES

In this section of the paper, we present the four main

processes of the education system, which include, entity

registration, credential issuance, consent, and credential

verification. To provide security against various attacks, each

message transmission between entities utilizes the

functionalities of CS.

Entity Registration: The registration process requires

three core services and one smart contract to interact with

each other, namely: (i) CS, (ii) OCS, (iii) SCS, and (iv) EMC.

CS is used for generating a pair <PU, PR> for asymmetric key

encryption and encrypting the private key for security

concerns. The encrypted private key is stored on IPFS

through off-chain data service (OCS). SCS provides a smart

contract instance to interact with smart contracts on the

Ethereum Blockchain. The EMC maintains an entity chain on

the Blockchain. An entity follows the registration procedure

to enroll valid entities (University, Student, and Company) to

the system. Fig. 3 illustrates the system flow for adding a new

entity to the system.

Fig. 3. Work flow diagram of entity registration.

In the proposed framework, registering an entity involves

the following steps: (i) an entity calls a cryptographic service

to generate asymmetric keys using the

Rivest-Shamir-Adleman (RSA) public key algorithm. We

also offer the option to choose other cryptographic algorithms

like DSA, elliptic curve etc.; (ii) CS sends the generated

public key to the entity; (iii) Then, CS encrypts the private key

with a secret key and sends it to OCS, (iv) OCS stores the

encrypted private key on the decentralized data storage

(Interplanetary File System, IPFS); (v) IPFS returns the

content identifier (CID) to an entity; (vi) Entity sends request

containing address of an entity, public key and CID to SCS for

registration; (vii) SCS calls entityEnrolment () function of the

EMC; (viii) the EMC validates entity information and adds

transaction to the blockchain confirms transaction on

Blockchain; (ix) EMC sends transaction status details to SCS;

(x) SCS notifies the entity with the transaction status details.

Credential Issuance: Credential issuance process requires

three core services and two smart contracts to interact with

each other, namely: (i) CS, (ii) OCS, (iii) SCS, (iv) CIC, and

(v) EMC. CS encrypts a JSON object which contains attribute

values of a credential using the public key of a student. CIC

maintains various chains on the Blockchain. Fig. 4 illustrates

the system flow for adding a transaction of a credential.

Fig. 4. Work flow diagram of credential issuance.

In the proposed framework, issuing a credential involves

the following steps: (i) the student sends a request to the

university to generate credential with proof; (ii) The

university calls CS to encrypt the credential attribute values

using the public key of a student; (iii) Then, CS sends the

encrypted values to OCS; (iv) OCS stores the encrypted

values on decentralized data storage (IPFS); (v) IPFS returns

a content identifier (CID) to the university; (vi) The university

sends a request containing the required parameters to SCS for

the issuance process; (vii) SCS calls CredentialIssuance ()

function of the CIC; (viii) The CIC interacts with EMC to

check enrolment details for a student; (ix) The EMC checks

the enrolment status of the student on its entity chain and

replies to CIC with the status; (x) The CIC stores all values in

form of a transaction on the Blockchain; (xi) The Blockchain

replies to SCS with transaction details through the CIC; (xii)

SCS notifies the university with transaction status; (xiii) The

university sends details of the credential issuance to the

student in the form of a transaction.

Consent: Attribute sharing process requires two core

services and three smart contracts to interact with each other,

namely: (i) TOS, (ii) SCS, (iii) COC, (iv) EMC, and (v) CIC.

TOS generates a random token which can be used only one

time by verifier. The COC maintains a chain of consent details

on the Blockchain. Fig. 5 illustrates the system flow for

adding a transaction of a credential with consent.

Fig. 5. Work flow diagram of consent.

