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Despite the fact that control charts are able to trigger a signal when a process has changed, it does not indicate when
the process change has begun. The time difference between the changing point and a signal of a control chart could
cause confusions on the sources of the problems. Knowing the exact time of a process change would help to reduce
the time for identification of the special cause. In this article, a model for the change-point problem is first
introduced and a maximum-likelihood estimator (MLE) is applied when a linear trend disturbance is present. Then,
Monte Carlo simulation is applied in order to evaluate the accuracy and the precision performances of the proposed
change-point estimator. Next, the proposed estimator is compared with the MLE of the process fraction non-
conforming change point derived under simple step and monotonic changes following signals from a Shewhart np
control chart. The results show that the MLE of the process change point designed for the linear trend outperforms
the MLE designed for step and monotonic changes when a linear trend disturbance is present.

Keywords: change point; process fraction non-conforming; statistical process control; process improvement; np
charts; maximum-likelihood estimation

1. Introduction and literature review

Statistical process control (SPC) has played an
important role in industry for many years. The control
chart is a powerful SPC tool that monitors the changes
and discovers variation in a process in order to
distinguish between special and common causes of
variation. In SPC, upper and lower control limits can
be defined based on the probability distribution of the
product’s quality characteristics.

When the sample observations of the process are
placed within the control limits, it can be concluded
that the process is in control. However, if the sample
observations are placed outside the control limits, an
out-of-control signal is received. When a control chart
signals an out-of-control condition, a search begins to
identify and eliminate the source(s) of the special cause
(see Montgomery 1996 for more details on control
charts). ‘The time when a special cause manifests itself
into a process is referred to as change point’ (Atashgar
and Noorossana 2010).

Control chart’s signal shows that process engineers
can begin their search for the special cause of change in
the process. Moreover, the disturbance in a process can
be accomplished from special causes or common
causes. Although control charts suggest occurrence of

a change, neither can they show specific information
on the cause of process disturbance, nor do they show
the time of the process disturbance. In the literature of
control charting methods, the change point is the time
when a process begins its change by a single or multiple
disturbances. However, the signalling time is the time
when a control chart signals the existence of an
assignable cause. Knowing the exact point of change
in a process would help to search and identify special
causes, resulting in time saving to find the causes.
Therefore, it is useful to identify the difference between
the change point and the time when an out-of-control
signal is generated by control charts (Bassevile and
Nikiforov 1993).

Industrial quality control setting often uses the
binomial distribution to model the number of
defective items in a sample of size n. Process fraction
non-conforming, p, is the probability that a ran-
domly selected item does not conform the quality
characteristic. That is, given n items, the probability
that x randomly selected items is defective is given
by

PðX ¼ xÞ ¼
n

x

� �

px 1� pð Þn�x
;

x ¼ 1; 2; . . . ; n 0 � p � 1
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where p denotes the process fraction non-conform-
ing. Depending on whether the subgroup size is
constant or not, one often uses p or np charts
to monitor a process. Moreover, the np, the
cumulative sum (CUSUM), and the exponentially
weighted moving average (EWMA) control charts
are commonly used to monitor binomial counts
(Ryan 2000).

Recent literatures on change-point estimation are
as follows:

Hawkins and Qiu (2003) studied the change-point
model for SPC. Samuel et al. (1998a, 1998b)
considered step change in a normal process mean
and normal process variance. Pignatielo and Samuel
(2001) proposed an estimator for the change point of
a normal process mean, and, based on this study,
Perry and Pignatiello (2006) proposed an maximum-
likelihood estimator (MLE) and evaluated the per-
formance of this estimator when a linear trend
change is present in a normal process mean. They
showed that their proposed estimator provides good
performance when a linear trend disturbance is
present. They compared their results with suggested
estimator by Samuel et al. (1998a, 1998b) for step
changes. Moreover, their results showed that the
MLE obtained for linear trend disturbances outper-
forms the MLE obtained for step change distur-
bances in the presence of the linear trend disturbance.
Samuel and Pignatiello (1998) analysed a step change
in the rate parameter for a Poisson process.
Nedumaran et al. (2000) addressed the issue of
change-point identification for w2 control chart.
They used MLE to estimate a step change shift in
the mean of a normal distribution. Noorossana and
Shademan (2009) proposed MLE for the change
point of a normal process mean that does not require
the knowledge of the exact change type showed by
the process. The only required assumption is that the
change type present should belong to a family of
monotonic change, either isotonic or antitonic.
Furthermore, they compared performances between
their estimator and those suggested by Samuel et al.
(1998a, 1998b) and Perry and Pignatiello (2006)
following a genuine signal from the Shewhart X

control chart. Noorossana et al. (2009) proposed an
estimator for a period of time in which a step change
in the process non-conformity proportion in high-
yield processes occurs. Gazanfari et al. (2008) used
clustering approach to identify the time of a step
change in the Shewhart control charts.

