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Brain networks or ‘connectomes’ include a minority of highly connected hub nodes that are functionally valuable, because their

topological centrality supports integrative processing and adaptive behaviours. Recent studies also suggest that hubs have higher

metabolic demands and longer-distance connections than other brain regions, and therefore could be considered biologically costly.

Assuming that hubs thus normally combine both high topological value and high biological cost, we predicted that pathological brain

lesions would be concentrated in hub regions. To test this general hypothesis, we first identified the hubs of brain anatomical

networks estimated from diffusion tensor imaging data on healthy volunteers (n = 56), and showed that computational attacks

targeted on hubs disproportionally degraded the efficiency of brain networks compared to random attacks. We then prepared grey

matter lesion maps, based on meta-analyses of published magnetic resonance imaging data on more than 20 000 subjects and 26

different brain disorders. Magnetic resonance imaging lesions that were common across all brain disorders were more likely to be

located in hubs of the normal brain connectome (P5 10�4, permutation test). Specifically, nine brain disorders had lesions that were

significantly more likely to be located in hubs (P5 0.05, permutation test), including schizophrenia and Alzheimer’s disease. Both

these disorders had significantly hub-concentrated lesion distributions, although (almost completely) distinct subsets of cortical

hubs were lesioned in each disorder: temporal lobe hubs specifically were associated with higher lesion probability in Alzheimer’s

disease, whereas in schizophrenia lesions were concentrated in both frontal and temporal cortical hubs. These results linking

pathological lesions to the topological centrality of nodes in the normal diffusion tensor imaging connectome were generally

replicated when hubs were defined instead by the meta-analysis of more than 1500 task-related functional neuroimaging studies

of healthy volunteers to create a normative functional co-activation network. We conclude that the high cost/high value hubs of

human brain networks are more likely to be anatomically abnormal than non-hubs in many (if not all) brain disorders.
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Introduction
Connectomes or brain networks derived from neuroimaging data

have several non-random or complex topological properties

(Bullmore and Sporns, 2009), including fat-tailed degree distribu-

tions that reflect the existence of a minority of high degree (highly

connected) hub nodes (Eguiluz et al., 2005; Achard et al., 2006;

Sporns et al., 2007; van den Heuvel and Sporns, 2013). Hubs

mediate many of the long-distance connections between brain

modules (Zamora-Lopez et al., 2010), and are efficiently intercon-

nected to form a rich club (van den Heuvel and Sporns, 2011). It

has been suggested that these topological features are functionally

valuable for integrative information processing and adaptive be-

haviour (van den Heuvel et al., 2012; Crossley et al., 2013).

However, the spatial distance of edges connecting hubs to the

rest of the network (a proxy measure of wiring cost) is greater

than the distance of edges connecting more topologically periph-

eral nodes (van den Heuvel et al., 2012; Alexander-Bloch et al.,

2013). As such, hubs appear to transgress the parsimonious drive

to minimize wiring cost (Kaiser and Hilgetag, 2006), which

explains several other organizational features of brain networks

(Chen et al., 2006). Recent studies have also shown that hubs,

especially in the cortex, have higher rates of cerebral blood flow,

aerobic glycolysis and oxidative glucose metabolism (Vaishnavi

et al., 2010; Liang et al., 2013; Tomasi et al., 2013). Arguably,

this combination of higher metabolic rate and longer connec-

tion distance could be summarized by saying hubs are

‘biologically costly’.

Comparable high cost / high value properties of network hubs

have been described in brains of other species (Iturria-Medina

et al., 2010; Harriger et al., 2012; Towlson et al., 2013), suggest-

ing that an economical trade-off between topological value and

biological cost may be a general and scale-invariant selection pres-

sure on the formation of nervous systems (Bullmore and Sporns,

2012; Vertes et al., 2012).

Conceptualizing the brain as a network (the ‘connectome’)

(Sporns et al., 2005) has potentially important implications for

understanding clinical brain disorders (Bullmore and Sporns,

2012; Fornito et al., 2012; Menon, 2013; Rubinov and

Bullmore, 2013; van den Heuvel and Sporns, 2013). For example,

cortical hubs have been suggested to be critical regions in

Alzheimer’s disease, concentrating most of the amyloid-b depos-

ition (Buckner et al., 2009). Other studies have highlighted the

role of topological modularity in the anatomy of brain disorders,

showing that focal grey matter abnormalities in neurodegenerative

disorders are not randomly located with respect to the modular

organization of the normal brain network (Seeley et al., 2009).

Furthermore, focal brain lesions affecting nodes involved in inter-

modular connections cause important reconfiguration of the whole

network (Gratton et al., 2012). As most studies have focused on

neurodegenerative disorders, a number of disease-specific mech-

anisms have been proposed to account for the observed

relationships between neuropathology and brain network organ-

ization (Zhou et al., 2012). For example, trans-synaptic transmis-

sion of a pathogenic agent has been suggested to explain the

modular distribution of cortical abnormalities (Prusiner, 1984;

Pearson et al., 1985; Raj et al., 2012); and this mechanism

could also explain higher lesion concentration in hubs (Zhou

et al., 2012). It has also been proposed that hubs may have

greater susceptibility to oxidative stress, due to their higher rates

of metabolic activity (Buckner et al., 2009; Saxena and Caroni,

2011); and a computational model of this pathological mechanism

mirrored several neurophysiological aspects of Alzheimer’s disease

(de Haan et al., 2012).

