
a branch-and-price approach for the nurse rostering

problem with multiple units

Wanzhe Hua,b,c, Xiaozhou Heb, Li Luob,∗, Panos M. Pardalosd

aSchool of Economics and Management, Chongqing University of Posts and
Telecommunications, Chongqing, China

bBusiness School, Sichuan University, Chengdu, Sichuan, China
cKey Laboratory of Big Data Intelligent Computing, Chongqing University of Posts and

Telecommunications, Chongqing, China
dDepartment of Industrial and Systems Engineering, Center for Applied Optimization,

University of Florida, Gainesville, USA

Abstract

In this paper, we study the nurse rostering problem that considers multi-
ple units and many soft time-related constraints. An efficient branch and
price solution approach that relies on a fast algorithm to solve the pricing
subproblem of the column generation process is presented. For the nurse
rostering problem, its pricing subproblem can be formulated as a shortest
path problem with resource constraints, which has been the backbone of
several solutions for several classical problems like vehicle routing problems.
However, approaches that perform well on these problems cannot be used
since most constraints in the nurse rostering problem are soft. Based on
ideas borrowed from global constraints in constraint programming to model
rostering problems, an efficient dynamic programming algorithm with novel
label definitions and dominating rules specific to soft time-related constraints
is proposed. In addition, several acceleration strategies are employed to im-
prove the branch and price algorithm. Computational results on instances of
different sizes indicate that the proposed algorithm is a promising solution
for the nurse rostering problem with multiple units.

Keywords: nurse rostering problem, multiple units, branch and price

∗Corresponding author
Email address: luolicc@163.com (Li Luo)

Preprint submitted to Elsevier November 10, 2023

ar
X

iv
:2

31
1.

05
43

8v
1

 [
m

at
h.

O
C

]
 9

 N
ov

 2
02

3

1. Introduction

The Nurse Rostering Problem (NRP), also known as the nurse scheduling
problem, aims to construct a high-quality roster for a set of nurses over a
given scheduling horizon. A roster is a collection of individual schedules for
nurses, each of which specifies an ordered list of shift sequences (e.g., early,
late, or night) and day-off periods (Brucker et al., 2010). A number of stud-
ies on the implications of poor nurse scheduling show that poor scheduling is
closely related to poor patient care, poor nurse morale, reduced patient sat-
isfaction, and ultimately poor hospital performance (Clark et al., 2015). The
real-world NRP frequently involves a large number of intricate constraints,
and many of its variants are classified as NP-hard (Brucker et al., 2011; Smet
et al., 2016). Due to the importance and complexity, NRPs have been exten-
sively studied in the past several decades, resulting in a considerable amount
of literature on the modeling and solving methods to various NRPs. For
literature reviews the reader is referred to Burke et al. (2004), Cheang et al.
(2003), and Ngoo et al. (2022).

The First and Second International Nurse Rostering Competitions (INRC-
I and INRC-II), which were held in 2010 and 2015 respectively (Ceschia
et al., 2019), provided two specific problem formulations and a large num-
ber of available instances, which makes it easier for researchers to compare
their algorithms with others. Consequently, most papers published recently
have sought to develop better solutions to these problems based on the cor-
responding instances. For example, Santos et al. (2016), Zheng et al. (2017),
and Rahimian et al. (2017) proposed new models or algorithms to solve prob-
lems similar to the one for the INRC-I. Mischek and Musliu (2019), Legrain
et al. (2020a), and Kheiri et al. (2021) reported their solutions to the multi-
stage NRP defined by the INRC-II. Additionally, the benchmark instances
presented by Curtois and Qu (2014) have also been widely used to test algo-
rithms. Knust and Xie (2019), Turhan and Bilgen (2020), and Chen et al.
(2022) are some of the researchers who have used these instances.

All these problems and instances mentioned above deal with general
NRPs that address the work assignments of nurses within one unit, so the
decision variables of their models consist in assigning nurses to different shifts
each day. However, there are some situations where multiple units are in-
volved and additional unit assignment decisions must be made. Centralized
scheduling, where the units with similar nurse requirements are scheduled
centrally to make better use of nurse resources, is one such example (Burke

2

et al., 2004). Another is the rostering problem of float nurses, who do not have
a home unit and work in different units as needed (Wright and Bretthauer,
2010; Maenhout and Vanhoucke, 2013). In these cases, nursing managers
are required to deal with the Nurse Rostering Problem with Multiple Units
(NRPMU), which takes into account additional unit allocation decisions.

Most NRPs are characterized by a large number of time-related con-
straints for individual schedules. Representative constraints include limiting
the maximum and minimum numbers of a specific roster item (e.g., assign-
ments or days-off) within the scheduling horizon and restricting the max-
imum and minimum numbers of consecutive occurrences of specific roster
items, which are referred to as “ranged” counter constraints and series con-
straints, respectively (Smet et al., 2016). Moreover, these constraints can be
hard or soft ones. To generate a feasible roster, hard constraints must be sat-
isfied while soft constraints can be violated with penalties. To our knowledge,
only a few papers deal with the NRPMU with counter and series constraints.
Wright and Mahar (2013), Leksakul et al. (2014), and Fügener et al. (2018)
proposed models involving multiple units, yet only a minority of time-related
constraints are considered. Turhan and Bilgen (2022) presented a model that
considers multiple units and most time-related constraints. They treated
most time-related constraints as hard constraints. Maenhout and Vanhoucke
(2013) proposed an integrated nurse staffing and scheduling method which
involves multiple units and a number of nurse-specific constraints and objec-
tives. In contrast, this paper focuses on the scheduling phase. The NRPMU
under study considers a range of common soft counter and series constraints
as well as novel soft constraints regarding unit allocation decisions.

Although a variety of methods have been proposed to solve NRPs, such
as exact methods, heuristics, and hybridizations of these techniques, branch
and price (B&P) has been proven to be very competitive (Burke and Curtois,
2014). It is well-known that B&P is a branch and bound method in which
Column Generation (CG) techniques are used to get the lower bound at each
node of the search tree. CG considers two problems: the master problem,
which is a linear programming problem, and the pricing subproblem, which
in NRPs is generally formulated as a Shortest Path Problem with Resource
Constraints (SPPRC), an NP-hard combinatorial optimization problem (Ir-
nich and Desaulniers, 2005). Apparently, the efficiency of the algorithm to
solve the pricing subproblem is at the core of the CG and B&P . Indeed, the
dynamic programming (DP) method has been extensively applied to solve
the SPPRC for the vehicle routing problems (VRPs), and several acceleration

3

techniques are proposed (Costa et al., 2019). Nevertheless, due to the ranged
counter and series constraints, existing DP algorithms for VRPs cannot be
directly used to solve the SPPRC for NRPs.

Multiple approaches based on B&P or CG to solve NRPs have been re-
ported during the last several decades. Some methods were proposed to
tackle the pricing subproblem. One of the earliest attempts to solve NSPs
using B&P was made in 1998 (Jaumard et al., 1998). They presented their
B&P method to solve the NRP that takes demand coverage and nurse pref-
erences into account. They formulated the pricing subproblem as a SPPRC
and proposed an efficient two-phase algorithm. Bard and Purnomo (2005)
reported a CG-based method to address the NRP subject to demand require-
ments and personel considerations, which they called pereference schedul-
ing. Columns were generated using a heuristic. To reduce the instability,
Purnomo and Bard (2007) studied the cyclic preference scheduling prob-
lem and developed a B&P algorithm. The pricing subproblem was solved
by CPLEX as an integer programming problem. Maenhout and Vanhoucke
(2010) presented an exact B&P algorithm for solving the NRP with multi-
ple objectives. A two phase approach was implemented to solve the pricing
subproblem. If the heuristic in the first phase failed, an exact dynamic
programming method was used. Strandmark et al. (2020) developed a CG
based heuristic that is able to produce good solutions quickly for large NRP
instances. The pricing subproblem was modelled as a SPPRC and solved
using a DP-based heuristic. Guo and Bard (2022) investigated the NRP
that accommodates overtime. A CG-based heuristic with stabilization was
proposed, and the pricing subproblem was solved using CPLEX.

The approaches mentioned above are mainly developed to deal with NRPs
with hard counter or series constraints. In contrast, there are only a few CG-
based solutions published to address NRPs with soft ones. He and Qu (2012)
formulated the pricing subproblem with soft constraints as a constraint pro-
gramming model, whose main task was to generate good individual schedules
rather than optimal ones. Burke and Curtois (2014) proposed a DP algorithm
to solve the SPPRC for the NRP with soft counter and series constraints. The
dominance rules are adapted directly from the methods applied for VRPs.
According to our analysis given in section 3.2, these dominance rules cannot
deal effectively with the soft counter and series constraint, which leads to a
great number of labels to be extended, thereby degrading the algorithm per-
formance. It is worth noting that Omer and Legrain (Legrain et al., 2020b;
Omer and Legrain, 2023) have reported two B&P methods to solve NRPs.