Samuel and Pignatiello (2001) proposed a MLE
for the process fraction non-conforming change point
by applying the step change likelihood function. They
evaluated the performances of their proposed esti-
mator when a np chart signals and concluded that

their estimator provides good accuracy and precision
performances. Moreover, Perry et al. (2007) devel-
oped a change-point estimator from the change
likelihood function for a binomial random variable
without assuming the previous information of the
exact change type. The only assumption in this
research is that the predicted change type is belong-
ing to a family of monotonic change type. Further,
Perry et al. (2007) compared the performances
between their estimator and the one suggested by
Samuel and Pignatiello (2001). In this article, a MLE
is proposed for the change point of the process
fraction non-conforming using the change likelihood
function for a linear trend disturbance. The proposed
estimator can be used for the detection of a change
point when either p or np chart has shown a signal.
In their research, Monte Carlo simulation is used to
evaluate performances of their estimator to the
commonly used MLE for the time of step change
and monotonic change when a linear trend distur-
bance is presented following a signal from a
Shewhart np control chart.

In the current research work, the change-point
problem of a process fraction non-conforming is first
introduced and a MLE is applied when a linear trend
disturbance is present. Examples of manufacturing
processes in which special causes can happen due to the
linear trend disturbances in fraction non-conforming
involve gradual tool wear, machine depreciation,
workers’ fatigue, filters that become dirty over time,
or any other time-related factors that can affect the
quality of produced items. Manufacturing environ-
ments with high-quality products are also some
examples, in which both the fraction non-conforming
and its slope of change must be low. Then, Monte
Carlo simulation is applied in order to evaluate the
accuracy and the precision performances of the
proposed change-point estimator. Next, the proposed
estimator is compared with the MLE of the process
fraction non-conforming change point derived under
simple step and monotonic changes following the
signals from a Shewhart np control chart.

The outline of this article is as follows. We study a
model for disturbance in the process when a linear
trend is present in Section 2. In Section 3, we evaluate
and compare the precision and the accuracy perfor-
mances of the estimator. Finally, we give some
concluding remarks in Section 4.

2. Linear trend change model and MLE derivation

Consider a linear trend change model for the
behaviour of a process fraction non-conforming p. It
is assumed the process is initially in control for the first
t subgroups and independent observations are coming
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from a binomial distribution with in-control parameter
p ¼ p0. Following an unknown point in time t (the
process change point), the first disturbance in the
process fraction non-conforming happens. After this
time, the process changes from p ¼ p0 to an out-of-
control state p (where p ¼ pi; i ¼ t þ 1, t þ 2, . . ., T,
and T denotes the time when a control chart
generates a signal. A signal can be obtained when
a point is either plotted above the upper control
limit or an out-of-control pattern is detected using
the Western Electric or other sensitising rules).
Assuming the signal is not a false alarm, the change
model of p is given by Equation (1), where b is the
slope of the linear trend disturbance or the
magnitude of process change.

pi ¼ p0 þ bði� tÞ ð1Þ

In the proposed linear trend change model, each
observation consists of a subgroup from the output of
the process. For subgroups i ¼ 1, 2, . . ., t, the process
is in control and the process fraction non-conforming
is the known p0. However, for subgroups i ¼ t þ 1,
t þ 2, . . ., T, the process fraction non-conforming is
some unknown pi ¼ p0 þ b(i 7 t), where T is the
most recent subgroup sample, i.e. the chart signals a
change in p at subgroup number T. This model has two
unknown parameters t and b. The parameter t

represents the last subgroup taken from the in-control
process, and b is the slope parameter of the linear trend
model. The value of b 4 0 denotes a linear change
with an additive trend in p, while b 5 0 represents a
descending trend in the process fraction non-conform-
ing. Based on these assumptions, the MLE can be
derived for the process change point t with non-
decreasing change type (b 4 0). The MLE change-
point estimator is denoted by t̂l t.