Here we investigate a more general theory of the relationship

between the topology of the connectome and the anatomy of

brain disorders, particularly focusing on the role of hubs. We rea-

soned that the high cost/high value hubs of the connectome will

be particularly crucial for brain disorders for two main reasons.

First, their topologically central role could mean that pathological

attack on a hub will have a disproportionate impact on the net-

work’s global efficiency of information processing (Albert et al.,

2000); and thus be more likely to lead to clinical symptoms such

as impairment of cognitive functions, that normally depend on

integrative network processes. Second, their topological centrality

and high biological cost could make hubs particularly vulnerable to

a wide range of pathogenic factors. The main distinction of this

theory is its generality: we predicted that any brain disorder, irre-

spective of its particular aetiology, was likely to impact preferen-

tially on normal brain network hubs.

Materials and methods

Diffusion tensor imaging and
anatomical network construction
Diffusion tensor imaging (DTI) data from 56 healthy subjects (mean

age 32 years, 18 female) were acquired on a 1.5 T GE SIGNA NVi

scanner (General Electric) using a cardiac-gated single-shot echo-

planar sequence with the following parameters: echo time = 107 ms,

repetition time = 15 R-R intervals, 60 contiguous 2.5 mm slices, matrix

size 96 � 96 over a 24 cm field of view. Data were zero-filled and

reconstructed to a 128 � 128 matrix with a final voxel size of

1.875 � 1.875 � 2.5 mm3. Sixty-four diffusion-weighted images (b =

1300 s mm�2) with distributed diffusion sensitization directions and

seven images with no diffusion gradients were acquired. Image pre-

processing included correction for eddy currents and subject motion,

normalization into standardized space using an appropriate B-matrix

rotation on the diffusion gradients (Leemans and Jones, 2009), before

robust estimation of the tensor model (RESTORE) (Chang et al.,

2005). Whole brain deterministic tractography was performed

(Basser et al., 2000), with streamlines terminating if encountering a

fractional anisotropy threshold 50.2 or a maximum deflection angle of

30�. The whole brain (excluding the cerebellum) was parcellated into

Network hubs and brain disorders Brain 2014: 137; 2382–2395 | 2383

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/article/137/8/2382/2847927 by guest on 26 D

ecem
ber 2024



401 similarly-sized regions, respecting anatomical landmarks (Tzourio-

Mazoyer et al., 2002; Zalesky et al., 2010). We then calculated the

number of streamlines connecting all pairs of regions for every subject,

and built a group binary network by drawing an edge when the

number of streamlines connecting two regions across subjects was

significantly different from zero at P5 0.01 [rank sum test, false dis-

covery rate (FDR) corrected]. By using a template with similarly-sized

regions, we avoided any bias introduced by larger regions having

more connections or greater probability of grey matter lesions

(Supplementary Fig. 1).

Topological and spatial measures of the
diffusion tensor imaging network
Several graph analytic measures were estimated on the binary network

built from the DTI data, including degree (number of connections) and

betweenness centrality of each nodal region; global efficiency, rich

club and modularity of the network, and participation coefficient of

each node in the context of this modular structure (Rubinov and

Sporns, 2010). See the online Supplementary material for more

detail on graph theoretical metrics. We also estimated the connection

distance between each pair of brain regions by measuring the

Euclidean distance between their centroids in stereotactic space.

To investigate the resilience of the network, we modelled two

modes of attack in silico: random and targeted attack. Analysis of

resilience to random attack consisted of monitoring the global effi-

ciency of the remaining network after deleting an increasing number

of randomly selected nodes (1000 iterations). Targeted attack was

performed by deleting nodes in order of decreasing degree, i.e. attack-

ing the highest degree hub first. Change in global efficiency after each

node was deleted was expressed as a percentage of the intact net-

work’s global efficiency. We repeated this same procedure but delet-

ing edges rather than nodes: edges were deleted at random or in order

of decreasing connection distance, i.e. attacking the longest edge first.

Meta-analysis of anatomical
(voxel-based morphometry)
studies of clinical disorders
We included structural MRI studies analysed using voxel-based morph-

ometry (VBM) that reported significant grey matter volume or density

reductions in patients with any neurological or psychiatric disorder

compared to healthy volunteers. Eligible studies had been published

in English language journals, before the date of the search (May

2012), and reported coordinates of grey matter changes in standard

stereotactic space. We tried to be as inclusive as possible, and per-

formed 93 different searches in PubMed using terms related to dis-

orders as described in Chapters V and VI of the 10th Edition of the

International Classification of Disorders (ICD-10, 2010). We also

searched the BrainMap database (Fox and Lancaster, 2002; Fox

et al., 2005; Laird et al., 2005) and updated this open access database

with the results of any additional primary studies identified by the

PubMed searches, so that the complete set of primary coordinates

used for the meta-analysis is accessible at http://www.brainmap.org

(see Supplementary material and Supplementary Fig. 2 for details).

For each primary study, we identified coordinates of grey matter

volume (or density) reduction in patients that were reported as statis-

tically significant at a threshold of P5 0.05 whole-brain corrected or

P5 0.001 uncorrected. Coordinates reported in Talairach space were

transformed into the stereotactic space of the MNI atlas (Lancaster

et al., 2007). We used the anatomical likelihood estimation (ALE)

method of meta-analysis (Eickhoff et al., 2009) to identify locations

of significant grey matter deficits or lesions ‘on average’ over a given

set of primary studies with P5 0.05 (FDR corrected) and a cluster size

threshold of 200 mm3. Briefly, anatomical likelihood estimation models

peak lesion coordinates using 3D Gaussian kernels, with their width

defined according to the sample size included. The extent of overlap of

the modelled lesions across studies is compared to null models based

on the same number of lesions but randomly distributed in the brain.