4

Their latest research (Omer and Legrain, 2023), a preprint article, is online
recently while we are conducting this research. Dedicated algorithms for the
SPPRC with soft and hard constraints involved in the NRPs are presented.
Although our method shares some similarities with theirs, the resulting dom-
inance rules are indeed different. In addition, we provide some different ideas
to define and update labels. Main differences between their method and ours
are given in section 3.3.

The aim of this paper is to address the NRPMU involving several soft
counter and series constraints, which are often encountered in real-world
NRPs. The main contributions of this paper are twofold. First, we inves-
tigate the NRPMU with a number of soft time-related constraints, which
has been dealt with by few papers. Objectives and constraints specific to
NRPMU are taken into account to match nurse skills with units and bal-
ance the distribution of the nursing workload for each unit among available
nurses. Second, we present a B&P approach to solve our NRPMU. An effi-
cient yet optimal DP algorithm is developed to tackle the SPPRC with soft
counter and series constraints. New label definitions and dominance rules
are introduced. These methods can be generalized to handle general NRPs.
In addition, we propose a tailored accelerating strategy for the NRPMU. In
contrast to traditional methods that use dominance rules within one node,
we apply our dominance rules across multiple nodes.

The remainder of this paper is organized as follows. Section 2 formally
describes the master problem and pricing subproblem for the NRPMU un-
der consideration. Section 3 presents the proposed B&P algorithm, with a
particular emphasis on describing the label definitions and dominating rules
we introduced. In section 4, computational experiments are conducted on a
number of instances. Section 5 concludes this paper.

2. Problem formulation

Given a set of nurses and the coverage requirements for each day, unit,
and shift during a scheduling period, the NRPMU is defined as the process
of determining a set of individual schedules according to a set of objectives
and constraints. An individual schedule specifies one nurse’s rest days and
work days. For each work day, the nurse is assigned to a unit (workplace)
and a shift (working period). The collection of individual schedules for all
nurses is called a roster.

5

The NRPMU involves many constraints arising from work regulations and
nurses’ preferences. Most constraints are soft and the objective is to find a
feasible roster with the minimum penalty. Since multiple units are involved,
the NRPMU is characterized by additional decisions and constraints. First,
it is essential to match nurses with units that require different skills. For each
unit, the nurses are divided into three categories: nurses with preferred skills,
with required skills, and without required skills. Nurses without required
skills cannot be assigned to corresponding units, and assigning nurses with
required but not preferred skills results in penalties. Furthermore, to balance
the distribution of the nursing workload for each unit among nurses, soft
constraints that limit the minimum and maximum number of days worked
in one unit are introduced for each nurse.

Here, we first detail the NRPMU’s constraints and then present the math-
ematical formulations in the following subsections. We assume that the
scheduling period always consists of a whole number of weeks and starts
on a Monday.

Hard constraints are:

1. One nurse can be assigned a maximum of one unit and one shift per
day.

2. Forbidden shift rotations. A shift type cannot be followed by some shift
types on the next day. For our instances, the following shift rotations
are not allowed, namely, Late-Early, Night-Early, and Night-Late.

3. Required skill. One cannot assign a nurse to a unit for which he/she
does not have corresponding required/preferred skills.

Soft constraints are:

1. Maximum and minimum number of working days for each nurse.

2. Maximum and minimum number of days worked in one unit for each
nurse.

3. Maximum number of working weekends for each nurse.

4. Maximum and minimum number of consecutive working days for each
nurse.

5. Maximum and minimum number of consecutive rest days for each
nurse.

6. Day on/off request. Requests by the nurses to work or not to work on
specific days.

6

7. Shift on/off request. Requests by the nurses to work or not to work on
specific shifts of certain days.

8. Preferred skill. Assigning nurses without preferred skills to correspond-
ing units leads to penalty.

9. Cover requirements. If the number of nurses assigned to a shift of a
unit on one day is less than its requirement, penalty occurs.

2.1. The master problem

This section introduces the master problem that is involved in the CG
process to solve the NRPMU. Notations used for the model is given as follows.
Sets:

N Set of nurses, indexed by n

D Set of days, indexed by d

U Set of units, indexed by u

S Set of shifts, indexed by s

Ln Set of feasible individual schedules for nurse n, indexed by l

Parameters:

cnl Sum of the penalties of an individual schedule l ∈ Ln, which results from
violating soft constraints

rdus the number of nurses required in shift s and unit u on day d

anldus 1 if nurse n is assigned to shift s and unit u on day d in individual
schedule l, 0 otherwise

punderdus Penalty for understaffing in shift s and unit u on day d

Decision Variables:

xnl 1 if individual schedule l is selected by nurse n, 0 otherwise

vdus The number of nurses understaffed in shift s and unit u on day d

7

The NRPMU is formulated as the following integer linear programming
model.

(MP) min
∑
n∈N

∑
l∈Ln

xnl · cnl +
∑
d∈D

∑
u∈U

∑
s∈S

punderdus · vdus (1)

s.t.
∑
n∈N

∑
l∈Ln

xnl · anldus + vdus ≥ rdus, ∀d ∈ D, u ∈ U, s ∈ S (2)∑
l∈Ln

xnl = 1, ∀n ∈ N (3)

xnl ∈ {0, 1}, ∀n ∈ N, l ∈ Ln (4)

vdus ∈ N, ∀d ∈ D, u ∈ U, s ∈ S (5)

The objective is to minimize the sum of penalties caused by all nurses’
schedules and understaffing in each shift and unit during the scheduling pe-
riod. Constraints (2) identify the number of nurses below the cover require-
ment rdus for each shift and unit on each day. Constraints (3) enforce that
one individual schedule must be selected for each nurse. Constraints (4) and
(5) define the decision variables. Note that the variables xnl are defined as
being integer so as to avoid constraints xnl ≤ 1 in the linear relaxation of
(1-5). Moreover, due to constraints (3), it is obvious that any solution with
xnl > 1 would be unfeasible.

Let us call the linear relaxation of (1-5) the Master Problem (MP), and
it has been proven that the MP can provide a good lower bound for the
branch and bound algorithm. However, since the size of each set Ln grows
exponentially with the number of shifts, units, and days, it is not tractable to
consider all possible individual schedules in the model explicitly. In practice,
we work with the MP with a small subset L

′
n ∈ Ln for each nurse, which is

called the Restricted Master Problem (RMP).
Let λdus and λn be the dual variables for the constraints (2) and (3),

respectively. Provided that we have a RMP with λ
′

dus and λ
′
n being the

optimal solutions to its dual program, the reduced cost of individual schedule
l for nurse n in the simplex method for MP can be denoted as

rcnl = cnl −
∑

d∈D
∑

u∈U
∑

s∈S anldus · λdus − λn. If individual schedules
with negative rcnl can be found, we add them, so-called columns, to the RMP
and re-optimize the RMP. Otherwise, the MP has been solved optimally.
This iterative process is known as the CG method, and the problem used to

8

generate individual schedules with negative reduced cost is called the pricing
subproblem.

2.2. The pricing subproblem

Since nurses may have different contract requirements and individual re-
quests, they are treated to be heterogeneous in the model. Consequently, the
procedure to generate columns is composed of |N | pricing subproblems, each
of which aims to find the individual schedule l with the minimum reduced
cost rcnl for nurse n. It is clear that RMP only takes into account cover
requirements explicitly. In contrast, the other constraints are dealt with im-
plicitly by the definition of feasible individual schedules, which are generated
by pricing subproblems. In order to describe these constraints precisely, we
present an integer programming model to formulate the pricing subproblem
for nurse n, which is based on the modeling method introduced by Santos
et al. (2016). The notations not mentioned above are defined as follows:
Parameters:

pdnu penalty for violating the constraint limiting the maximum number of
working days

pdnl penalty for violating the constraint limiting the minimum number of
working days

pudnuu penalty for violating the constraint limiting the maximum number of
days worked in unit u

pudnlu penalty for violating the constraint limiting the minimum number of
days worked in unit u

pwn penalty for violating the constraint limiting the maximum number of
working weekends

Π set of all ordered pairs (d1, d2) ∈ D ×D with d1 ≤ d2

pdond1d2
pre-computed penalty for consecutive work from day d1 to day d2

pdoffd1d2
pre-computed penalty for consecutive rest from day d1 to day d2

pdond penalty for the request to work on day d

pdoffd penalty for the request not to work on day d

9

psonds penalty for the request to work on shift s of day d

psoffds penalty for the request not to work on shift s of day d

pnpdu penalty if unit u is assigned to the nurse without corresponding preferred
skills.