International Journal of Information and Education Technology, Vol. 13, No. 8, August 2023

1256

In the proposed framework, sharing a credential involves

following steps: (i) The student calls TOS to generate a

random token; (ii) TOS applies different functions to generate

a random token and sends it to student; (iii) Then, the student

sends the required parameters to SCS; (iv) SCS calls the

Consent () function of COC; (v) COC interacts with EMC to

check verifier details; (vi) EMC checks the verifier’s details

against its entity chain and replies to COC with the status of a

verifier; (vii) COC interacts with CIC for credential ID

validation; (viii) CIC replies to COC with validation results;

(ix) COC stores all relevant values in the form of a transaction

on the Blockchain; (x) The Blockchain replies to SCS with

transaction details through COC; (xi) SCS notifies the student

with transaction status.

Credential Verification: Credential verification process

requires one core service and three smart contracts to interact

with each other, namely: (i) SCS, (ii) VC, (iii) COC, and (iv)

CIC and VC verifies consent details and maintains chain of

verification details on the Blockchain. Fig. 6 illustrates the

different steps involved in the verification process.

Fig. 6. Work flow diagram of verification.

In the proposed framework, the verification process

involves the following steps: (i) the student shares a credential

attribute value with a consent token to the company; (ii) The

company sends received attributes for verification to SCS; (iii)

SCS calls the Verification () function of VC; (iv) VC interacts

with COC to check consent details; (v) COC checks it and

replies to VC with verification details; (vi) VC interacts with

CIC for credential validation, (vii) CIC replies to VC with

verification results; (viii) VC stores all values in the form of a

transaction on the Blockchain; (ix) The Blockchain replies to

SCS with transaction details through VC; (x) SCS notifies the

company with the transaction status; (xi) The company

notifies the student with the verification status.

V. EXPERIMENTATION AND RESULTS

A. Implementation Setup

We simulated our model using a machine with an Intel Core

i3 processor, 4 GB of primary memory, 465 GB of secondary

memory, and a 64-bit Windows operating system. For the

implementation of our proposed framework, we opted Geth

Blockchain [30], which is an Ethereum client implemented in

Go language. REST APIs, Data API, Web3 and JSON RPC

are responsible for smooth interactions between core services,

smart contracts and the Blockchain. Node provides a highly

scalable programming environment that satisfies multiple

concurrent requests. Node package manager is a software

registry used to install packages. The Solidity compiler

compiles smart contracts and generates byte codes and

application binary interfaces required for the deployments of

the smart contracts. IPFS is used as a decentralized off chain

data storage to store large amounts of data like private key,

credential document etc.

B. Performance Evaluation

In this section, we evaluate the performance of our model,

which primarily depends on cryptographic primitives,

off-Chain Data Storage (IPFS), the proposed method, and

smart contracts.

Cryptographic Primitives: We investigated the delay in

end-to-end transmission due to cryptographic methods for

real-time educational systems. We analyzed the latency

during key generation for RSA, DSA and RSA-PSS

algorithms with different key sizes. Fig. 7 shows the latency

comparison of these algorithms. RSA is suitable for

encryption, decryption, digital signature creation and

verification. Although computational latency is high for

security reasons, we used the RSA algorithm for

cryptographic operations with a key size of 2048. We also

analyzed the latency during encryption/decryption and

signing/verification of credentials against their size, which is

depicted in Fig. 8. We can see that the computational latency

for encryption is high compared to decryption and verification

latency is low compared to signing.

Fig. 7. Latency during key generation using public key cryptography.

Fig. 8. Latency during RSA encryption, decryption, sign create and verify.

Off-Chain Data Storage (IPFS): The latency parameter

of off-chain data storage is of utmost important because it

International Journal of Information and Education Technology, Vol. 13, No. 8, August 2023

1257

directly affects the performance of the model. The latency

comparison between storing and retrieving data in IPFS based

on size of the data is shown in Fig. 9. We also observed the

bandwidth utilization for IPFS network traffic to evaluate the

effect of transaction time. Fig. 10 summarizes the IPFS-based

storage system’s input and output bandwidth utilization over

time. The IPFS node required for our experiment used an

average of 402 kbps bandwidth to execute send and receive

transactions.