Considering the model in Equation (1) and the
above assumptions, and that the first change point
takes place at time t, the likelihood function
becomes

L t; bDð Þ ¼
Y

t

i¼1

n

xi

� �

pDi

0 1� p0ð Þn�Di
Y

T

i¼tþ1

n

xi

� �

� pDi

i 1� pið Þn�Di ð2Þ

where n is the size of the subgroup (the subgroups size
is constant) and Di denotes the number of non-
conforming units in the ith subgroup. Then, pi ¼
Di/n shows an estimate to the subgroup fraction non-
conforming.

The MLE of t is the value of t that
maximises the likelihood function (Equation (2)), or

equivalently, its logarithm. The logarithm of the
likelihood function is

loge L t; b j Dð Þð Þ ¼ kþ loge p0ð Þ
X

t

i¼1

Di þ loge 1� p0ð Þð Þ

�
X

t

i¼1

n�Dið Þ þ
X

T

i¼tþ1

Di� loge pið Þ þ
X

T

i¼tþ1

n�Dið Þ

� loge 1� pið Þð Þ ð3Þ

where k is a predefined constant.
Since the slope of change, b, is unknown, by taking

the partial derivative of Equation (3) with regard to b

and equating it zero, a formula is derived for b in terms
of t that provides the maximum value for the
logarithm of the likelihood function. In other words,

@

@b
loge L t; b j Dð Þð Þ ¼

X

T

i¼tþ1

Diði� tÞ

p0 þ b i� tð Þ

�
X

T

i¼tþ1

ðn�DiÞ � ði� tÞ

1� p0 � bði� tÞ
ð4Þ

Since it is difficult to find the exact values of t and b

from Equation (4) analytically, we apply the Newton
method (see Hildebrand 1987) to solve Equation (4).
The optimal combination of (t,b) obtained by the
Newton method is known as the MLE of the change
point. This MLE of the change point can be applied
when any process fraction non-conforming control
chart, including CUSUM, EWMA, and np, gives an
out-of-control signal.

In the next section, Monte Carlo simulation is used
to evaluate the accuracy and the precision perfor-
mances of the proposed change-point estimator
following a signal from a np chart.

3. Performance comparison analyses

The performances of the proposed estimator, t̂l t, are
compared with the ones of a MLE derived for step
changes proposed by Samuel and Pignatiello (2001)
and the one of a MLE derived for monotonic changes
suggested by Perry et al. (2007) when a linear trend
disturbance is present, and the out-of-control signal
comes from a Shewhart np control chart. The
estimator proposed by Samuel and Pignatiello (2001)
is derived under a step change assumption, and the
estimator proposed by Perry et al. (2007) is derived
under a monotonic change assumption. These are
referred to t̂SC and t̂MC, respectively.

3.1. False alarms

In this section, we address the handling of false alarms
in the simulation model. A signal time greater than the
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real process change point, i.e. T 4 t, is referred to a
genuine signal and can be used for searching the
change point. Otherwise, however, if the signal time is
less than the real change point, i.e. T 5 t, then the
control chart signals before a disturbance in the
process and, hence, is treated a false alarm.

In the simulation runs, the false alarm signal is not
considered for the performance analysis. Whenever a
signal is a false alarm, the process is assumed in control
and, therefore, the control chart continues its action to
monitor the process. In other words, when a false alarm
happens in a simulation run at subgroup T, the control
chart resumes at subgroup T þ 1 while not altering the
change-point estimation process. This is the identical
approach used by Perry et al. (2007), Noorossana and
Shademan (2009), and Perry and Pignatiello (2006).

3.2. Limitations of the chart parameters and the linear

trend model

The linear trend model given in Equation (1) has some
limitations. First, since it is proposed to model the
process fraction non-conformities 0 � p � 1, and,
hence (Montgomery 1996),

0 � pi ¼ p0 þ bði� tÞ � 1 ð5Þ

Then, for performance comparisons of the estimators
in the presence of a linear trend disturbance, b values
must be chosen such that Equation (5) holds. The
change in the process fraction non-conformities along
with its constraint is depicted in Figure 1.