ηu 1 if the nurse has preferred skills for unit u and 0 otherwise

W set of weekends in the scheduling period

Di set of days in the i-th weekend, i ∈ W

αl
n, α

u
n the minimum and maximum number of working days for nurse n

αul
n , α

uu
n the minimum and maximum number of days worked in unit u for
nurse n

βn the maximum number of working weekends for nurse n

Sforbidden
s set of shifts that cannot follow shift s

N require
u set of nurses with required or preferred skills for unit u

Decision Variables:

qdnu Total number of working days above the maximum number limit

qdnl Total number of working days below the minimum number limit

qudnuu Total number of working days above the maximum number limit in
unit u

qudnlu Total number of working days below the minimum number limit in unit
u

f Total number of working weekends above the maximum number limit

wd1d2 1 if the nurse works from day d1 until day d2 and 0 otherwise

rd1d2 1 if the nurse rests from day d1 until day d2 and 0 otherwise

θdus 1 if the nurse is assigned to shift s and unit u on day d and 0 otherwise

10

The integer programming model for the pricing subproblem for nurse n:

rcnl = min Fr + Fo + Fd + Fs + Fp −
∑
d∈D

∑
u∈U

∑
s∈S

θdus · λdus − λn (6)

Fr = pdnu · qdnu + pdnl · qdnl + pudnuu · qudnuu + pudnlu · qudnlu + pwn · f (7)

Fo =
∑

d1d2∈Π

(pdond1d2
· wd1d2 + pdoffd1d2

· rd1d2) (8)

Fd =
∑
d∈D

pdond · (1−
∑
s∈S

∑
u∈U

θdus) +
∑
d∈D

pdoffd ·
∑
s∈S

∑
u∈U

θdus (9)

Fs =
∑
d∈D

∑
s∈S

psonds · (1−
∑
u∈U

θdus) +
∑
d∈D

∑
s∈S

psoffds ·
∑
u∈U

θdus (10)

Fp =
∑
d∈D

∑
u∈U

pnpdu · (1− ηu) ·
∑
s∈S

θdus (11)

subject to ∑
u∈U

∑
s∈S

θdus ≤ 1,∀d ∈ D (12)

∑
u∈U

∑
s∈S

θdus =
∑

[d1,d2]∈Π:d∈[d1,d2]

wd1d2 ,∀d ∈ D (13)

∑
d1∈{1,··· ,d}

wd1d +
∑

d2∈D:d2≥d+1

w(d+1)d2 ≤ 1,∀d ∈ D (14)

∑
u∈U

∑
s∈S

θdus = 1−
∑

[d1,d2]∈Π:d∈[d1,d2]

rd1d2 ,∀d ∈ D (15)

∑
d1∈{1,··· ,d}

rd1d +
∑

d2∈D:d2≥d+1

r(d+1)d2 ≤ 1, ∀d ∈ D (16)

αl
n − qdnl ≤

∑
d∈D

∑
u∈U

∑
s∈S

θdus ≤ αu
n + qdnu (17)

αul
nu − qudnlu ≤

∑
d∈D

∑
s∈S

θdus ≤ αuu
nu + qudnuu , ∀u ∈ U (18)

yi ≥
∑
u∈U

∑
s∈S

θdus,∀i ∈ W,d ∈ Di (19)

11

yi ≤
∑
d∈Di

∑
u∈U

∑
s∈S

θdus,∀i ∈ W (20)

∑
i∈W

yi ≤ f + βn (21)

∑
u∈U

θdus +
∑
u∈U

θ(d+1)us ≤ 1,∀d ∈ D, s ∈ S, s ∈ Sforbidden
s (22)

θdus = 0,∀d ∈ D, u ∈ U, s ∈ S if n /∈ N require
u (23)

qdnu, qdnl, f ∈ N (24)

qudnuu , qudnlu ∈ N,∀u ∈ U (25)

wd1d2 , rd1d2 ∈ {0, 1},∀(d1, d2) ∈ Π (26)

θdus ∈ {0, 1},∀d ∈ D, u ∈ U, s ∈ S (27)

In the objective (6), the total penalty cnl for individual schedule l is com-
posed of Fr, Fo, Fd, Fs, and Fp, which results from violating soft constraints
1-3, 4-5, 6, 7, and 8, respectively. Constraints (12), (22), and (23) ensure
that the hard constraints must be satisfied. Constraints from (13) to (16)
link variables θdus with wd1d2 and rd1d2 . Constraints (17) model the maximum
and minimum number of working days in the scheduling period. Constraints
(18) limit the maximum and minimum number of days worked for each unit.
Constraints (19) and (20) link variables θdus with yi and guarantee that a
working weekend is defined as a weekend with at least one working day.
Constraints (21) restrict the maximum number of working weekends. The
variables are defined by constraints from (24) to (27).

3. Solution approach

Although the CG method is able to solve the MP optimally, it is not
guaranteed that the resulting solution is integral. The B&P is a hybrid
of branch and bound and CG methods, where branching occurs when the
optimal solution to the MP is not integral. For the CG method is employed
to solve the MP with additional branching constraints at each node, the
performance of the B&P depends heavily on the CG solutions.

As stated above, the performance of the algorithm to solve pricing sub-
problems is crucially important. Based on the work by Burke and Curtois

12

(2014) and constraint programming solutions for rostering problems (De-
massey et al., 2006; Métivier et al., 2009), an exact yet efficient DP algo-
rithm for the NRPMU is presented in this paper. In the following, the label
definitions and dominance rules are described in detail.

3.1. The label definition

The SPPRC for the NRPMU is defined on a directed graph G = (V,A),
where A is the set of arcs and V = {v0, ..., vn, vn+1} is the set of nodes.
Vertexes v0 and vn+1 are the source and sink nodes, respectively. Each of
the other nodes represents a working day in shift s and unit u on day d
or a day off. Assuming that there are the same shift types in each unit, n
is equal to |D| × (|U | × |S| + 1). Figure 1 gives an example graph for a
NRPMU instance with two units, which are indexed by 1 and 2 respectively,
and two shifts (Day and Night). Note that A can only contain three types
of arcs: arcs from the source node to nodes on the first day, arcs from nodes
on the last day to the sink node, and arcs from nodes on one day to nodes
on the next day. A path from the source node to the sink node represents
an individual schedule for one nurse.

Figure 1: Example graph for the SPPRC for a NRPMU instance

For the classical SPPRC, with each arc (vi, vj) ∈ A are associated a cost
cij and a set of values denoting resource consumption {drij|r ∈ RS}, where RS
is the set of resources. Assuming that only capacity constraints are involved,
there is a maximum consumption limit for each resource. Given a partial
path Pi from the source node to a node vi, the cost Ci and the quantity Rr

i

of a resource r consumed by the path are calculated by Ci =
∑

(vi,vj)∈Pi
cij

13

and Rr
i =

∑
(vi,vj)∈Pi

drij, respectively. The objective is to find a minimum
cost path from the source node to the sink node that does not exceed all
maximum resource consumption limits. Dynamic programming algorithms
for the SPPRC construct paths by iteratively extending a partial path at one
node into all its successor nodes. In the beginning, there is only one partial
path that solely consists of the source node. The algorithm terminates once
no new paths are created. Dominance rules are introduced to identify and
discard non-useful paths so that the number of paths to be extended is as
small as possible. In fact, the label is introduced in the algorithm to stand for
a path and record its cost and resource consumption. As a consequence, the
dynamic programming algorithm for the SPPRC is also called the labeling
algorithm.

Let us recall that the objective of the pricing subproblem is to find the in-
dividual schedule with the minimum reduced cost rcnl = cnl−

∑
d∈D

∑
u∈U

∑
s∈S anldus·

λdus−λn for each nurse. Since λn is a constant for nurse n, it is equivalent to
finding the complete path with the minimum cnl −

∑
d∈D

∑
u∈U

∑
s∈S anldus ·

λdus in the graph constructed for the NRPMU. Hence, we define as cnl −∑
d∈D

∑
u∈U

∑
s∈S anldus · λdus the cost of one complete path in the SPPRC

we created for the NRPMU. The dual variables λdus can be easily handled
by adding them to the costs of corresponding arcs. The difficulty lies in
computing cnl, which results from violations of soft constraints.

There are eleven constraints involved in the pricing subproblem for each
nurse. Some of these constraints can be tackled by the SPPRC easily. Since a
path contains only one node on the same day, hard constraints 1 are respected
automatically. Hard constraints 2 and 3 can be satisfied by excluding corre-
sponding arcs from the arc set A. Soft constraints 6 to 8 can be dealt with
by associating suitable costs with arcs toward the nodes denoting day/shift
on/off or units for which the nurse does not have preferred skills. In contrast,
it is hard to address the other soft constraints, which are special ones arising
out of the NRPMU or other NRP related problems.

According to Smet et al. (2016), these constraints are classified into
ranged counter constraints (soft constraints 1-3) and series constraints (soft
constraints 4 and 5). Burke and Curtois (2014) presents an efficient B&P
algorithm for the NRP, where they treat the counter constraints as general
constraints called ”Workload”, and introduce regular expression constraints
to describe the series constraints. Regular expressions are commonly used
in Computer Science to specify text patterns to be matched. If we treat the
individual schedule as the search text, the series constraint can be handled

14

by forbidding or limiting the occurrence of specified patterns. Several ex-
amples are given to illustrate how to express series constraints by regular
expression constraints. Pricing subproblems are solved by a dynamic pro-
gramming algorithm where labels they called partial patterns are used to
count the number of occurrences of the item limited by counter constraints,
such as working days and rest days, and the number of matches of each reg-
ular expression. Indeed, it is easy to notice that how the item representing
one counter constraint is counted is almost the same as the resource in the
classical SPPRC.