Proposed Method: Our model uses a method to place

credential attribute values at random positions. Method uses

four steps: transformation, succession, transposition and tree

construction. The transformation step uses various equations

to convert the attribute value into a mole value. We analyzed

the impact of using these equations in our model in terms of

the cost and time required to execute them. Fig. 11 shows that

using the ASCII value requires less gas cost and time. So, in

our model we used this method to convert attribute values to

mole values. Fig. 12 shows the impact of the number of

attributes on gas cost and execution time in the transformation,

succession, transposition and tree construction.

Fig. 9. Latency comparisons between IPFS store and retrieve.

Fig. 10. Network bandwidth utilization of the IPFS.

Fig. 11. Latency and Gas used to execute equations.

(a)

(b)

Fig. 12. (a) Comparative latency during execution of pre-processing and

Tree construction. (b) Gas used during execution of pre-processing and tree

construction.

Smart Contracts: We have implemented smart contracts

in the Solidity language and the Solidity compiler compiles

the solidity file and generates Application Binary Interface

(ABI) and bytecode. Furthermore, we have deployed smart

contracts on Ethereum using generated bytecode and ABI.

ABI provides an interface to interact with Ethereum Virtual

Machine (EVM) which stores executable bytecode so that we

are able to interact with smart contract. Space occupied by

ABI and bytecode affects the transaction time. Fig. 13 shows

the space complexity of major smart contracts of our model,

which shows that CIC occupies the highest space in EVM as it

has implemented the proposed method. Moreover, Fig. 14

shows comparative latency and gas cost for major functions

used in smart contracts which store transactions on Ethereum.

The average system response time for enrollment, issuance,

consent, and verification procedures is approximately 9s, 14s,

11s, and 1s respectively, as shown in Fig. 14(b). The latency

of functions that are responsible for retrieving transaction

values has range between 5ms to 15ms.

Fig. 13. Space complexity of core smart contracts.

International Journal of Information and Education Technology, Vol. 13, No. 8, August 2023

1258

 (a)

(b)

Fig. 14. (a) Gas used during execution of main functions of smart contracts.

(b) Latency of execution of main functions of smart contracts.

C. Security Analysis

In this section we elaborate on the security aspects of the

byte codes of smart contracts using the open-source tool,

MyThril [31], which provides higher accuracy and is able to

detect security vulnerabilities [32]. This tool is a

command-line tool and written in Python. It relies on taint

analysis, concolic analysis, and control flow checking of the

EVM byte code to exploit security vulnerabilities in smart

contracts. We used the docker image of the tool to perform

security analysis. We performed the security analysis on the

smart contracts used in our model using the MyThril tool. The

tool detects security issues such as integer underflows,

unchecked call return value, delegate call to untrusted callee,

unprotected Ether withdrawal, assert violation, write to

arbitrary storage location etc. Fig. 15 shows the security

analysis output for Enrolment Contract and the tool returned a

message stating, ―The analysis was completed successfully,

No issues were detected.‖ We received the same result for the

CredentialIssuance Contract, Consent Contract and

Verification Contract. The results show that the smart

contracts are secure against vulnerabilities.

Fig. 15. Security verification of enrolment contract.

VI. CONCLUSION AND FUTURE WORK

This work presents a new model that uses the Blockchain

technology with the aim to provide privacy through selective

disclosure for educational credentials. The model employs a

method which randomises the credential attribute values and

uses them for tree construction which can prove inclusion of a

single or multiple attribute values from a tree. Our model

describes the main smart contract algorithms to provide

automation and core services for exchanging data between

different entities providing cost reductions compared to

third-party verification systems. Our model stores encrypted

records on IPFS and only a hash of records on the Blockchain

to achieve security. Credentials are shared with proof and

consent token with validity so that verifier can verify the

attribute within the provided time duration. However, we

assumed that students have fulfilled the requirements of the

university for credential. We provided a prototype model on

the Ethereum Blockchain and evaluated its performance. The

prototype has shown negligible overhead to achieve

decentralization with end-to-end encryption. In the later part

of this research, we intend to include monetization features in

our model.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Jayana Kaneriya conducted research and wrote the

manuscript. Hiren Patel enhanced the writing quality of the

manuscript and manuscript language before it was to be

submitted. All authors had approved the final version.