Since only genuine alarms are considered, we have
T 7 t � 0. Moreover, p0 � 0 and pi � 0; i ¼ 1, 2, . . ..
Then, based on Figure 1, the value of T 0 can be
obtained as follows:

pT ¼ p0 þ b T
0

� t
� �

¼ 1 ) T
0

¼ tþ
1� p0

b
ð6Þ

Now, since T 0 � T is considered, b must have values
such that Equation (6) on T 0 holds.

Second, it was mentioned in the previous section
that the np chart is used to monitor the process. Since
the number of non-conforming items in each subgroup
cannot be negative, i.e. Di � 0, the lower control limit
(LCL) cannot be negative either. Thus, the minimum
number of each subgroup in the simulation runs is set
such that Equation (7) holds.

LCL ¼ np0 � 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

np0ð1� p0Þ
p

� 0 ð7Þ

3.3. Performances of the MLEs for p0 ¼ 0.01 and

n ¼ 300

In this section, Monte Carlo simulation is used to
evaluate the performances (i.e. the bias and the
variability of the estimates on t) of the change-point
estimators for an in-control fraction non-conforming
of p0 ¼ 0.01 with a subgroup size of n ¼ 300, where
the process real change point is simulated to happen at
t ¼ 50. Independent observations for simulation mod-
el are sampled from a binomial distribution with the
process fraction non-conforming p0 ¼ 0.01 and sub-
groups of i ¼ 1, 2, . . ., 50, each having a size of
n ¼ 300. After subgroup 50, independent observations
are simulated from a binomial distribution with the
process fraction non-conforming pi ¼ p0 þ b(i 7 50)
until the control chart signals. Based on the simulation
data, the three aforementioned estimators of the
process fraction non-conforming change point, i.e.
t̂l t, t̂SC, and t̂MC, were then obtained. This procedure
was repeated N ¼ 10,000 times over a range of b

values for each estimator. The mean squared errors,
MSE, and the expected time of the change-point
estimates were calculated as shown in Table 1, where
the standard errors greater or equal than 0.01 are
shown in parentheses. Moreover, the expected time of
the first genuine alarm, E(T), is the expected time at
which the control chart first signals a disturbance in
the process fraction non-conforming.

The results provided in Table 1 show that, except
for b ¼ 0.01, MSEðt̂l tÞ is smaller than both MSEðt̂SCÞ
and MSEðt̂MCÞ for all other considered values of b. It
means that the proposed estimator performs better
than the other two estimators. Note that, in this table,
as the magnitude of the slope parameter, b, increases
to 0.30, the mean squared error for the three estimators
decreases. However, more accurate estimates are
obtained using the proposed method in almost all
cases. Thus, it can be concluded from Table 1 that the
proposed estimator outperforms the other two estima-
tors and that it provides a more accurate estimate of
the true process change point when a linear trend
disturbance is present.

Figure 1. The constraint on the process fraction non-
conforming (0 � p � 1).
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In order to evaluate and compare the precision of
proposed change-point estimator with the ones of the
estimators proposed by Samuel and Pignatiello (2001)
and Perry et al. (2007), this procedure was repeated for
a total of N ¼ 10,000 independent simulation runs

using p0 ¼ 0.01, n ¼ 300, and t ¼ 50 for each estima-
tor. Then, the probability of the change-point estimate
to lie within a certain sample from the true change
point is reported in Table 2 for different values of b. In
this table, the precision estimates of t̂MC are shown in

Table 1. Accuracy performances for three MLEs of the change point for different b values following a genuine signal from a np
control chart when a linear trend change is present.