In this paper, we also introduce one resource (item) for each counter
constraint in the label while dealing with series constraints in a different
way. Given that Burke et al. (2004) describes most concepts related to labels
in words, it is not easy to understand and implement their approach to
handle labels. To the best of our knowledge, solving rostering problems based
on regular expressions appears first in the field of constraint programming.
Pesant (2004) introduces a new global constraint named regular to restrict
the values taken by a fixed-length sequence of variables x. Each regular
constraint corresponds to a deterministic finite automaton (DFA). A DFA
can be described by a 5-tuple which includes Q as a finite set of states, Σ as
an alphabet, δ as a partial transition function mapping Q×Σ to Q, q0 as the
initial state, and F as a subset of Q representing the final or accepting states.
When a string is given as input, the automaton begins at the initial state
q0 and processes the string symbol by symbol. At each step, the transition
function δ is applied to update the current state. The string is deemed
accepted if and only if the last state reached belongs to F . If variables x are
constrained by a regular constraint with a DFA M , any sequence of values
taken by x should be accepted byM . Following this research, Demassey et al.
(2006) presents a cost-version of regular constraints. Métivier et al. (2009)
proposes a constraint programming model to solve NRPs with cost−regular
constraints and gives several examples to show how to construct DFAs for
soft NRP constraints.

Here, we borrow some ideas from these research to define our labels. For
each series constraint, we first construct a DFA with cost and then add a
variable in the label to represent its state at one node. Let us take soft
constraint 4 as an example to detail the procedure to construct DFAs. As-
sume that the minimum and maximum number of consecutive working days
is set to dmin and dmax respectively. Let the state Si denote that one nurse
has worked consecutively for i days. There are a total of dmax + 1 states

15

Q = {S0, S1, ..., Sdmax} where q0 = S0 is the initial state and all states are
accepted, that is, F = Q. The alphabet Σ consists of two values {1, 0},
where 1 represents a working day and 0 otherwise. The transition function
δ is defined by the state transition table (Table 1). The leftmost column
indicates current states, and the other two columns give the outputs, which
consist of the next states and costs associated with the state transitions, af-
ter inputting 1 and 0 respectively. There is also a graphical representation
for a DFA. Figure 2 gives an example DFA for soft constraint 4, where arcs
denote state transitions. It is obvious that the DFA for soft constraint 5 can
be created in the same way.

Current state 1 0
S0 S1/0 S0/0
...
Si Si+1/0 S0/(dmin − i)× Cmin

...
Sdmin

Sdmin+1/0 S0/0
...

Sdmax−1 Sdmax/0 S0/0
Sdmax Sdmax/Cmax S0/0

Table 1: The example state transition table

Figure 2: Example DFA for the soft constraint 4 with dmin = 2 and dmax = 6

Finally, the labels for the NRPMU are defined as follows. With each path
P from the source node to a node vi, associate a label Li = (Ci, R

1
i , R

2u
i , R3

i , S
4
i , S

5
i)

where Ci denotes the cost and the others are introduced for soft constraints
1-5. R1

i , R
2u
i , R3

i are resources denoting the number of working days, days
worked in unit u, and working weekends in the path, respectively. The DFAs
for soft constraints 4 and 5 are represented byS4

i and S5
i , respectively, in their

16

current states. Accordingly, each arc (vi, vj) in the SPPRC for NRPMU is
associated with a cost cij caused by soft constraints 6-8, the resource con-
sumptions d1ij, d

2u
ij , d

3
ij for soft constraints 1-3, and inputs t4ij, t

5
ij for the two

DFAs. It is straightforward to determine and set these parameters based
on whether vertex vj denotes a working day or a working weekend. Let
s4/c4 = δ4(S4

i , t
4
ij) and s5/c5 = δ5(S5

i , t
5
ij) be the transition function outputs

of corresponding DFAs. When a path is extended along an arc (vi, vj), the
label Lj is created by Cj = Ci+ cij + c4+ c5, R1

j = R1
i +d1ij, R

2u
j = R2u

i +d2uij ,
R3

j = R3
i + d3ij, S

4
j = s4, and S5

j = s5.

3.2. Dominance rules

Dominance rules are used to reduce the number of labels that need to
be considered in the algorithm. Without the use of dominance rules, the
algorithm would have to enumerate all possible paths, resulting in a brute
force algorithm. For a partial path P = (v0, ..., vi), we call another partial
path E = (vj,, vn+1) a feasible extension of path P if the path (P,E) =
(v0, ..., vi, vj, ..., vn+1) represents a feasible path from the source node to the
sink node. Given two partial paths P1 and P2 which both start from the
source node, P1 is said to dominate P2 if path (P1, E) is a feasible path with
a lower cost than path (P2, E) for any feasible extension E of P2.

Efficient dominance rules have been presented for classical SPPRCs with
time or capacity constraints; Nevertheless, these rules cannot be directly
applied to solve pricing subproblems with soft constraints specific to NRPs.
Burke and Curtois (2014) adapted the dominance rules for classical SPPRCs
to treat the maximum and minimum number limits for the same resource,
such as working days, separately. That is, for one resource with the maximum
(minimum) number limit, a label A dominates another label B if the resource
consumption of A is not greater (smaller) than that of B. Obviously, for
ranged counter constraits, their method works only when two paths have the
same resource consumption. In contrast, we consider such maximum and
minimum limits as a whole and propose tailored dominance rules that can
work even if two paths have different resource consumption.

In the remainder of this section, we first present the dominance rules pro-
posed for the NRPMU, followed by necessary explanations and proofs. Let
P1 and P2 be two partial paths from v0 to some vertex vi, with labels LP1 =
(Ci,P1 , R

1
i,P1

, R2u
i,P1

, R3
i,P1

, S4
i,P1

, S5
i,P1

) and LP2 = (Ci,P2 , R
1
i,P2

, R2u
i,P2

, R3
i,P2

, S4
i,P2

, S5
i,P2

),
respectively. Given an feasible extension E = (vj,, vn+1), we denote as

17

P
′
1 = (P1, E) and P

′
2 = (P2, E) the individual schedules generated by ex-

tending two paths with E. The penalty cost caused by the violation of one
type of soft constraints when a partial path is extended to a completed in-
dividual schedule is denoted as pn. According to the definition in section
3.1, the costs of P

′
1 and P

′
2 can be represented by CostP ′

1
= Ci,P1 + cvivj +∑

(vk,vk+1)∈E cvkvk+1
+ pn1

P
′
1

+
∑

u∈U pn2u
P

′
1

+ pn3
P

′
1

+ pn4
P

′
1

+ pn5
P

′
1

and CostP ′
2
=

Ci,P2 + cvivj +
∑

(vk,vk+1)∈E cvkvk+1
+ pn1

P
′
2

+
∑

u∈U pn2u
P

′
2

+ pn3
P

′
2

+ pn4
P

′
2

+ pn5
P

′
2

,

respectively. Apparently, it is difficult to compare their costs directly because
values related to pn are unknown.

To deal with this difficulty, we propose analyzing the difference in costs
between P

′
1 and P

′
2, which can be expressed as CostP ′

1
− CostP ′

2
= Ci,P1 −

Ci,P2 +pn1
P

′
1

−pn1
P

′
2

+
∑

u∈U(pn
2u
P

′
1

−pn2u
P

′
2

)+pn3
P

′
1

−pn3
P

′
2

+pn4
P

′
1

−pn4
P

′
2

+pn5
P

′
1

−
pn5

P
′
2

. If we represent the difference of two ’pn’s as pd, The cost difference of

P
′
1 and P

′
2 can be rewritten as Ci,P1−Ci,P2+pd1+

∑
u∈U pd2u+pd3+pd4+pd5.

In fact, pd is a bounded function whose maximum value pdmax and minimum
value pdmin can be computed. Detailed explanations and proofs are presented
in subsequent paragraphs. Assuming that these values are available, we can
calculate the maximum cost difference as max(CostP ′

1
− CostP ′

2
) = Ci,P1 −

Ci,P2+pd1max+
∑

u∈U pd2umax+pd3max+pd4max+pd5max. If max(CostP ′
1
−CostP ′

2
) <

0, which means CostP ′
1
is always less than CostP ′

2
, we can determine that P1

dominates P2. Similarly, if min(CostP ′
1
− CostP ′

2
) > 0, which means CostP ′

1

is always greater than CostP ′
2
, we can determine that P2 dominates P1.