REFERENCES

[1] P. Helo and A. H. M. Shamsuzzoha, ―Real-time supply chain—A

blockchain architecture for project deliveries,‖ Robot. Comput. Integr.

Manuf., vol. 63, 101909, 2020.

[2] H. Patel and B. Shrimali, ―AgriOnBlock: Secured data harvesting for

agriculture sector using blockchain technology,‖ ICT Express, 2021.

[3] S. Tanwar, K. Parekh, and R. Evans, ―Blockchain-based electronic

healthcare record system for healthcare 4.0 applications,‖ J. Inf. Secur.

Appl., vol. 50, 102407, 2020.

[4] J. Zhang, M. Guo, B. Li, and R. Lu, ―A transport monitoring system for

cultural relics protection based on blockchain and internet of things,‖ J.

Cult. Herit., vol. 50, pp. 106–114, 2021.

[5] I. Makhdoom, I. Zhou, M. Abolhasan, J. Lipman, and W. Ni,

―PrivySharing: A blockchain-based framework for privacy-preserving

and secure data sharing in smart cities,‖ Comput. Secur., vol. 88,

101653, 2020.

[6] P. Kochovski, S. Gec, V. Stankovski, M. Bajec, and P. D. Drobintsev,

―Trust management in a blockchain based fog computing platform

with trustless smart oracles,‖ Future Gener. Comput. Syst., vol. 101,

pp. 747–759, 2019.

[7] S. K. Panda, G. B. Mohammad, S. Nandan Mohanty, and S. Sahoo,

―Smart contract‐based land registry system to reduce frauds and time

delay,‖ Secur. Priv., vol. 4, no. 5, 2021.

[8] A. Kumari, A. Shukla, R. Gupta, S. Tanwar, S. Tyagi, and N. Kumar,

―ET-DeaL: A P2P smart contract-based secure energy trading scheme

for smart grid systems,‖ in Proc. IEEE Conference on Computer

Communications Workshops (INFOCOM WKSHPS), 2020.

[9] K. Kumutha and S. Jayalakshmi, ―Blockchain technology and

academic certificate authenticity—A review,‖ Expert Clouds and

Applications, Singapore: Springer Singapore, 2022, pp. 321–334.

[10] C. S. Wright, ―Bitcoin: A peer-to-peer electronic cash system,‖ SSRN

Electron. J., 2008.

[11] J. K. And and H. Patel. A blockchain-based conceptual framework for

privacy preserving self- sovereign identity with selective disclosure.

Iteejournal.org. [Online]. Available:

http://www.iteejournal.org/v11no3june22_pdf4.pdf

[12] R. Arenas and P. Fernandez, ―CredenceLedger: A permissioned

blockchain for verifiable academic credentials,‖ in Proc. 2018 IEEE

International Conference on Engineering, Technology and Innovation

(ICE/ITMC), 2018.

International Journal of Information and Education Technology, Vol. 13, No. 8, August 2023

1259

[13] T. Arndt and A. Guercio, ―Blockchain-based transcripts for mobile

higher-education,‖ Int. J. Inf. Educ. Technol., vol. 10, no. 2, pp. 84–89,

2020.

[14] E. E. Bessa and J. S. B. Martins, ―A Blockchain-based educational

record repository,‖ arXiv, [cs.OH], 2019.

[15] M. Han, Z. Li, J. He, D. Wu, Y. Xie, and A. Baba, ―A novel

blockchain-based education records verification solution,‖ in Proc. the

19th Annual SIG Conference on Information Technology Education,

2018.

[16] A. Srivastava, P. Bhattacharya, A. Singh, A. Mathur, O. Prakash, and

R. Pradhan, ―A distributed credit transfer educational framework based

on blockchain,‖ in Proc. 2018 2nd International Conference on

Advances in Computing, Control and Communication Technology

(IAC3T), 2018.