Using these methods we created a ‘disorder specific’ meta-analytic

map of grey matter lesions for the set of primary studies reporting

case-control differences on each of the 26 disorders. We also created

‘disorder general’ lesion maps by meta-analysis of a sample of primary

studies representative of all 26 disorders or a large number of them.

To avoid the disorder general maps being biased by the most fre-

quently studied disorders, which also tended to be studied in the

largest primary samples, we included the same number of studies

(n = 7) per disorder, by randomly sampling a subset of seven primary

studies of those disorders, which had been the focus of more than

seven published VBM studies. Additionally we corrected the precision

of each primary study for its sample size, to mitigate the dispropor-

tionate influence of a few large-sample primary studies on the meta-

analytic results (Supplementary material).

To assess the robustness of our results, we constructed two alter-

native, disorder-general VBM lesion maps: (i) excluding neurodegen-

erative disorders (amyotrophic lateral sclerosis, Alzheimer’s disease,

frontotemporal dementia, Huntington’s disease, progressive supra-

nuclear palsy, Parkinson’s disease and dementia in Parkinson’s), for

which hub vulnerability has been previously noted and disease-specific

hypotheses suggested (Buckner et al., 2009; Zhou et al., 2012); and

(ii) based on a smaller subset of more frequently studied disorders (16

disorders for each of which at least nine VBM studies had been

published).

Relating topologically central hubs to
grey matter lesions
To relate the topological properties of the normative connectome to

meta-analytically derived grey matter lesions, we first assumed that

the degree of a voxel in the meta-analytic lesion maps was equivalent

to the degree of the regional node of the DTI network in which it was

located. We then used logistic regression to relate the binary status of

each voxel (lesion or non-lesion) to the continuous independent vari-

able of its degree defined by the DTI connectome. We used permu-

tation testing to assign P-values to the logistic regression coefficients.

To do this we compared the observed logistic regression coefficient for

each voxel to a permutation distribution of coefficients estimated by

fitting the same logistic regression model after randomly permuting the

assignment of degrees to regional nodes 10 000 times. Similarly, we

compared the difference between the median degree of the lesion and

non-lesion voxels to a null distribution based on permutation of the

regional degrees.

For the maps of each individual disorder, we used bootstrapping to

construct 95% confidence intervals (CIs) for the estimated difference

in degree of lesion and non-lesion voxels. We thus repeated the VBM

meta-analysis for each disorder 100 times, including the same number

of studies randomly sampled with replacement (bootstrap), and calcu-

lated the difference between the median degree of the lesion and non-

lesion voxels in each of the bootstrapped maps.
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Functional co-activation network
To explore the relationship between VBM lesions and network hubs in

a different (functional) network, we used the network of functionally

co-activated brain regions, as previously reported in detail (Crossley

et al., 2013). Briefly, this network was based on meta-analysis of 1641

task-related neuroimaging studies on healthy volunteers performing a

wide range of experimental tasks. The activation coordinates were

mapped to a parcellation template image comprising 638 similarly

sized regions. Two regional nodes defined by this template were con-

nected by an edge if they were significantly co-activated by experi-

mental tasks. We used the Jaccard index as a measure of co-activation

for each pair of regions, which is the number of studies activating both

regions divided by the number of studies activating either one of

them. Edges were defined probabilistically (P5 0.01, FDR corrected)

and weighted by the corresponding Jaccard index. This co-activation

network has several topological and physical properties in common

with resting state functional MRI networks (Crossley et al., 2013).

We here used weighted degree as the primary measure of centrality

(defined as the sum of the Jaccard indices weighting each of the edges

to a node). Results were substantially unchanged if we analysed an

unweighted version of the network and used binary degree as the

measure of centrality.

Results

Characteristics of the normal human
brain (diffusion tensor imaging)
connectome
The DTI network was a binary graph comprising a single con-

nected cluster of 401 nodes with a connection density of 14.8%

(edge-wise probability of false positive error P50.01, FDR cor-

rected). It had a fat-tailed degree distribution, following an expo-

nentially-truncated power law (Clauset et al., 2009), indicating the

presence of several high degree hub nodes (Fig. 1B). The top 5%

most connected nodes were anatomically located in the posterior

cingulate cortex, thalamus, putamen, and hippocampus, as well as

parts of the right occipital cortex and left globus pallidus (Fig. 1A).

The network had a small-world organization (Watts and

Strogatz, 1998), with a higher clustering coefficient than null

models with similar degree distribution (� = 2.07, 95% CI: 2.05–

2.08), whereas its characteristic path length was not much greater

than comparable random graphs (� = 1.135, 95% CI: 1.134–

1.136; Fig. 1E). The connectome had a modular community struc-

ture [(Newman, 2006), Q = 0.38, five modules, Fig. 1F], with hubs

mediating many of the intermodular connections (Guimera and

Nunes Amaral, 2005) (participation coefficients ranging from

0.63 to 0.75 for the top 5% hubs). The size of the modules

explained a low percentage of the variance of nodal degree

(7%); whereas degree and participation coefficient were positively

correlated and shared �34% of their variance (Power et al.,

2013). Hubs were also efficiently interconnected with each other

to form a rich club (Fig. 1G). All of these results replicate previ-

ously published data on independent samples (Hagmann et al.,

2008; Gong et al., 2009; van den Heuvel and Sporns, 2011)

indicating the replicability of DTI connectomics and establishing

the concurrent validity of this connectome as a basis for further

analysis.