The following paragraphs aim to clarify whether pd is a bounded function
and how to compute its maximum and minimum values if it is. We take
soft constraints 1, which limit the maximum (dmax) and minimum (dmin)
number of working days, as an example to illustrate the process to analyze
pd. Consider two partial paths P1 and P2 and two complete paths P

′
1 and P

′
2,

which are generated by extending P1 and P2 with E, respectively. With loss
of generality, assume that R1

i,P1
< R1

i,P2
. In Figure 3, the line segment AD

represents the scheduling period and red line segments denote time intervals
between R1

i,P1
and R1

i,P2
. Depending on their values, there are six possible

cases where the endpoints of a red line segment are located at different parts
of AD. Let de be the number of working days in the extension E and dc be
the day index of the last nodes in paths P1 and P2. It is easy to understand
that the value of de ranges from 0 to |D| − dc. Let R1

n+1,P
′
1

and R1
n+1,P

′
2

be

18

the final numbers of working days in paths P
′
1 and P

′
2 respectively. As the

value of de changes from 0 to |D|−dc, the value of R
1
n+1,P

′
1

(R1
n+1,P

′
2

) changes

from R1
i,P1

(R1
i,P2

) to R1
i,P1

+ |D| − dc (R
1
i,P2

+ |D| − dc). Moreover, once the
value of de is determined, the pd1 can be computed. In other words, pd1 is a
function of de (denoted pd = f(de)).

Figure 3: Six cases depending on the values of R1
i,P1

and R1
i,P2

Using case 1 in Figure 3 as an example, we illustrate the effect of the
variation of de in Figure 4. The red line segment, which denotes the time
interval between R1

n+1,P
′
1

and R1
n+1,P

′
2

, shifts forward based on the magni-

tude of de. As shown in Figure 4, the length of the time interval remains
unchanged. This variation process can be divided into five stages based on
the method to compute pd1. Accordingly, Figure 5 shows the graph of the
function pd1 = f(de), where de ranges from 0 to |D| − dc. It is worth noting
that the function is a decreasing piecewise function, which consists of five
pieces.

In fact, regardless of initial values of R1
i,P1

and R1
i,P2

, pd1 is always a
decreasing function of de if R1

i,P1
< R1

i,P2
. The proof is given in Claim 1.

Therefore, when de takes the values of 0 and |D|−dc, pd1 reaches its maximum
and minimum values, respectively. Conversely, if R1

i,P1
> R1

i,P2
, it is not

difficult to understand that pd1 is an increasing function of de. As a result,
pd1 reaches its maximum at |D| − dc and minimum at 0. pd1 is always equal
to 0 When R1

i,P1
= R1

i,P2
.

For the sake of clarity, in Claim 1 and its proof, we use pd, R1, R2, R
′
1

19

and R
′
2 as shorthand notations for pd1, R1

i,P1
, R1

i,P2
, R1

n+1,P
′
1

and R1
n+1,P

′
2

,

respectively.

Figure 4: A diagram showing how the line segment for case 1 shifts forward with the
variation of de (R1 and R2 are shorthand notations for R

′

1 and R
′

2, respectively)

Claim 1. Given two paths P1 and P2 with associated resource consumptions
R1 and R2, the pd is a decreasing function of de if R1 < R2.

Proof. It is easy to see that each stage in Figure 4 corresponds to a case in
Figure 3. The process to shift forward a red line segment as de increases can
be considered as the process to change a line segment between different cases.
Table 2 presents the formula to compute pd and next possible cases for each
case. Note that two formulas are given for each case and the second formula
is obtained by replacing R

′
1 (R

′
2) in the first one with R1 + de (R2 + de).

As discussed above, pd is a function of de (pd = f(de)). Once the value of
de is determined, we are able to compute f(de) by one formula corresponding
to the case of the values of R

′
1 and R

′
2. Based on the feasible range of de,

the function f(de) can consist of one or several sub-functions, each of which
corresponds to one formula in Table 2. It is obvious that the result value
of each formula remains unchanged or decreases as de increases, that is,
every sub-function is a decreasing function. In addition, the function f(de)
is continuous at boundary points where case change occurs if several sub-
functions are involved. For instance, at the boundary point (de = dmin−R1)
between cases 3 and 5, the results of the formulas for cases 3 and 5 are both
(dmax−R2− dmin +R1)× pdnu. Finally, we conclude that since the function
pd = f(de) is a continuous function made up of one or several decreasing
sub-functions, it is a decreasing function. The proof is completed.

20

Figure 5: A diagram showing how the value of pd for case 1 changes with the variation of
de (R1 and R2 are shorthand notations for R

′

1 and R
′

2, respectively)

The methods provided above can be applied to soft constraints 1, 2, 4,
and 5 for the NRPMU. Additionally, these methods remain effective for other
soft NRP constraints with maximum and minimum number limits. Identical
ideas can be used to analyze pd3 for soft constraint 3 that limits only the
maximum number of working weekends. Its maximum and minimum values
are not challenging to obtain.

3.3. How our method differs from Omer and Legrain’s

The label definition and dominance rules we proposed have been described
in section 3.1 and 3.2. In the following, we outline the differences between
our method and the one proposed by Omer and Legrain (2023) in terms of
these two aspects. Notice that they present an outstanding and systematic
work, which includes topics not covered in our manuscript. For instance, we
do not discuss how to handle hard versions of related constraints. Here, we
only compare the methods involved in both works.

The label definitions: the first difficulty we encounter is how to define
and extend the label, which is related to how to define resource consumption
and cost associated with arcs of the graph constructed for the shortest path
problem with resource constraints. The counter constraint can be easily

21

Current case pd Next possible cases

Case 1
((dmin −R

′
1)− (dmin −R

′
2))× pdnl

2
= (R2 −R1)× pdnl

Case 2
(dmin −R

′
1)× pdnl

3 or 4
= (dmin −R1 − de)× pdnl

Case 3
(dmin −R

′
1)× pdnl − (R

′
2 − dmax)× pdnu

5
= (dmin −R1)× pdnl + (dmax −R2)× pdnu − (pdnl + pdnu)× de

Case 4 0 5

Case 5
(dmax −R

′
2)× pdnu

6
= (dmax −R2 − de)× pdnu

Case 6
((R

′
1 − dmax)− (R

′
2 − dmax))× pdnu \

= (R1 −R2)× pdnu

Table 2: Changes between different cases

handled by treating them as one common resource like the time in vehicle
routing problems. In contrast, the series constraint is hard to deal with.
To address the series constraint, Omer and Legrain (2023) develop a set of
tailored rules to define and extend labels. In contrast to their method, we
introduce the deterministic finite automaton (DFA) to deal with labels.

Although these two methods are almost the same in essence for most
constraints, the DFA-based method is more efficient when approaching for-
bidden pattern constraints. To handle a forbidden pattern constraint when
extending a label to a new vertex vi, Omer and Legrain (2023) present “Al-
gorithm 2” to find any subpatterns and determine the resource value at vi.
The time complexity of “Algorithm 2” is O(n). In contrast, the DFA-based
method treats this process as a state transition, which can be completed in
O(1) time according to corresponding state transition tables. Using the DFA-
based method can be more valuable when dealing with problems that have
a number of forbidden patterns. Additionally, multiple forbidden patterns
may have overlapping DFA states. There are mature algorithms available to
decrease the number of states (Pesant, 2004), thereby improving algorithm
efficiency.

Dominance rules: the second difficulty we encounter is how to define
dominance rules to reduce the number of labels extended in the DP algorithm.
Omer and Legrain (2023) present dominance rules for both hard and soft
constraints. However, we only compare our dominance rules with theirs with
respect to soft constraints. To clarify the differences, we directly adopt the

22

symbols they defined.
Let us recall some definitions first. Consider two partial paths P and

Q from o to some vertex v ∈ Vi (vertices of the graph for nurse i). They
denote as γ0(P) the cost of P and γr(P) the consumption of resource r ∈ R
along P . Let Q be a completion of P and Q , which means [P,Q] and
[Q,Q] are paths from the origin vertex o to the sink vertex t. For any soft
resource r, Let Gr(P,Q) and Gr(Q,Q) be the penalty costs resulting from
violations of resource r along Q in paths [P,Q] and [Q,Q], respectively. Here,
we define cQ as the sum of arc costs when extending P or Q from v to the

sink vertex t along Q . Then, it is easy to see that the final costs of feasible
paths [P,Q] and [Q,Q] are γ0([P,Q]) = γ0(P)+cQ +

∑
r∈R Gr(P,Q) and

γ0([Q,Q]) = γ0(Q)+cQ +
∑

r∈R Gr(Q,Q). Obviously, we cannot directly

compare their final costs since Gr(P,Q) and Gr(Q,Q) are unknown.
The key idea to handle this difficulty is to analyze the difference between

the final costs of these two paths:γ0([P,Q]) − γ0([Q,Q]) = γ0(P) + cQ +∑
r∈R Gr(P,Q)− (γ0(Q) + cQ +

∑
r∈R Gr(Q,Q)), which is equal to γ0(P)−

γ0(Q) +
∑

r∈R(G
r(P,Q) − Gr(Q,Q)). Omer and Legrain (2023) introduce

∆r(P,Q,Q) to be the difference between Gr(P,Q) and Gr(Q,Q). Let x
represent the resource consumption of r along Q. ∆r(P,Q,Q) is indeed a
function of x (denoted as ∆r(P,Q,Q) = f(x)), whose range of variation is
available. Apparently, the minimum resource consumption is 0. LetD denote
the maximum possible resource consumption. If we take a constraint on the
number of working days as an example, D represents the number of days
along Q. This means that the maximum resource consumption is achieved
by working every day along Q.