[17] F. P. Oganda, N. Lutfiani, Q. Aini, U. Rahardja, and A. Faturahman,

―Blockchain education smart courses of massive online open course

using business model canvas,‖ in Proc. 2020 2nd International

Conference on Cybernetics and Intelligent System (ICORIS), 2020.

[18] D. Lizcano, J. A. Lara, B. White, and S. Aljawarneh,

―Blockchain-based approach to create a model of trust in open and

ubiquitous higher education,‖ J. Comput. High. Educ., vol. 32, no. 1,

pp. 109–134, 2020.

[19] J. Guo, C. Li, G. Zhang, Y. Sun, and R. Bie, ―Blockchain-enabled

digital rights management for multimedia resources of online

education,‖ Multimed. Tools Appl., vol. 79, no. 15–16, pp. 9735–9755,

2020.

[20] M. Turkanovic, M. Holbl, K. Kosic, M. Hericko, and A. Kamisalic,

―EduCTX: A blockchain-based higher education credit platform,‖

IEEE Access, vol. 6, pp. 5112–5127, 2018.

[21] S. M. Skh Saad and R. Z. Raja Mohd Radzi, ―Comparative review of

the blockchain consensus algorithm between Proof of Stake (POS) and

Delegated Proof of Stake (DPOS),‖ Int. J. Innov. Comput., vol. 10, no.

2, 2020.

[22] H. Li and D. Han, ―EduRSS: A blockchain-based educational records

secure storage and sharing scheme,‖ IEEE Access, vol. 7, pp.

179273–179289, 2019.

[23] G. Wang, H. Zhang, B. Xiao, Y.-C. Chung, and W. Cai, ―EduBloud: A

Blockchain-based Education Cloud,‖ in Proc. 2019 Computing,

Communications and IoT Applications (ComComAp), 2019.

[24] M. A. Rashid, K. Deo, D. Prasad, K. Singh, S. Chand, and M. Assaf,

―TEduChain: A blockchain-based platform for crowdfunding tertiary

education,‖ Knowl. Eng. Rev., vol. 35, no. e27, 2020.

[25] L. M. Palma, M. A. G. Vigil, F. L. Pereira, and J. E. Martina,

―Blockchain and smart contracts for higher education registry in

Brazil,‖ Int. J. Netw. Manage., vol. 29, no. 3, p. e2061, 2019.

[26] O. S. Saleh, O. Ghazali, and M. E. Rana, ―Blockchain based

framework for educational certificates verification,‖ J. Crit. Rev., vol.

7, no. 03, 2020.

[27] I. Alnafrah and S. Mouselli, ―Revitalizing blockchain technology

potentials for smooth academic records management and verification

in low-income countries,‖ Int. J. Educ. Dev., vol. 85, 102460, 2021.

[28] S. I. M. Ali, H. Farouk and H. Sharaf, ―A blockchain-based models for

student information systems,‖ Egypt. Inform. J., vol. 23, no. 2, pp.

187–196, 2022.

[29] R. A. Mishra, A. Kalla, A. Braeken, and M. Liyanage, ―Privacy

protected blockchain based architecture and implementation for

sharing of students’ credentials,‖ Inf. Process. Manag., vol. 58, no. 3,

102512, 2021.

[30] Getting started with Geth. go-ethereum. [Online]. Available:

https://geth.ethereum.org/docs/getting-started

[31] Mythril: Security analysis tool for EVM bytecode. Supports smart

contracts built for Ethereum, Hedera, Quorum, Vechain, Roostock,

Tron and other EVM-compatible blockchains.

[32] M. di Angelo and G. Salzer, ―A survey of tools for analyzing ethereum

smart contracts,‖ in Proc. 2019 IEEE International Conference on

Decentralized Applications and Infrastructures (DAPPCON), 2019.

Copyright © 2023 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

International Journal of Information and Education Technology, Vol. 13, No. 8, August 2023

1260

https://creativecommons.org/licenses/by/4.0/