The wiring cost of the DTI network, as measured by the median

Euclidean distance between connected nodes, was reduced com-

pared to that of a random network (P50.001, permutation test);

but the distance distribution was fat-tailed indicating some unusu-

ally long distance connections (Fig. 1C). In line with previous stu-

dies (van den Heuvel and Sporns, 2011; Alexander-Bloch et al.,

2013), long-range connections were concentrated on high degree

nodes, and there was a significant positive correlation between

nodal degree and the mean connection distance of the edges

linking each node to the rest of the network (Spearman’s

� = 0.71, Fig. 1D).

Resilience of the diffusion tensor
imaging connectome to computational
attack
We investigated the resilience of this network to computational

attack, by deleting individual nodes or edges and studying the

resulting degradation of the network’s global efficiency (Albert

et al., 2000). When nodes were attacked randomly, the connec-

tome proved to be almost as resilient as a random graph.

However, targeted attack on high degree nodes caused the

global efficiency of the brain network to deteriorate more rapidly

than the efficiency of a random graph (Fig. 2A). Similarly, the

brain network was relatively resilient to attacking edges chosen

at random, but targeting long distance edges led to a more

rapid deterioration of global efficiency (Fig. 2B). In other words,

high degree hub nodes, and the longer distance edges that tended

to connect them to the rest of the network, rendered the topo-

logical efficiency of the brain network especially vulnerable to

targeted attack.

Relationship of diffusion tensor
imaging connectome hubs to
anatomical locations of MRI lesions
We then explored the relationship between hubs and lesions using

data from MRI studies of 26 neurological and psychiatric disorders.

We conducted a systematic, quantitative meta-analysis of the

published literature of 392 VBM case-control studies including a

total of 9874 patients and 11 502 healthy volunteers (Table 1;

citation details of the primary studies are provided in the

Supplementary material).

We first combined a balanced subset of these primary studies

(including seven studies per each of the 26 disorders; see

‘Materials and methods’ section) into a single map representing

brain regions that were, on average, significantly different be-

tween patients and healthy volunteers across all disorders. These

disorder-general MRI abnormalities of grey matter were located in

bilateral thalamus and striatum (putamen and caudate); bilateral

hippocampus, insula and superior temporal gyrus; bilateral anterior

cingulate cortex, dorsolateral prefrontal cortex and motor cortex;

and bilateral superior parietal cortex (Fig. 3A and Supplementary
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Table 1 for anatomical details). Each voxel in this meta-analytic

map could thus be categorized as ‘lesion’ or ‘non-lesion’.

We then aligned the nodes of the normative (DTI) connectome

to the coordinates of the meta-analytic lesion map so that each

voxel in the lesion map could be assigned the degree of the re-

gional node in which it was anatomically located. Using a simple

logistic regression model, we demonstrated that the probability of

a voxel being lesioned was significantly related to its nodal degree

(P510�4, permutation test; Fig. 3B–D). The fitted logistic model

predicted a 1.4% increase in the probability that a voxel would be

lesioned for every unit increase in degree (each additional connec-

tion) of its regional node. Confirming the association between

normative network hubs and grey matter lesions, the median

degree of lesion voxels (60) was significantly greater than the

median degree of non-lesion voxels (47; P510�4, permutation

test). Another way of looking at these results is to recall that hubs

in the DTI connectome form a highly interconnected rich club. We

found that 22.5% of the voxels represented by rich-club nodes

and 9.8% of voxels represented by peripheral nodes (non rich-

club members) were defined as lesion voxels by the VBM

Figure 1 Topological characteristics of the normal brain anatomical network (DTI connectome). (A) Nodes of the normal DTI

network in anatomical space; the size of each node is proportional to its degree. (B) Fat-tailed degree distribution of DTI network

(histogram) indicating higher probability of hubs than in a random (Erdös-Rényi) graph (red line). (C) Distance distribution of DTI

networks (histogram) and of random graphs matched for degree distribution (red line). (D) Scatterplot of degree versus mean

connection distance in the DTI network. (E) Small-world properties of the network (� = normalized clustering coefficient; � = nor-

malized path length; � = ratio of � to �; dotted line = 1, the expected value of all these metrics in a random graph). (F) Modular

decomposition of the DTI network. (G) Plot of the normalized rich club coefficient (y-axis) as a function of degree threshold (x-axis)

used to define the rich club; dotted line = 1, the expected value of the normalized rich-club coefficient in a random network with the

same degree distribution as the DTI connectome.
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meta-analysis, and this difference was statistically significant

(P510�4, permutation test).