For the moment, all the concepts mentioned above are also discussed
in our manuscript although we used different symbols and examples. With
the notation defined above, we start to explain the differences between our
dominance rules and theirs in detail. We both realize that as x varies from 0
toD, f(x) is a bounded function. However, they directly present the formulas
(indexes with (9)) to compute its upper bound. In contrast, we first present
a proof in “Claim 1” to prove that f(x) is a deceasing (increasing) function
of x if γr(P) < γr(Q) (γr(P) > γr(Q), note that f(x) is always equal to 0
when γr(P) = γr(Q), so we do not discuss it in our proof). As a result, we
know that f(x) reaches its upper bound at x = 0 (D) when γr(P) < γr(Q)
(γr(P) > γr(Q)). Since there are different situations where initial resource
consumptions of two partial paths and their variations are different, it is not

23

so easy to know these conclusions. In our opinion, the proof is the theoretical
foundation of the dominance rules we developed.

The proof helps us to present more efficient dominance rules. Their
method can only compare two paths with different costs in one direction:
it can determine whether the path with lower cost dominates the path with
higher cost, but not vice versa. In contrast, our method can compare two
paths in both directions and determine whether either path dominates the
other regardless of their costs. Let us explain it in detail. They denote
∆

r
(P,Q,Q) as the upper bound. According to their formulas “(9)”, ∆

r
(P,Q,Q)

is always greater than or equal to 0; Hence, the “Property 1” in their
manuscript implicitly assumes that the initial cost of P is less than that
of Q, that is γ0(P) < γ0(Q). Otherwise, it is impossible to achieve γ0(P) +∑

r∈R ∆
r
(P,Q,Q) < γ0(Q) to determine that P dominates Q. In other

words, their method cannot be applied to determine whether the path with
higher cost dominates the one with lower cost. Based on our proof, we
know that f(x) reaches its lower bound at x = D (0) when γr(P) < γr(Q)
(γr(P) > γr(Q)). In addition to the upper bound, we compute the lower
bound ∆r(P,Q,Q) for each resource r. As a consequence, we can determine
that Q dominates P if γ0(P) +

∑
r∈R ∆r(P,Q,Q) > γ0(Q), which means

γ0([P,Q]) − γ0([Q,Q]) is always greater than 0. That is, even if Q is the
path with higher cost, it is possible to identify Q dominates P provided that∑

r∈R ∆r(P,Q,Q) > γ0(Q) − γ0(P) > 0. This is the situation Omer and
Legrain (2023) do not consider.

According to the analysis presented above, it is easy to understand that
the first step of applying their dominance rules is to identify the path with
lower cost as P and the other one as Q. It is notable that our dominance
rules do not distinguish P and Q based on their costs. The reason is that
the upper bound is equal to the lower bound when we permute P and Q.

Finally, our method computes the upper bound differently when γr(P) >
γr(Q). According to our proof and method, the upper bound is possible
less than 0 in theory. Consider the constraint limiting the maximum 6 and
minimum 3 number of working days and two partial paths P and Q with 3
and 1 working days, respectively. Assuming that D is 1, the upper bound is
achieved at 1, that is 0− cLr (3− 2). This may help when multiple resources
are involved.

24

3.4. Applying dominance rules across multiple nodes

classical DP algorithms for SPPRCs apply dominating rules within one
node to reduce surplus labels. The dominance rules provided above are
also based on two partial paths P1 and P2 that arrive at the same node vi.
However, as illustrated in Figure 1, since one node is created for each unit
and shift in the directed graph for the NRPMU, the number of nodes on the
same day is greater than that for the NRP with single unit. Consequently,
the algorithm efficiency gradually decreases as the number of units increases.

To achieve a better performance, an accelerating strategy specific to the
NRPMU is provided. Since different units have the same shift types in our
NRPMU instances, nodes representing the same shift type in different units
on the same day have the same set of arcs to nodes on the next day. Therefore,
it is easy to understand that one feasible extension E of path P1 whose
last node corresponds to one shift in one unit is also feasible for path P2

with the last node denoting one identical shift type in another unit. As a
result, it is possible to apply the dominating rules to compare labels across
multiple nodes corresponding to the same shift type in different units, which
contributes to reducing more labels and improving algorithm performance.

3.5. Description of the DP algorithm and B&P

Since the graph constructed for the pricing subproblem is directed and
acyclic, it is eay to determine the sequence in which the nodes are processed.
For the sake of clarity, the algorithm that applies dominance rules within
one single node is presented in Algorithm 1, based on which it is not hard
to implement the accelerating strategy introduced in section 3.4. Related
notations are given in the following.

• Φi: set of labels on node vi.

• Suc(vi): list of successors of node vi.

• E: set of all nodes sorted by the day index.

• REF (ϕi, vj): Function that returns a label generated by extending
labels ϕi ∈ Φi to node vj if the extension is feasible. The resource
consumptions and DFA states in the label are updated.

• DMN(Φi) Procedure that removes labels that are dominated by others
in the list Φi.

25

Algorithm 1 the DP algorithm for the pricing subproblem

1: Initialization:
2: Φ0 ← (0, ..., 0)
3: for vi ∈ V \{v0} do
4: Φi ← ∅
5: end for
6: Extending labels
7: for vi ∈ V do
8: Φi ← DMN(Φi)
9: for vj ∈ Suc(vi) do

10: for ϕi ∈ Φi do
11: Φj ← Φj ∪REF (ϕi, vj)
12: end for
13: end for
14: end for

The B&P algorithm implementation follows the general B&P frame-
work that has been described by a large number of papers (Feillet, 2010;
Vaclavik et al., 2018). Based on the work by Burke and Curtois (2014), the
branching strategy used is to branch on individual nurse-day-unit-shift as-
signments θndus. When the MP is solved by the CG, we compute θndus =∑

l∈Ln
xnl ·anldus and select the assignment with the value closest to 1. Then,

two child nodes are generated by adding constraints that restrict whether to
select this assignment or not. To handle these constraints in the pricing sub-
problem, one can either remove corresponding arcs in the graph or force their
selection. A simple deterministic heuristic is applied to provide initial solu-
tions to the root node. In addition, several strategies are adopted to improve
the algorithm performance. Given that the pricing procedure consists of a
set of subproblems and iterates many times, a heuristic strategy is developed
to reduce the number of subproblems to be solved in one iteration. That is,
if the reduced cost of a subproblem is not negative in one iteration, it will be
ignored in the following iterations. All subproblems will be checked again in
the final iteration so that the optimal solution is found. Also, Multithreading
is employed to solve several subproblems simultaneously and speed up the
pricing process.

26

Instances Nurses Weeks Units Instances Nurses Weeks Units
1 10 2 2 16 10 4 2
2 20 2 2 17 20 4 2
3 30 2 2 18 30 4 2
4 40 2 2 19 40 4 2
5 50 2 2 20 50 4 2
6 10 2 3 21 10 4 3
7 20 2 3 22 20 4 3
8 30 2 3 23 30 4 3
9 40 2 3 24 40 4 3
10 50 2 3 25 50 4 3
11 10 2 4 26 10 4 4
12 20 2 4 27 20 4 4
13 30 2 4 28 30 4 4
14 40 2 4 29 40 4 4
15 50 2 4 30 50 4 4

Table 3: Benchmark instances

4. Computational experiments

To assess the efficiency of the proposed algorithm to solve NRPMU, two
experiments have been conducted. First, we test the performance of the DP
algorithm presented in section 3 to solve pricing subproblems and compare
it with the DP algorithm proposed by Burke and Curtois (2014), Omer and
Legrain (2023), and a commercial integer programming solver (CIPSolver).
Second, we analyze the benefit of considering multiple units and assess the
efficiency of the B&P algorithm to solve NRPMU instances. Since there
are no available benchmark instances, a total of 30 NRPMU instances are
created based on the problem definition and real world requirements. Their
sizes vary from small (10 nurses, 2 weeks, 2 units) to large (50 nurses, 4 weeks,
4 units), and Table 3 provides more information regarding their dimensions.
Note that we assume that there are three identical shifts (early, late, and
night) in each unit for all instances. These instances are given in an XML
format (available online).

Computational experiments were carried out on a Windows 10 PC with
an Intel Core i7 1.8-GHz processor and 16 GB of RAM. Algorithms were
implemented in Java using JDK 15.0.2. The IBM ILOG CPLEX 22.1.0 is

27

used as the CIPSolver to solve related linear programming or integer pro-
gramming models. The maximum computational time was set to 15 seconds
in the first experiment and to 3600 seconds in the third one.