b E(T) t̂lt MSEðt̂ltÞ t̂MC MSEðt̂MCÞ t̂SC MSEðt̂SCÞ

0.01 52.189 51.167 (0.01) 1.361 38.742 (0.27) 126.804 49.413 (0.06) 0.348
0.02 51.391 50.320 (0.01) 0.102 37.967 (0.28) 144.871 49.196 (0.06) 0.648
0.03 51.090 50.007 0.004 38.335 (0.28) 136.137 49.088 (0.06) 0.834
0.04 50.984 49.835 0.027 38.882 (0.27) 123.669 49.169 (0.05) 0.693
0.05 50.950 49.665 0.112 39.039 (0.36) 120.277 49.346 (0.05) 0.429
0.07 50.949 49.669 0.109 37.742 (0.40) 150.422 49.299 (0.05) 0.493
0.08 50.947 49.755 0.050 38.007 (0.39) 143.983 49.338 (0.05) 0.440
0.09 50.950 49.809 0.036 38.582 (0.39) 130.523 49.261 (0.05) 0.548
0.11 50.943 49.888 0.012 39.040 (0.36) 120.255 49.312 (0.05) 0.476
0.13 50.949 49.933 0.004 38.306 (0.39) 136.903 49.337 (0.05) 0.441
0.15 50.949 49.947 0.003 37.712 (0.40) 151.158 49.247 (0.05) 0.569
0.19 50.947 49.910 0.007 38.487 (0.39) 132.690 49.357 (0.05) 0.415
0.23 50.946 49.565 0.189 38.453 (0.38) 133.477 49.2642 (0.05) 0.543
0.25 50.946 49.324 0.456 39.000 (0.38) 121.135 49.259 (0.05) 0.551
0.30 50.938 49.625 (0.01) 0.141 37.214 (0.41) 163.648 49.452 (0.09) 0.308

Table 2. Precision performance of the three estimators based on different values of b (p0 ¼ 0.01, n ¼ 300, t ¼ 50, and
N ¼ 10,000 independent runs).

b 0.01 0.02 0.03 0.04 0.05 0.07 0.09 0.11 0.13 0.15 0.19 0.23 0.25 0.30

P(jT 7 tj ¼ 0) 0.35 0.48 0.62 0.71 0.79 0.89 0.93 0.94 0.92 0.95 0.95 0.95 0.95 0.95
(0.02) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01)
[0.21] [0.57] [0.82] [0.78] [0.84] [0.86] [0.90] [0.91] [0.94] [0.95] [0.95] [0.87] [0.86] [0.51]

P(jT 7 tj � 1) 0.45 0.90 0.92 0.92 0.93 0.94 0.94 0.94 0.94 0.94 0.94 0.95 0.95 .95
(0.10) (0.09) (0.09) (0.10) (0.09) (0.09) (0.11) (0.09) (0.10) (0.09) (0.09) (0.09) (0.10) (0.07)
[0.76] [0.99] [1.00] [1.00] [1.00] [1.00] [0.99] [0.99] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00]

P(jT 7 tj � 2) 0.73 0.92 0.93 0.93 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.96 0.96 0.96
(0.21) (0.20) (0.20) (0.23) (0.20) (0.22) (0.22) (0.19) (0.21) (0.21) (0.21) (0.20) (0.21) (0.17)
[0.96] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00]

P(jT 7 tj � 3) 0.79 0.94 0.94 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.97 0.97
(0.30) (0.28) (0.29) (0.31) (0.29) (0.29) (0.30) (0.29) (0.29) (0.29) (0.29) (0.28) (0.29) (0.25)
[1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] 1.00] [1.00] [1.00] [1.00]

P(jT 7 tj � 5) 0.86 0.95 0.95 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.98
(0.44) (0.38) (0.41) (0.44) (0.41) (0.40) (0.43) (0.42) (0.43) (0.21) (0.42) (0.41) (0.43) (0.38)
[1.00] [1.00] [1.00] [1.00 [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00]

P(jT 7 tj � 7) 0.91 0.95 0.96 0.96 0.96 0.97 0.97 0.97 0.98 0.98 0.98 0.98 0.98 0.98
(0.54) (0.51) (0.54) (0.56) (0.54) (0.51) (0.55) (0.55) (0.54) (0.31) (0.54) (0.54 (0.55) (0.49)
[1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00]

P(jT 7 tj � 9) 0.94 0.95 0.96 0.96 0.96 0.97 0.97 0.97 0.98 0.98 0.98 0.98 0.98 0.98
(0.64) (0.61) (0.69) (0.65) (0.64) (0.1) (0.64) (0.65) (0.62) (0.59) (0.63) (0.63) (0.64) (0.60)
[1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00]

P(jT 7 tj � 13) 0.95 0.95 0.96 0.96 0.96 0.97 0.97 0.98 0.98 0.98 0.98 0.99 0.98 0.8
(0.73) (0.71) (0.73) (0.73) (0.75) (0.72) (0.73) (0.75) (0.72) (0.60) (0.74) (0.72) (0.74) (0.70)
[1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00]