To relate these findings to our computational results on

simulated attacks on the network, we modelled pathological attack

in silico. We first assumed that regions with 420% lesion voxels

would not function properly, and therefore we deleted them from

the DTI connectome in decreasing order of the proportion of

lesion voxels they represented. In other words, the regional

Table 1 Disorders included in the meta-analysis of grey matter lesions based on previously published voxel-based mor-
phometry (VBM) studies

Disorder Number of VBM
studies included

Number of
patients

Number of
healthy controls

Attention deficit hyperactivity disorder 13 363 331

Amyotrophic lateral sclerosis 8 132 146

Anorexia nervosa 10 156 207

Asperger’s syndrome 9 163 209

Autism (pervasive developmental disorder
excluding Asperger’s syndrome)

12 330 331

Bipolar affective disorder 18 479 630

Chronic pain 13 305 326

Dementia in Alzheimer’s disease 36 765 1211

Dementia in Parkinson’s disease 10 192 228

Depressive disorder 24 883 1015

Developmental dyslexia 8 121 122

Dystonia 10 219 244

Frontotemporal dementia 37 508 660

Hereditary ataxia 15 202 223

Huntington’s disease 9 227 193

Juvenile myoclonic epilepsy 7 220 218

Multiple sclerosis 11 499 353

Obsessive-compulsive disorder 14 425 431

Obstructive sleep apnoea 7 177 268

Panic disorder 7 142 133

Parkinson’s disease 17 515 411

Progressive supranuclear palsy 7 108 182

Post traumatic stress disorder 14 232 327

Schizophrenia 51 1925 2133

Temporal lobe epilepsy – left 14 339 597

Temporal lobe epilepsy – right 10 247 373

Total 392 9874 11 502

Figure 2 Computational attacks and the resilience of the DTI connectome. (A) Plot of global efficiency of the DTI network versus

percentage of nodes deleted. When nodes are deleted randomly the efficiency of the network is approximately as resilient as a random

(Erdös-Rényi) graph (inset); when high degree nodes are targeted (deleted in order of decreasing degree) the efficiency of the network

degrades more rapidly than a random graph. (B) Plot of global efficiency of the DTI network versus percentage of edges deleted. The

efficiency of the DTI network degrades faster than a random graph when the longer distance edges are targeted (deleted in order of

decreasing connection distance).
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Figure 3 MRI lesions identified meta-analytically from the primary literature on 26 clinical brain disorders impact preferentially on

the hubs of the normal connectome. (A) A meta-analytic map of multiple cortical and subcortical grey matter MRI lesions that were

significantly abnormal ‘on average’ over 26 specific disorders. (B) Nodes of the normative DTI connectome, represented in anatomical

space, and (C) in a spiral, where nodes of similar degree are arranged in the same circle, and the different circumferences arranged so that

the tip of the spiral has the highest degree hub nodes, while the base the most peripheral nodes. Nodes are sized in proportion to their

degree, and coloured according to the proportion of voxels which are generically lesioned, i.e. the percentage of lesion voxels each node

comprises. The strongest 0.1% of edges between nodes, which highlight pairs of nodes with consistently high number of streamlines

interconnecting them, are shown for illustrative purposes. (D) Plot of the probability of lesion voxels (y-axis) versus the degree of DTI

connectome nodes (x-axis). The red line is a fitted logistic regression model. (E) Plot of the probability of lesion voxels (y-axis) versus

the degree of the functional co-activation network nodes (x-axis). The red line is a fitted logistic regression model.
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node representing the highest proportion of lesion voxels was deleted

first and then less-lesioned nodes were incrementally deleted. The

global efficiency of the DTI network was degraded by this pathologic-

ally targeted attack to a greater extent than by random deletion of

nodes; but the connectome was more resilient to pathological attack

than it was to attack on hubs (Fig. 4).

We also explored the relationship between hubs and lesions in

anatomically defined subsets of brain regions: basal ganglia,

frontal, parietal, temporal and occipital cortex (Fig. 5A). We

found a significant relationship between nodal degree and

lesion probability within frontal regions (1.6% increase in

lesion probability per unit increase in degree; P50.007, permu-

tation tests) and temporal regions (2.7%, P510�4). These re-

sults in the temporal lobe remained significant when excluding

the hippocampus and amygdala from the analysis (1.9%,

P50.005). Parietal regions showed the opposite trend—of le-

sions being concentrated in low degree nodes (2% decrease in

lesion probability per increase in degree, P5 0.002), although

this was not replicated when using the functional co-activation

network (see below).

Figure 5 Degree and probability of lesion in anatomical subnetworks. Probability of a ‘voxel lesion’ in each of the 401 regions of the DTI

template for (A) the disorder-general VBM meta-analysis, as well as for (B) Alzheimer’s disease and (C) schizophrenia meta-analysis.

Nodes have been colour-coded according to their anatomical (lobar) location, and logistic regression lines for each subgroup and for all the

regions together are shown.

Figure 4 Modelling pathological attack on the connectome.

Plot of the global efficiency of the DTI network versus per-

centage of nodes deleted. Note that the global efficiency de-

teriorates significantly faster in pathological attacks compared to

random attack, but not to the extent of targeted attacks on

hubs.
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Relationship of diffusion tensor imaging
connectome hubs to the anatomy of
specific disorders
We investigated the relationship between normative hubs and

MRI lesions defined by specific meta-analyses of the primary

VBM literature for each of the 26 disorders (Fig. 6). The median

degree of lesion voxels was greater than non-lesion voxels in 20 of

26 disorders; in four disorders, the median degree was reduced in

lesion voxels; and in two disorders there was no difference.