4.1. Performance of different exact methods for the pricing subproblem

The first experiment aims to test the performance of the DP algorithm
proposed in this paper to solve pricing subproblems. Given the impact of
dual variables on problem difficulty, all dual variables λdus are set to zero. As
discussed above, there have been several methods to solve it. For example,
using a CIPSolver is able to solve it based on the model given in section
2.2. Our DP algorithm can solve pricing subproblems to optimality, so we
compare it with three exact methods, namely, using a CIPSolver and the DP
algorithms proposed by Burke and Curtois (2014) and Omer and Legrain
(2023). As their DP algorithms were initially proposed to deal with general
NRP instances, some modifications have to be made to solve NRPMU ones.

Given that the method presented by Burke and Curtois (2014) is charac-
terized by their dominating rules that address the maximum and minimum
number limit of the same resource separately, we adopt the label definition
in this paper when implementing their DP algorithm. In other words, we
implementing their DP algorithm that differs from ours only in dominating
rules. The DP algorithm described in algorithm 1 is called DPP, while the
one with dominating rules developed by Burke and Curtois (2014) is called
DPB. As stated in the section 3.3, the main difference between the method
proposed by Omer and Legrain (2023) and ours is that their method can
only compare two paths with different costs in one direction using the upper
bound. Hence, we adapt our DPP by limiting the dominance rules to only
consider the upper bound. The adapted DPP is referred to as DPU.

To achieve a better performance, the accelerating strategy to apply dom-
inance rules across multiple nodes is proposed in section 3.4. We refer to the
DP algorithm implementing this strategy as the improved version of DPP
(DPPI).

Clearly, the instances introduced in Table 3 cannot be directly used since
the goal of the pricing subproblem is to create an individual schedule for only
one nurse. Table 4 lists the instances to test pricing subproblem solutions,
each of which corresponds to one nurse selected from one instance in Table
3. To identify these instances across two experiments, they are named with
the prefix “Sub”. The Columns Instance ID and Nurse ID indicate how the
subproblem instances and instances in Table 3 are connected.

28

Sub Instances Instance ID Nurse ID Weeks Units
Sub1 2 1 2 2
Sub2 3 2 2 2
Sub3 3 6 2 2
Sub4 5 12 2 2
Sub5 5 43 2 2
Sub6 7 2 2 3
Sub7 8 19 2 3
Sub8 9 33 2 3
Sub9 10 1 2 3
Sub10 10 2 2 3
Sub11 12 2 2 4
Sub12 13 11 2 4
Sub13 14 25 2 4
Sub14 15 26 2 4
Sub15 15 48 2 4
Sub16 17 6 4 2
Sub17 17 20 4 2
Sub18 18 16 4 2
Sub19 18 18 4 2
Sub20 19 8 4 2
Sub21 21 3 4 3
Sub22 21 9 4 3
Sub23 22 3 4 3
Sub24 24 10 4 3
Sub25 25 4 4 3
Sub26 26 5 4 4
Sub27 27 2 4 4
Sub28 28 24 4 4
Sub29 29 40 4 4
Sub30 30 49 4 4

Table 4: Instances for the pricing subproblem

29

Sub Instances
Time (millisecond) The number of labels

Cplex DPB DPU DPP DPPI DPB DPU DPP DPPI
Sub1 34 299 11 4 3 6552 810 412 232
Sub2 81 457 11 3 3 11331 732 358 202
Sub3 54 234 2 3 2 11112 544 336 189
Sub4 25 91 1 3 2 6942 584 395 218
Sub5 32 125 2 2 1 7309 803 426 243
Sub6 60 5170 154 31 33 43971 4690 2297 1109
Sub7 31 2 3 1 839 508 200
Sub8 25 4027 4 4 2 42884 1170 592 232
Sub9 79 18 7 4 1071 514 202
Sub10 28 3391 20 8 3 40737 828 548 212
Sub11 52 18 9 3 1530 772 232
Sub12 99 15 7 5 1410 670 202
Sub13 50 11 4 3 1408 668 200
Sub14 38 14 4 3 1251 636 195
Sub15 38 12 5 4 1530 772 232
Sub16 106 9101 16 10 4 105494 3719 1444 820
Sub17 105 10140 11 5 3 103461 2912 1405 802
Sub18 117 3888 51 8 10 68688 4479 1694 956
Sub19 130 2818 40 6 9 57861 5110 1722 960
Sub20 135 11846 14 8 4 104914 3625 1462 829
Sub21 153 32 20 16 4831 2056 816
Sub22 160 2783 819 534 51072 19577 8558
Sub23 176 63 20 22 5411 2068 820
Sub24 132 66 15 8 7423 2484 960
Sub25 137 60 18 10 5579 1937 779
Sub26 125 165 36 17 6462 2740 832
Sub27 180 152 33 34 7103 2692 820
Sub28 127 151 30 18 9736 3246 960
Sub29 115 82 34 10 6729 2694 822
Sub30 104 84 31 14 6273 2607 798

Table 5: Results for the pricing subproblem instances

30

These instances are solved by five methods, namely, CIPSolver (Cplex),
DPB, DPU, DPP, and DPPI. The results are presented in Table 5. The
comparison is based on the computational time (in milliseconds) and the
number of labels to be extended. The second criterion is only applicable for
the DP based algorithms, and fewer labels mean that the dominating rules
perform better. The cells are empty when the computational time limit is
exceeded. As we can see, DPP succeeds in solving almost all instances within
40 milliseconds, and the computation time and the label count increase with
the number of units or weeks. In contrast, DPB can solve only instances with
2 weeks and no more than 3 units or with 4 weeks and 2 units within the
given time limit. Its performance drops sharply as the instance size grows.
Although Cplex solves all instances, it is time-consuming. With respect to the
number of labels, compared to DPU, DPP is capable of reducing more labels,
averaging 53.8%. As expected, DPPI extends fewer labels than DPP in all
instances. On average, the number of extended labels decreases by about
57.6%. These results confirm that the ideas presented above to develop DPP
and DPPI are effective and efficient.

4.2. Comparision with commercial solvers

The objective of the second experiment is to evaluate the benefit ob-
tained by considering multiple units and assess the efficiency of the B&P
algorithm to solve NRPMU instances. For there are no published solutions
to tackle it, we compare our algorithm with a CIPSolver, Cplex. The integer
programming model input into Cplex is obtained by extending the model
from section 2.2 to consider a set of nurses. Cplex was executed with de-
fault settings and one hour time limit. The DP algorithm used by the B&P
to conduct experiments is DPPI. Results are reported in Table 6. For each
instance and each method, the lower bound (LB), the upper bound (UB),
and the computational time (Time) are provided. Note that the LB of Cplex
stands for the linear relaxation value of corresponding integer programming
model while the LB of the B&P represents the objective value of the MP
at the root node of the branch and bound tree. The column Single reports
the optimal objective obtained by solving each instance by assigning only
nurses with preferred skill to corresponding units. The bold values in the
UB column represent that their optimality is proven by the corresponding
optimizer.

As shown in Table 7, considering multiple units brings significant ben-
efits to constructing high-quality rosters. According to our instances, the

31

Instance Single
Cplex B&P

LB UB Time LB UB Time
1 130 104 122 17 122 122 5
2 177 106 133 84 133 133 10
3 198 108 131 1196 130.5 131 21
4 388 282 353 129 353 353 15
5 522 349 430 259 430 430 20
6 153 116 135 4 135 135 12
7 189.5 130 158 28 158 158 15
8 266 207 252 167 252 252 14
9 384 233 273 251 272.67 273 29
10 476 313 363 448 363 363 58
11 168 111 129 8 129 129 33
12 144 76 86 657 86 86 39
13 224 136 154 3600 153.25 154 109
14 326 242 298 264 298 298 49
15 474 368 466 265 466 466 30
16 252 196 228 39 228 228 131
17 334 224 266 3600 265.33 266 427
18 456 296 333 3600 325 325 401
19 796 592 703 3600 700 700 220
20 798 550 648 3600 640 640 547
21 323 276.5 313 10 313 313 466
22 516 436 479 505 478.75 479 1724
23 502 396 459 3600 450 450 777
24 850 537 649 3600 590.5 592 3600
25 1046 712 798 3600 791 791 663
26 238 166.5 192 173 192 192 3255
27 326 193 214 3600 213 213 1267
28 372 236 268 3600 261 261 3411
29 718 571 654 3600 647 648 3600
30 583 316 417 3600 342 342 2738

Table 6: Results for the Cplex and B&P on benchmark instances

32

objective value in column UB of the B&P decreases by an average of 19.5%
compared to that in column Single. Regarding solutions for the NRPMU,
the B&P algorithm yields a lower bound that is tighter than or equal to that
obtained by Cplex on all instances. For instances with two weeks, both Cplex
and B&P succeeds in solving 14 instances out of 15 to optimality. The B&P
algorithm consumes less computational time on 12 instances. For instances
with four weeks, B&P is able to find 13 optimal solutions compared to 4 for
Cplex. B&P obtains better solutions on two instances that cannot be solved
to optimality by either method. For instances 13 and 17, Cplex generates
solutions with the optimal objective, but could not prove their optimality
due to weak lower bounds. Apparently, with the increase in the number of
nurses, units, and weeks, the proposed B&P algorithm has demonstrated its
potential to generate better solutions.