P(jT 7 tj � 17) 0.96 0.95 0.96 0.96 0.96 0.97 0.98 0.98 0.98 0.98 0.98 0.99 0.99 0.99
(0.78) (0.78) (0.78) (0.79) (0.80) (0.77) (0.79) (0.80) (0.77) (0.76) (0.79) (0.78) (0.80) (0.75)
[1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00]

P(jT 7 tj � 19) 0.96 0.95 0.96 0.96 0.96 0.97 0.98 0.98 0.98 0.98 0.98 0.99 0.99 0.99
(0.82) (0.80) (0.81) (0.81) (0.83) (0.78) (0.81) (0.83) (0.81) (0.78) (0.81) (0.80) (0.83) (0.77)
[1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [.00] [1.00] [1.00] [1.00]

P(jT 7 tj � 20) 0.96 0.95 0.96 0.96 0.96 0.97 0.98 0.98 0.98 0.98 0.98 0.99 0.99 0.99
(0.83) (0.81) (0.81) (0.82) (0.84) (0.79) (0.81) (0.84) (0.82) (0.79) (0.81) (0.81) (0.84) (0.79)
[1.00] [1.00] [1.00] [1.00] 1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00]
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parentheses and the precision estimates of t̂l t are
shown in brackets.

Based on the results in Table 2, the t̂l t estimator
provides a more or at least equal precise estimate in
comparison with t̂SC and t̂MC if the changes follow a
linear trend model. Moreover, regarding to the results
obtained in Table 2, the precision estimates of the
estimators are plotted in Figures 2–7, where they show
precision estimate values versus possible slope of
change trends for specified tolerances. Further, for
each value of b, three values of different estimators are
compared. In these figures, the precision performances
of the proposed estimator are shown in comparison
with the other estimators in the presence of linear
disturbance.

Figure 2 shows that, for process change with
b ¼ 0.03, the estimated probability of correctly identi-
fying the time of the process change using the proposed
estimator is 82%, whereas the estimated probabilities
of t̂SC and t̂MC are 62% and 1%, respectively. It
should be noted that the precision provided by the
proposed estimator of the accurate change point

(limiting value of the probability P(jT 7 tj ¼ 0) was
not absolutely better than t̂SC, where, for some values
of b, the precision performance of t̂SC is equal or even
better than the ones of the proposed estimator.
For example, the estimated limiting values for this

Figure 2. Precision of estimators for the estimated accurate
change point P(jT 7 tj ¼ 0).

Figure 3. Precision of estimators for tolerance 1 subgroup
P(jT 7 tj � 1).

Figure 4. Precision of estimators for tolerance 3 subgroups
P(jT 7 tj � 3).

Figure 5. Precision of estimators for tolerance 9 subgroups
P(jT 7 tj � 9).

Figure 6. Precision of estimators for tolerance 13 subgroups
P(jT 7 tj � 13).
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probability with change slope of b ¼ 0.11, using t̂SC
and t̂l t, are 0.82 and 0.49, respectively. However, for
other limiting values of the probability, t̂SC has perfect
precision.

The precision provided by the proposed estimator
for the true change point within 1 subgroup, which is
in the presence of linear disturbance, is better than the
other two estimators. While increasing the magnitude
of the change slope in the process fraction non-
conforming, it is observed that the precision preference
of the proposed estimator is as good as that of the
accurate performance as shown in Table 1. Moreover,
the precision of t̂SC is improved by the increase in b

values. As observed in Figures 2–7, by increasing the
tolerance value of the precision, t̂MC has a rapid trend,
never having an acceptable precision in comparison
with the other two estimators. Moreover, it can be seen
that the estimation of the change point using the
proposed estimator is within 3 subgroups of the true
process change point in all the simulation runs,
whereas the other two estimators do not have such
precision within 20 subgroups of the true process
change point.

3.3.1. The parameter constraint

In this section, the parameter constraints (Equations
(5) and (7)) that was mentioned in Section 3.2 are
considered, where the process change point is simu-
lated to happen at t ¼ 50. Independent observations
are simulated from a binomial distribution the with
process fraction non-conforming of p0 ¼ 0.01 and
subgroup size of n ¼ 300. Using Equation (6), the
value of T 0 is obtained as

T
0

¼ 50þ
1� 0:01

b
ð8Þ

Table 3 shows the simulation results for ineligible b
values that have no suitable circumstances for com-
parison between estimators.