Plotting the effect sizes against the number of studies used in

each meta-analysis (a so-called funnel plot) showed a symmetrical

distribution centred around the effect size from the meta-analysis

pooling all disorders together, suggesting that the variability of

estimated effect sizes across individual disorders might be related

to the variable number of primary studies reported for each

disorder (Fig. 6 inset). Bootstrap confidence intervals for the

effect size of each specific disorder indicated that lesion voxels

had a significantly higher degree than non-lesion voxels in nine

disorders (Fig. 6): Alzheimer’s dementia, Asperger’s syndrome,

frontotemporal dementia, juvenile myoclonic epilepsy, left and

right temporal lobe epilepsy, progressive supranuclear palsy,

post-traumatic stress disorder and schizophrenia. In only one dis-

order, amyotrophic lateral sclerosis, was the degree of lesion

voxels significantly lower than the degree of non-lesion voxels.

Although lesions were concentrated on hubs in most disorders,

the anatomical identity of the lesioned hubs was different be-

tween different disorders. This was illustrated by the examples

of Alzheimer’s disease and schizophrenia, the two disorders most

frequently studied in the primary literature. In both disorders, high

degree nodes were significantly more likely to be lesioned (Figs 6,

7B and C), but the anatomical location of lesions was largely dis-

order-specific: medial frontal and anterior cingulate regions were

Figure 6 Hub concentration of lesions is common to many specific brain disorders. For each of 26 disorders, box plots represent the

difference in median degree of lesion voxels versus non-lesion voxels with a bootstrap 95% CI; the size of the box is proportional to the

number of primary studies in the MRI literature. Small inset plot shows the relationship between sample size and difference in median

degree for every study. Note that results from individual disorders are symmetrically distributed around the meta-analytical summary of all

disorders, with a larger variance observed for disorders represented by fewer studies.

2390 | Brain 2014: 137; 2382–2395 N. A. Crossley et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/article/137/8/2382/2847927 by guest on 26 D

ecem
ber 2024



most affected in schizophrenia, whereas medial temporal and par-

ietal regions were most affected in Alzheimer’s disease (Fig. 7A).

Only the thalamus and hippocampus were consistently lesioned in

both. The difference between disorders was also highlighted by

analysis of the relationship between lesion concentration and

degree within specific cortical lobes and subcortical structures

(Fig. 5B and C). In Alzheimer’s disease, the relationship between

lesions and degree was strongest within temporal regions (2.6%

increase in the probability of a lesion per degree; P510�4, per-

mutation test); whereas in schizophrenia, it was present within

frontal, temporal, and parietal lobes (increases of 2.6%, 1.1%

and 2.2%, respectively; all P50.01, permutation tests).

Generalization to a functional
connectome
One potential limitation of these results is that they are contingent

on a network model based on a single modality of neuroimaging

(DTI) data on one sample of healthy volunteers (n = 56). We

therefore conducted a parallel analysis based on a different nor-

mative human brain network model, estimated meta-analytically

from a large sample of previously published functional neuroima-

ging data (Crossley et al., 2013). This functional coactivation net-

work shared many topological properties with the DTI network,

including the existence of hubs, modules, small-worldness and rich

clubs (Supplementary Fig. 3). Resilience analysis of the functional

coactivation network demonstrated that its global efficiency was

vulnerable to targeted attack on hubs (Supplementary Fig. 4).

Pathological lesions defined by the meta-analysis of all disorders

were concentrated on hubs of the functional coactivation network.

The median weighted degree of lesion voxels was 3.38, compared

to 2.77 in non-lesion voxels; P510�3, permutation test. Likewise,

logistic regression analysis estimated a 17.3% increase in the prob-

ability of a voxel being lesioned for unit increase in the weighted

degree of the corresponding node (P5 10�4, permutation test,

Fig. 3E). Rich-club nodes of the functional co-activation network

were also almost twice as frequently lesioned as peripheral nodes

(19.8% of lesion voxels in rich-club nodes, 10.3% in peripheral

nodes; P50.013, permutation test). There was a positive trend

for lesion probability to increase as a logistic function of nodal

degree in all anatomical subsets (basal ganglia; frontal, parietal,

temporal and occipital cortices; Supplementary Fig. 5) although

this was statistically significant only for frontal regions (22% in-

crease of lesion probability per unit increase in weighted degree;

P510�4, permutation test). Lesion probability was also signifi-

cantly related to nodal degree in all cortical regions, excluding

basal ganglia (16.5% increase, P510�4, permutation test).

Methodological variations
To further test the robustness of the results of analysis of the DTI

connectome, we explored a number of reasonable variations in the

methodology used for network analysis and for meta-analytic

lesion mapping. Results were substantively unchanged by variation

in the methods used to construct the normative DTI connectome,

such as excluding basal ganglia (Hagmann et al., 2008), or build-

ing a weighted network where the strength of each edge was

weighted by the number of tractographic streamlines connecting

the two nodes (Supplementary Fig. 6A). The relationship between

anatomical lesions and hubs was reproduced when alternative

plausible metrics of topological centrality, including participation

coefficient (Meunier et al., 2009, 2010; Power et al., 2013), dis-

tance-weighted degree (Liu et al., 2014b) and betweenness cen-

trality (Rubinov and Sporns, 2010), were used to define hubs

(Supplementary Fig. 6B). Likewise, modifying aspects of the ana-

lysis of anatomical lesions did not substantially change the main

findings. Results were robust to a leave-one-out disorder analysis,

excluding neurodegenerative disorders, or including fewer dis-

orders represented by a larger number of primary studies

(Supplementary Fig. 6C).