5. Conclusion

In this article, we study a new version of NRPs, NRPMU, which features
multiple units and a number of soft time-related constraints. To solve it
efficiently, an exact algorithm based on B&P is presented. How to tackle
the pricing subproblem in the CG approach for the NRP has always been a
challenging problem since various soft constraints are involved and existing
DP algorithms suitable for VRPs cannot be directly applied. Based on ideas
from CP constraints to model rostering problems, we define new labels and
dominating rules specific to NRPMU and NRPs. Moreover, several strategies
are developed to improve the performance of the proposed DP and B&P
algorithms. Computational experiments performed on a variety of instances
with different sizes demonstrate that the DP algorithm proposed in this study
is efficient and the B&P algorithm used to solve the NRPMU is competitive.

References

Bard, J.F., Purnomo, H.W., 2005. Preference scheduling for nurses using
column generation. European Journal of Operational Research 164, 510–
534.

Brucker, P., Burke, E.K., Curtois, T., Qu, R., Vanden Berghe, G., 2010. A
shift sequence based approach for nurse scheduling and a new benchmark
dataset. Journal of Heuristics 16, 559–573.

33

Brucker, P., Qu, R., Burke, E., 2011. Personnel scheduling: Models and
complexity. European Journal of Operational Research 210, 467–473.

Burke, E.K., Curtois, T., 2014. New approaches to nurse rostering benchmark
instances. European Journal of Operational Research 237, 71–81.

Burke, E.K., De Causmaecker, P., Berghe, G.V., Van Landeghem, H., 2004.
The state of the art of nurse rostering. Journal of scheduling 7, 441–499.

Ceschia, S., Dang, N., De Causmaecker, P., Haspeslagh, S., Schaerf, A.,
2019. The second international nurse rostering competition. Annals of
Operations Research 274, 171–186.

Cheang, B., Li, H., Lim, A., Rodrigues, B., 2003. Nurse rostering problems—
-a bibliographic survey. European journal of operational research 151,
447–460.

Chen, Z., Dou, Y., De Causmaecker, P., 2022. Neural networked-assisted
method for the nurse rostering problem. Computers & Industrial Engi-
neering 171, 108430.

Clark, A., Moule, P., Topping, A., Serpell, M., 2015. Rescheduling nursing
shifts: scoping the challenge and examining the potential of mathematical
model based tools. Journal of Nursing Management 23, 411–420.

Costa, L., Contardo, C., Desaulniers, G., 2019. Exact branch-price-and-cut
algorithms for vehicle routing. Transportation Science 53, 946–985.

Curtois, T., Qu, R., 2014. Computational results on new staff scheduling
benchmark instances. ASAP Res. Group, School Comput. Sci., Univ. Not-
tingham, Nottingham, UK, Tech. Rep .

Demassey, S., Pesant, G., Rousseau, L.M., 2006. A cost-regular based hybrid
column generation approach. Constraints 11, 315–333.

Feillet, D., 2010. A tutorial on column generation and branch-and-price for
vehicle routing problems. 4or 8, 407–424.

Fügener, A., Pahr, A., Brunner, J.O., 2018. Mid-term nurse rostering consid-
ering cross-training effects. International Journal of Production Economics
196, 176–187.

34

Guo, J., Bard, J.F., 2022. A column generation-based algorithm for midterm
nurse scheduling with specialized constraints, preference considerations,
and overtime. Computers & Operations Research 138, 105597.

He, F., Qu, R., 2012. A constraint programming based column generation
approach to nurse rostering problems. Computers & Operations Research
39, 3331–3343.

Irnich, S., Desaulniers, G., 2005. Shortest path problems with resource con-
straints, in: Column generation. Springer, pp. 33–65.

Jaumard, B., Semet, F., Vovor, T., 1998. A generalized linear programming
model for nurse scheduling. European journal of operational research 107,
1–18.

Kheiri, A., Gretsista, A., Keedwell, E., Lulli, G., Epitropakis, M.G., Burke,
E.K., 2021. A hyper-heuristic approach based upon a hidden markov model
for the multi-stage nurse rostering problem. Computers & Operations
Research 130, 105221.

Knust, F., Xie, L., 2019. Simulated annealing approach to nurse rostering
benchmark and real-world instances. Annals of Operations Research 272,
187–216.

Legrain, A., Omer, J., Rosat, S., 2020a. An online stochastic algorithm for
a dynamic nurse scheduling problem. European Journal of Operational
Research 285, 196–210.

Legrain, A., Omer, J., Rosat, S., 2020b. A rotation-based branch-and-price
approach for the nurse scheduling problem. Mathematical Programming
Computation 12, 417–450.

Leksakul, K., Phetsawat, S., et al., 2014. Nurse scheduling using genetic
algorithm. Mathematical Problems in Engineering 2014.

Maenhout, B., Vanhoucke, M., 2010. Branching strategies in a branch-and-
price approach for a multiple objective nurse scheduling problem. Journal
of scheduling 13, 77–93.

Maenhout, B., Vanhoucke, M., 2013. An integrated nurse staffing and
scheduling analysis for longer-term nursing staff allocation problems.
Omega 41, 485–499.

35

Métivier, J.P., Boizumault, P., Loudni, S., 2009. Solving nurse rostering
problems using soft global constraints, in: Principles and Practice of Con-
straint Programming-CP 2009: 15th International Conference, CP 2009
Lisbon, Portugal, September 20-24, 2009 Proceedings 15, Springer. pp.
73–87.

Mischek, F., Musliu, N., 2019. Integer programming model extensions for a
multi-stage nurse rostering problem. Annals of Operations Research 275,
123–143.

Ngoo, C.M., Goh, S.L., Sabar, N.R., Abdullah, S., Kendall, G., et al., 2022. A
survey of the nurse rostering solution methodologies: The state-of-the-art
and emerging trends. IEEE Access .

Omer, J., Legrain, A., 2023. A dedicated pricing algorithm to solve a large
family of nurse scheduling problems with branch-and-price. hal-03964952
.

Pesant, G., 2004. A regular language membership constraint for fi-
nite sequences of variables, in: Principles and Practice of Constraint
Programming–CP 2004: 10th International Conference, CP 2004, Toronto,
Canada, September 27-October 1, 2004. Proceedings 10, Springer. pp. 482–
495.

Purnomo, H.W., Bard, J.F., 2007. Cyclic preference scheduling for nurses
using branch and price. Naval Research Logistics (NRL) 54, 200–220.

Rahimian, E., Akartunalı, K., Levine, J., 2017. A hybrid integer program-
ming and variable neighbourhood search algorithm to solve nurse rostering
problems. European Journal of Operational Research 258, 411–423.

Santos, H.G., Toffolo, T.A., Gomes, R.A., Ribas, S., 2016. Integer program-
ming techniques for the nurse rostering problem. Annals of Operations
Research 239, 225–251.

Smet, P., Brucker, P., De Causmaecker, P., Berghe, G.V., 2016. Polynomially
solvable personnel rostering problems. European Journal of Operational
Research 249, 67–75.

36

Strandmark, P., Qu, Y., Curtois, T., 2020. First-order linear programming
in a column generation-based heuristic approach to the nurse rostering
problem. Computers & Operations Research 120, 104945.

Turhan, A.M., Bilgen, B., 2020. A hybrid fix-and-optimize and simulated
annealing approaches for nurse rostering problem. Computers & Industrial
Engineering 145, 106531.

Turhan, A.M., Bilgen, B., 2022. A mat-heuristic based solution approach for
an extended nurse rostering problem with skills and units. Socio-Economic
Planning Sciences 82, 101300.

Vaclavik, R., Novak, A., Sucha, P., Hanzalek, Z., 2018. Accelerating the
branch-and-price algorithm using machine learning. European Journal of
Operational Research 271, 1055–1069.

Wright, P.D., Bretthauer, K.M., 2010. Strategies for addressing the nursing
shortage: Coordinated decision making and workforce flexibility. Decision
Sciences 41, 373–401.

Wright, P.D., Mahar, S., 2013. Centralized nurse scheduling to simultane-
ously improve schedule cost and nurse satisfaction. Omega 41, 1042–1052.

Zheng, Z., Liu, X., Gong, X., 2017. A simple randomized variable neighbour-
hood search for nurse rostering. Computers & Industrial Engineering 110,
165–174.

37

	Introduction
	Problem formulation
	The master problem
	The pricing subproblem

	Solution approach
	The label definition
	Dominance rules
	How our method differs from Omer and Legrain’s
	Applying dominance rules across multiple nodes
	Description of the DP algorithm and B&P

	Computational experiments
	Performance of different exact methods for the pricing subproblem
	Comparision with commercial solvers

	Conclusion