A count variable enumerates the simulation runs
that the control chart signal time, T, is greater than
the calculated T 0. If the count value of the simulation
runs is considerable (for example, greater than or
equal to 50) for each b value, then this b value is not
suitable for the comparison between the estimators.
The above results are repeatable for other estimators
as well. With control charts that are more precise
relative to the np chart, like CUSUM and EWMA,
the accuracy, and the precision performance analysis
of the estimating change-point methods can be
improved.

The second constraint is concerned on the size
of the subgroups such that the LCL becomes non-
negative. Regarding this constraint, for the
specific simulation runs at hand, the minimum
number of a subgroup can be determined using
Equation (7) as

LCL ¼ n� 0:01� 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n� ð0:01Þ � ð1� 0:01Þ
p

� 0

) n � 300 ð9Þ

In other words, the minimum subgroup size required
for the np chart to have non-negative LCL is 300.
Samuel and Pignatiello (2001) have also indicated that
as the size of the subgroup increases, the accuracy and
the precision performance of the estimator improve. It
is up to the process engineering to determine the
subgroup size considering economic limitation, lower
limitation, and the minimum precision.

It should be noted that although the batches are
mostly made small today, there are still many
manufacturing processes that make large batches.
Moreover, in the proposed methodology, one can
make the batches smaller and obtain negative LCL
that can be assumed zero.

4. Conclusion

When a control chart signals an out-of-control
condition, a search begins to identify and, hence, to
eliminate the source(s) of the special cause. The time

Table 3. Limitation of the b value.

b E(T) t̂l t

Standard
error MSEðt̂l tÞ Count

1.50 46.866 39.00 0.00 1.00 8661
2.00 46.864 39.00 0.00 1.00 8641
2.50 46.866 39.00 0.00 1.00 8661

Figure 7. Precision of estimators for tolerance 17 subgroups
P(jT 7 tj � 17).
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when a special cause manifests itself into a process is
referred to a change point. Estimation of the genuine
time and the real source of the disturbance cause(s) in
the process fraction non-conforming is valuable for
process engineers and technicians who would like to
gain more ease and quick identification of the variables
and/or procedures that might cause a change in their
processes. In this article, an estimator based on the
maximum likelihood was proposed that helps to
identify the change point when a disturbance of linear
nature shifts the process fraction non-conforming.
Manufacturing processes in which special causes can
happen due to the linear trend disturbances in fraction
non-conforming involve gradual tool wear, machine
depreciation, workers’ fatigue, filters that become dirty
over time, or any other time-related factors that can
affect the quality of produced items. Moreover, the
performance of the proposed method was compared
with the ones of two other available estimators that
were developed by Samuel and Pignatiello (2001) and
Perry et al. (2007) in the presence of step change and
monotonic change type, respectively. The results of
this research showed that the MLE obtained for the
linear trend change has better performance than the
ones for the step change and monotonic change type
when a linear trend disturbance is present. We note
that if a linear process change is simulated, the model
that proposes a linear process change will give the best
results. In practice, at the appearance of the out-of-
control signal, one does not know the mathematical
function of process disturbance. Usually, when the
out-of-control signal is detected, the diagnostic is
started. One of the diagnoses can suppose a linear
process change. In this case, the proposed method is
useful in SPC.

The following ideas may be considered for future
research:

(1) Using more accurate methods, like CUSUM
and EWMA, to monitor the process fraction
non-conforming may result in better estimates
of the process change point.

(2) In addition to the ‘above upper control
limit’ rule that causes an out-of-control
signal, Western Electric or other sensitising
rules may also be employed to improve
the precision of the future change-point
estimator.

(3) The proposed estimator has been compared
with the step change and monotonic change
type estimators when a linear trend disturbance
is present. In this case, we showed the proposed
estimator outperforms the other two estimators
available in the literature. The comparison
study for other kinds of practical changes, for

example, step or periodic disturbance, may be
investigated in future.

(4) While the proposed methodology has been
tested using simulation, finding a real manu-
facturing case study may be considered in the
future.
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