Discussion
Overall, these results provide evidence in support of the theoret-

ical prediction that brain hubs are central to brain disorders in

general. Computational analysis confirmed and extended previous

in silico brain studies (Achard et al., 2006; Kaiser et al., 2007;

Figure 7 Schizophrenia and Alzheimer’s disease impact mainly

on anatomically distinct subsets of hubs. (A) Meta-analytic maps

of cortical and subcortical lesions associated with schizophrenia

(green voxels), or Alzheimer’s disease (blue voxels), or both

disorders (pink voxels). (B and C) Lesions mapped in spiral net-

works in schizophrenia (B) and Alzheimer’s disease (C) where

the tip represents the highest degree nodes for both disorders

and the strongest 0.1% of edges are shown.
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Iturria-Medina et al., 2008; Alstott et al., 2009), demonstrating

that targeted attacks on hubs, or the longer distance edges, of the

normal DTI connectome were especially likely to degrade its global

efficiency. Meta-analysis of a large database of clinical MRI studies

demonstrated that hub nodes of the DTI connectome were more

likely to be pathologically lesioned by a wide range of brain dis-

orders, results that were reproduced in relation to an independent

normal functional brain network. These results based on meta-

analysis of case-control VBM studies are in line with recent

graph theoretical analyses of resting state functional MRI or DTI

data that demonstrated abnormalities of hubs in several disorders

including, for example, schizophrenia (Rubinov and Bullmore,

2013), Alzheimer’s disease (Buckner et al., 2009), frontotemporal

dementia (Agosta et al., 2013), Parkinson’s disease (Baggio et al.,

2014), temporal lobe epilepsy (Liu et al., 2014a), Gilles de la

Tourette syndrome (Worbe et al., 2012), acute brain injury

(Achard et al., 2012), and migraine (Liu et al., 2012).

One immediately interesting observation is that, in the pooled

meta-analysis of MRI lesions across all disorders, a certain subset

of brain regions was more likely to be affected ‘on average’ across

a range of pathogenic processes. One might have reasoned that

since each disorder has a specific pathogenesis, it might be ex-

pected to affect a specific set of anatomical regions, and therefore

the average over disorders would demonstrate no consistently ab-

normal lesions. In contrast, the experimental observation is more

compatible with previous suggestions (Saxena and Caroni, 2011;

Jagust, 2013; Menon, 2013) that an anatomically defined subset

of brain regions are generally more implicated in brain disorders; in

other words, that some brain regions are relative hotspots for

clinical abnormality of grey matter volume. The main value

added by our topological analysis is the evidence we provide

that these disorder-general lesions are concentrated in hubs of

the normal connectome.

Hubs and lesions
Network science has provided insights into general principles gov-

erning the interaction of multiple elements (or nodes) of a com-

plex system, whether these nodes represent people, computers or

proteins. Topological analysis of complex networks has previously

demonstrated that scale-free networks, with fat-tailed degree dis-

tributions indicating the existence of hubs, are vulnerable to attack

on hub nodes (Albert et al., 2000). For example, hub proteins,

as defined by the scale-free network of interactions between

proteins, are preferentially targeted by pathogens in plants

(Mukhtar et al., 2011) and humans (Calderwood et al., 2007),

and their mutations are lethal in yeast (Jeong et al., 2001).

Echoing these results, here we provide evidence that the hubs

of brain networks are generally central to clinical disorders.

Our primary measure of ‘hubness’ has been degree centrality,

meaning that brain regional nodes with the highest number of

connections (edges) to other regions are the most frequently le-

sioned by diseases. Such high degree nodes are often connector

hubs, connecting to regions in different brain modules. As a sec-

ondary criterion of hubness, we used participation coefficient,

which measures the proportion of intermodular connections for

each node (Guimera and Nunes Amaral, 2005), to show that

the brain regions most critical to intermodular communication

were also more likely to be pathologically lesioned. A third meas-

ure of centrality, related to both nodal degree and participation

coefficient, is the elite clique of highly interconnected hub nodes

that exists in networks with a high rich-club coefficient (van den

Heuvel and Sporns, 2011). We showed that lesions were also

disproportionately concentrated in rich-club regions rather than

in the much larger number of peripheral regions.

Why should lesions be concentrated in hubs? We suggest that

there are at least two major convergent factors. First, hubs are

more functionally valuable, especially for ‘higher-order’ cognitive

tasks and adaptive behaviour; therefore lesioned hubs are more

likely to be symptomatic than lesioned non-hubs. Second, hubs

are more biologically costly and therefore more vulnerable to

a diverse range of pathogenic processes.

Hub pathology: high value/high cost
brain regions are more frequently
lesioned by disorders
From the perspective of brain and cognition, studies have shown

that higher global efficiency of functional brain networks (derived

from resting-state functional MRI data) is positively correlated

with better cognitive performance (van den Heuvel et al., 2009;

Giessing et al., 2013); and that cognitively more demanding tasks

lead to the appearance of long-range integrative connections in

task-related MEG data (Kitzbichler et al., 2011). These data are

broadly aligned with workspace theories that ‘higher order’ cog-

nitive functions depend on a more integrative network topology

(Dehaene and Changeux, 2011). In particular, the functional con-

nectome used to define hubs in this analysis has previously been

reported to include a rich club of highly-interconnected hub nodes

that were coactivated by a variety of tasks, especially executive

tasks demanding both cognition and action, highlighting the topo-

logical value of hubs (and clubs) for integrative processes and

adaptive behaviour in healthy humans (Crossley et al., 2013).

On this basis, it seems intuitive that pathological lesions to net-

work hubs are especially likely to be associated with clinically sig-

nificant cognitive impairments.

Hubs of brain networks are also arguably biologically expensive.

Biological cost of brain networks can be measured in many ways,

including the local blood flow or metabolic rate of a regional node,

and the physical distance of an edge or connection between nodes

(the metabolic cost of connections is likely to increase monoton-

ically as a function of distance). Recent studies have indeed shown

that high degree and highly efficient hub nodes of normal func-

tional MRI connectomes have higher blood flow, glucose meta-

bolic rates, and longer connection distance, than non-hub nodes

(van den Heuvel and Sporns, 2011; Alexander-Bloch et al., 2013;

Liang et al., 2013; Tomasi et al., 2013).

The extra biological cost of hubs may be a price worth paying

for their topological value, but it may also increase their vulner-

ability to diverse disease processes. For example, any disease pro-

cess that restricts neuronal metabolism, e.g. ischaemia or oxidative

stress, might be expected to have disproportionate impact on the

most metabolically active (hub) nodes. Likewise any disease
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process that damages long-distance axonal projections (e.g. disse-

minated sclerosis or traumatic brain injury), or disrupts active

axonal transport mechanisms, might be expected to disconnect

hubs and/or to disrupt long-range communication between net-

work modules.

However, we note that lesions might be concentrated on hubs

purely because of their greater topological value: some disease

processes might affect brain regions with uniform probability but

lead to symptoms when the lesion happened to be in a hub; or

some disease processes might be initiated locally, perhaps in a

peripheral node, and only become symptomatic once they have

propagated to topologically central nodes. In other words, al-

though it seems plausible that hubs are not just more symptomatic

but also more vulnerable, the claim about vulnerability is less se-

curely established. More direct evidence for hub vulnerability is

required; this might include experiments in which a global (uni-

form probability) insult is administered in animal models. The hub

vulnerability hypothesis would predict that an acute severe global

insult would cause greater structural and functional damage to

hub regions than to non-hubs. Experimental lesions in animals

caused by global hypoxia, mitochondrial dysfunction (Melov,

2004), or diffuse axonal injury as seen in models of traumatic

brain injury (Xiong et al., 2013) or multiple sclerosis (Ransohoff,

2012), could be revisited within this framework.

Although we claim that the anatomical lesions of brain disorders

are generally concentrated on normal network hubs, this does not

mean that different disorders will necessarily involve an identical

set of hubs, as shown for Alzheimer’s disease and schizophrenia.

This presumably reflects important differences in their respective

pathogenetic processes. As such, we do not suggest that topo-

logical centrality is the only factor determining the location of

lesions in different disorders. Lesions in specific disorders such as

Alzheimer’s disease and schizophrenia are located in high degree

regions, but not necessarily in the highest degree hubs, and not

hub-concentrated to the same extent within different lobes of the

cortex. Disorder-specific factors will presumably determine which

brain regions are affected first and how different neurodevelop-

mental and neurodegenerative disease processes then propagate

over the network architecture.

Robustness and generalizability
of results
We have used meta-analytic methods to define structural MRI

lesions and functional network hubs on the basis of large numbers

of primary data published by research groups worldwide. Thus

many of these results are based on a large proportion of the

extant relevant scientific literature.

The DTI connectome was estimated on the basis of a smaller

data set but we showed that its properties were consistent

with previously published DTI connectomes and were robust to

variation in the methods used to construct the connectome. The

basic association between lesion probability and nodal degree

demonstrated for the DTI connectome globally was also evident

for frontal and temporal cortical subsets of the connectome,

indicating that both cortical and subcortical hubs are implicated

in disorders.

Although DTI provides the most direct access to the structural

network of the living human brain, it also has limitations (Morris

et al., 2008; Jones and Cercignani, 2010; Craddock et al., 2013;

Jones et al., 2013). By using a completely different approach to

build the connectome, based on meta-analysis of task-based func-

tional neuroimaging studies, we were able to replicate all the key

results linking MRI lesions to network hubs. This functional co-

activation network was based on a different parcellation template,

further suggesting that our results are not driven by the specific

parcellation scheme used for the DTI analysis.

We also tested the extent to which our results were likely to be

driven by a few disorders. Our meta-analytic pooling of all dis-

orders balanced the weight each disorder contributed to the gen-

eral estimate, and we also showed that results were consistent

across several subgroups of disorders, e.g. after excluding all neu-

rodegenerative disorders. However, there was not statistically

robust evidence for hub-targeting lesions in all of the 26 disorders

we evaluated specifically. This could mean that some disorders

(such as amyotrophic lateral sclerosis) may truly not be hub-con-

centrated. One could argue that a substantial proportion of pa-

tients with amyotrophic lateral sclerosis have only motor

symptoms (Goldstein and Abrahams, 2013), and hypothesize

that the association between hubs and lesions may be most evi-

dent for disorders associated with clinical abnormalities of integra-

tive function such as cognitive impairment or seizures. However,

many of the disorders for which the evidence for preferential le-

sioning of hubs was weaker had been studied in a relatively small

number of patients, suggesting that there may also have been

insufficient power to link the anatomical distribution of lesions to

the underlying network topology in some of these less frequently

studied disorders.

Conclusion
High cost/high value hubs in normal human brain networks are

more likely to be anatomically abnormal than non-hubs in many

(if not all) brain disorders.
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